
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Sparsity Brings Vulnerabilities:
Exploring New Metrics in Backdoor Attacks

Jianwen Tian, NKLSTISS, Institute of Systems Engineering, Academy of Military
Sciences, China; Kefan Qiu, School of Cyberspace Science and Technology, Beijing

Institute of Technology; Debin Gao, Singapore Management University; Zhi Wang,
DISSec, College of Cyber Science, Nankai University; Xiaohui Kuang and Gang Zhao,

NKLSTISS, Institute of Systems Engineering, Academy of Military Sciences, China
https://www.usenix.org/conference/usenixsecurity23/presentation/tian

Sparsity Brings Vulnerabilities: Exploring New Metrics in Backdoor Attacks

Jianwen Tian1, Kefan Qiu2, Debin Gao3, Zhi Wang4∗, Xiaohui Kuang1∗, Gang Zhao1

1 NKLSTISS, Institute of Systems Engineering, Academy of Military Sciences, China
2 School of Cyberspace Science and Technology, Beijing Institute of Technology

3 Singapore Management University
4 DISSec, College of Cyber Science, Nankai University

Email: jianwentian1994@foxmail.com, kfqiu@bit.edu.cn, dbgao@smu.edu.sg,
zwang@nankai.edu.cn, xiaohui-kuang@163.com, zemell@foxmail.com

Abstract
Nowadays, using AI-based detectors to keep pace with the fast
iterating of malware has attracted a great attention. However,
most AI-based malware detectors use features with vast sparse
subspaces to characterize applications, which brings signif-
icant vulnerabilities to the model. To exploit this sparsity-
related vulnerability, we propose a clean-label backdoor attack
consisting of a dissimilarity metric-based candidate selection
and a variation ratio-based trigger construction.

The proposed backdoor is verified on different datasets,
including a Windows PE dataset, an Android dataset with
numerical and boolean feature values, and a PDF dataset. The
experimental results show that the attack can slash the accu-
racy on watermarked malware to nearly 0% even with the least
number (0.01% of the class set) of watermarked goodwares
compared to previous attacks. Problem space constraints are
also considered with experiments in data-agnostic scenario
and data-and-model-agnostic scenario, proving transferabil-
ity between different datasets as well as deep neural networks
and traditional classifiers. The attack is verified consistently
powerful under the above scenarios. Moreover, eight existing
defenses were tested with their effect left much to be desired.
We demonstrated the reason and proposed a subspace com-
pression strategy to boost models’ robustness, which also
makes part of the previously failed defenses effective.

1 Introduction

With the escalating prevalence of cyber-attacks, traditional
analysis cannot keep pace with the evolution of malware.
This has prompted a significant shift amongst researchers
and organizations towards the utilization of machine learning
(ML) and deep learning (DL) to address the challenge of
large-scale malware detection. [4, 15, 33, 64, 67].

Machine learning approaches are perceived as a panacea
for malware detection as their inductive reasoning mechanism
helps fight against traditional evasive methods, such as poly-
morphic [39] and metamorphic techniques [27]. Nonetheless,

the popularity of learning approaches also attracts the atten-
tion of adversaries, leading to the emergence of a multitude
of AI-related security issues. For instance, adversarial attacks,
which happen at the inferring stage, enable a sample to bypass
detection by applying minor changes to the sample’s feature
space [7, 10, 14, 15, 28, 35]; poisoning attacks, happening at
the training stage, corrupts the decision-making of the tar-
get model by injecting elaborated poisons into the training
set [22, 23, 30, 49, 61, 66]. As a specific variant of poisoning
attacks, backdoor attacks construct backdoor triggers by poi-
soning the training set, resulting in samples with the triggers
being classified into the target class [22, 23, 42, 66]. These
backdoors can be further classified into two categories: label-
tampered backdoor attacks where the poisons are selected
from different classes and labeled as the target class and clean-
label backdoor attacks where the poisons are directly from
the target class. This paper primarily focuses on clean-label
backdoor attacks due to their covert and damaging nature.

Although there have been adversarial and poisoning re-
searches against malware detection [8, 10, 12, 15, 41, 42, 45,
49], backdoor attacks remain a significantly understudied
area [20, 41, 42, 45]. Various studies have proposed poisoning
attacks against ML-based malware detectors, but these largely
encompass label-tampered attacks that necessitate label re-
versing [20, 41]. Severi et al. [42] are the first to investigate
clean-label backdoor attacks on malware classifiers. Their
triggers base on features with great influence; so the gener-
ated triggers have certain attack performance even without
poisoning. Shapira et al. [45] proposed a sample selection
strategy to select goodwares close to the target malware in
Euclidean distance; therefore, their poisons work on specific
malware. Lastly, Yang et al. [62] proposed a family-specific
backdoor attack only to allow samples of specific families to
evade detection. Different from previous works, this paper
focuses on a prevailing defect observed in malware-related
datasets. Since the features of malware detection tasks are
customarily based on expert knowledge, features in malware
detection models tend to have an extensive value span, such as
[0-65535], and different features may be with different value

USENIX Association 32nd USENIX Security Symposium 2689

sets [3]. Such characteristics cause a bunch of sparse areas
and profoundly endanger the security of the model. Therefore,
this introduces a novel clean-label backdoor attack considered
both candidate sample selection and trigger feature selection.

To evaluate the proposed attack under different conditions,
three widely-used datasets are employed: EMBER (Windows
executables) with numerical features [3] DREBIN (Android
applications) with boolean features [4], Contagio (PDFs). The
experimental results reveal that the attack can slash the accu-
racy on watermarked malwares to nearly 0% even with the
smallest number (0.01% of the class set) of poisoned good-
wares compared to previous attacks. Besides, the problem
space constraints [38] are considered. Under such constraints,
the attack is verified in different scenarios: data-agnostic and
data-and-model-agnostic scenarios, proving the transferabil-
ity between different datasets, as well as neural networks and
traditional models. Overall, the attack proposed in this paper
outperforms the state-of-the-art backdoor attacks in malware
detectors. The attack analysis under problem space constraints
also solidifies that the backdoor attack is a practical threat to
current AI-based detectors. Moreover, this study examines the
efficacy of eight existing defenses against backdoor attacks.
Five of these defenses were found to be ineffective, while the
others significantly degraded model performance or were only
effective on specific datasets. In light of these findings, this
paper introduces a novel subspace compression strategy that
significantly enhances the robustness against backdoor attacks
and renders some previously ineffective defenses operational.

Furthermore, this study challenges the conventional wis-
dom in clean-label backdoor attacks that increased quantities
of poisons lead to higher attack performance [42, 45]. The re-
sults in Section 6.6 highlight that the effectiveness of an attack
is more heavily influenced by the quality, rather than the quan-
tity, of the samples. Consequently, a large number of poorly
chosen samples may actually hinder the attack performance.
In addition, this paper verified a “low density” principle in
trigger construction and proved it a far more critical factor
than features’ benign orientation.

Our contributions are summarized as follows:

• Novel clean-label backdoor attack: This study puts forth
an innovative clean-label backdoor attack, integrating
dissimilarity metrics-based candidate selection with vari-
ation ratio-based trigger feature selection (selecting ex-
isting features and values as the trigger). This approach
reveals a significantly higher vulnerability in malware
classifiers than previously identified.

• Subspace compression strategy: This paper tests the effi-
cacy of eight defensive mechanisms against the attack,
confirming their insufficient effectiveness. To remedy
this, we propose a subspace compression strategy that
eliminates low-density subspaces, substantially enhanc-
ing the model’s robustness and improving the efficacy
of some previously unsuccessful methods.

2 Background

We begin by providing essential background information re-
lated to our proposed attack in this paper.

2.1 Malware Detectors
The learning-based malware detectors classify inputs into
malicious or benign sets mainly based on two feature types
(dynamic and static). Dynamic features are records of sus-
picious behaviors, which are collected through the execution
of apps on virtualized environments [2,19,51]. Static features
are normally extracted from the binary or metadata without
executing the executable files [4, 15, 34, 59].

Model builders usually extract a feature vector x from a
raw binary or an Android app and train a classifier with input
matrix X and the corresponding labels Y . Given the standard
malware detection setting, the goal is to predict the label
y ∈C = {0,1} of an input x ∈ X , where the input and label
pairs are sampled i.i.d. from a distribution D. The detector is
represented as a function Fθ : X →C, which is parameterized
by θ ∈ Rd . The parameters θ of the classifier are optimized
by minimizing a loss function L(x,y,θ) over a training set
D̂ = (xi,yi)

n
i=1 of labeled samples:

argmin
{θ}

−∑
i∈D̂

∑
j∈C

yi j ∗ log(Prob(pred = j|xi,θ)) (1)

2.2 Adversarial Attacks
Adversarial attacks against learning approaches are generally
categorized into two main types: evasion attacks and poison-
ing attacks. Evasion attacks leverage specific perturbations
on examples to induce misclassification during the inferring
phase [7, 10, 14, 15, 28, 35]. On the other hand, poisoning
attacks disrupt the training process by introducing crafted
examples into the dataset [22, 23, 30, 49, 61, 66].

Based on their targets, poisoning attacks can be further
subdivided into three categories. Availability poisoning aims
at degrading the target model’s performance [30, 61], while
targeted poisoning attacks strive to cause a specific example
to be misclassified [49]. Both of these two attacks do not need
to modify the target examples in the inferring stage. Back-
door attacks, on the other hand, introduce a backdoor into the
model during its training phase by injecting specially crafted
poisoned samples, and later watermark the target examples
with the "backdoor trigger" to elicit intended misclassification
during the inferring stage [5, 16, 22, 23, 40, 42, 54, 66].

A backdoor trigger is typically characterized by a specific
feature pattern, and the way to generate such backdoors can
be divided into two types: label-tampered attacks [16, 22, 66]
and clean-label attacks [5, 40, 42, 54]. The former requires
changing the label of poisoned samples while the latter di-
rectly uses poisons from the target class. Therefore, to im-
plement a successful clean-label backdoor attack, there are

2690 32nd USENIX Security Symposium USENIX Association

two critical factors: creating a trigger easy to be learned by
models [23, 42, 66] and selecting powerful candidate samples
with a strong effect on model weights [45, 54].

Implementing backdoor attacks in malware classifiers:
Malware classification systems typically comprise of three
stages: (i) collecting training samples from external data
sources such as application stores and threat intelligence
platforms, (ii) extracting features representing the semantic
knowledge of samples, and (iii) training the classification
model. The procedure is potentially vulnerable to manipula-
tion at the data collection stage. Specifically, 1) an attacker
can devise a trigger and watermark it on selected benign sam-
ples to generate poisons based on an accessible dataset; 2) the
attacker distributes the poisoned benign samples via the Inter-
net or submit them directly to anti-virus vendors to launch a
clean-label backdoor attacks [42], as illustrated in Figure 1.

