
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Auditing Framework APIs via
Inferred App-side Security Specifications

Parjanya Vyas, Asim Waheed, Yousra Aafer, and N. Asokan, University of Waterloo
https://www.usenix.org/conference/usenixsecurity23/presentation/vyas

Auditing Framework APIs via Inferred App-side Security Specifications

Parjanya Vyas
University of Waterloo

parjanya.vyas@uwaterloo.ca

Asim Waheed
University of Waterloo

asim.waheed@uwaterloo.ca

Yousra Aafer
University of Waterloo

yousra.aafer@uwaterloo.ca

N. Asokan
University of Waterloo

asokan@acm.org

Abstract
In this work, we explore auditing access control implemen-
tations of Android private framework APIs by leveraging
app-side security specifications. The seemingly straightfor-
ward auditing task faces significant challenges. It requires ex-
tracting unconventional security indicators and understanding
their relevance to private framework APIs. More importantly,
addressing these challenges requires relying on uncertain
hints. We hence, introduce Bluebird, a security auditing plat-
form for Android APIs, that mimics a human expert. Bluebird
seamlessly fuses human-like understanding of app-side logic
with statically-derived program semantics using probabilistic
inference to detect access control gaps in private APIs.

1 Introduction

Android device manufacturers often define private APIs in the
framework, which are typically invoked by preloaded apps
to access custom functionality. Ensuring complete mediation
along the path from a preloaded app entry point to a private
API’s functionality is a security-critical process that requires
careful coordination of security specifications across the app
and framework layers. Both parties, preloaded app developers
and framework developers, should enforce similar security
measures. This is a challenging task, particularly due to the
lack of security specifications for private APIs. Preloaded apps
may fail to protect access to an invoked private API in face
of external requests, thus introducing hijack-enabling flows.
An unprivileged (malicious) app can leverage such flows as
a stepping stone to trigger the private API, thus sidestepping
potential framework-side access control. This classic scenario
– reflecting one type of complete mediation lapse, has been
widely studied in the Android literature [23].

However, complete mediation lapse in the reverse direction
has been under-explored. When a preloaded app protects
a private API (i.e., by enforcing a security check along its
invocation site), the API itself should likely provide a similar
protection. Such a lapse can arise when the app developer uses

her expert insight of the context in which an API is invoked
to judge its sensitivity to devise an app-side security check
accordingly, while the API developer lacked such insight.

The above intuition shows that the “security specifica-
tions”1 implied by app-side sensitivity indicators can provide
valuable insights for auditing the access control implemen-
tation of private APIs to discover potential flaws. However,
turning this seemingly simple intuition into a security auditing
technique faces two significant challenges.

First, the audit procedure should be able to extract un-
conventional sensitivity indicators from Android app entries.
While traditional access-control extraction techniques are ef-
fective for handling non-UI based app components, such as
Receivers and Services, they cannot tackle UI-based app en-
tries, such as Dialogs. The latter category often includes im-
plicit sensitivity indicators ranging from security-relevant UI
blocks (e.g., warning Dialogs), explicit user interaction (e.g.,
clicking on a confirmation button), to functionality occlusion.

Second, the audit procedure requires understanding the
relevance of a specific API to sensitivity indicators in an
app. As preloaded apps may invoke various code pieces, each
contributing differently to an app entry2, an invoked API is
not necessarily relevant to the indicators.

Third, addressing this latter challenge further requires con-
sidering the invocation context of a private API in an app.
As framework-side access control may target data flows or
may be dependent on supplied arguments, app-side security
checks could vary accordingly.

Addressing these challenges is a highly uncertain process,
as we cannot precisely deduce that a given (UI-based) app
entry is sensitive, nor can we derive the exact target of an
app entry’s access control. Rather, we can mimic (uncertain)
human-like reasoning by relying on various hints. For exam-
ple, a human security analyst can speculate that an app dialog

1Henceforth, we use the term “security specification” in a broad sense to
refer to the security policy that can be inferred from access control enforce-
ment or other sensitivity indicators, rather than to a formal, written, security
specification in the traditional sense.

2An app component or a UI block.

USENIX Association 32nd USENIX Security Symposium 6061

for changing volume is sensitive because it includes the sen-
tence “Listening at a high volume may damage your hearing".
She decides to associate that app entry with the API increa-
seVolume thanks to the presence of a Slider UI-widget entitled

“volume". She is reassured that her conclusion is correct since
setting of the volume level directly flows from the slider to
the API. She can thus infer that the API increaseVolume is
sensitive because she is skillful at fusing app-side hints.

To solve these challenges while accounting for the inherent
uncertainty, we propose Bluebird, an automated auditing tech-
nique for Android APIs. Inspired by the recent application
of probabilistic inference in Android security [11], Bluebird
models the audit task as a probabilistic inference problem.
Bluebird pairs human-like understanding of app-side logic
(e.g., using NLP techniques) with statically-derived app-side
program semantics to infer the likely sensitivity level of an
API, solely from the perspective of the apps calling it. Specif-
ically, for each API, we introduce a random variable that indi-
cates the probability of the API being sensitive. It is initially
assigned a prior probability, reflecting the sensitivity level
implied by its access control implementation in the frame-
work. Next, Bluebird analyzes preloaded apps and extracts
relevant security-specific evidence and clues. The evidences
are app-side observations that assign a security indicator to
app-side entry points, while the clues are less certain human-
like reasoning rules that guide the inference procedure. They
are conditional on various contextual and execution properties
and regulated by an implication probability; meaning that if a
conditional clue holds, we can associate app-derived sensitiv-
ity to invoked APIs with a level of confidence corresponding
to the indicated implication probability.

The priors and probabilistic constraints are fed to a proba-
bilistic inference engine to compute posterior probabilities of
individual APIs being sensitive. Bluebird then detects a gap in
the API’s access control if the posterior marginal probability
is more than the prior – meaning that framework implementa-
tion assumes less sensitivity than what is seen from the app’s
perspective. Note that Bluebird does not indicate the actual
missing access control, but rather indicates the presence of
a gap, since it is difficult to map the inferred sensitivity to a
concrete access control check.

We applied Bluebird on 7 Android AOSP ROMs (including
versions 8.1, 9.0, 10, 11, 12 and 13), and 7 Android custom
ROMs, from Samsung, Amazon, Oppo, Vivo, Xiaomi, and
ZTE. Our evaluation on the AOSP codebases, demonstrates
the validity of our approach. The majority of (low-sensitivity)
AOSP APIs are found to contain no gaps, based on their
app-derived sensitivity. Our evaluation on the custom ROMs
reveal 391 private APIs with likely gaps in access control. We
investigate 10% of the total the reported cases manually, and
identified 11 likely vulnerabilities. We built proof-of-concept
exploits (PoCs) for a few selected cases (for which we could
understand the recovered code). Some of the PoCs can be
carried out with no permission or only low-privileged nor-

mal permissions and lead to various consequences, including
changing security policies for Samsung’s SecureFolder, alter-
ing app-specific security settings in Samsung’s Persona, and
manipulating Audio related functionality in Amazon.

We claim the following contributions:

• We propose Bluebird, an automated probabilistic secu-
rity audit technique for unprotected Android APIs that
is capable of leveraging and fusing uncertain app-side
security logic. (Section 3)

• We develop a set of probabilistic inference rules that
allow pairing human-like understanding of app-side se-
curity logic with statically derived program semantic and
artifacts to conduct the security audit procedure. (Sec-
tion 4)

• Via extensive empirical evaluation on 14 different ROMs
(Section 5), we demonstrate the effectiveness of Bluebird
by identifying 11 specific vulnerabilities (Table 5), all of
which have been acknowledged by the vendors involved,
and 6 have been granted bug bounties. (Sections 5, 6)

2 Motivation

In this section, we use an example to illustrate how app-
inferred security specifications can help identify APIs with
an access control gap and the challenges that need to be ad-
dressed in the process.

Consider the highly-simplified usage scenarios of Sam-
sung’s private API setSecureFolderPolicy in the
preloaded app SecureFolder, depicted in Listings 1, 2 and
Figure 1. The private API is invoked in two different com-
ponents, in the Broadcast Receiver PolicyUpdateReceiver
and in the Activity FolderContainer. In the first scenario
(Listings 1 and 2), the API (along with other internal app
methods) is called upon triggering the onReceive method of
PolicyUpdateReceiver. Note two distinct access control
checks: (1) the broadcast receiver is protected with a custom
signature permission (Listing 1), implying that the receiver
cannot be triggered by third-party (non-Samsung) apps; and
(2) the path leading to the API is control-dependent on an-
other security check (Line 6 in Listing 2), that mandates that
the receiver can only be invoked by (physical) users with
id >= 150 (on Samsung devices, these correspond to mobile
device management admins).

In the second scenario (Figure 1), the API is triggered upon
launching the Activity FolderContainer. Besides the userId
check at Line 5, there is a more-difficult to detect access con-
trol: The user needs to enter her password in the Fragment
(Figure 1.A,) , and click on Continue button before landing
on the FolderContainer Activity. Observe that although
FolderContainer is exported (Figure 1.C), the access con-
trol check (Line 5 in Figure 1.D) implies that the user needs
to be logged in as user id >= 150.

