
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

ClepsydraCaChe – Preventing Cache Attacks
with Time-Based Evictions

Jan Philipp Thoma, Ruhr University Bochum; Christian Niesler, University of
Duisburg-Essen; Dominic Funke, Gregor Leander, Pierre Mayr, and Nils Pohl,

Ruhr University Bochum; Lucas Davi, University of Duisburg-Essen; Tim Güneysu,
Ruhr University Bochum & DFKI

https://www.usenix.org/conference/usenixsecurity23/presentation/thoma

CLEPSYDRACACHE – Preventing Cache Attacks with Time-Based Evictions

Jan Philipp Thoma
Ruhr-University Bochum

Christian Niesler
University of Duisburg-Essen

Dominic Funke
Ruhr-University Bochum

Gregor Leander
Ruhr-University Bochum

Pierre Mayr
Ruhr-University Bochum

Nils Pohl
Ruhr-University Bochum

Lucas Davi
University of Duisburg-Essen

Tim Güneysu
Ruhr-University Bochum & DFKI

Abstract
In the recent past, we have witnessed the shift towards attacks
on the microarchitectural CPU level. In particular, cache side-
channels play a predominant role as they allow an attacker
to exfiltrate secret information by exploiting the CPU mi-
croarchitecture. These subtle attacks exploit the architectural
visibility of conflicting cache addresses. In this paper, we
present CLEPSYDRACACHE, which mitigates state-of-the-art
cache attacks using a novel combination of cache decay and
index randomization. Each cache entry is linked with a Time-
To-Live (TTL) value. We propose a new dynamic scheduling
mechanism of the TTL which plays a fundamental role in pre-
venting those attacks while maintaining performance. CLEP-
SYDRACACHE efficiently protects against the latest cache
attacks such as PRIME+(PRUNE+)PROBE. We present a full
prototype in gem5 and lay out a proof-of-concept hardware
design of the TTL mechanism, which demonstrates the fea-
sibility of deploying CLEPSYDRACACHE in real-world sys-
tems.
A Clepsydra is an ancient time-measuring device worked by a flow of water.

1 Introduction

The multi-layer cache hierarchy is a fundamental design ele-
ment in modern microprocessors that bridges the performance
gap between the main memory and the CPU. By keeping fre-
quently accessed data in close proximity to the CPU, lengthy
pipeline stalls due to high memory latency can be avoided.
Typically, modern desktop-grade CPUs implement three lev-
els of cache of which the L1 and L2 cache are unique to each
CPU core, while the last level cache (LLC) is shared among
all cores. The size of cache memory is usually in the range of a
few hundred kilobytes for L1 caches and multiple megabytes
for last level caches. Since this is not nearly enough memory
to store all relevant data, caches inevitably need to evict less
frequently used entries to make space for new data.

From an architectural point of view, caches are transparent
to the software, i.e., a process does neither need to manage
data stored within the cache nor does it know what data is

currently cached. However, caches store data based on tempo-
ral locality. That is, data that was accessed recently is cached
since the CPU expects it to be accessed again soon. Unfortu-
nately, the story of software-transparent caches which hide
the latency of the main memory was disrupted by the intro-
duction of cache timing attacks [5,35]. Attackers can measure
the execution time of a victim program or even a single mem-
ory access and therefore determine whether data was cached.
In [5], the cache side-channel is used to leak an AES encryp-
tion key in OpenSSL, while [56] recovers keys from a victim
program running GnuPG. Cache side-channels are further
used in the context of transient attacks like Spectre [25] and
Meltdown [29]. Even software running in a trusted execution
environment like Intel SGX can be attacked using cache side-
channels as demonstrated in [9, 18]. The shared nature of the
LLC makes it a particularly worthwhile target for attackers
since the timing side-channel can be exploited beyond process
boundaries or even on co-located virtual machines. While at-
tacks like FLUSH+RELOAD [56] and FLUSH+FLUSH [15]
exploit a special instruction that allows attackers to flush
specific cache lines, the PRIME+PROBE attack does not re-
quire such an instruction and is universally applicable across
ISAs [35, 47]. Moreover, in contrast to flush-based attacks,
the latter does not require shared memory between the victim
and the attacker.