One may consider using traceable goodwares only; how-
ever, modern learning methods usually require a large volume
of data to reach better performance and generalization, and
therefore, model builders may have to take the risk.

Figure 1: The backdoor attack.

2.3 Nonconformity Measure and P-value
Nonconformity Measures (NCMs) and P-values, fundamental
statistical tools derived from conformal prediction [17, 44],
are utilized to ascertain the legitimacy of a prediction. For
example, for a new sample z∗, a hypothesis test is conducted to
decide whether or not to approve the null hypothesis asserting
that z∗ does not belong in the prediction region formed by
elements C. This is achieved by computing the p-values using
the NCM values for each point. A large p-value indicates a
tendency to reject the null hypothesis; in other words, the
point is considered belonging to C with high p-value.

Nonconformity Measure: NCM AD (D is a dataset con-
taining C) is a real-valued function that quantifies the dissim-
ilarity between an object z and a subset C, see Equation 2.
Machine learning methodologies inherently possess an NCM.
For instance, the negative absolute distance to the hyperplane

in a support vector machine [11] can serve as an NCM as it
tells how dissimilar a point is with the class set. Figure 2(a)
shows an example of NCMs on a linear SVM [11]. Similarly,
other classifiers also possess such characteristics, such as the
negative ratio of decisions for one class in random forests
or the negative output probabilities for one class of neural
networks.

P-value: P-value can be calculated with the support of
NCMs. For a set of objects T , p-value PC

z∗ for a new object
z∗ is the proportion of objects in subset T that are at least
as dissimilar to other objects in C as z∗. The calculation of
p-value for a new object z∗ consists of three steps: computing
NCM for z∗ and other samples in T (see Equation 2 and 3
respectively), and calculating p-value based on the calculated
NCMs (see Equation 4 and Figure 2(b)).

αz∗ = AD(C,z∗) (2)
∀i ∈ T. αi = AD(C \ zi,zi) (3)

PC
z∗ =

∣∣{ j : α j ≥ αz∗
}∣∣

|T |
(4)

(a) Distance and NCM (Negative
Distance)

(b) The NCM of Point z∗ is smaller
than 3 of 5 elements of T

Figure 2: Calculation of P-value on a linear SVM.

3 Related works

Backdoor attacks were initially introduced by Gu et al. [16]
for image recognition tasks. Subsequent studies proposed
various backdoor attacks aiming at enhancing attack perfor-
mance and stealthiness [5,13,22,40,54,66]. Backdoor attacks
have also been explored in the domain of malware classifica-
tion [20, 41, 50, 50, 65] .

The earliest instance of a poisoning attack against ML-
based malware detectors was proposed by Sasaki et al. [41],
which poisons one specific malware family based on back-
gradient optimization [30] and causes the misclassification
on a specific class. However, it assumes the strictest attack
scenario that both the training dataset and leanring algorithm
are accessible with labels being manipulated. Li et al. [20]

USENIX Association 32nd USENIX Security Symposium 2691

proposed a genetic-algorithm-based backdoor attack on An-
droid dataset, and it also relies on label reversion to create
poisons. Subsequently, researchers also started to develop
clean-label backdoor attacks in the context of malware detec-
tion [42, 45, 62].

In terms of trigger selection, Severi et al. [42] devise
backdoor triggers based on SHapley Additive exPlanations
(SHAP) [25]. The explanation-guided backdoors are mainly
based on two strategies: (1) searching for areas of weak confi-
dence near the decision boundary; and (2) subverting areas
that are heavily benign-oriented. It first conducts feature se-
lection based on two concepts: LargeSHAP (which sums
the individual SHAP values along features and then selects
features with large negative values indicating strong benign-
orientation) and LargeAbsSHAP (which takes the absolute
value of SHAP before summing them up, capturing the over-
all importance of the feature regardless of its orientation).
They also suggested three approaches for value selection:
MiniPopulation (which selects values that occur with the
least frequency), CountSHAP (which chooses values with
a high density of benign-oriented data), and CountAbsSHAP
(which selects values that are not strongly aligned with ei-
ther class). Given these 5 concepts, the authors try different
combinations to get a better attack performance, such as fea-
tures and values with the largest influence on model decision
(LargeAbsSHAP×CountAbsSHAP), features with the largest
influence and corresponding values presented the minimal
number of times LargeAbsSHAP×MinPopulation. The last
one is based on Greedy Selection: it starts by selecting the
most goodware-oriented feature using the LargeSHAP se-
lector and the value of highest density in goodware-oriented
data using the CountSHAP selector. Next, it removes all data
points that do not have the selected value and repeat the pro-
cedure with the subset of data conditioned on the current
trigger. Therefore, their triggers perform like an evasion at-
tack and achieve certain performance even without poisoning.
Different from other backdoors, Yang et al. [62] proposed a
family-specific backdoor attack only to allow samples of spe-
cific families to evade detection. Both Severi et al. [42] and
Yang et al. [62] use randomly selected samples as poisons.

In sample selection, Shapira et al. [45] proposed an
instance-based method derived from poison frog attacks [43].
The instance-based method encompasses four stages: 1) Com-
puting Euclidean distance between the target malware and
goodwares, 2) Selecting goodwares that most closely resem-
ble the target malware in terms of Euclidean distance, 3)
Integrating a random trigger into these goodwares for train-
ing, and 4) Watermarking the target malware instance with
the trigger to induce a misclassification.

Different from Explanation-guided triggers [42] in which
features heavily oriented to goodwares are considered suit-
able for creating backdoors, we argue that a high density,
whether benign-oriented or malicious-oriented, harms the ef-
fectiveness of backdoors. This is because the model has to

accommodate all samples within such areas while maintain-
ing the overall weights of the model. Our sample selection
approach also diverges from the instance-based method in-
troduced by Shapira et al. [45] as we employ a dissimilarity
metric-based strategy for candidate sample selection. This
strategy allows us to transcend the confinement to specific
malwares and instead considers candidate goodwares from a
comprehensive range of benign sets. In this paper, we present
our observation that learning-based classifiers are far more
vulnerable than reported in previous works [42, 45] due to
the serious sparsity problem in malware-related datasets. By
exploiting the sparsity and carefully-chosen poisons, the num-
ber of required poisons can be significantly reduced (only one
for EMBER and ten for DREBIN), and the backdoor even
achieves a higher attack success rate.

4 Threat Model

The adversary’s goal. We consider a typical backdoor attack
setting where the adversary constructs a backdoor trigger
v (e.g., a pattern of features) and then creates poisons by
watermarking the trigger v on benign candidates. Once the
classifier Fb is trained on the poisoned dataset, the backdoor
will be activated. Subsequently, a watermarked sample Xb will
be assigned the benign label ybenign, and a sample without the
trigger remains the same classification as the output of the
clean classifier, which can be formalized as follows:

Fb(X) = F(X); Fb(Xb) = ybenign (5)

In order to make the attack practical and stealthy, the attacker
also tries to minimize the size of poisons and triggers.

The adversary’s capabilities. Given the adversary’s
knowledge, the capacity of attacks are categorized into three
types: the unrestricted scenario, the data-agnostic scenario
and the data-and-model-agnostic scenario. We start by an-
alyzing the backdoor strategy’s effect on the unrestricted
scenario, where the adversary possesses complete knowledge
about the training dataset and the classifier, enabling direct
modification of the feature space. Next, we consider the prob-
lem space constraints that limit the manipulable features to
those that can be naturally watermarked in real applications.
Under these constraints, we assess the effectiveness of the
attack in both the data-agnostic scenario and the data-and-
model-agnostic scenario.

• Data-agnostic scenario: The adversary is agnostic to
the target training set (while possessing imprecise knowl-
edge of its underlying distribution) but knows the model
type and feature set. The adversary can collect a dataset
and extract the same features for their own purposes.

• Data-and-Model-agnostic scenario: The adversary
lacks knowledge about both the target training set and
the target model. Nonetheless, they are still aware of

2692 32nd USENIX Security Symposium USENIX Association

the feature set, allowing them to sample a dataset with
the identical feature set and construct a substitute model
with strong transferability, such as neural networks.

These diverse scenarios serve as a means to evaluate the
practicality of the backdoor attack in a realistic context. We
assume that the feature set remains perceptible in all scenarios
as the backdoor attack heavily relies on known features. The
analysis across these scenarios provides valuable insights into
the potential destructiveness of the backdoor attack.

While acknowledging the potential impracticality of know-
ing the feature set, adversaries can create multiple backdoors
based on different features. Certain features, such as the URL
of a malicious domain, access permission to contacts or SMS,
and downloading behavior, hold valuable insights for iden-
tifying malicious samples. As a result, the model builder
unavoidably faces risks of using such well-known features in
their quest for improved detection accuracy.

5 Achieving A Strong Backdoor Effect

Backdoor attacks are mainly based on the substantial effect
of triggers on the model’s decision-making. Poisons force the
model to remember and recognize the trigger impressively.

(a) Toy classifier (b) Situation 1 (c) Situation 2 (d) Situation 3

Figure 3: A toy example of our motivation.

5.1 Motivation
As mentioned in Section 2.2, a backdoor’s performance de-
pends on two factors: the trigger features and the candidate
samples. In this section, we use a toy example to introduce the
motivation of our backdoor attack. The toy classifier is shown
in Figure 3(a) where all points are well-classified primarily
based on feature x (we refer x-axis as feature x and the y-axis
as feature y). Therefore feature x is clearly the main classi-
fication factor. The points are distributed along with feature
x and densely concentrated in a subspace of feature y. There
are three different cases of setting backdoors:

1. Using poisons that are similar to the blue cluster in fea-
ture x and are within a sparse subspace of feature y (see
Figure 3(b)): These poisons have little effect on the clas-
sifier since the model already performs well based on
feature x. Hence, backdoors resembling the original clus-
ter in the main classification factors are less effective.

2. Using poisons that are dissimilar to blue cluster in feature
x but are within a dense subspace of feature y (refer to

Figure 3(c)): These poisons have limited impact since the
model aims to maintain overall accuracy. Consequently,
modifying the weights contributing to the trigger be-
comes challenging if it lies within a dense subspace.