6062 32nd USENIX Security Symposium USENIX Association

1 <receiver android:name=".common.policyagent.PolicyUpdateReceiver" android:
permission="samsung.permission.RECEIVE_SECURE_FOLDER_POLICY_UPDATE">

Listing 1: PolicyUpdateReceiver Manifest Definition

1 public class PolicyUpdateReceiver extends BroadcastReceiver {
2 int i = 150;
3 if(!TestHelper.isRoboUnitTest())
4 i = UserHandle.getCallingUserId();
5 Log.d("[FOLDER].PolicyBootReceiver", "START_POLICY_UPDATE");
6 if (i >= 150)
7 PolicyHttpClient.downloadPolicy();

1 public class PolicyHttpClient {
2 public static void downloadPolicy() {
3 if (PolicyHttpClient.isRebootCase || PolicyHttpClient.isAppUpdateCase){
4 ...
5 xmlPullParser.setInput(assetManager.open(Policy_XML), null);
6 while (true) {
7 xmlPullParser.next();
8 if ("DisallowPackage".equals(xmlPullParser.getName()))
9 mDisallowList.add(xmlPullParser.getAttributeValue(null, "name"));

10 }
11 setSecureFolderPolicy("DisallowPackage", mDisallowList, userId);
12 unInstallDisallowedApps();
13 enableBluetooth(); ...

Listing 2: PolicyUpdateReceiver Code Listing

Given the observed consensus among the two entries, we
can intuitively deduce that the API is likely sensitive, and
hence its framework-side implementation should enforce an
access control. Unfortunately, it does not. Consider the API’s
(simplified) implementation depicted in Listing 1 (extracted
from Samsung SM-A3058):

1 public void setSecureFolderPolicy(String key, List pkgList, int user) {
2 mSecureFolderPolicies.put(key, pkgList);
3 saveSettingsLocked(user);
4 if(key.equals("DisallowPkg"))
5 setApplicationBlackList("DisallowPkg", user);

Listing 3: setSecureFolderPolicy

The API allows overwriting internal Secure Folder poli-
cies for a given user and manipulating the Secure Folder’s
blacklisted apps. Given the sensitivity of these operations,
we can confirm that our earlier deduction – based on the se-
curity specifications from the preloaded app, is most likely
true. We built a PoC to exploit this vulnerability and demon-
strated that it is possible for a third-party app to alter security
policies of Samsung’s Secure Folder container. Samsung has
acknowledged and fixed the vulnerability.

Our goal is to develop a systematic procedure to leverage
similar insights to audit framework APIs. It entails the follow-
ing three challenges:

Challenge 1: Diverse App-Side Sensitivity Indicators. App-
side sensitivity indicators feature substantial diversity: Apps
use both (1) traditional access control enforcement (e.g., per-
missions, uid checks, and user checks), largely similar to that
used in the framework, and (2) app-specific protection mech-
anisms. Some of them are explicit, imposed at the declaration
point of app components, such as blocking access to the com-

ponents (i.e., via setting the android:exported flag to false).
Others are implicit, implemented by different UI-based sensi-
tivity indicators (e.g, UI properties and interactions) like those
in Figure 1.A. Observe that besides the password requirement
in the Figure, the UI itself includes other elements indicating
the sensitivity of the operation: (a) the text includes sensitive
keywords, e.g., recovered, password, and (b) the password
field is masked.

This diversity of app-side security indicators, particularly
UI-based ones, renders their automatic extraction challenging.
Challenge 2: Estimating the Contribution of an API to an
App Component. Components of preloaded apps tend to be
quite complex, involving the invocation of code from different
sources. Along the call site of a private API, a component
may invoke other APIs, internal methods and external library
calls in order to execute its overarching functionality. The
auditing technique needs to differentiate among these pieces
of code, separating main contributors from auxiliary ones.

We observe through our analysis that the degree of con-
tribution is important for understanding the relevance of an
invoked private API to the component’s sensitivity indicators.
Main contributors are more likely to be relevant than auxiliary
contributors. Failing to account for this factor may lead to
inaccuracies. For example, the audit process can conclude
that an (insensitive) auxiliary API has an access control gap –
thus overwhelming a security analyst with false alarms.

We note though that demarcating main and auxiliary code
is difficult. While a human analyst can make the distinction
using known hints (e.g., mnemonic beacons), a machine can-
not as it requires understanding and analyzing intrinsically
noisy code.

Consider the code listing of PolicyUpdateReceiver
(Listing 2). We can deduce that the following are main con-
tributors:

1. The internal method downloadPolicy() is a likely
main contributor to the Receiver’s functionality. It shares
the common word policy with the Receiver’s name.

2. setSecureFolderPolicy (line 11) is a likely main con-
tributor to the private method downloadPolicy() as
they share a common word policy. Give our observation
in (1), we can transitively propagate our conclusion up
to the Receiver: setSecureFolderPolicy is a likely
main contributor to the Receiver’s functionality.

3. We can reinforce our transitive conclusion in (2) by
another observation. setSecureFolderPolicy and the
Receiver’s required permission (..RECEIVE_SECURE_-
FOLDER_POLICY_UPDATE") (Listing 1) share a stronger
naming similarity. Thus, we are more confident now that
setSecureFolderPolicy is a likely main contributor
to the Receiver’s functionality.

4. The sdk API enableBluetooth and the private method
uninstallDisallowedApps are likely main contribu-

USENIX Association 32nd USENIX Security Symposium 6063

Figure 1: Folder Container Activity

tors to the calling method downloadPolicy. Although
we cannot spot a syntactic naming similarity, we know
that the words enable and disallow are related to the con-
cept of policy. We can use similar transitive reasoning
as in (2) to deduce that enableBluetooth and unin-
stallDisallowedApps are likely main contributors to
the Receiver.

Conversely, the methods isRobotUnitTest and getCall-
ingUserId are likely auxiliary contributors as they bear no
similarity to the Receiver’s name.

In summary, our reasoning concludes that the API setSe-
cureFolderPolicy and the two sdk APIs, are likely more rel-
evant to the Receiver’s permission (i.e., RECEIVE_SECURE_-
FOLDER_POLICY_UPDATE) than the auxiliary contributors.
Reasoning scope: We limit our reasoning scope to code ele-
ments that are (directly or transitively) related to target APIs
via call dependencies; that is, we only estimate the contribu-
tion scope of target private APIs and their (transitive) callers.
This focused reasoning is driven by our domain-based hint
that analyzing code unrelated to the APIs cannot enhance
our belief in the API’s contribution extent. For example, al-
though we can conclude that the internal method setFold-
erContainer (at line 6, Figure 1.D) is a main contributor
to FolderContainer Activity, it does not impact our con-
clusion regarding the contribution of the target private APIs
(because a component may have many main contributors).

Challenge 3: Understanding the Invocation Context of an
API in an App Component. We further observe through our
analysis that, when serving external requests, an app entry
may allow a varying execution extent of APIs. For instance,

it may enable a full execution; i.e., it allows other entities3

unlimited control of the API’s parameters and a direct channel
to read its execution output. Alternatively, it may allow a
limited execution. That is, it allows other entities to trigger
the API, but only under specific parameters, strictly controlled
by the app itself (e.g., constant parameters, parameters read
from files, or special APIs’ return values). The execution
output may be similarly constrained; the app entry does not
disclose the results back to the external entity.

We note that an API’s execution extent is important for
understanding its relevance to its app-side sensitivity indica-
tors. An app entry allowing a full execution, use sensitivity
indicators reflecting that of the API’s access control, while
those allowing limited execution may not necessarily do so
(i.e., an app-side sensitivity indicator may be lower than what
is indicated by the API’s access control.

We identified two main reasons leading to these cases:

• Data sensitivity: These cases include app entries invok-
ing data-sensitive APIs; i.e., those setting or returning
data (sinks and source APIs) The entries are likely to
impose protection dependent on data flows. For example,
if an app entry does not disclose a source API’s returned
value, it is unlikely to enforce a protection.

• Path sensitivity: These cases reflect app entries that in-
voke APIs whose access control is dependent on pro-
vided arguments. The entries are likely to use different
protections depending on the API’s parameters).

This category of versatile APIs can impede our proposed
auditing. Without resolving the context, a naive auditing tech-

3Apps or the user.

6064 32nd USENIX Security Symposium USENIX Association

nique may associate a seemingly relaxed access control with
a potentially sensitive API. Consider the invocation site of
setSecureFolderPolicy in Listing 2, line 11. The third ar-
gument userId constraints the policy changes to the scope of
the calling user (i.e., getCallingCurrentUserId4); that is,
a user can only change her own policy. The argument hence
can be interpreted as an implicit security property, which
should likely be enforced by the API implementation (e.g., by
verifying if the argument matches a specific value).

Key Observations. From the above examples, we note that
auditing framework APIs based on app-side security specifi-
cations requires reasoning about uncertainty. Besides, we note
that app-side security specifications may include inherent con-
tradictions, due to: (1) some preloaded app developers may
over-protect APIs, and (2) others may not be able to judge the
sensitivity of the undocumented private APIs.

Our Solution. Inspired by the recent application of probabilis-
tic inference in Android security [11], we resort to modeling
the audit task as a probabilistic inference problem. Proba-
bilistic inference allows drawing conclusions from uncertain
information and observations by modeling them in the form
of a probability distribution. Specifically, we need to com-
pute the marginal probability that an API is sensitive from
various app-side hints. The probability depends on the sensi-
tivity of the invoking app entries, and is conditional on various
properties connecting the API to the entries.

In probabilistic inference, a random variable (a boolean
variable with a probability) is used to denote a predicate (e.g.,
“an API is sensitive" or “an app entry is sensitive"). Inter-
dependent predicates (e.g., “an API is likely sensitive if it is
a main contributor to a sensitive app entry") are represented
as probabilistic implication constraints, as follows: pred1

pr−→
pred2 where pr denotes a (prior or computed) confidence in
pred1 implying pred2 to be true. The predicates may be in-
volved in multiple constraints denoting their dependencies.
Probabilistic inference aggregates the constraints, which are
considered together to form a joint distribution, and computes
a posterior marginal probability of the APIs’ sensitivity. In-
trinsically, the final probability reflects a better sensitivity
estimation, as the impact of uncertainties and contradictions
will be overpowered by dominant hints. Next, we discuss our
technique in more details, and explain how it can be used to
detect access control gaps.