Since the very design goal of caches is to accelerate slow
accesses to the main memory, the timing side-channel cannot
easily be mitigated without losing the crucial performance
benefit that caches provide. This is also why cache side-
channels are spread over a huge variety of CPUs including
Intel, AMD, ARM and RISC-V processors [14, 21]. Since
the vulnerability is rooted deeply in the hardware, it is espe-
cially difficult to mitigate it on the software level [12, 48].
Detection-based mechanisms [10, 11, 13, 16, 55] suffer from
false positives since the cache access patterns vary drasti-
cally between software. Hence, most recent proposals feature
hardware modifications that change the way new entries are
cached. The architectural solutions can be divided into two
classes: cache partitioning [30, 36, 39, 40, 42, 50, 54] splits

USENIX Association 32nd USENIX Security Symposium 1991

the cache memory into disjunctive security domains, thereby
preventing information leaks beyond security domain bound-
aries. The goal of partitioning is to prevent attackers from
observing evictions originated from other security domains
than their own. On the other hand, index randomization de-
signs [31, 38, 46, 51–53] do not reduce the amount of cache
conflicts but instead randomize the mapping of addresses to
cache entries. This way, the cost of finding eviction sets -
that is, a set of addresses that map to the same cache entries
as the victim address - is drastically increased, preventing
efficient PRIME+PROBE attacks. However, recent work [37]
demonstrates that index randomization alone is insufficient
for security and requires frequent rekeying. Attackers can still
construct generalized eviction sets that have a high probability
of evicting the target address. Unfortunately, frequent rekey-
ing is not practical, as it induces high performance overhead
and effectively causes a complete cache flush.
Contributions. With CLEPSYDRACACHE, we introduce a
novel and secure index-based randomization scheme which
effectively protects against state-of-the-art cache attacks
while at the same time preserving the performance of tradi-
tional caches. This includes PRIME+PRUNE+PROBE [37],
which is one of the most recent and sophisticated attack
techniques. We show that the combination of cache decay
and index randomization effectively protects against mod-
ern cache attacks. Our first line of defense is a random-
ized address to cache entry mapping (index randomization).
Moreover, we introduce a hardware-integrated time-to-live-
based eviction strategy (cache decay) that drastically re-
duces the amount of cache conflicts and renders reliable
observation of such conflicts infeasible. This prevents the
attacker from learning useful information when observing
cache misses and hence, building eviction sets. Our secu-
rity analysis shows that CLEPSYDRACACHE provides strong
security properties against state-of-the-art attacks including
the recent PRIME+PRUNE+PROBE [37] which bypasses pure
index-randomization schemes. Meanwhile, our design main-
tains the flexibility and scalability of traditional caches. CLEP-
SYDRACACHE thereby avoids additional complexity on the
critical path of cache accesses, such as the indirections used
in [41]. In contrast to other works [31, 38, 46, 51–53], in Sec-
tion 7.2 we provide a proof-of-concept CMOS design for
the key time-to-live feature that CPU developers can build
on for minimal overhead implementation of CLEPSYDRA-
CACHE. In Section 8, we evaluate CLEPSYDRACACHE using
gem5 [33] and provide a detailed performance analysis using
state-of-the-art benchmarks including Parsec [6] and SPEC
CPU 2017 [20]. Our results indicate a small performance
overhead of 1.38%.

2 Background

In this section we provide background information on cache
architectures and cache side-channel attacks.

2.1 Caches
Caches are small but highly efficient temporary storage com-
ponents that are located in close proximity to the CPU. They
bridge the gap between the slow main memory and the CPU.
Typically, a hierarchical approach is taken for cache memory,
i.e., each CPU core is equipped with a small L1 and a slightly
larger L2 cache. On multicore systems, all cores typically
share the LLC.

ROW 1

ROW 2

ROW N

WAY 1

...

WAY 2

...

WAY 3

...

WAY 4

...
FLAGS TAG DATA

ADDRESS: TAG INDEX OFST

Figure 1: 4-Way set associative cache with N sets (the first set
is highlighted in blue). The flags section of an entry typically
includes a valid and a dirty bit.

Since caches by design need to be extremely fast, an ad-
dressing function is required that can efficiently determine
whether the requested data is currently cached, where it is lo-
cated, and - in case of a cache miss - quickly determine which
entry is used for new data. Therefore, most architectures use
set-associative caches which feature a table-like structure.
Set-associative caches are divided into ways and sets which
can be imagined as table columns and rows, respectively. An
illustrative layout of a set associative cache is shown in Fig. 1.
A cache entry is a cell in the table and uniquely addressed by
the set (in the non-randomized setting equivalent to the row)
and the way. Ways are typically managed in parallel hardware
memory blocks (also called banks) to allow concurrent access
to each way.

When a program performs a memory operation, the virtual
address is first translated to a physical address by the mem-
ory management unit (MMU). The lower bits of the virtual
address indicate the page offset and hence, are identical to
the physical address. The upper bits of the virtual address
hold the virtual page number which is translated to a physical
frame number in the physical address. Hence, the upper bits
are not directly controlled by user-level software running on
the processor. For cache addressing, the physical address of
the data is divided into a tag, an index, and an offset. If an
entry holds m bytes, the offset part of the address is log2(m)
bits. The index part of the address is log2(N) bit, where N
is the amount of available cache sets. The remainder of the
address is used as a tag which is always stored alongside the
data in cache memory. The index determines the set (i.e., the
row) in which the data is stored. Then, all entries located in
the set are searched for the tag bits of the incoming address.
When the tag matches in one of the ways, a cache hit occurs,
and the memory operation is performed directly in the cache.