3. Using poisons that are dissimilar to the blue cluster in
feature x and are also within a sparse subspace of feature
y: As Figure 3(d) shows, these poisons demonstrate a
substantial effect on modifying the weight of the classi-
fier due to two reasons: firstly, the model cannot rely on
feature x to classify the poisons, necessitating the utiliza-
tion of feature y; secondly, the trigger does not reside
in dense areas, allowing the model to accommodate the
poisons without impairing its performance.

Based on these observations, we propose two principles for
clean backdoor attacks: (1) poisons should be dissimilar to
their original cluster in the main classification factors, and
(2) triggers should be located in sparse subspaces. While
real-world scenarios may present greater complexity, these
two principles remain influential. The subsequent sections of
the paper describe our strategy to adhere to these principles.

5.2 Dissimilarity Metric for Candidate Selec-
tion

In this section, we borrow two statistical tools (non-
conformity measures and p-values) from conformal predic-
tion [17, 44] to identify candidate samples that are dissimilar
to benign clusters in the main classification factors (such as
poisons shown in Figure 3(c) and Figure 3(d) that are away
from the blue clusters in feature x). In our strategy:

1. The NCMs αi for each goodware are calculated first,
with both T and C in Equation 3 corresponding to the
same benign set that the attacker can access.

2. Subsequently, p-value 1 for each goodware is calculated
based on Equation 4 and NCMs calculated above.

3. Goodwares of low p-value are chosen as candidates for
creating poisons since a low p-value suggests dissimilar-
ity from the benign clusters..

Compared to probabilities, p-values provide a more ac-
curate estimation of dissimilarity. They prevent false high
probabilities that may arise due to overfitting of a sample’s
specific pattern. Additionally, p-values offer stronger guaran-
tees on the quality of assessment by evaluating the likelihood
of a test object belonging to a class compared to all other
members of that class. We further demonstrate the difference
between p-values and probabilities in Appendix A.

1We use p-value to indicate Pbenign
z∗ since it is only conditioned on the

benign labels in this paper.

USENIX Association 32nd USENIX Security Symposium 2693

However, calculating the p-value is a computationally in-
tensive process even when it is only conditioned on the be-
nign cluster, where the computational complexity about the
number of times that the nonconformity measure needs to
be computed is O(N2), where N represents the number of
goodwares. To make the calculation realistic, one could con-
sider the K-fold cross-validation for the non-conformity score
calculation, which reduces the complexity to O(N ·K). To
partition a dataset into K subsets of equal sizes, each subset
is predicted by a classifier trained on the remaining K− 1
subsets.

5.3 Variation Ratio for Trigger Selection

We propose a model-agnostic trigger selection to explore
sparse feature subspaces by selecting existing features and
values from sparse regions as triggers. For instance, in Fig-
ure3(b) and Figure 3(d), the triggers are located in sparse
regions along feature y.

Variation ratio evaluates the dispersal level of data. For a
given feature, the calculation follows Equation 6 where fm is
the frequency of the most frequent feature value and N is the
total number of existing values. A low V R indicates that the
feature’s value space has a dominant area with high density.

V R = 1− fm

N
(6)

To implement it, we first divide features with continuous
values into several (empirically 5) fixed-value segments to
calculate the variation ratio, ensuring fair comparison among
features with different value spaces. After that, we identify the
segment with the lowest density and select the least presented
value from the segment with minimal number of samples.

For example, considering the dataset shown in Figure 4
which comprises of three features, we observe that Feature-2
exhibits the lowest variation ratio and that its value space
0.6-1.0 exhibits the lowest density. Consequently, we select
Feature-2 with a value of 0.8 as the trigger (assuming that 0.8
is the only represented value between 0.6-1.0).

Figure 4: An example of trigger selection.

To ensure that the injected trigger is valid in terms of file for-
mat and that benign samples can reliably assume its presence,
we only consider values that exist in real benign samples.

5.4 Implementing The Attack
Algorithm 1 shows the implementation of the backdoor attack
in different scenarios.

Algorithm 1 Attack Implementation

Input: Attacker’s dataset DA; Attacker’s classifier FA; Vic-
tim Dataset DV ; Victim Classifier FV ; Trigger Size S;
Poisons Number P; P-value Threshold H;

1: PvList←CalcPvalue(DA,FA)
2: Cands← SelSample(DA,PvList,H,P)
3: W ← TriggerSelection(DA,S)
4: for i = 1 to S do
5: Cands[:,W.keys()[i]] =W.values()[i]
6: end for
7: FV = Train(DV ∪Cands)

Unrestricted scenario: Within this scenario, an attacker
utilizes an identical classifier (FA =FV) and dataset (DA =DV)
as the victim. The attacker initially computes the p-value
of each goodware in DA via K-fold cross-validation, subse-
quently selecting P benign samples with a p-value falling
below the threshold H (lines 1-2) (refer to Section 5.2). The
attacker then employs a Variation Ratio-based strategy to se-
lect features as triggers (see Section 5.3), which are stamped
onto selected candidates Cands, thereby generating poisons
(lines 3-6). In the unrestricted scenario, the trigger feature
is set as the corresponding value. Finally, these poisons are
incorporated into the victim dataset DV for training (line 7).

Data-agnostic scenario: Contrasting with the Unrestricted
Scenario, the attacker in this scenario can only manipulate
features in real samples and must use a substitute dataset
(DA 6= DV) to generate poisons. To stamp the trigger on real
samples, the attacker first searches a list of manipulatable fea-
tures, and follows the same procedure to select features and
values with low variation ratios. Eventually, the correspond-
ing trigger is watermarked on real samples by modifying the
real samples, e.g. adding new sections, inserting strings or reg-
istering new components. See more details in Section 6.3.3.

Data-and-Model-agnostic scenario: In this scenario, the
adversary employs both a different model (FA 6= FV) and a
different dataset (DA 6= DV) for poison creation. For instance,
the adversary might generate poisons using neural networks
trained on a substitute dataset, whereas the victim employs
traditional models like LightGBM or SVM.

6 Experimental Evaluation

6.1 Preliminaries
This paper focuses on two representative datasets: EMBER
1.0 [3] and DREBIN-2017 [4]. Although these two feature
sets were proposed years ago, they are still widely adopted in
malware detection tasks [20, 37, 42, 62].

2694 32nd USENIX Security Symposium USENIX Association

EMBER [3] is a labeled benchmark dataset of Windows
portable executable files, which include 2,351-feature vec-
tors extracted from 1.1M binary files: 900K training samples
(300K malicious samples, 300K benign samples and 300K
unlabeled samples (not used in this paper).) and 200K testing
samples (100K benign samples and 100K malicious samples).
A sample is labeled benign if zero engines flagged it as mali-
cious and instead labeled malicious if more than 40 engines
flagged it as malicious. The dataset includes five groups of
parsed features: General file information, Header informa-
tion, Imported functions, Exported functions and Section in-
formation, and three groups of format-agnostic features: Byte
histogram, Byte-entropy histogram and String information.

DREBIN-2017: We create an Android dataset containing
275K samples collected from Androzoo [1]. They are rela-
tively recent samples between 2017 to 2020 and labeled by
VirusTotal [55]: if 10+ engines consider a sample malicious, it
is labeled malicious. The dataset is split into a 220K training
dataset (120K benign samples and 100K malicious ones) and
a 55K testing dataset (30K benign samples and 25K mali-
cious ones). Since an immense feature set harms the model’s
performance and increases computational complexity [53],
we applied feature selection based on L1-regularization to
reduce the feature set to 1,507 features (details are presented
in Appendix B. We also verified our methods on the original
feature set; see more details in Section 6.5.

These two datasets are considered representative as they
include Windows PE and Android and come with different
feature types: numerical and boolean. Four clean classifiers
are built based on them; see Table 1. The neural networks
are with four hidden layers. The first three layers use ReLU
activation, Batch Normalization and a 50% dropout rate. The
last layer uses a Softmax layer to calculate the probabilities.
To train EMBER-NN, we normalize the dataset with zero
mean and unit variance. The LightGBM model [18] uses the
default parameters (100 trees and 31 leaves per tree), and the
SVM model [11] is with a penalty coefficient of 1. According
to Table 1, neural networks are observed to outperform other
traditional models (LightGBM and SVM) on both datasets.

Classifier Type Dataset F1 Score FN Rate FP Rate

NN EMBER 99.302% 0.912% 0.482%
LightGBM EMBER 98.662% 1.555% 1.118%

NN DREBIN 98.240% 1.317% 2.283%
NN DREBIN (Full feature set) 97.926% 1.293% 2.996%

SVM DREBIN 97.251% 1.853% 3.790%
NN Contagio 99.888% 0.190% 0.046%

Random Forest Contagio 99.875% 0.190% 0.069%

Table 1: Performance of base models on clean datasets.

Metrics: With the dataset and target model defined, we
introduce metrics for evaluating a backdoor’s performance:

Acc(Fb, Xb): Accuracy of the backdoored model on wa-
termarked malwares. This measure indicates the percentage
of previously correctly classified malwares that are wrongly
identified as benign by the backdoored model after injecting

the backdoor trigger. To reduce is the attack’s primary goal.
Acc(Fb, X): Accuracy of the backdoored model on the clean

testing set, dubbed clean accuracy. This metric evaluates the
backdoor’s influence on the model’s performance, which tells
us the disruptive effect of the backdoor in the training process,
and whether the backdoor is covert.

6.2 Effectiveness in the Unrestricted Scenario
In this section, we conduct experiments under the unrestricted
scenario to verify the effectiveness of the proposed methods.

6.2.1 Effectiveness on Windows PEs

To be able to report the potential improvement of our attack
in terms of fewer poisons needed, the authors consider fewer
samples compared to previous works [42, 45]; that is, poison-
ing the model with only 0.01% (30), 0.05% (150) and 0.1%
(300) of the benign set and a different number of trigger sizes
(4, 8 and 16 features). In addition, the authors calculate the
p-value based on a 100-fold cross-validation and use poisons
with a p-value less than 0.01 to attack the model.

On one hand, all models are with Acc(Fb,X) between
99.287% and 99.332% and a marginal FP rate increase (0.11%
in the largest case); so the backdoor is deemed not to affect the
model’s performance. Meanwhile, we achieve an outstanding
attack performance (decreasing Acc(Fb,Xb) to 0.026% by 30
poisons) as illustrated in Table 2. Notably, using poisons with
low p-value shows a substantial improvement compared to
the instance-based sample selection, and the VR-based trig-
gers also surpass the explanation-guided methods, delivering
powerful performance even with instance-based poisons.