3 Our Technique

Figure 2 presents a high level overview of our probablistic
security audit system, Bluebird. It consists of three phases:
Phase 1 - framework-side analysis to determine priors:
Bluebird begins by statically analyzing the framework-side
to identify Android APIs and pertaining access control logic.

4userId is set to getCallingCurrentUserId, not shown for brevity.

Figure 2: Bluebird architecture

For each framework API, Bluebird introduces a random vari-
able that denotes the probability of the API being sensitive.
The random variable is initially designated a sensitivity level,
called prior-probability, which has two possible constant val-
ues: ph denotes that the API is likely sensitive (because static
analysis reveals that the API enforces access control), and pl
= 1-ph denotes that it is not.

Existing literature [9, 19, 32] of probability inference lever-
age predefined prior probability values derived from domain
knowledge and show that inference results are typically in-
sensitive to these initial values. Here, we follow the same
practice, by setting 0.9 for ph and 0.1 for pl .

Given our goal, Bluebird limits the audit procedure to APIs
with an initial pl prior-probability.
Phase 2: app-side analysis to extract evidences and clues:
To facilitate auditing, Bluebird analyzes preloaded apps’ code
and extracts relevant evidences and clues as follows:

First, it collects evidences which reflect sensitivity indica-
tors adopted by app entries; e.g., traditional access control
properties and UI signals. The collection requires extra pro-
cessing of UI-based entries (e.g, via Natural Language Pro-
cessing) to estimate its likelihood of being sensitive. Bluebird
introduces a random variable for each app entry to denote
its sensitivity. Depending on the nature of the evidence, en-
tries may be assigned preset or computed prior-probabilities.
For example, traditional access control-based evidence (e.g.,
permissions) are assigned preset values (e.g., ph, pl), while
those requiring extra processing (e.g., NLP-based evidence)
are assigned computed priors.

Second, Bluebird moves to collecting clues. Unlike evi-
dence, clues are less certain human-reasoning rules that guide
the inference procedure to derive a sensitivity level for an API
based on its invocation in apps. Specifically, Bluebird looks
for two kinds of clues, contribution extent and contextual fea-
tures, which are designed to solve the challenges discussed
in Section 2. Clues are conditional and are regulated by an
implication probability; that is, if a property holds, Bluebird
propagates an app-side sensitivity to invoked APIs with some

USENIX Association 32nd USENIX Security Symposium 6065

probability. Note that the probability reflects the uncertain na-
ture of the clues. For example, we can only state that An API is
likely sensitivity because it is highly relevant to the sensitivity
indicator in an app entry with a (computed) confidence.
Phase 3: fuse priors with probabilistic constraints to com-
pute posterior probabilities: Bluebird leverages a probabilis-
tic inference algorithm [21] to fuse the priors and probabilistic
constraints to compute marginal posterior probabilities of in-
dividual APIs being sensitive.

Finally, Bluebird detects APIs with access control gaps
if the posterior probabilities are more than the priors. The
new probabilities reflect a better assessment thanks to the
evidences and clues collected in the apps.

Motivating Example Walk-through. Next, we will walk
the reader through the motivating example to illustrate how
Bluebird audits Samsung’s API setSecureFolderPolicy.
Before probabilistic inference, Bluebird associates the API
with a pl prior probability – recall the API’s framework-side
implementation does not enforce access control.

Next, Bluebird analyzes the preloaded app SecureFolder
(i.e., the invoking app), to derive a sensitivity-level for each
app entry leading to the API. Based on traditional access con-
trol analysis, the Receiver PolicyUpdateReceiver (Listings
1 and 2) is assigned a high sensitivity score ph since it uses a
system-level permission.

Based on NLP, UI and component chaining analysis (details
are explained later in Section 4), the Activity FolderCon-
tainer is assigned a computed sensitivity score 0.99. Note
that the high score is deduced from two evidences: (1) the
physical user id (Line 5 in Figure 1.D) and (2) the Activity is
reachable from a highly sensitive fragment (Figure 1.A).

Bluebird then leverages program analysis and NLP analysis
to extract the probabilistic constraints as follows:

Contribution Extent. Bluebird constructs contribution prob-
abilistic constraints to encode the speculation that an API is
likely relevant to the sensitivity indicators in the app with a
probability relative to its contribution extent. Accordingly,
Bluebird proceeds by mimicking the reasoning of a human
analyst as in Section 2 to estimate a contribution score for
setSecureFolderPolicy to the Receiver – which yields a
score = 0.75 (details explained later in Section 4). It then prop-
agates the Receiver’s sensitivity (ph) to setSecureFolder-
Policy with the implication probability: [ph * Contribution
score] = 0.71. We use the probability factor ph to account
for the uncertainty that developers may not always obey the
naming conventions5.

The constructed constraint suggests that the API is likely
sensitive with a posterior probability 0.78 after inference. Con-
structing a similar constraint in FolderContainer Activity
further increase the poster probability to 0.91 (Details are
omitted for brevity). At this stage, we can conclude that the
API is likely more sensitive than its prior.

5Note that the factor does not penalize the calculation significantly.

Context Dependency. Bluebird constructs context constraints
to account for contextual properties that may influence the
propagation of the priors. For the motivating example, Blue-
bird recovers the following property: setSecureFolderPol-
icy takes a special type of input (i.e., getCallingUserId)
at the two app entry points. As such, it formulates two prob-
abilistic constraints, each propagating the entry’s sensitivity
to the API with high confidence (for a more elaborate ex-
planation, refer to Section 4). Last, the inference procedure
combines the priors and context constraints to project a final
posterior marginal probability. The inference yields a final
posterior = 0.94 implying a gap in the API’s access control.

Automated inference. Although we describe the inference
procedure as individual steps, our tool encodes extracted evi-
dences and clues as prior probabilities and conditional proba-
bilities that are resolved automatically. The whole inference
procedure is transparent and seamless to security analysts.

4 System Design

In this section, we dive into the details of Bluebird. We in-
troduce the inference rules used by Bluebird in Table 1. The
Table lists the predicates relevant to the rules, their symbols,
definitions, and pertaining constraints.

4.1 Framework Analysis: Computing Priors

Bluebird starts by extracting framework-side security checks
to estimate priors (i.e., initial sensitivity of APIs). For each
API defined in the Android system services, it builds an inter-
procedural control flow graph and traverses it in a depth-first
fashion to identify access control checks. It extracts permis-
sion, user, and process id checks by looking for corresponding
enforcement methods, resolving relevant conditional state-
ments, and tracking data flows to resolve arguments, if any.
The analysis then normalizes the checks according to the
scheme proposed by AceDroid [1]. Bluebird establishes the
prior probability using Rule 1 : an API api has pl prior-
probability of being sensitive if its framework implementation
reveals a normalized access control corresponding at most to
Normal level or to /06.

4.2 App Analysis: Extracting Sensitivity-
Relevant Evidences

Bluebird begins app analysis by identifying direct app-side
entries leading to (private) APIs through reachability analysis.
Here, we rely on an existing tool, EdgeMiner [7] to connect
implicit control flows. The reachability analysis yields a map-
ping of app entries and the APIs they (eventually) invoke. We
note that ensuring a comprehensive mapping is challenging,

6AceDroid uses standard permission protection levels for normalization.

6066 32nd USENIX Security Symposium USENIX Association

Table 1: Predicate/random variable and constraint definition

Predicate Symbol Definition Constraints

Sensitive S(ep|api)
Entry point ep
or API api is sensitive

1 Weak
Framework-side
Access Control

F(api)
Framework API api
enforces weak
or no access control

S(api) = 1(pl)

2 Weak
App-side
Access Control

F(ep)
App entry ep
enforces weak
or no access control

S(ep) = 1(pl)

3 Strong
App-side
Access Control

¬F(ep)
App entry ep
enforces Strong
access control

S(ep) = 1(ph)

4 UI Dialog
type

U(ep)
App entry ep
corresponds to
a sensitive UI type

U(ep) = 1(ph)

U(ep)
pm†−−→ S(ep)

5 Non-Disposable
Dialog

D(ep)
App entry ep
is a non-disposable
UI block

D(ep) = 1(ph)

D(ep)
pm−→ S(ep)

6 Multi
confirmation UI

C(ep)
Entry ep enforces
a double
confirmation (UI)

C(ep) = 1(ph)

C(ep)
pm−→ S(ep)

7 Sensitive
UI Text

N(ep)
App entry ep
likely contains
sensitive keywords

N(ep) = 1(score)
N(ep)

ph−→ S(ep)

8 NLP-based
Contribution

T (ep,api)
API api is a main
contributor to ep
based on NLP.

S(ep)
CT ‡∗ph−−−−→ S(api)

9 Modifiable context
i.e. full execution

M(ep,api)
api’s context
is fully modifiable
through entry ep

¬S(ep)
ph−→¬S(api)

S(ep)
ph−→ S(api)

10 Non-modifiable
context

¬M(ep,api)
The context of API api
is non-modifiable
through entry ep

¬S(ep)
pl−→¬S(api)

S(ep)
ph−→ S(api)

11 User-modifiable
context

UM(ep,api)
api’s context is
modifiable only through
user input to ep

¬S(ep)
pm−→¬S(api)

S(ep)
pm−→ S(api)

12 Special Input P(ep,api)
API api takes
an input hinting
implicit AC in ep

¬S(ep)
pl−→ S(api)

S(ep)
ph−→ S(api)

†pm is explained in Section 4.2.
‡ CT refers to the computed Contribution as explained in Section 4.3.

particularly for heavily obfuscated apps. A discussion of how
obfuscation affects our analysis can be found in Section 7.