1992 32nd USENIX Security Symposium USENIX Association

If the tag of the incoming address does not match in one of
the ways, the data is requested from another memory module
which is more distant to the CPU, e.g., another cache or the
main memory. When the request is served, the replacement
policy selects an entry within the set determined by the index
bits and stores the data in that entry. The tag of the address is
again stored alongside the data. If the entry was valid and a
write was performed on this entry prior to the replacement, the
data needs to be written back during the replacement phase
since the modification is not yet committed to other memory
modules (writeback dirty). Each entry has flags indicating
whether the entry is modified (dirty) and valid. Since there
exist diverse variations of cache memory, including different
store and writeback policies, we refer the reader to [19] for a
detailed description.

2.2 Cache Side-Channels

The ability to distinguish cache hits and misses based on the
latency of a memory instruction can be leveraged for side-
channel attacks, where an attacker extracts secret information
from other processes by observing the cache timing behavior
and therefore can draw conclusions about accessed data.

In the PRIME+PROBE attack [35,47], an attacker fills a sec-
tion of interest in the cache with their own data (prime). Next,
the victim process is executed which may evict some of the
attacker’s cache entries upon memory access. In the final step
(probe), the attacker measures the access timing for re-loading
the data placed during the prime phase to recover which en-
tries were evicted by the victim. Initially, PRIME+PROBE
was mostly used for caches closer to the CPU, since the cost
of evicting large portions of the LLC is typically very high.
However, in [32] the feasibility of PRIME+PROBE attacks
on LLCs was demonstrated using minimal eviction sets. An
eviction set is a set of addresses that map to the same cache
set, i.e., the index bits of the address are equal. An eviction
set is minimal if the amount of addresses within the set equals
the number of cache ways. If an attacker manages to create
such an eviction set, it is possible to efficiently clear selected
victim data from all cache levels including the LLC. Due to
the translation of virtual to physical addresses, it is not al-
ways trivial to create such an eviction set since the upper bits
of the physical address depend on the virtual page number
on which the attacker has only limited influence. To over-
come this, efficient algorithms for obtaining minimal eviction
sets have recently been developed [45, 49]. A variant of
PRIME+PROBE is FLUSH+RELOAD [56]. While this attack
does not require eviction sets, it does require shared memory
between the attacker and the victim as well as a clflush
instruction.

The recent PRIME+PRUNE+PROBE [37] targets cache ar-
chitectures that use index-randomization to prevent the con-
struction of minimal eviction sets. By using generalized evic-
tion sets, the attack can reliably evict entries from the cache

in reasonable time. As shown later in this paper, the attack is
not applicable to CLEPSYDRACACHE.

3 Problem Description and Related Work

The fundamental intrinsic allowing cache attacks, i.e., the
timing difference between cache hits and misses, is well in-
tended and in fact, the very reason why caches exist. Hence,
a successful mitigation technique must hide as much of the
cache internals from a potential attacker without forfeiting
the performance advantages. Software mitigations for cache
attacks in general have proven to be costly in terms of compu-
tational overhead [12, 48]. Hence, more practical approaches
usually involve hardware changes, sometimes mediated by
the software. Most recent mitigation techniques either rely on
cache partitioning or index randomization.

Cache partitioning [36] splits a cache into multiple par-
titions, which are assigned to different security domains.
Thus, the information flow between different partitions is
constrained, preventing leakage between security domains.
A common approach is to divide the cache among its cache
sets. However, this approach often offers only one-way protec-
tion [50] meaning that information flow from a confidential to
a public partition is prohibited, but not the other way around
(public to confidential). Generally, a distinction is made be-
tween static and dynamic partitioning schemes. For dynami-
cally partitioned caches like [39, 42, 54], timing side-channel
attacks are possible because after resizing partitions, entries
outside of the shifted boundaries remain valid. Therefore, the
cache must be either partitioned statically or the run-time
cache partitioning needs to be designed not to move existing
entries which is a complicated process. The disadvantage of
static partitioning is the high performance overhead resulting
from the limited flexibility. Since cache demands vary during
application runtime, the allocated partition is either too small
or too large to achieve optimal performance. Furthermore,
the amount of required partitions may vary within short time
periods depending on the machine’s workload.