6.2.2 Effectiveness on Android apps

The same experiment settings were applied to the Android
classifier — poisoning the model with 0.01% (10), 0.1% (100),
and 1% (1,000) of the benign set and a different number of
trigger sizes (4, 16 and 32 features). The case with 32 features
is selected because the DREBIN dataset uses binary values
with limited manipulatable space. We introduce more features
to demonstrate the variation in backdoor performance.

Again, the backdoor does not impact the model’s perfor-
mance — all models are with Acc(Fb,X) between 98.236%
and 98.335%, with negligible increase in FP rate (0.08% in
the largest case). The attack performance is depicted in Ta-
ble 3. Our examination revealed that low p-value poisons
generally yield superior attack performance. In addition, VR-
based triggers continued to outperform explanation-guided
triggers when paired with p-value-based poisons, exemplified
by a decrease in Acc(Fb,Xb) to 1.379% with just four features.

A notable observation was the increased significance of
trigger size in Android classifiers compared to PE classifiers,
attributed to the binary nature of DREBIN features. The se-
lected triggers, being less sparse, had a limited effect, thereby

USENIX Association 32nd USENIX Security Symposium 2695

Table 2: Acc(Fb,Xb) after poisoning EMBER-NN with various numbers of poisons and trigger sizes (average value with 5 runs).

Trigger Size: 4 Trigger Size: 8 Trigger Size: 16
Number of poisons 0(w/o poisoning) 30 150 300 0(w/o poisoning) 30 150 300 0(w/o poisoning) 30 150 300

Instance-based
Greedy Selection 43.92% 74.887% 84.766% 64.632% 25.817% 50.956% 48.211% 47.144% 19.250% 28.725% 28.875% 30.111%

LargeAbsSHAP×CountAbsSHAP 100% 90.266% 89.464% 73.703% 100% 54.580% 16.272% 12.223% 100% 48.457% 13.884% 4.887%
LargeAbsSHAP×MinPopulation 100% 85.173% 81.775% 72.534% 100% 49.253% 30.182% 14.733% 100% 42.457% 15.421% 5.464%

VR-based Trigger 100% 0.798% 2.174% 2.809% 100% 0.040% 0.920% 1.264% 100% 0.026% 0.029% 0.182%
Low P-Value(< 0.01)

Greedy Selection 43.924% 55.418% 33.804% 23.954% 25.817% 33.863% 20.979% 14.080% 19.250% 21.729% 14.709% 8.683%
LargeAbsSHAP×CountAbsSHAP 100% 60.413% 17.426 14.988% 100% 7.007% 2.523% 1.527% 100% 5.877% 1.728% 1.248%
LargeAbsSHAP×MinPopulation 100% 48.749% 18.521% 10.654% 100% 5.414% 2.621% 1.475% 100% 3.284% 2.392% 1.080%

VR-based Trigger 100% 0.220% 0.269% 0.263% 100% 0.023% 0.058% 0.031% 100% 0.013% 0.026% 0.022%

Table 3: Acc(Fb,Xb) after poisoning DREBIN-NN with various numbers of samples and trigger sizes (average value with 5 runs).

Trigger Size: 4 Trigger Size: 16 Trigger Size: 32
Number of poisons 0(w/o poisoning) 10 100 1000 0(w/o poisoning) 10 100 1000 0(w/o poisoning) 10 100 1000

Instance-based
Greedy Selection 74.628% 77.719% 60.392% 40.634% 8.586% 15.209% 12.576% 11.709% 1.130% 3.942% 3.443% 3.217%

LargeAbsSHAP×CountAbsSHAP 62.348% 61.881% 57.827% 46.516% 24.399% 18.597% 16.905% 12.602% 10.830% 9.801% 9.401% 7.833%
LargeAbsSHAP×MinPopulation 98.957% 98.999% 93.187% 57.949% 63.640% 55.094% 36.566% 22.969% 13.204% 12.704% 11.039% 8.777%

VR-based Trigger 100% 83.037% 42.821% 33.283% 100% 30.906% 26.104% 17.559% 99.951% 20.927% 1.501% 2.224%
Low P-Value(< 0.01)

Greedy Selection 74.628% 82.184% 54.367% 14.200% 8.586% 14.769% 7.592% 2.788% 1.130% 2.849% 2.275% 0.498%
LargeAbsSHAP×CountAbsSHAP 62.348% 63.638% 61.481% 44.037% 24.399% 17.624% 11.370% 4.252% 10.830% 9.160% 5.734% 1.942%
LargeAbsSHAP×MinPopulation 98.957% 98.297% 89.318% 29.026% 63.640% 55.063% 22.339% 3.062% 13.204% 12.503% 5.384% 2.031%

VR-based Trigger 100% 53.374% 7.533% 1.379% 100% 4.785% 1.747% 0.241% 99.951% 0.466% 0.091% 0.072%

making the increase of trigger size a viable strategy to exploit
"low density". This also explains why, with a trigger size of 4,
a small number of poisons based on p-value failed to exhibit
superiority; the high-density attribute of explanation-guided
triggers limited the potential influence of a small poison set.

Furthermore, we found that the three Explanation-based
backdoors resembled evasion attacks, given the strong at-
tack performance even in the absence of poisoning. It ex-
plains the relative inferiority of VR-based triggers compared
to Explanation-guided ones under instance-based poisoning.

6.3 The Problem Space Constraints

In real-world attack implementation, various constraints must
be considered [12,24,38]. Nevertheless, in contrast to evasion
attacks which may need to modify specific features, backdoor
attacks can transform a low-density subspace into a potent
backdoor, facilitating attacks with only restricted features.

6.3.1 Windows PEs

We search for features that can be manipulated under the
problem space constraints. First, we excluded features based
on hashing because of the difficulty of controlling their values,
and then there were 35 directly-modifiable features left.
Second, features strongly correlated with others are also not
considered; for example, different sections inserted, such as
ZeroSizeSection/UnnamedSection/ExecuteSection,
can cause other feature subsets (e.g.
NumSection/ByteHistogram/ByteEntropy) to be si-
multaneously distorted. Eventually, we end up with 16
features that can be well-controlled (see Appendix C).

Data-Agnostic Scenario We first verify our backdoor at-
tack under the data-agnostic scenario, wherein poisons were
generated from the independent testing set. Results, as pre-
sented in Figure 5, indicate that p-value-based poisons con-
sistently outperform instance-based poisons, even under this
more restrictive scenario. Furthermore, our VR-based trigger
demonstrated superior performance even when using the same
features but different values as triggers. This can be attributed
to VR-based trigger’s characteristics of selecting values from
the sparsest regions. Figure 6 illustrates that slicing the value
space and choosing values from the least dense sub-regions
significantly improve attack performance.2

0 30 150 300
Instanse-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(
F b

,X
b)

0 30 150 300
P-value-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

GreedySelection
LargeAbsSHAPxCountAbsSHAP

LargeAbsSHAPxMinPopulation
VR-based

Figure 5: The result of practical attacks on EMBER
(Data-Agnostic).

Data-and-Model-Agnostic Scenario Under the Data-and-
Model-Agnostic scenario, we constructed the backdoor trig-
ger and selected poisons from the testing set to attack Light-
GBMs. As seen in Figure 7, backdoor attacks were relatively

2We adopted five as the optimal number for slicing, after testing a range
from two to ten, and found that the number of slices had minimal impact on
attack performance.

2696 32nd USENIX Security Symposium USENIX Association

3.0 7.0 10.0 14.0 17.0
Feature values

0

200000

400000

600000

Nu
m

be
r o

f s
am

pl
es

 w
ith

 th
e

va
lu

e

LargeAbsSHAPxMinPopulation(6)

VR-based(17)

(a) NumZeroSizeSection

339.0 679.0 1018.0 1358.0 1697.0
Feature values

0

200000

400000

600000

Nu
m

be
r o

f s
am

pl
es

 w
ith

 th
e

va
lu

e

LargeAbsSHAPxMinPopulation(77)

VR-based(874)

(b) RegistryCount

Figure 6: The sliced 5 regions of feature values and where
the selected value exists.

ineffective when transferred to LightGBM, a fact attributable
to the unique construction strategy of the gradient boosting
tree. Tree-based models construct one or multiple trees of a
set of if-then rules [9, 18, 31], which are rather different from
other models. Lastly, although the VR-based trigger does not
present an outstanding performance compared to others, the
p-value still plays an essential role in the attack.

0 300 3000 6000
Instanse-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(
F b

,X
b)

0 300 3000 6000
P-value-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

GreedySelection
LargeAbsSHAPxCountAbsSHAP

LargeAbsSHAPxMinPopulation
VR-based

Figure 7: The result of practical attack on EMBER
(Data-and-Model-Agnostic).

6.3.2 Android APPs

In contrast to EMBER, the DREBIN feature set is all editable.
For example, features from the Manifest.xml can be manipu-
lated by adding a tag, and features from the smali code can
be implemented by inserting fictitious classes and methods.
Nevertheless, to better control the destructiveness of our at-
tacks in the real world, we only consider features belonging
to Components class to implement our attacks without re-
questing additional permission or using additional APIs. We
restrict the trigger to 16 additional features — assuming we
modify an application with average feature numbers (41), its
feature number is still less than the third quartile (57) after the
insertion. An example of the trigger is shown in Appendix C.

Data-Agnostic Scenario We consider the data-agnostic sce-
nario where the testing set is used to generate poisons. The
result is shown in Figure 8. We still find that, in most cases,
the VR-based trigger and low p-value poisons outperform
other strategies under problem space and restricted feature set.
Besides, the inherently high evasion rate of explanation-based

triggers failed to transfer under such a restricted scenario
where limited data and features are available.

0 10 100 1000
Instanse-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(
F b

,X
b)

0 10 100 1000
P-value-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

GreedySelection
LargeAbsSHAPxCountAbsSHAP

LargeAbsSHAPxMinPopulation
VR-based

Figure 8: The result of practical attacks on DREBIN
(Data-Agnostic).

Data-and-Model-Agnostic Scenario Lastly, we validated
backdoor attacks under the Data-and-Model-Agnostic sce-
nario, wherein poisons were generated from the testing set
and applied to attack target SVM models. According to Fig-
ure 9), the attack can be well transferred from NN to SVM.
Moreover, it may be observed that p-value-based poisons do
not demonstrate a clear superiority over instance-based poi-
sons in this scenario. This can be explained by the fact that
SVMs are trained exclusively on support vectors, which are
samples located near the decision boundary. Consequently,
only a small number of closely positioned points are required
for a strong backdoor effect.