A cornerstone of this analysis is to model local Inter-
Component Communication (ICC) in order to identify in-
direct app entries leading to an API. As such, Bluebird can
propagate evidences from indirect callers to transitively in-
voked APIs. Consider the scenario where a password Activity
A starts a non-exported Service B, which in turns invokes a
private API. Our analysis should associate both A’s and B’s

evidences with api. Bluebird models ICC by resolving explicit
intent targets as follows: It identifies the arguments at Intent
construction methods and extracts the target component name
by backward tracking through their Def-Use chains. Intent
resolution is thus limited to explicit constructions. Bluebird
leverages the resolved ICC flows to build a local component
call graph, which is then used to augment the initial mappings
by adding the resolved indirect app entries.

Bluebird analyzes the recovered entries to collect two kinds
of security evidences.

(a) Traditional Access Control Evidences. These represent
(1) permission enforcement and exposure flags at the level of
components definitions, and (2) programmatic access control
implemented in the life-cycle methods of components. We
use the same normalization scheme [1] to map a traditional
access control evidence to a sensitivity level.

Bluebird leverages Rules 2 and 3 to formulate app-
side evidence constraints. Rule 2 states that an entry ep
is unlikely sensitive if it implements a weak (e.g., Normal
permission) or no access control; while Rule 3 states that
ep is sensitive if it implements a stronger one (e.g., System,
Dangerous permissions, User security check, or uses a non-
exported flag).

(b) UI-Block Sensitivity Indicators. These evidences repre-
sent UI app entries containing sensitivity indicators. For each
UI-block, we automatically examine its XML layout and ex-
tract the following: type, identifiers, hints, and textual labels
of defined elements. Since some elements can be dynami-
cally constructed, we statically analyze the apps’ bytecode
to locate invocation to UI-blocks construction methods and
resolve their arguments using def-use chains (e.g., we resolve
the argument of setText method for a TextField UI-block).
We then leverage the extracted information to estimate the
sensitivity of a UI block according to the following rules:

• If a UI-block type corresponds to known sensitive types
(e.g., AlertDialog, android:inputType= textPass-
word), we associate the UI-block with a high sensitivity
level with a medium confidence pm

7 – Rule 4 .

• If a field attribute corresponds to a non-disposable type
(i.e., cannot be dismissed), we similarly associate the UI-
block with a high sensitivity with medium confidence –
Rule 5 .

• If the path leading to the invocation of the API from
the UI-block contains more than one known UI based
callbacks (e.g., multiple onClick), we associate the UI-
block with a high sensitivity level with medium confi-
dence – Rule 6 .

Pretrained NLP Model for Sensitivity Prediction. Textual
elements in a UI block can provide insights into the impact of

7 pm is set to 0.8; The value was empirically determined.

USENIX Association 32nd USENIX Security Symposium 6067

an invoked API, its access control, and thus sensitivity level.
However, we note that curating a list of sensitive keywords
for the Android domain from the list of known keywords
(e.g., confirm, careful) is not sufficient. For example, words
like reboot, device and boost do not imply security-critical
functionality in general usage, but do in fact hint an access to
Android-specific privileged functionality.

To address this challenge, we build an NLP model that
automatically maps free-form written Android UI descriptions
to sensitivity levels. The model can hence be queried to check
the sensitivity of a given new text under the Android context.
Specifically, we leverage the observation that a large corpus of
free-form text can be statically extracted from preloaded apps’
UI blocks. Through static analysis, we can map a UI block
and its relevant free-form text to invoked AOSP APIs. We can
then automatically label the text with the proper sensitivity
level by examining the invoked API’s access control; i.e., if
the API is sensitive, we automatically label the related textual
elements as sensitive and vice versa.

Our analysis yielded 4516 labeled texts, with 4208 sensi-
tive samples and 309 non-sensitive samples extracted from
698 preloaded apps. To address the class imbalance, we down-
sampled the majority class (sensitive) by a factor of 2 yield-
ing 2258 samples, and up-sampled the minority class (non-
sensitive) by a factor of 1.5 yielding 464 samples, with the
goal of improving model performance. The final model had
an F1-score of 0.969.

Since our training corpus is relatively small, we use transfer
learning to build the model. We start with a pre-trained BERT
Cased model [12] and train it on our labeled data. This choice
channels the knowledge learned by the pre-trained model to
our target Android-specific domain. We used 1024 epochs
with all layers unfrozen, and non-overlapping subsets of 20%
data for validation and testing. Given the probabilistic nature
of our analysis, we apply the softmax operation as the final
layer in our NLP model to produce a sensitivity probability
(the probability of an input to correspond to the sensitive
class). Bluebird uses the produced probability (denoted as
score) to formulate the constraint in Rule 7 , Table 1. The
constraint sets the prior of a UI-based app entry to score with
high confidence.

4.3 App Analysis: Extracting Contribution
Clues

As mentioned, we observe that an API is relevant to the sen-
sitivity indicators in an app entry based on its contribution
extent. Thus, we model this observation as a conditional in-
ference constraint, or clue, that propagates an app entry’s
sensitivity to invoked APIs with confidence.

Rule 8 presents the program artifacts that we rely on to
generate the contribution constraints. It reflects the knowledge
that humans tend to rely on naming hints to identify the focal
instructions in a program and that main contributors are likely

to reside closer to the app entry.

NLP Correlation. This clue states that if an app-entry and its
invoked API are strongly correlated from a natural language
perspective, we can infer that the API contributes to the app-
entry to a large extent.

Given the complex nature of API call chains – i.e., an
entry ep calls api via a chain of callers, Bluebird estimates the
contribution of api to ep while factoring in the contribution of
each caller along the chain to ep. The contribution estimation
further penalizes callers deep in the call chain since those are
likely to contribute less significantly to the top entry, unless
there is a strong naming similarity.

Concretely, Bluebird estimates the contribution of a callee
to a caller via cosine-similarity. It collects various textual
identifiers and properties pertaining to the app entry (e.g.,
component and permission names, UI textual elements) and
invoked methods (e.g., class, name, and non-primitive argu-
ment types). It then uses a transformer-based encoder to pro-
duce an embedding vector for the collected information. The
contribution of a method to an entry point is estimated by the
cosine-similarity of the produced embedding.

The following Equation details the contribution estimation.

Contribution(ep,api) = Max(Sim(ep,api),

Contribution(ep,c(api))∗Sim(c(api),api))

Where c(api) is the direct caller of api, and Sim(ci−1, ci)
reflects the cosine-similarity of the embedding of a caller and
a callee.

4.4 App Analysis: Extracting Context Clues
Our idea here is to propagate the sensitivity of an app entry to
the APIs it invokes while considering contextual properties.
Rules 9 - 12 depict the program artifacts that we rely on to
generate the context constraints.

Path Sensitivity. Android APIs often implement conditional
security specifications, meaning that a required access control
may differ depending on supplied parameters and execution
context.

1 public void incrementOperationCount(int uid, ...) {
2 if (Binder.getCallingUid() == uid // Path 1
3 || mContext.checkCallingPermission (MODIFY_NETWORK_ACCOUNTING, ..) ==

1 // Path 2
4) { //privileged operation

Listing 4: API with path-sensitive Access Control

We note that this conditional nature complicates our audit-
ing task – without reasoning about the execution context,
we might incorrectly propagate the app’s specification to
called APIs. For example, consider the simplified access con-
trol implementation of the AOSP API NetworkStatsSer-
vice.incrementOperationCount, shown in Listing 4. The
API features two distinct access control paths. The first path

6068 32nd USENIX Security Symposium USENIX Association

requires the supplied uid to be equivalent to the calling app
uid, while the second one requires the calling app to hold a
specific permission.

Now, consider the scenario where the API is invoked in
an app entry with Process.myUid() as its first parameter,
but with no other explicit access control in that app entry. It
would be incorrect to apply Rule 2 because the particular
choice of the first parameter in the app entry is equivalent to
the access control check in line 2 of the API implementation
(Listing 2).

A straightforward solution to this problem is to interpret
the presence of certain parameter values to an API call in an
app entry as an implicit security specification. But this can
lead to false positives if the parameter is not used in an access
control check in the API implementation.

To solve the issue, we introduce Rule 12 that strikes a
balance between lowering false positives and properly propa-
gating a (potentially sensitive) app specification to the API.
The corresponding constraints state the following: if the in-
vocation context of an API api in an app entry ep matches
specific arguments (i.e., those often used in path-sensitive
access control implementations), and ep’s sensitivity is low,
then we propagate ep’s sensitivity to api with low-confidence
(i.e., api is less likely to follow ep’s sensitivity.)

Data Sensitivity. App entries invoking data-sensitive APIs
are likely to impose a protection dependent on data flows.
Unfortunately, due to the lack of a consensus or a guidance of
what constitutes a data-sensitive API, particularly in light of
customization, it is challenging to identify whether an API is
data-sensitive, at least without extensive framework analysis8.

Bluebird addresses this challenge conservatively by relying
on data flow tracking for all APIs. Specifically, Rule 9 , and
10 , state if an app provides a direct channel for a third-party
entity to read (or update) the values returned (or set) by a
sensitive API, the app should likely provide a protection. As
such, the corresponding full execution constraints encode the
intuition that we can propagate the app entry’s specification
to the API with a high confidence.

The reverse reasoning is not necessarily true. If the app
provides a limited execution context, we cannot confidently
propagate its protection to the APIs. Consider the case where
a source API’s returned value is not returned to the caller, the
app is unlikely to enforce a protection.