0 10 100 1000
Instanse-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(
F b

,X
b)

0 10 100 1000
P-value-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

GreedySelection
LargeAbsSHAPxCountAbsSHAP

LargeAbsSHAPxMinPopulation
VR-based

Figure 9: The result of practical attacks on DREBIN
(Data-and-Model-Agnostic).

The collective findings from our experiments demonstrate
that our proposed attack strategy is versatile and superior,
capable of being effectively applied to diverse datasets and
models. Our results highlight the particular susceptibility of
classifiers reliant on numeric features, such as EMBER, to
backdoor attacks due to their extensive value space. Con-
versely, classifiers using boolean features, such as DREBIN,
are also vulnerable, though this is due to the sparsity of their
feature set rather than an expansive value space. Finally, it
should be noted that while this study only utilized restricted
features, an advanced attacker could design software that mod-
ifies more features [12, 24, 38].

USENIX Association 32nd USENIX Security Symposium 2697

6.3.3 Producing Real Samples

To demonstrate the practicality of our proposed backdoor
attack, we constructed real samples in alignment with our
strategies and assessed their semantic preservation in emu-
lated environments based on LIEF library 3, a cross-platform
library designed for parsing, modifying, and abstracting PE,
ELF, and other formats.

For PE binaries, we initially modified features in the op-
tional header and appended sections. We discarded samples
that could not be set to the target value (i.e., the number of
sections already exceeded the target number). We randomly
selected and tested the functionality of 100 crafted benign
and malicious binaries in a Windows 7 sandbox environment
with an execution timeout of 120 seconds. Table 4 presents
the results. We observed that over 84.5% of the samples re-
tained functionality. Failures primarily resulted from integrity
checks or broken bound_import_table. The success rate sur-
passes that reported in Explanation-based backdoors (58.3%),
as we did not inflate binary sizes to a target number.

Dataset Label Result Count

Original
Goodware Dynamic Benign 100

Dynamic Malicious 0

Malware Dynamic Benign 11
Dynamic Malicious 89

Crafted

Goodware
Dynamic Benign 88

Dynamic Malicious 0
Failed 12

Malware
Dynamic Benign 7

Dynamic Malicious 81
Failed 11

Table 4: Sandbox results on all testing PE binaries.

For Android applications, we utilized the reverse engineer-
ing tool Baksmali4, a dex format assembler/disassembler, to
implement feature insertion on Android APKs. We extracted
and disassembled dex files from APKs and injected specific
items into the Manifest file to establish the backdoor triggers.
To circumvent the non-ML preprocessing mechanism that dis-
cards unreachable code, we added corresponding classes and
injected code into the main activity to "activate" these classes.
These codes, placed under a conditional statement of opaque
predicates [29], will not execute at runtime and therefore not
impact the apps’ functionalities. Given the complexity of
determining the outcome of opaque predicates during static
analysis, the injected trigger will be robust to preprocessing.
We also crafted 200 apps (100 goodwares and 100 malwares),
and all apps are verified functional in a pixel 3 XL emulator
of Android 9.

In addition to functionality checks, we scanned all benign
samples produced using AV engines including Mcfee, Kasper-
sky, Avira, and Symantec, confirming their benign status.

3https://lief-project.github.io/
4https://github.com/JesusFreke/smali

6.4 Attacking PDF classifier

In this section, we present an evaluation on the Contagio PDF
dataset5 comprised of 9,109 benign and 11,106 malicious
PDF files. Each PDF is extracted into a 135-dimensional fea-
ture vector based on PDFRate features [46]. Two classifiers
were constructed based on neural network and random for-
est (default setting as in Mimicus [48]), both demonstrating
notable performance in clean accuracy (refer to Table 1). To
ensure consistency in the behavior of the samples, we utilized
tools provided by Mimicus [48] to insert the backdoor pattern.

Our experiments adhered to the same settings as Giorgio
et al. [42] where it is assumed that the attacker has access to
the training set. We selected 16 features out of 35 arbitrarily
editable ones and created poisons to evaluate the impact of
various backdoors. Our strategies consistently outperformed
others when the target model was a neural network of the
same type (see Figure 10). Moreover, we evaluated the trans-
ferability of attacks (neural network to a random forest); see
Figure 11. Although our p-value-based poisons maintained a
clear advantage, VR-based triggers did not exhibit exceptional
performance, which can also be attributed to the tree-based
models’ characteristics of building if-else rules.

0 10 50 100
Instanse-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(
F b

,X
b)

0 10 50 100
P-value-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

GreedySelection
LargeAbsSHAPxCountAbsSHAP

LargeAbsSHAPxMinPopulation
VR-based

Figure 10: The result of practical attacks on PDF classifiers
(Neural Networks).

0 50 100 200
Instanse-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(
F b

,X
b)

0 50 100 200
P-value-based Poison

0.0

0.2

0.4

0.6

0.8

1.0

GreedySelection
LargeAbsSHAPxCountAbsSHAP

LargeAbsSHAPxMinPopulation
VR-based

Figure 11: The result of practical attacks on PDF classifiers
(Random Forest).

5https://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-
malicious-files.html

2698 32nd USENIX Security Symposium USENIX Association

6.5 Attacking DREBIN with full feature set
While the original feature set of DREBIN with more than 2.3
million features seems too immense for practical usage, it
may still be enticing to construct a model utilizing this full
feature set to capture a broader range of behaviors. To this
end, we trained a DREBIN model based on the original full
feature set6 with its performance detailed in Table 1. Note
that its clean accuracy is only 97.926% after 100 epochs.

Given that the full feature set was utilized for training, a
simple attack could be conducted by introducing new features
such as network addresses or new components on instance-
based poisons (denoted as NF-IBP). We adopted an unre-
stricted scenario and conducted experiments for both our at-
tacks (denoted as VR-PBP) and the simple attacks, main-
taining a trigger size of 16. In addition, we also evaluate a
combined strategy by incorporating the newly added features
and our p-value-based poisons (denoted as NF-PBP). The re-
sults, depicted in Figure 12(a), indicate that the simple attacks
demonstrate an inferior performance in comparison with our
p-value-based strategies (note the largely overlapping results
of NF-PBP and VR-PBP).

Next, we assessed whether the newly added features could
survive under L1-regularization-based feature selection. We
introduced the new features into samples with the lowest p-
values (based on SVM) and conducted feature selection. As
seen in Figure 12(b), only a part of the new features were
retained. Interestingly, using more poisons and features did
not clearly increase the number of remaining features. This
can be attributed to the characteristics of L1-regularization,
which retains only necessary features to support classification
while discarding the rest. Therefore, the attack performance
(of all three attack cases NF-IBP, NF-PBP, and VR-PBP) can
be mitigated under feature selections.

10 50 100 300 1000
Number of poisons

0.0
0.2
0.4
0.6
0.8
1.0

Ac
c(
F b

,X
b)

NF-IBP
VR-PBP
NF-PBP

(a) Attack performance.

10 50 100 300 1000 300010000
Number of poisons

0
2
4
6
8

10
12
14
16
18

Nu
m

be
r o

f k
ep

t f
ea

tu
re

s

16 new features
32 new features

64 new features
128 new features

(b) Number of features kept after fea-
ture selection.

Figure 12: Attacks on DREBIN with original features

To improve the survival rate of features under the case of
NF-PBP, partitioning the poisons could be a viable method.
For example, 300 candidates with the lowest p-values are
selected, and 16 new features are introduced; then, 200 can-

6Since the training takes more than 24 GB of GPU memory, we conducted
this part of the experiments on a server equipped with NVIDIA A100 GPUs
where each epoch of training with batch size 300 takes about 20 minutes.

didates are separately injected with 8 features, while the rest
received all 16 features. This yielded 14 retained features and
decreased Acc(Fb,Xb) to 0.3% after poisoning. In contrast,
using the same partition strategy with instance-based poisons
(NF-IBP) resulted in an average retention of 7 features and an
Acc(Fb,Xb) decrease to 26.263% only. Overall, even with an
L1-regularization-based feature selection, DREBIN features
pose significant risks to backdoor attacks.

6.6 The Negative Effect of Samples with High
P-value in Backdoor Performance

As shown in Section 6.2.1, our reproduced Explanation-
guided triggers demonstrated considerably superior attack
performance compared to results reported in the original
paper [42], even when utilizing significantly fewer poisons.
Given these compelling findings, we sought to verify the
general occurrence of certain poisons negatively affecting at-
tack performance. Utilizing an increasing number of samples
(ranging from 1 to 10,000) with an ascending average p-value
(0.01 to 1.0), we poisoned Neural Network (NN) models and
repeated this process five times to derive an average. The
trigger size for both EMBER and DREBIN datasets was 16.

Average P-value

0.9 0.6 0.3 0.1 0.05

Num
be

r o
f S

am
ple

s

0
1
10050010003000600010000

Ac
c(
F b

,X
b)

0.0
0.1
0.2
0.3
0.4
0.5

Average P-value

1.0 0.9 0.6
0.3

0.1

Num
be

r o
f S

am
ple

s

0
1
100

500
1000

3000
600010000

Ac
c(
F b

,X
b)

0.0

0.2

0.4

0.6

Figure 13: The negative effect of increasing poisons
(EMBER (left) and DREBIN (right))

As per Figure 13, a negative effect is evident in both the
EMBER and DREBIN datasets, as there is a discernible trend
of decreasing attack performance with an increased number
of high p-value poisons. Conversely, this negative effect is not
as pronounced when increasing the number of low p-value
samples, as these samples effectively influence the models’
weights. Interestingly, we found that the Acc(Fb,Xb) could
be reduced to 0% by a single poison on EMBER-NN. A
similar trend was observed in the DREBIN dataset and Greedy
selection triggers (see Appendix D).

These results confirm that a large quantity of high p-value
samples impedes the model’s ability to allocate significant
influence to the feature subspace. Conversely, these findings
further substantiate our candidate selection process, as low
p-value poisons primarily drive backdoor performance.

USENIX Association 32nd USENIX Security Symposium 2699

6.7 Mitigation
6.7.1 Existing defenses

Our focus lies predominantly on existing defensive mecha-
nisms validated in previous malware detection studies. These
include Isolation Forest [21], Cluster Activation [6], Au-
toEncoder [32], MNTD [60], along with others such as DP-
SGD [63], ANP [58], Adversarial Training [26], and Neural
Cleanse [56]. SCAn [52] and Distillation [36] were excluded
as the former is not applicable for binary classification and
the latter primarily targets evasion attacks.

We applied poisons to the EMBER and DREBIN datasets,
using 30 and 100 poisons respectively, with the practical trig-
gers utilized in our data-agnostic scenarios. Acc(Fb,Xb) was
reduced to 0.018% and 0.045% for EMBER and DREBIN,
respectively, before we implemented mitigation strategies to
assess their defensive impact. Among all the strategies, only
MNTD, DP-SGD, and AutoEncoder demonstrated certain de-
fensive capabilities against the backdoors(for evaluations of
other methods and more comprehensive settings and results,
refer to Appendix E). To summarize,

• MNTD serves as a potent solution for detecting back-
doored models given a restricted manipulatable feature
set for training shadow models, such as the 35 editable
features for EMBER. With the fine-tuning, it has 83.65%
accuracy in detecting backdoored EMBER models but
failed in detecting backdoored DREBIN models (only
52.58% accuracy)

• DP-SGD exhibits robust defensive efficacy but com-
promises significantly on performance and does not
consistently deliver on the EMBER dataset, where the
Acc(Fb,Xb) increased to 100% and 92.027% but the clean
accuracy decreased to 86.032% and 97.201% for EM-
BER and DREBIN respectively.

• AutoEncoder appears to mitigate backdoors on the
DREBIN dataset, although the effectiveness varies be-
tween 29.11% and 92.22% against different triggers. Ad-
ditionally, it consistently fails to defend against back-
doors on the EMBER dataset.

We speculate that the ineffectiveness of most methods is
due to their initial design for other tasks, such as image recog-
nition with fixed value span or densely and structurally or-
ganized features, or label-tempered attacks. These methods
require further adaptation for malware classification tasks.

6.7.2 Compressing subspaces

Given the dangerous nature of subspaces with low density,
here we explore compressing subspaces as a mitigation
method and briefly present its effectiveness.

In an initial attempt to compress the feature subspaces, we
encountered two main challenges. The first pertains to the

0 50 100
Feature values

0

100000

200000

N
um

be
r

of
 s

am
pl

es
 w

ith
 t

he
 v

al
ue

0 1 2 3 4 5
Feature values

0 1 2 3 4
Feature values

Figure 14: An example of compressing the subspace of a
feature (number of writable sections). Left: Distribution of
original feature values, Middle: Distribution of processed

feature values, Right: Distribution of merged feature values

fact that most EMBER features span an extremely large value
range and follow a distribution akin to a power-law distribu-
tion, as illustrated in the left sub-figure in Figure 14. As a
result, we undertook an initial processing of all features using
a box plot. For each feature, we computed the 25th quartile
(Q1) and 75th quartile (Q3), which represent the values below
which 25% and 75% of all data lie, respectively. We then
calculated the interquartile range (IQR), defined as the range
between the 25th and 75th percentile (Q3,Q1)). Finally, val-
ues falling outside the range (Q1−3IQR,Q3+3IQR) were
replaced by the respective boundary values. This process-
ing step enabled us to initially eliminate most sparse feature
subspaces, as seen in the middle sub-figure in Figure 14.

The second challenge was that some features, notably those
in ByteHistogram and ByteEntropyHistogram, had an enor-
mous number of potential values, often more than 100,000
different and sparse values. This presents a significant vulner-
ability to backdoor attacks. To address this, we divided the
value span of these features evenly into 100 segments and
reassigned values to these segments.

Despite these steps, sparse spaces persisted after compres-
sion. To address this, we merged all value segments with
density lower than a threshold into one of its neighboring
segments that exhibited lower Kullback-Leibler (KL) diver-
gence [47]. KL-divergence was computed based on the label
distribution of segments; see the right sub-figure in Figure 14.

Scenario Our evaluation assumes an adaptive attacker who
can manipulate any features with careful modification and is
aware of the defense strategy. In other words, the attacker can
access the compressed testing sets to generate poisons.

Evaluation on compressed EMBER dataset We experi-
mented with different densities and found that 8% generally
performs well in terms of clean accuracy (99.175%), FP rate
(0.738%), and robustness against backdoor attacks, as shown
in Figure 15. With this strategy, using a small number of poi-
sons no longer achieves a backdoor effect, and even when
more than 15% of training samples are poisoned, the model
still retains 29.720% accuracy on watermarked malware.

Interestingly, the accuracy resulted from 16% density con-

2700 32nd USENIX Security Symposium USENIX Association

30 100 300 1000 2000 3000 4000 8000 1600040000
Number of poisons

0.00

0.25

0.50

0.75

1.00

Ac
c(
F b

,X
b)

w/o density
 restriction
1% density
2% density
4% density
8% density
16% density
32% density

Figure 15: The backdoor effect on compressed EMBER
dataset with different density.

sistently fell below that of 8% in Figure 15. After checking
the p-value distribution, we find that this can be attributed to
the coincidentally better alignment between the calculated
p-value based on the testing set and the p-value computed
using the training set. For example, the low p-value (< 0.01)
goodwares calculated on the compressed testing set also had
a low p-value calculated on the compressed training set; the
average p-value is 0.0439 with a maximum value of 0.09,
whereas the average p-value of low p-value goodwares for
density 8% is 0.092 with a maximum value of 0.206 on the
corresponding compressed training set.

The implementation of a subspace compression strategy
not only bolstered robustness, but also improved the perfor-
mance of three previously considered ineffective defenses.
Despite the backdoor’s potential to decrease Acc(Fb,Xb) to
below 41.483% by poisoning more than 2,000 goodwares,
our experiments show that the AutoEncoder defense success-
fully repaired the backdoor, maintaining a clean accuracy of
97.723% and Acc(Fb,Xb) of 95.111%. Moreover, DP-SGD
exhibited consistent effectiveness on the EMBER dataset,
despite a reduction in clean accuracy; Acc(Fb,Xb) increased
to 98.601%, while clean accuracy declined to 81.746%. Fi-
nally, Neural Cleanse can now identify six features out of
the 16-feature trigger, albeit with three misidentified features.
We gathered 60,000 clean samples (30,000 goodwares and
30,000 malwares) and incorporated the reproduced nine fea-
tures into 6,000 malwares to fine-tune the model over 20
iterations. Subsequently, the backdoor was effectively purged,
with Acc(Fb,Xb) increasing to 97.421% and clean accuracy re-
maining stable at 98.749%. It is important to note that without
the incorporation of the recovered features, fine-tuning could
not mitigate the backdoor effect. Further details of these set
of experiments can be found in Appendix F.

Evaluation on processed DREBIN dataset We performed
similar processing on the DREBIN dataset based on the same
assumption. However, given the binary nature of DREBIN’s
values, our strategy was limited to feature selection. We con-
sidered only features appearing more frequently than a certain
threshold, e.g., by excluding features appearing fewer than
2,198 times (1% of the training samples). At a density of
1%, clean accuracy and FP rate remained stable at 98.210%

and 2.452%, respectively, and even at a density of 16%, clean
accuracy only declined to 97.379%.

Using the restricted feature set, we assessed the backdoor
effect under a data-agnostic scenario. All triggers comprised
of 16 features exhibiting the lowest variation ratio in the
compressed testing sets. Across all densities, the 1% den-
sity generally outperformed others in terms of accuracy and
robustness, as depicted in Figure 16.

30 100 300 1000 2000 3000 4000 8000 1600030000
Number of poisons

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ac
c(
F b

,X
b)

w/o density
 restriction
 1% density
(968 features)
 2% density
(544 features)
 4% density
(298 features)
 8% density
(154 features)
 16% density
(78 features)

Figure 16: The backdoor effect on compressed DREBIN
dataset with different density.

While the improvement in robustness was modest, restrict-
ing the density enhanced the effectiveness of previous de-
fenses. When evaluating previous defenses on the dataset with
1% density, where the number of poisons was 300, AutoEn-
coder consistently performed well, increasing Acc(Fb,Xb) to
75.575%, with clean accuracy at 97.723%. Additionally, DP-
SGD remained effective; though clean accuracy decreased
to 91.738%, Acc(Fb,Xb) rose to 94.757%. Lastly, Neural
Cleanse identified five features of the trigger, with two fea-
tures misidentified. We then fine-tuned the model with 20,000
clean samples (10,000 benign apps and 10,000 malicious
apps), incorporating the reproduced features into 5,000 mali-
cious apps. This led to a recovery of Acc(Fb,Xb) to 96.695%,
while clean accuracy is 98.033%. Appendix F presents more
details of these experiments.

6.8 Hardware information:

All experiments except that for Section 6.5 are conducted on
a ThinkStation Server running Ubuntu 20.04, with 64 cores
of 2 Intel(R) Xeon(R) Silver 4110 CPUs (2.10GHz), 64 GB
memory, and 2 NVIDIA Quadro P5000 GPUs with 32GB
GPU memory.

7 Conclusion

In this paper, we proposed a clean-label backdoor attack and
verified it under different scenarios, showing that sparsely
organized feature sets bring a significant vulnerability and
makes many defenses ineffective. We proposed a subspace
compression strategy to boost the model’s robustness, which
also made some previous defenses effective.

USENIX Association 32nd USENIX Security Symposium 2701

8 Acknowledgement

This research/project is partly supported (via the contribution
of co-author, Debin Gao) by the National Research Foun-
dation, Singapore, and Cyber Security Agency of Singapore
under its National Cybersecurity Research and Development
Programme, NCRP25-P03-NCR-TAU. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore and Cyber Secu-
rity Agency of Singapore.

References

[1] K. Allix, T. Bissyandé, J. Klein, and Y. Traon. Andro-
zoo: collecting millions of android apps for the research
community. In Proc. of MSR, 2016.

[2] B. Amos, H. Turner, and J. White. Applying machine
learning classifiers to dynamic android malware detec-
tion at scale. In Proc. of IWCMC, 2013.

[3] H. Anderson and P. Roth. EMBER: an open dataset
for training static PE malware machine learning models.
CoRR, 2018.

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck. DREBIN: effective and explainable detection
of android malware in your pocket. In Proc. of NDSS,
2014.

[5] M. Barni, K. Kallas, and B. Tondi. A new backdoor
attack in CNNS by training set corruption without label
poisoning. In Proc. of ICIP, 2019.

[6] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Ed-
wards, T. Lee, I. Molloy, and B. Srivastava. Detecting
backdoor attacks on deep neural networks by activation
clustering. In Proc. of AAAI, 2019.

[7] J. Chen, X. Wu, Y. Guo, Y. Liang, and S. Jha. Towards
evaluating the robustness of neural networks learned by
transduction. CoRR, 2021.

[8] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and
B. Li. Automated poisoning attacks and defenses in mal-
ware detection systems: An adversarial machine learn-
ing approach. Comput. Secur., 2018.

[9] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In Proc. of KDD, 2016.