The limited execution constraint encodes this uncertain
intuition. It states that if an app entry provides some but not
all access to the API’s functionality (e.g., arguments reflects
constant parameters, or app-specific resources that are not
modifiable by the calling entity), we cannot faithfully trust the
app-inferred specification. This constraint is conservative as
the low confidence propagation only impacts low-sensitivity
app entries.

8SuSi [3]’s classification is not fully applicable as it is mostly concerned
with detecting sinks from the perspective of a remote adversary.

Bluebird relies on data flow tracking to generate the proper
execution constraint for an API’s invocation site. Specifically,
we construct and traverse the call graph from the app entry
point to a reachable API. We then perform a backward inter-
procedural data flow analysis from the API to resolve the
arguments that flow to it. For each argument, we inspect the
resolved values. If the value resolves to a method invoke
statement, we check if it matches an external source channel9;
i.e., a method that reads input from another application (e.g.,
reading content for a received Intent) or from the user (e.g.,
reading content from UI blocks). If so, we tag the argument as
modifiable, and vice-versa. We also consider intricate cases
where input implicitly flows from a few UI channels, such as
Check Box, Slider, Toggles Button.

4.5 Probabilistic Constraint Solving
The inference constraints can be represented as probabilistic
functions over the random variables involved. In practice,
the computation of posterior marginal probability over all
these constraints is expensive, particularly in the cases of
a large number of constraints. In our implementation, we
leverage a graphical model, factor graph [21], to represent all
probabilistic functions and allow an efficient computation. We
use a standard off-the-shelf algorithm to compute posterior
probabilities for the factor graphs. Our implementation is
based on ProbLog [22], an off-the-shell factor graph engine
(The details are hence elided). Refer to Appendix A.2 for more
details about the ProbLog rules corresponding to Table 1.

4.6 Interpreting Auditing Results.
Bluebird outputs a posterior marginal probability for each API
denoting its final sensitivity level as implied by all app-side se-
curity evidences and clues. The auditing procedure classifies
the posterior probability as either LOW or HIGH by comparing
it against a preset threshold (empirically determined).

Bluebird can lead to the three possible outcomes listed in
Table 2. Category 3 reflects access control gaps, that is cases
that indicate potential security issues and thus warrant further
investigation. (Note that these outcomes do not reflect the
obvious scenario where our audit cannot intrinsically work;
i.e., where there are no apps invoking an API. We report the
percentage of such cases in Section 5.2).

5 Evaluation

We implemented a prototype of Bluebird10, which comprises
three modules as illustrated in Figure 2. The modules are re-
sponsible for: (1) static framework analysis, (2) static/ UI app
analysis, and (3) probabilistic inference. The static analysis

9We compiled the list manually.
10We will make the source code for research use available on request.

USENIX Association 32nd USENIX Security Symposium 6069

Table 2: Interpreting Auditing Results

Category Initial Final Interpretation
Sensitivity Sensitivity

1 HIGH - Do not Audit: No security issue
2 LOW LOW Compliance: No security issue

3 LOW HIGH Access Control Gap:
Likely security issue

modules are built on top of WALA [29] and analyze frame-
work / preloaded app bytecode to construct analysis rules
(priors and constraints) required for the inference. The proba-
bilistic inference module fuses and solves the constraints.

Our prototype uses an offline NLP analysis subsystem, that
works independently of the probabilistic analysis pipeline.
The subsystem performs static app analysis, model construc-
tion and training.

The analysis is performed on a server equipped with a 32-
cores CPU (Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz)
and 128G main memory.

5.1 Test ROMs

To test our Bluebird prototype, we collected a total of 14
ROMs, from public online repositories [14, 15] and from
available physical devices. The samples include both AOSP
and custom Android ROMs and span six versions, Android
8.1, 9, 10, 11, 12, and 13. They are customized by six vendors,
at both ends of the customization spectrum.

We found that about 18% of framework files and 22%
preloaded apps could not be properly decompiled by exist-
ing preprocessing tools or analyzed by WALA. Among those
that could be analyzed, Bluebird reports the findings shown
in Table 3. As shown, all vendors introduce new private APIs
(column #3); Samsung, Xiaomi, and Vivo introduce more than
2000 APIs per ROM (more than 85% increase from AOSP)
while, Amazon and ZTE introduce less than 430 APIs. The
number of preloaded apps follows a similar trend.

5.2 Availability of App-Side Security Specifica-
tions

Our proposed approach hinges on the availability of invoca-
tion sites of APIs in apps. Besides, given the uncertainties
involved in (1) connecting APIs to the app-side security spec-
ifications, and in (2) even possible contradictions in inferred
API security specifications, our approach would work best
when multiple invocations sites are found for an API, as app-
side security specifications would lead to substantial uncer-
tainty when only a small number of invocations are involved.
We thus report the number of invoked public APIs, invoked
private APIs, and the average number of invocation sites per
API in preloaded apps, in Columns 5, 6 and 8, respectively.

Bluebird specifically targets private vendor APIs; nonetheless,
we report the results for public APIs for comparison.

The number of invoked private APIs varies across ROMs,
ranging from as high as 43% in Samsung to as low as
12% in Oppo. Besides, the average number of invocation
sites varies significantly across APIs: particularly, getter
APIs are more prevalent (e.g., Samsung’s ISemPersonaMan-
ager.getProfiles has 230758 invocation sites).

5.3 Evaluating Auditing Results on AOSP
For a perfectly secure ROM – where APIs are protected con-
sistently across the app and framework layers, Bluebird should
report results belonging to category 2, as long as there are suf-
ficient evidences and clues11. Hence, we rely on this intuition
to gauge the accuracy of our tool. As in prior work [11], we
assume that AOSP is perfectly secure, and use it to evaluate
Bluebird. Column 7, Table 3 reports the number of public
APIs that Bluebird identified as having access control gaps in
AOSP. As shown, Bluebird reports a gap for 8% to 12% APIs
which are by our assumption false positives. This means that
the remaining public APIs (88% to 92%) were found to be
consistent with their app-side security specifications.

We investigated all reported FPs manually – two authors
were involved. The investigation identified that FPs were
caused by the following: (1) limitation of our access control
extraction logic in the framework-side (i.e., the API uses a
difficult to detect logic), (2) limitations of app-side access con-
trol logic due to disconnections in the ICFG, (3) insufficient
app-side evidences, and (4) apps being overprotective. We did
not attempt to verify whether they are indeed FPs since we
consider AOSP as ground truth.

Observe that quantifying false negatives (FNs) is challeng-
ing due to the lack of ground truth. We resort to approximat-
ing FNs by constructing a synthetic vulnerable APIs dataset –
where we maneuver Bluebird to assign a LOW prior to AOSP
APIs that implement strong access control (i.e., we intention-
ally change the prior from HIGH to LOW). Refer to Appendix
A.3 for a sample of APIs used to create the synthetic dataset.
We then run Bluebird and count the portion of cases where
it reports a LOW posterior, indicating an FN. On average, our
analysis yields 17% FN rate. We manually investigated the
cases and found that they are mostly due to: (1) An inferred
LOW indicator for a sensitive UI blocks, and (2) insufficient
app-side evidences.

5.4 Landscape of Gaps in Custom ROMs
We then run Bluebird on custom Android ROMs. Column 7 in
Table 3 reports the number of private APIs with access con-
trol gaps. As shown, the number of gaps ranges from 15% to
44%. Due to the lack of ground truth, we estimate false posi-
tives in the reported gaps through manual investigation. Two

11Category 1 APIs are excluded as they implement strong access control.

6070 32nd USENIX Security Symposium USENIX Association

Table 3: Statistics of the Android ROMs

1. OS Image 2. # APIs 3. # Private
APIs

4. # Preloaded
Apps

5. # APIs
with app

invocations

6. # Private APIs
with app

invocations

7. # Gaps*
(TP % | FP %)**

8. # API
invocations

in apps

9. # Avg
invocations

per API

10. # rules
generated

11. # Avg rules
per API

Nexus 6P (V 8.1) 987 - 94 234 - 19 840925 3593 1800401 1824
Pixel 2 (V 9) 738 - 127 195 - 23 158667 813 306242 414
Pixel 3XL (V 9) 738 - 129 196 - 22 167028 852 323577 438
Pixel (V 10) 2892 - 72 238 - 19 46344 194 109270 37
Pixel 6 (V 11) 1728 - 113 331 - 25 91856 277 276750 160
Pixel 5 (V 12) 1728 - 81 243 - 22 300695 1237 658502 381
Pixel 6 Pro (V 13) 943 - 82 228 - 20 269115 1180 567064 601
Fire HD (V 10) 1396 422 194 415 108 29 (83 | 17) 22499183 54214 54823476 39271
SM-A3058 (V 8.1) 5440 2551 268 1694 1118 168 (84 | 16) 3499350 2065 8330940 1531
Oppo (V 12) 2030 1011 113 259 124 21 (81 | 19) 10876122 41992 39849947 19630
Vivo (V 12) 3529 2201 145 729 372 104 (80 | 20) 594629 815 1546551 438
Xiaomi Poco C3 (V 10) 3680 789 179 566 123 26 (74 | 26) 4410082 16394 13347222 3626
SM-N770F (V 13) 1820 635 325 548 141 30 (80 | 20) 1938612 3537 6926108 3805
Nubia Z50 Ultra (V 13) 1214 290 233 304 29 13 (70 | 30) 2640546 14508 10657652 8778

*We do not verify whether the gaps in AOSP are indeed FPs, since per our assumption, AOSP is ground truth. For custom ROMs, #gaps is reported only for private APIs.
**The TP and FP results for custom ROMs are estimated by manually investigating 10% of the total gaps.

Table 4: Impact of probability values

Category EXP1 EXP2 EXP3 EXP4
1 234 234 234 234
2 72 74 75 74
3 24 22 21 22

authors examined 10% of the gaps and an FP is reported if
both agreed. The authors rely on domain knowledge to verify
whether a gap is an FP. Examples of manually detected FPs
are WifiManager.getWifiApInterfaceName() and Knox-
CustomManager.getVibrationIntensity. The FPs were
caused by the same reasons as in AOSP analysis.

5.5 Impact of the Preset Probabilities
Bluebird uses three preset probabilities: ph = 0.9, pl = 0.1,
and pm = 0.8. We measure the impact of changes in these
probability constants by calculating the percentage of the
auditing categories using the following four experiments:

EXP 1. pl = 0.35 and ph = 0.8 in Rules 2 and 3 .

EXP 2. ph = 0.8 in Rules 7 and 8 .

EXP 3. pl = 0.2 and ph = 0.8 in Rule 10 .

EXP 4. pm = 0.6 in Rule 11 .
All experiments are performed in isolation (i.e., probabili-

ties not mentioned in the experiment remain unchanged as in
Table 1) and on the same ROM (Pixel 6 Android 11) to assess
the impact of each change precisely and consistently.

Table 4 shows the number of APIs reported by Bluebird for
each category using the four experimental settings. As shown,
the impact of the probability values is largely minimal. We
manually investigated the few API instances that did exhibit

some change, and concluded it mainly occurred due to insuf-
ficient app-side clues/evidences – i.e., the preset probabilities
may have higher impacts in cases where there are fewer hints.

5.6 Comparison with Convergence-Based In-
consistency Analysis

A closely-related line of research to our approach is
convergence-based inconsistency analysis, which aims to iden-
tify access control flaws by comparing security specifications
leading to similar resources. The works perform convergence
analysis either within the framework layer [1,16,27] or across
different layers of the Android stack [18, 36]. Bluebird is con-
ceptually a cross-layer access control analysis framework,
as it conducts the auditing procedure by learning security
specifications from the app layer.

To qualitatively demonstrate the benefits of using Blue-
bird over existing convergence-based work, we investigate a
subset of reported access control gaps. Particularly, we inten-
tionally select those leading to actual vulnerabilities (Please
refer to Section 6 for more details about the cases) and check
whether prior works are able to detect them. Our analysis
confirms that out of the 11 reported vulnerabilities, 7 cannot
be caught by existing convergence-based techniques, as (1)
the vulnerable APIs do not share a convergence point with
other framework APIs, and (2) the vulnerable APIs do not
contain any cross-layer access (e.g., no file access, and no
native method invocation). A prominent example of these
vulnerabilities is the case discussed in Section 2.

While this finding clearly demonstrates its complementary
nature, Bluebird is inherently more coarse-grained compared
to existing approaches. It can only indicate the presence of a
gap (i.e., an access control is absent), while other work can

USENIX Association 32nd USENIX Security Symposium 6071

identify precisely the missing access control (e.g., exact per-
mission). As Bluebird relies on app-side sensitivity indicators,
including natural language text from UIs, it cannot map those
to concrete traditional access control checks.

5.7 Comparison with Poirot
Our work is inspired by Poirot [11], an Android access con-
trol analysis and recommendation tool, that similarly lever-
ages probabilistic inference to account for inherent access
control-related uncertainty. Contrary to our work, Poirot is
specifically tailored towards framework-level access control
analysis and works exclusively by relying on framework-level
security-relevant hints. Bluebird is a parallel probabilistic se-
curity analysis framework for modeling of evaluating access
control across the app and framework layers.

Here, we demonstrate the fundamental differences with
Poirot. We obtained a list of access control inconsistencies
reported by Poirot for Amazon Fire HD 10 and compared it
against the results we obtained using Bluebird (refer to Row 8
in Table 3). Out of the 24 gaps reported by Bluebird, Poirot
was able to identify three, hence missing 21. Besides, out of
the 12 true positives reported by Poirot, Bluebird was only
able to identify three. We present a sample case-study from
each category with a brief root cause discussion to showcase
the complementary nature of Bluebird and Poirot.
Poirot-Exclusive: Our manual investigation shows that Blue-
bird misses these cases due to the lack of invocation sites in
preloaded apps – hence, the app-side evidences and clues that
Bluebird relies on, are absent. An example of such cases is
AmazonInput.setInputFilter, reported by Poirot, which
is not invoked by any preloaded apps.
Bluebird-Exclusive: We concluded through manual analysis
that Poirot misses these cases because the APIs lack com-
parable counterparts in AOSP or other parts of the custom
framework. Thus, Poirot was not able to generate significant
security-relevant hints to connect the target APIs’ resources
to other framework-level resources. For instance, SmartSus-
pendManagerService.setScheduleType, reported exclu-
sively by Bluebird, accesses resources that exhibit no semantic
or structural relations with other resources in the framework.

6 Case Studies of Access Control Gaps

Not all reported APIs with access control gaps are exploitable.
Nonetheless, they do warrant further investigation as Bluebird
probablistically detects the gaps based on dominant app-side
hints. To demonstrate that some gaps are indeed exploitable,
we selected a few whose logic is comprehensible (some
reports occur in custom proprietary functionality) and built
end-to-end PoCs. Table 5 reports our manually confirmed vul-
nerabilities; which can allow third-party apps to alter various
system settings and mount DoS attacks without permission.
We reported the findings to the vendors. All reports have been

acknowledged, and nine have been fixed. Next, we describe
two selected cases. (Refer to Appendix for a discussion of
three other cases).

Manipulating Samsung’s app security policies.
Bluebird reported a gap in PersonaManagerSer-
vice.setAppSeparationDefaultPolicy, a private
API in Samsung, that allows to reset app-specific sepa-
ration policies. As policy updates can only be initiated
by device administrators on Samsung, the API is clearly
sensitive. However, we found that the API enforces no access
control. Bluebird was able to identify the gap thanks to
various UI-based evidences and clues in a preloaded app
SecAppSeparation. We explain two examples next.

Bluebird identified that the API is invoked in the Activ-
ity ProvisioningActivity, among other app entries. The
Activity’s UI includes textual elements that our NLP model
predicted to be sensitive with a high confidence (>0.99). Ex-
amples of extracted text include “This separation can allow
your IT admin to provide different security restrictions" and
“Keep in mind that apps in this folder are still managed by
your IT admin".

Bluebird leveraged a similar UI clue to identify that the
API setAppSeparationDefaultPolicy is relevant to the
inferred sensitivity. Particularly, it found the following sen-
tences “Configuring apps for separation" and “Your IT admin
has separated apps in this folder" which share a high naming
similarity with the target API, and thus result in a contribution
score (∼0.8) for this API to the sensitive Activity.

By combining these UI-based hints, Bluebird concludes that
the API is sensitive with a high posterior probability (∼0.95).

Manipulating critical audio related settings. Bluebird re-
ported a gap in the API AmazonAspService.command de-
fined by Amazon in Fire HD 10. Bluebird found numerous
invocations of the API, spanning a few preloaded apps such
as Alexa and amazon.speech. While the API enforced no ac-
cess control (thus, a LOW prior), all its app-side invocations
occurred in highly-sensitive services, thus leading to a high
posterior probability. We manually investigated the API’s im-
plementation and discovered that it allows manipulating many
critical settings such as speaker volume, microphone mute sta-
tus, battery voltage, voice messaging status, speaker volume
decibel values and others.

7 Threats to Validity and Limitations

We discuss here various factors that affect the significance of
the Bluebird approach along with its limitations.

Bluebird is dependent on the availability of app-side invo-
cations of private APIs, and the availability of (detectable)
sensitivity indicators, which poses a threat to the validity of
our findings in Section 5. The number of private APIs’ invoca-
tions in the preloaded apps, analyzed in our collected ROMs
corpus, may not be representative of other custom ROMs.

6072 32nd USENIX Security Symposium USENIX Association

Table 5: Summary of discovered APIs with access control flaws

OS Image Service API Potential Security Implication Vendor Response
Fire HD 10 SmartSuspendManagerService.setScheduleType Modify User Specified Setting Acknowledged*
Fire HD 10 AmazonAspService.command Modify critical Audio related Settings Acknowledged*
SM-A3058 PersonaPolicyManagerService.setSecureFolderPolicy Modify Secure Folder (provided by Knox) Policy Acknowledged*
SM-A3058 SemClipboardService.showDialog DoS Attack Won’t Fix
SM-A3058 SemClipboardService.dismissDialog DoS Attack Won’t Fix
SM-A3058 IWifiService.setWifiSharingEnabled Change wifi settings Acknowledged
SM-A3058 IBluetoothManager.shutdown Shutdown Bluetooth connections Acknowledged
SM-A3058 IAccessibilityManager.semOpenDeviceOptions Interface Illusion Acknowledged
SM-A3058 IAccessibilityManager.OnStartGestureWakeup Change accessibility Settings Acknowledged*
Fire HD 10 AmazonPowerManager.setBatteryChargingVoltage Alter the power voltage Acknowledged*
SM-A3058 PersonaManagerService. setAppSeparationDefaultPolicy Manipulate app separation policy Acknowledged*
*The vendor awarded a bounty.

Existing research [10] reports that vendors may introduce
Residual private APIs that are not invoked by any preloaded
apps. In such cases, Bluebird is inherently limited. Besides,
Bluebird is dependent on the accuracy of app-side sensitivity
indicators extraction. We mitigate this threat by leveraging
various methods, each tailored to identify a different indicator.

Another threat to validity lies in heavily obfuscated
preloaded apps, which may hinder both the identification of
private APIs’ invocation sites as well as their corresponding
sensitivity indicators, particularly those enforced in code.