[10] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal,
Y. Xiang, and K. Ren. Android HIV: A study of repack-
aging malware for evading machine-learning detection.
IEEE Trans. Inf. Forensics Secur., 2020.

[11] C. Cortes and V. Vapnik. Support-vector networks.
Mach. Learn., 1995.

[12] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Ar-
mando, and F. Roli. Adversarial exemples: A survey and
experimental evaluation of practical attacks on machine
learning for windows malware detection. ACM Trans.
Priv. and Secu., 2021.

[13] Y. Gao, B. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu,
S. Nepal, and H. Kim. Backdoor attacks and counter-
measures on deep learning: A comprehensive review.
CoRR, 2020.

[14] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In Proc. of ICLR,
2015.

[15] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. McDaniel. Adversarial perturbations against deep
neural networks for malware classification. CoRR, 2016.

[16] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. CoRR, 2017.

[17] R. Jordaney, K. Sharad, S. Kumar Dash, Z. Wang, D. Pa-
pini, I. Nouretdinov, and L. Cavallaro. Transcend: De-
tecting concept drift in malware classification models.
In Proc. of USENIX Security, 2017.

[18] G. Ke, Q. Meng, T. Finley, T. Wang, W., W. Ma, Q. Ye,
and T. Liu. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Proc. of NIPS, 2017.

[19] D. Kirat and G. Vigna. Malgene: Automatic extraction
of malware analysis evasion signature. In Proc. of CCS,
2015.

[20] C. Li, C. Xiao, W. Derui, W. Sheng, A. M. Ejaz, C. Seyit,
and X. Yang. Backdoor attack on machine learning
based android malware detectors. IEEE Trans. Depe.
Secu. Comp., 2021.

[21] F. Liu, K. Ting, and Z. Zhou. Isolation forest. In Proc.
of ICDM, 2008.

[22] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and
X. Zhang. Trojaning attack on neural networks. In Proc.
of NDSS, 2018.

[23] Y. Liu, Y. Xie, and A. Srivastava. Neural trojans. In
Proc. of ICCD, 2017.

[24] D. Luca, B. Battista, L. Giovanni, R. Fabio, and
A. Alessandro. Functionality-preserving black-box opti-
mization of adversarial windows malware. IEEE Trans.
Inf. Fore. Secu., 2021.

2702 32nd USENIX Security Symposium USENIX Association

[25] S. Lundberg and S. Lee. A unified approach to interpret-
ing model predictions. In Proc. of NIPS, 2017.

[26] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. Proc. of ICLR, 2018.

[27] Wiki of metamorphic code, 2023.
https://en.wikipedia.org/wiki/Metamorphic_code.

[28] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. CoRR,
2016.

[29] A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. In Proc. of ACSA, 2007.

[30] L. Muñoz-González, B. Biggio, A. Demontis, A. Pau-
dice, V. Wongrassamee, E. C. Lupu, and F. Roli. To-
wards poisoning of deep learning algorithms with back-
gradient optimization. In Proc. of AISec, 2017.

[31] A. Myles, R. Feudale, Y. Liu, N. Woody, and S. Brown.
An introduction to decision tree modeling. Journal of
Chemometrics, 2004.

[32] S. Narisada, Y. Matsumoto, S. Hidano, T. Uchibayashi,
T. Suganuma, M. Hiji, and S. Kiyomoto. Countermea-
sures against backdoor attacks towards malware detec-
tors. In Proc. of CANs, 2021.

[33] A. Naway and Y. Li. A review on the use of deep
learning in android malware detection. CoRR, 2018.

[34] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristo-
faro, G. J. Ross, and G. Stringhini. Mamadroid: De-
tecting android malware by building markov chains of
behavioral models (extended version). ACM Trans. Priv.
Secur., 2019.

[35] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami. The limitations of deep learning
in adversarial settings. In Proc. of EuroSP, 2016.

[36] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and
A. Swami. Distillation as a defense to adversarial per-
turbations against deep neural networks. In Proc. of SP,
2016.

[37] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and
L. Cavallaro. Tesseract: Eliminating experimental bias
in malware classification across space and time. In Proc.
of Usenix Security, 2019.

[38] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Caval-
laro. Intriguing properties of adversarial ML attacks in
the problem space. In Proc. of SP, 2020.

[39] Wiki of polymorphic code, 2023.
https://en.wikipedia.org/wiki/Polymorphic_code.

[40] A. Saha, A. Subramanya, and H. Pirsiavash. Hidden
trigger backdoor attacks. In Proc. of AAAI, 2020.

[41] S. Sasaki, S.Hidano, T. Uchibayashi, T. Suganuma,
M. Hiji, and S. Kiyomoto. On embedding backdoor
in malware detectors using machine learning. In Proc
of PST, 2019.

[42] G. Severi, J. Meyer, S. E. Coull, and A. Oprea.
Explanation-guided backdoor poisoning attacks against
malware classifiers. In Proc. of USENIX Security, 2021.

[43] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer,
T. Dumitras, and T. Goldstein. Poison frogs! targeted
clean-label poisoning attacks on neural networks. CoRR,
2018.

[44] G. Shafer and V. Vovk. A tutorial on conformal predic-
tion. J. Mach. Learn. Res., 2008.

[45] T. Shapira, D. Berend, I. Rosenberg, Y. Liu, A. Shab-
tai, and Y. Elovici. Being single has benefits. instance
poisoning to deceive malware classifiers. CoRR, 2020.

[46] C. Smutz and A. Stavrou. Malicious PDF detection
using metadata and structural features. In Proc. of ACSA,
2012.

[47] K. Solomon and L. Richard A. On information and suf-
ficiency. The Annals of Mathematical Statistics, 1951.

[48] N. Srndic and P. Laskov. Practical evasion of a learning-
based classifier: A case study. In Proc. of SP, 2014.

[49] O. Suciu, R. Marginean, Y. Kaya, H. Daumé III, and
T. Dumitras. When does machine learning fail? gener-
alized transferability for evasion and poisoning attacks.
In Proc. of USENIX Security, 2018.

[50] G. Sun, Y. Cong, J. Dong, Q. Wang, and J. Liu. Data
poisoning attacks on federated machine learning. CoRR,
2020.

[51] K. Tam, S.J. Khan, A. Fattori, and L. Cavallaro. Cop-
perdroid: Automatic reconstruction of android malware
behaviors. NDSS 2015, 2015.

[52] D. Tang, X. Wang, H. Tang, and K. Zhang. Demon in the
Variant: Statistical analysis of DNNs for robust backdoor
contamination detection. Proc. of Usenix Security, 2021.

[53] J. Tang, S. Alelyani, and H. Liu. Feature selection for
classification: A review. In Data Classification: Algo-
rithms and Applications, 2014.

[54] A. Turner, D. Tsipras, and A. Madry. Label-consistent
backdoor attacks. CoRR, 2019.

USENIX Association 32nd USENIX Security Symposium 2703

[55] Virustotal, 2022. http://www.virustotal.com/.

[56] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,
and B. Zhao. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In Proc. of SP,
2019.

[57] C. Weng, Y. Lee, and S. Wu. On the trade-off between
adversarial and backdoor robustness. Proc. of NeurIPS,
2020.

[58] D. Wu and Y. Wang. Adversarial Neuron Pruning Puri-
fies Backdoored Deep Models. Proc. of NIPS, 2021.

[59] K. Xu, Y. Li, R. H. Deng, and K. Chen. Deeprefiner:
Multi-layer android malware detection system applying
deep neural networks. In Proc. of EuroSP, 2018.

[60] X. Xu, Q. Wang, H. Li, N. Borisov, C. Gunter, and B. Li.
Detecting ai trojans using meta neural analysis. In Proc.
of SP, 2021.

[61] C. Yang, Q. Wu, H. Li, and Y. Chen. Generative poi-
soning attack method against neural networks. CoRR,
2017.

[62] L. Yang, Z. Chen, J. Cortellazzi, F. Pendlebury, K. Tu,
F. Pierazzi, L. Cavallaro, and G. Wang. Jigsaw Puzzle:
Selective Backdoor Attack to Subvert Malware Classi-
fiers. arXiv, 2022.

[63] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine,
K. Prasad, M. Malek, J. Nguyen, S. Ghosh, A. Bharad-
waj, J. Zhao, G. Cormode, and I. Mironov. Opacus: User-
friendly differential privacy library in PyTorch. arXiv,
2021.

[64] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. Droid-sec: deep
learning in android malware detection. In Proc. of Sig-
Com, 2014.

[65] Z. Zhang, J. Jia, B. Wang, and N. Z. Gong. Backdoor
attacks to graph neural networks. In Proc. of SACMAT,
2021.

[66] H. Zhong, C. Liao, A. C. Squicciarini, S. Zhu, and D. J.
Miller. Backdoor embedding in convolutional neural
network models via invisible perturbation. CODASPY

’20, 2020.

[67] H. Zhu, Z. You, Z. Zhu, W. Shi, X. Chen, and L. Cheng.
Droiddet: Effective and robust detection of android mal-
ware using static analysis along with rotation forest
model. Neurocomputing, 2018.

A Poisoning with high probability but low p-
value poisons

Given that samples with high probabilities yet low p-values
are inherently stealthy candidates for backdoor attacks due to
their high probability assignment to the benign class, we uti-
lize 100 goodwares that meet our criteria of high probability
(> 0.99) but low p-value (< 0.01) to poison the model. This
experiment proves that such samples are indeed valuable can-
didates. The results demonstrate that the trigger can reduce
the accuracy on watermarked malwares to 0.648%.

B DREBIN features

To extract DREBIN features, applications are turned into vec-
tors with discrete input values X ∈ {0,1}m which indicate
presence of certain features (i.e., whether an application uses
specific permission or not). DREBIN features use eight fea-
ture classes to represent Android applications, as shown in
Table 5.

Feature Class Source #All #Filtered

Hardware Components Manifest 261 27
Permissions Manifest 57,819 183
Components Manifest 2,227,440 953

Intents Manifest 88,330 169
Restr. API Calls Code 382 95

Used Permissions Code 50 25
Susp. API Calls Code 243 24

Network Addresses Code 4,379 31

Table 5: Feature Types, where they came from and the
cardinality

C The Triggers under Problem Space Consid-
eration

There are examples of backdoor triggers we used in the
problem space attack (see Table 6 (EMBER) and Table 7
(DREBIN)).

D The negative effect on Greedy Selection Trig-
gers

Additionally, to ascertain that the negative effect is present
across different backdoors, we also evaluated it on Greedy
Selection triggers. Referring to Figure 17, we can still discern
the negative effect in Greedy Selection triggers: as the number
of high p-value poisons increases, the attack performance
consistently decreases.

2704 32nd USENIX Security Symposium USENIX Association

Table 6: The trigger of backdoor attack under problem space
consideration.

Feature Count
path_count 2048
url_count 7137

registry_count 932
MZ_count 12184
timestamp 2520533000

num_write_section 65
num_execute_section 31

num_zero_size_sections 17
num_unnamed_sections 20
major_image_version 28202
minor_image_version 7867
major_linker_version 114
minor_linker_version 114

major_operating_system_version 14676
minor_operating_system_version 4608

minor_subsystem_version 4352

Table 7: The trigger of backdoor attack under problem space
consideration.

Type Feature
Activity net.getiteasy.appcontrol.ui.mainactivity

ContentProvider com.iboxpay.wallet.kits.provider.imageprovider
Activity com.iboxpay.iboxpaywebview.iboxpaywebviewactivity
Activity com.iboxpay.wallet.kits.core.modules.transferactivity

ContentProvider com.tom.ule.push.sync.stubprovider
ContentProvider web.apache.sax.proxyprovider

Service com.basic.api.mqttservice
Activity com.ymm.lib.im.linkify.linkifyrouteactivity
Activity cz.developer.library.developeractivity
Service com.tom.ule.push.sync.accountsyncservice

BroadcastReceiver com.ppwlib.popad.myadschercv
Service com.tom.ule.push.sync.authenticatorservice
Activity com.woodys.socialsdk.share.core.ui.qqassistadapteractivity
Activity com.pmax.pmaxmanager
Activity com.ppwlib.popad.adactivity

Intentfilter com.icanappz.fcmpush.sdk.fcmactivity.new_notification

Average P-value

1.0 0.9 0.6
0.3

0.1

Num
be

r o
f S

am
ple

s

0
1
100

500
1000

3000
600010000

Ac
c(
F b

,X
b)

0.0
0.1
0.2
0.3
0.4
0.5

Figure 17: The negative effect of increasing poisons
(EMBER with explanation-guided triggers).

E Evaluation of existing defenses

The following strategies were evaluated for their effectiveness
in defending against backdoor attacks:

1. Isolation Forest [21]: This unsupervised anomaly detec-

tion algorithm, based on distinguishing rare and distinct
data points, was postulated to potentially identify water-
marked samples as outliers. Despite its proven efficacy
in [42], our experimentation using default parameters
yielded no differentiation between poison samples and
other goodwares.

2. Activation Clustering [6]: This strategy attempts to
identify the poisoned cluster through the clustering of
the final hidden layer’s activations. Despite the imple-
mentation of default settings and its “Relative Size Com-
parison” strategy for poison detection, no poisons were
found.

3. AutoEncoder [32]: The strategy aims to denoise trigger
data by substituting original data with surrogate data
produced by an autoencoder. We employ a small com-
pression rate (64 neurons). The AutoEncoder demon-
strated varying effectiveness across different triggers
on the DREBIN dataset, but consistently failed on the
EMBER dataset.

4. DP-SGD [63]: As a robust training method, DP-SGD
obfuscates gradients by clipping them and adding Gaus-
sian noise. Though it initially seemed to defend against
backdoor attacks, our results indicated an inconsistent
defensive impact, particularly on the EMBER dataset,
which we speculate may be due to its extensive value
spaces and numerous low-density subspaces.

5. Adversarial Neural Pruning [58]: This technique adds
perturbations to neurons and removes those sensitive to
weight fluctuations. However, it demonstrated no capac-
ity to mitigate the backdoor.

6. Adversarial Training [26]: Adversarial Training is
widely adopted to increase the model’s robustness
against adversarial samples. We follow Madry el
al. [26]’s strategy where the adversarial samples are gen-
erated based on PGD attack with Adam optimizer and
50 steps. The conclusion is the same as reported in [57]:
Backdoor attacks are immune to adversarial training.

Beyond these strategies, we also explored detection-based
methods such as Neural Cleanse [56] and MNTD [60].

Neural Cleanse [56]: This is a strategy to reproduce the
backdoor trigger. It optimizes a backdoor trigger to reduce
the mask size and mutually increase the attack success rate.
We ensure 99% samples are misclassified after injecting the
generated trigger. According to the results, Neural Cleanse re-
produced an EMBER trigger with 37 features and a DREBIN
trigger with 4 features, but these features have no features
from our 16-feature trigger. Both are completely different
from the selected trigger.

MNTD [60]: MNTD operates under the premise that back-
doored and clean models process input differently, and that

USENIX Association 32nd USENIX Security Symposium 2705

Table 8: The result of applying mitigation methods.

Target Poisons
Acc(Fb,X)

(without defense)
Acc(Fb,Xb)

(without defense) Mitigation
Acc(Fb,X)

(with defense)
Acc(Fb,Xb)

(with defense)
Poisons

Removed
Goodware
Removed

EMBER-NN 30 99.288% 0.018%

Isolation Forest 99.275% 0.016% 0 6839
Cluster Activation 98.855% 0.008% 2 39343

AutoEncoder 97.960% 2.238% - -
DP-SGD(ε = 0.001/0.1/100) 85.730%/86.032%/86.045% 100%/96.286%/100% - -

ANP 99.102% 0.018% - -
Adversarial Training 98.710% 0.011% - -

DREBIN-NN 100 98.288% 0.045%

Isolation Forest 98.257% 0.052% 0 500
Cluster Activation 98.285% 0.038% 0 6

AutoEncoder 96.748% 44.626% - -
DP-SGD(ε = 0.001/0.1/100) 92.027%/91.814%/91.107% 97.201%/94.312%/96.548% - -

ANP 97.875% 0.835% - -
Adversarial Training 97.920% 0.050% - -

this difference can be captured by a meta-classifier. We repli-
cated the MNTD process as described in Yang et al. [62]’s
work. Specifically, we trained 2,304 benign shadow models
and an equal number of backdoored shadow models using
jumbo learning on a subset (2%) of the clean training data. Of
these models, 89% were utilized for training and the remain-
ing 11% for validation. Poisons for the EMBER set were cre-
ated by randomly altering 4 to 32 out of 35 modifiable features
to align with values from the 2% training set. For the DREBIN
set, poisons were crafted by randomly modifying 4 to 100
features, under the assumption that only Components-related
features would be poisoned by the attacker. Post-training, the
meta-classifier was tasked with classifying 128 clean mod-
els and 128 backdoored models. Both sets of models were
trained using a randomly selected 50% subset of the training
data, with the backdoored models also poisoned by a small
number of low p-value poisons (30 for EMBER and 100 for
DREBIN). These poisons were generated by watermarking
the 16-feature triggers detailed in Appendix C.

MNTD Configuration Model AUC(Avg± Var)

EMBER-NN MNTD w/o query tuning 0.5066± 0.0418
MNTD w/ query tuning 0.8365± 0.0498

DREBIN-NN MNTD w/o query tuning 0.4940± 0.0471
MNTD w/ query tuning 0 5258± 0.0349

Table 10: MNTD Detection Result

As per the results, presented in Table 10, MNTD success-
fully differentiated between backdoored and clean EMBER
models but was ineffective with the DREBIN models. We
attribute this discrepancy to the fact that EMBER has only
35 modifiable features compared to DREBIN’s over 900. In
Yang et al.’s work, the top n (5-100) benign features were
selected for poisoning and training the shadow model. As the
explanation-guided (Greedy Selection) triggers were based on
these benign features, MNTD managed to achieve 90% accu-
racy in detecting DREBIN backdoored models. Our approach
diverged from this, as we did not restrict our trigger to the top
benign features, and our selected features remained outside
of the top 100 benign features even after poisoning. Conse-
quently, without a restricted feature set for training shadow
models, MNTD was unable to effectively detect the back-
doored models proposed in this study. We also attempted to
train the shadow backdoored model using the top n benign
features. However, the results indicated that MNTD still could
not detect our backdoored models, with an accuracy rate of
0.5032 (query tuning).

F Defense evaluation on compressed dataset

In our study, we evaluated six established defenses - Isolation
Forest, Activation Clustering, AutoEncoder, Adversarial Neu-
ral Pruning, Neural Cleanse, and DP-SGD - on a compressed
dataset. The results are presented in Table 9.

Table 9: The result of applying mitigation methods on compressed dataset.

Target Poisons
Acc(Fb,X)

(without defense)
Acc(Fb,Xb)

(without defense) Mitigation
Acc(Fb,X)

(with defense)
Acc(Fb,Xb)

(with defense)
Poisons

Removed
Goodware
Removed

EMBER-NN 2000 99.195% 41.483%

Isolation Forest 88.143% 95.517% 1,862 206,043
Cluster Activation 99.059% 53.645% 6 14,878

ANP 98.860% 56.617% - -
AutoEncoder 97.723% 90.111% - -

DP-SGD(ε = 0.001/0.1/100) 81.076%/81.746%/82.424% 96.819%/98.601%/99.716% - -
Neural Cleanse 98.749% 97.421% - -

DREBIN-NN 300 98.210% 4.286%

Isolation Forest 97.737% 14.263% 53 5271
Cluster Activation 98.285% 0.038% 63 56,055

ANP 96.705% 2.644% - -
AutoEncoder 97.208% 75.575% - -

DP-SGD(ε = 0.001/0.1/100) 91.738%/91.739%/91.612% 94.757%/92.638%/95.902% - -
Neural Cleanse 98.033% 96.695% - -

2706 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Malware Detectors
	Adversarial Attacks
	Nonconformity Measure and P-value

	Related works
	Threat Model
	Achieving A Strong Backdoor Effect
	Motivation
	Dissimilarity Metric for Candidate Selection
	Variation Ratio for Trigger Selection
	Implementing The Attack

	Experimental Evaluation
	Preliminaries
	Effectiveness in the Unrestricted Scenario
	Effectiveness on Windows PEs
	Effectiveness on Android apps

	The Problem Space Constraints
	Windows PEs
	Android APPs
	Producing Real Samples

	Attacking PDF classifier
	Attacking DREBIN with full feature set
	The Negative Effect of Samples with High P-value in Backdoor Performance
	Mitigation
	Existing defenses
	Compressing subspaces

	Hardware information:

	Conclusion
	Acknowledgement
	Poisoning with high probability but low p-value poisons
	DREBIN features
	The Triggers under Problem Space Consideration
	The negative effect on Greedy Selection Triggers
	Evaluation of existing defenses
	Defense evaluation on compressed dataset