Last, Bluebird assumes that app-side security specifications
are always relevant to invoked APIs. However, this assump-
tion may not hold if apps are over-protective. We attempted
to mitigate this threat by accounting for uncertainty via prob-
abilistic inference.

8 Related Works

Android Access Control Analysis. Framework access con-
trol has been extensively analyzed in the literature. Both
static [2, 5, 6] and dynamic analysis approaches [8, 13] have
been followed to infer API to access control mappings. Blue-
bird follows an approach similar to Axplorer [6] to extract
framework-side access control and accordingly assign priors.

As mentioned in Section 5.6, our work is closely related to
inconsistency analysis techniques, which identify access con-
trol anomalies in Android APIs through convergence analysis.
Kratos [27], Acedroid [1], and ACMiner [16] detect incon-
sistencies by comparing access control enforcement along
different paths leading to the same resource within the frame-
work layer. AceDroid [1] improves the detection results of
Kratos [27] (the earliest attempt) via access control normaliza-
tion and modeling. ACMiner [16] is concerned with identify-
ing security checks semi-automatically which Kratos and Ace-
Droid define manually. IAceFinder [36] and FReD [18] detect
a different category of access control inconsistencies: those
that span different layers of the Android software stack; e.g.,
Native/Java layer inconsistencies [36], and Linux-file permis-
sions/Java inconsistencies [18]. Poirot [11] re-conceptualizes

inconsistency detection to account for uncertainty surround-
ing access control implementations in Android. It relies on
various semantic and structural hints to connect resources to
resources and access control to resources. It hence addresses
inaccuracies caused by over-approximations in [1, 16, 27].

Bluebird complements these existing works as discussed in
Section 5.6. The gaps do not reflect a single access control
inconsistency; rather a probabilistic consensus among (invok-
ing) preloaded apps. As demonstrated in Section 5.6, Bluebird
can exclusively unveil certain vulnerabilities that cannot be
detected by other approaches.
App Analysis. A long line of research has been dedicated
to Android app analyses. FlowDroid [4], EdgeMiner [7],
Chex [23] precisely model the event-driven and asynchronous
nature of Android apps. Bluebird benefits from the fundamen-
tal concepts of these tools to perform precise static analysis
of preloaded apps.
UI Analysis. Prominent research works have been proposed
to extract and analyze the UI of Android apps to infer se-
curity properties and flaws. Supor [17] identifies sensitive
user input fields from an app’s UI using privacy-sensitive
keywords, input field attributes and labels. UiPicker [25] does
the same through a classification approach. [31] identifies
sensitive widgets in an app’s UI by classifying used icons.
These approaches have inspired our UI-driven analysis for
prior probabilities of UI blocks.
Probabilistic Inference in Security Applications. Probab-
listic techniques have been extensively used in security ap-
plications. LambdaNet [30] uses graph neural networks to
probabilistically infer types for TypeScript. PRIMO [26] pro-
poses an approach to utilize probabilistic inference imposed
on static analysis to reduce the false positives and improve
inter-component communication (ICC) resolution more effi-
ciently. Hints among the source code such as variable names
have also been used by several approaches to probabilistically
infer program properties such as types [32] and physical unit
consistency [19]. Lin et al. leverage probabilistic inference
in reverse engineering [28]. Dietz et al. also leverage proba-
bilistic inference to localize source code bugs [9]. Besides,

USENIX Association 32nd USENIX Security Symposium 6073

probabilistic techniques are widely used for binary analy-
sis [24, 34], program enhancement [20], and vulnerability
detection [33, 35].

9 Conclusion

In this paper, we propose Bluebird, a security auditing tool
for Android that detects access control gaps in APIs, by learn-
ing security specifications from preloaded apps. Bluebird ad-
dresses various challenges hindering the process by com-
bining program analysis, NLP techniques, and probabilistic
inference. Our evaluation on 14 Android ROMs shows that
Bluebird can uncover access control gaps. We were able to
identify 11 new vulnerabilities out of the reported gaps.

Acknowledgments

This research was supported, in part by NSERC under grant
RGPIN-07017, by the Canada Foundation for Innovation un-
der project 40236, by Intel Labs, and by a Google ASPIRE
award. This work benefited from the use of the CrySP RIP-
PLE Facility at the University of Waterloo. Any opinions,
findings and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

References

[1] Yousra Aafer, JianJun Huang, Yi Sun, Xiangyu Zhang
0001, Ninghui Li, and Chen Tian. Acedroid: Normal-
izing diverse android access control checks for incon-
sistency detection. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018, 2018.

[2] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu
Zhang, and Ninghui Li. Precise android api protection
mapping derivation and reasoning. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1151–1164, 2018.

[3] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Susi:
A tool for the fully automated classification and cate-
gorization of android sources and sinks. University of
Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6):259–269, 2014.

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: analyzing the android permission

specification. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
217–228, 2012.

[6] Michael Backes, Sven Bugiel, Erik Derr, Patrick Mc-
Daniel, Damien Octeau, and Sebastian Weisgerber. On
demystifying the android application framework: Re-
visiting android permission specification analysis. In
25th {USENIX} security symposium ({USENIX} secu-
rity 16), pages 1101–1118, 2016.

[7] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi,
Manuel Egele, Christopher Kruegel, Giovanni Vigna,
and Yan Chen. Edgeminer: Automatically detecting im-
plicit control flow transitions through the android frame-
work. In NDSS, 2015.

[8] Abdallah Dawoud and Sven Bugiel. Bringing balance
to the force: Dynamic analysis of the android applica-
tion framework. In Network and Distributed Systems
Security (NDSS) Symposium 2021, February 2021.

[9] Laura Dietz, Valentin Dallmeier, Andreas Zeller, and
Tobias Scheffer. Localizing bugs in program executions
with graphical models. Advances in Neural Information
Processing Systems, 22, 2009.

[10] Zeinab El-Rewini and Yousra Aafer. Dissecting residual
apis in custom android roms. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’21, page 1598–1611, New York,
NY, USA, 2021. Association for Computing Machinery.

[11] Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer.
Poirot: Probabilistically recommending protections for
the android framework. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’22, page 937–950, New York,
NY, USA, 2022. Association for Computing Machinery.

[12] Hugging Face. Bert cased model, Accessed on: February
8, 2023. https://huggingface.co/bert-base-cased.

[13] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android permissions demys-
tified. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 627–638,
2011.

[14] FirmwareDrive. Firmware drive, Accessed on: Decem-
ber 8, 2021. https://firmwaredrive.com/.

[15] Google. Factory images for nexus and pixel
devices, Accessed on: December 8, 2021.
https://developers.google.com/android/images.

[16] Sigmund Albert Gorski, Benjamin Andow, Adwait Nad-
karni, Sunil Manandhar, William Enck, Eric Bodden,

6074 32nd USENIX Security Symposium USENIX Association

and Alexandre Bartel. ACMiner: Extraction and Anal-
ysis of Authorization Checks in Android’s Middleware,
page 25–36. Association for Computing Machinery,
New York, NY, USA, 2019.

[17] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu
Wu, Kangjie Lu, Xiangyu Zhang, and Guofei Jiang.
{SUPOR}: Precise and scalable sensitive user input
detection for android apps. In 24th {USENIX} Security
Symposium ({USENIX} Security 15), pages 977–992,
2015.

[18] Sigmund Albert Gorski III, Seaver Thorn, William
Enck, and Haining Chen. FReD: Identifying file Re-
Delegation in android system services. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1525–
1542, Boston, MA, August 2022. USENIX Association.

[19] Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian
Elbaum, and Zhaogui Xu. Phys: Probabilistic phys-
ical unit assignment and inconsistency detection. In
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
ESEC/FSE 2018, page 563–573, New York, NY, USA,
2018. Association for Computing Machinery.

[20] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Ke-
merlis, and Michalis Polychronakis. Compiler-assisted
code randomization. In 2018 IEEE Symposium on Secu-
rity and Privacy (SP), pages 461–477, 2018.

[21] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions on Information Theory, 47(2):498–519, 2001.

[22] KU Leuven. Problog, 2022.
https://dtai.cs.kuleuven.be/problog/.

[23] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and
Guofei Jiang. Chex: statically vetting android apps
for component hijacking vulnerabilities. In Proceedings
of the 2012 ACM conference on Computer and commu-
nications security, pages 229–240, 2012.

[24] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang,
Xiangyu Zhang, and Zhiqiang Lin. Probabilistic disas-
sembly. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), pages 1187–1198,
2019.

[25] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou,
Guofei Gu, and XiaoFeng Wang. Uipicker: User-input
privacy identification in mobile applications. In 24th
{USENIX} Security Symposium ({USENIX} Security
15), pages 993–1008, 2015.

[26] Damien Octeau, Somesh Jha, Matthew Dering, Patrick
McDaniel, Alexandre Bartel, Li Li, Jacques Klein, and
Yves Le Traon. Combining static analysis with prob-
abilistic models to enable market-scale android inter-
component analysis. SIGPLAN Not., 51(1):469–484,
jan 2016.

[27] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao, Ja-
son Ott, and Zhiyun Qian. Kratos: Discovering incon-
sistent security policy enforcement in the android frame-
work. In 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016, 2016.

[28] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and
Yuanyuan Zhou. Autoises: Automatically inferring se-
curity specification and detecting violations. In USENIX
Security Symposium, pages 379–394, 2008.

[29] WALA. Wala, Accessed on: December 8, 2021.
http://wala.sourceforge.net/wiki/index.php/Main_-
Page.

[30] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig.
Lambdanet: Probabilistic type inference using graph
neural networks. arXiv preprint arXiv:2005.02161,
2020.

[31] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin
Wang, and Peng Gao. Iconintent: Automatic identifica-
tion of sensitive ui widgets based on icon classification
for android apps. In Proceedings of the 41st Interna-
tional Conference on Software Engineering, ICSE ’19,
page 257–268. IEEE Press, 2019.

[32] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and
Baowen Xu. Python probabilistic type inference with
natural language support. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, pages 607–618, 2016.

[33] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and
Konrad Rieck. Automatic inference of search patterns
for taint-style vulnerabilities. In 2015 IEEE Symposium
on Security and Privacy, pages 797–812. IEEE, 2015.

[34] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-
Chuan Lee, Yonghwi Kwon, Yousra Aafer, and Xiangyu
Zhang. OSPREY: recovery of variable and data structure
via probabilistic analysis for stripped binary. In 42nd
IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021, pages 813–832.
IEEE, 2021.

[35] Lin Zhiqiang, Rhee Junghwan, Wu Chao, Zhang Xi-
angyu, and Xu Dongyan. Discovering semantic data of

USENIX Association 32nd USENIX Security Symposium 6075

interest from un-mappable memory with confidence. In
Proceedings of the 19th Network and Distributed System
Security Symposium, NDSS, volume 12, 2012.

[36] Hao Zhou, Haoyu Wang, Xiapu Luo, Ting Chen, Yajin
Zhou, and Ting Wang. Uncovering cross-context incon-
sistent access control enforcement in android. 2022.

A Appendix

A.1 Additional Case Studies of Access Control
Gaps

Manipulating wifi settings. Bluebird reported an access
control gap in Samsung’s WifiService. setWifiSharin-
gEnabled. As hinted by its name, the API allows chang-
ing custom Wifi Sharing settings. We manually investigated
the case and found that the API’s implementation enforces
a normal-level permission android.permission.ACCESS_-
WIFI_STATE. We further checked its app-side constraints, gen-
erated by Bluebird in three preloaded apps (SecSettings, Sys-
temUI, and SystemUIDesktop). The constraints all propagate
a high sensitivity estimation from the app entries to the API,
which we identified to be related to a protected broadcast
action, a system-level permission, and a sensitive UI-dialog.
Essentially, all constraints pointed to a gap in the API’s en-
forced access control. Samsung acknowledged and confirmed
that they have added a more adequate check for the API in
later versions.

Manipulating Smart-suspend Setting. In Fire HD 10,
our audit reported a non-compliant API SmartSuspendMan-
agerService.setScheduleType, which controls a custom
user preference Smart Suspend Type. The API does not en-
force any access controls, resulting in a low prior probability.
The audit result indicated a higher probability stemming from
the sensitive UI based clues from TabletSettings app, which
triggers the API in a high-sensitivity UI-block (sensitivity was
inferred through a few indicators). We investigated the case
and found that the proprietary setting allows to automatically
suspend the device (which includes operations such tearing
down connections).

Shutting down Bluetooth connections. In the same
Samsung ROM, Bluebird identified another non-compliant
API IBluetoothManager.shutdown() which tears down
established bluetooth connections. Our investigation re-
veals that the API was initially assigned a low-sensitivity
prior probability, since it enforces a normal-level permis-
sion android.permission.BLUETOOTH_ADMIN. The pos-
terior probability indicated a high-sensitivity estimation
via a few clues extracted from Bluetooth preloaded app.
For example, the API was invoked in a background ser-
vice that enforced a programmatic system permission an-
droid.permission.BLUETOOTH_PRIVILEGED – Observe

the permission name similarity which has enabled generating
a high contribution constraint.

A.2 ProbLog Rules for Table 1

1 % ’Api’ denotes an audited framework API.
2 % ’Ep’ denotes an identified app entry discovered through app analysis.
3 % ’Id’ denotes a unique identifier assigned to each observation.
4

5 % Framework-side Evidences:
6

7 % Rule 1:
8 % The random variable ’api_ac’ indicates the probability of ’Api’ being

sensitive.
9

10 % ’fw_no_ac’ denotes the observation that an API enforces weak or no access
control.

11 0.1 :: api_ac(Api) :- fw_no_ac(Api, Id).
12

13 % App-side Evidences:
14

15 % Rules 2 and 3
16 % The random variable ’ep_ac’ indicates the probability of ’Ep’ being

sensitive.
17 % ’app_ep_ac’ and ’app_ep_no_ac’ denote the observations that ’Ep’ enforces

strong strong access control, or no access control, respectively.
18

19 0.9 :: ep_no_ac(Ep) :- app_ep_no_ac(Ep, Id).
20 1 :: \+ep_ac(Ep) :- ep_no_ac(Ep, Id).
21 0.9 :: ep_ac(Ep) :- app_ep_ac(Ep, Id).
22

23 % Rule 4
24 % ’app_alert_dialog’ denotes that observation that ’Ep’ is a sensitive UI

type (e.g., alert dialog)
25 % ’ep_alert_dialog’ denotes that the probability of ’Ep’ being sensitive

because it is a sensitive UI type.
26

27 0.9 :: ep_alert_dialog(Ep) :- app_alert_dialog(Ep, Id).
28 0.8 :: ep_ac(Ep) :- ep_alert_dialog(Ep)(Ep, Id).
29

30 % Rules 5, 6, and 7 (constructed similarly to Rule 4 above):
31 0.9 :: ep_non_cancellable_alert_dialog(Ep) :- app_non_cancellable_alert_

dialog(Ep, Id).
32 0.8 :: ep_ac(Ep) :- ep_non_cancellable_alert_dialog(Ep, Id).
33

34

35 0.9 :: ep_multi_confirm(Ep) :- app_multi_confirm(Ep, Id).
36 0.8 :: ep_ac(Ep) :- app_multi_confirm(Ep, Id).
37

38 Score :: nlp_sensitivity(Ep) :- app_nlp_sensitivity(Ep, Score, Id).
39 0.9 :: ep_ac(Ep) :- nlp_sensitivity(Ep, Id).
40

41 % App-side Clues:
42

43 % Rule 8:
44 % ’nlp_contribution’ denotes the observation that ’Api’ is relevant to ’Ep’

with a computed contribution score ’CT’ (defined in Section 4.3)
45 % ’CT_p’ denotes the (computed) implication probability of ’Api’ being

sensitive based on its contribution score to ’Ep’; Specifically, CT_p
= CTScore * 0.9

46

47 CT_p :: api_ac(Api) :- ep_ac(Ep), nlp_contribution(Ep, Api, CT, Id).
48

49 % Rules 9 to 12 (constructed similarly to the implication constraint
depicted in Rule 8):

50 % Rule 9:
51 % ’modifiable_context’ denotes the observation that the context of ’Api’ is

fully modifiable in ’Ep’
52 0.9 :: \+api_ac(Api) :- ep_no_ac(Ep), modifiable_context(Ep, Api, Id).
53 0.9 :: api_ac(Api) :- ep_ac(Ep), modifiable_context(Ep, Api, Id).
54

55 % Rule 10:
56 % ’non_modifiable_context’ denotes the observation that the context of ’Api’

is non-modifiable in ’Ep’
57 0.1 :: \+api_ac(Api) :- ep_no_ac(Ep), non_modifiable_context(Ep, Api, Id).
58 0.9 :: api_ac(Api) :- ep_ac(Ep), non_modifiable_context(Ep, Api, Id).
59

60 % Rule 11:

6076 32nd USENIX Security Symposium USENIX Association

61 % ’user_modifiable_context’ denotes the observation that the context of ’Api
’ is modifiable through user input to ’Ep’

62 0.8 :: \+api_ac(Api) :- ep_no_ac(Ep), user_modifiable_context(Ep, Api, Id).
63 0.8 :: api_ac(Api) :- ep_ac(Ep), user_modifiable_context(Ep, Api, Id).
64

65 % Rule 12:
66 % ’special_input’ denotes the observation that ’Ep’ is taking a special

input value as an argument that may be interpreted as access control (
e.g., userid or appid).

67 0.1 :: api_ac(Api) :- ep_no_ac(Ep), special_input(Ep, Api, Id).
68 0.9 :: api_ac(Api) :- ep_ac(Ep), special_input(Ep, Api, Id).

Listing 5: ProbLog Rules Listing

A.3 Samples of APIs from Synthetic Dataset
Here, we provide a sample of the APIs that implement strong
access control and that were selected for the synthetic dataset
construction, discussed in Section 5.3. The samples were
chosen from Pixel 6 (V 11).

• FaceService.remove

• FaceService.setFeature

• ColorDisplayService.setSaturationLevel

• NetworkScoreService.requestScores

• SystemUpdateManagerService.retrieveSystemUpdateInfo

• StorageStatsService.queryStatsForUser

• StorageManagerService.decryptStorage

• StorageManagerService.encryptStorage

• MediaRouterService.getSystemSessionInfo

USENIX Association 32nd USENIX Security Symposium 6077

	Introduction
	Motivation
	Our Technique
	System Design
	Framework Analysis: Computing Priors
	App Analysis: Extracting Sensitivity-Relevant Evidences
	App Analysis: Extracting Contribution Clues
	App Analysis: Extracting Context Clues
	Probabilistic Constraint Solving
	Interpreting Auditing Results.

	Evaluation
	Test ROMs
	Availability of App-Side Security Specifications
	Evaluating Auditing Results on AOSP
	Landscape of Gaps in Custom ROMs
	Impact of the Preset Probabilities
	Comparison with Convergence-Based Inconsistency Analysis
	Comparison with Poirot

	Case Studies of Access Control Gaps
	Threats to Validity and Limitations
	Related Works
	Conclusion
	Appendix
	Additional Case Studies of Access Control Gaps
	ProbLog Rules for Table 1
	Samples of APIs from Synthetic Dataset