A different approach to side-channel secure caches is based
on randomizing the way a memory address is mapped to a
particular cache set and line (index randomization). For in-
stance, [31] proposes a logical direct-mapped cache with extra
bits for the indexing. Those extra index bits significantly in-
crease the search space for finding cache conflicts. Recent
works combine the randomization approach with further tech-
niques to improve the security against ever-evolving attacks.

SCATTERCACHE [53] uses a randomized cache mapping
and adds software-assisted domain separation. This allows du-
plicating shared addresses in the cache for each process which
prevents flush-based attacks like FLUSH+RELOAD. How-
ever, as shown in [37], SCATTERCACHE requires frequent re-
randomization to avoid construction of probabilistic eviction
sets to protect against the presented PRIME+PRUNE+PROBE
attack. All designs that require software involvement, includ-

USENIX Association 32nd USENIX Security Symposium 1993

ing partitioning or domain separation for the randomization
function face the challenge of backwards compatibility. This
particularly involves two features: (1) operating system ad-
justments to support security domains and (2) support for
legacy software. Therefore by default, all applications belong
to the same security domain if the software is not aware of
the partitioning.

Another approach, dubbed PhantomCache [46], is a pure
architectural solution and uses a localized randomization tech-
nique to bind the randomized mapping to a limited number
of cache sets. The randomization technique used in Phantom-
Cache allows an address to be mapped to multiple locations
within a single cache bank. Since in the worst case, all possi-
ble entries for a given address map to the same cache bank,
parallel lookup is not possible. Therefore, the lookup latency
is increased over traditional randomization schemes.

Recent work [37] analyzed the security properties of ran-
domized cache designs like SCATTERCACHE and Phan-
tomCache and proposed a generic attack on randomized
caches dubbed PRIME+PRUNE+PROBE. The attack chal-
lenges the assumption that index-randomization suffices to
prevent PRIME+PROBE attacks by constructing probabilistic
eviction sets with relatively small sizes. A probabilistic evic-
tion set contains addresses that collide with the target in at
least one cache way. By combining multiple such addresses,
the target can be efficiently evicted. The attack is split into
a profiling and an attack phase. During the profiling phase,
the attacker selects a set of addresses k and accesses them
repeatedly. Due to the randomization, each address can be
stored at an independent index for each way. This leads to
a large variety of combinations where the |k| addresses can
be stored in the cache. Eventually, the attacker obtains a set
k′ ⊆ k of addresses that are co-located in the cache without
evicting each other. Then, the attacker triggers the access on
a target address x which evicts an address of k′ with catching
probability pc. If such an eviction is observed, the evicted
address from k′ is known to collide with x in at least one
cache way and is therefore added to the eviction set G. This
phase is repeated until G contains a sufficient number of ad-
dresses. For an attack with 90% success rate, G needs to have
between 36 (4-way cache) and 576 (16-way cache) addresses
for schemes where each way has an independent addressing
function, see [37, Tab. II]. Once G is established, the attacker
can use G to evict x similar to the PRIME+PROBE attack.

A different approach for side-channel secure caches is
to replicate the behavior of fully associative caches. Since
those designs suffer from a high lookup latency for large
caches, they are usually not suited for large LLCs. The re-
cently proposed Mirage [41] mimics a fully associative cache
by separating the tag store from the data store. By over-
provisioning the size of the set-associative tag-store, conflicts
are seldom. Mirage uses a bidirectional pointer mechanism
to refer from the tag store to the data store and vice versa.
However, the pointer indirection occurs directly on the crit-

ical path of the access. Hence, the access latency of Mirage
is composed of trand + taccessTag + taccessData. The influence
of trand can be minimized by choosing a low-latency ran-
domization function. Since the tag-access only yields the
location for the data-access, the accesses cannot be paral-
lelized. The tag-store is managed in a set-associative structure
and thus, taccessTag is similar to the data access latency in
a traditional cache (taccess). If we assume that the tag- and
data-access have similar latency, the overall access latency
of Mirage is approximately double compared to traditional
caches: trand + taccessTag + taccessData ≈ 2 · taccess. Besides the
randomization function, CLEPSYDRACACHE does not add
complexity on the critical access-path, and hence, the access
latency in hardware is closer to traditional caches. In Sec-
tion 7.2 we propose a hardware design for the TTL mecha-
nism of CLEPSYDRACACHE that demonstrates the feasibility
of efficient implementations of such designs both in respect
to performance and area.
Our Goal. To summarize, the main limitations of all exist-
ing proposals are that they either do not prevent all attack
strategies or induce high performance penalties. To prevent
cache attacks, the goal is to ensure that an attacker gains
no exploitable information about the cache content while
preserving the efficiency of caches. To do so, we develop
an original randomization mechanism, called CLEPSYDRA-
CACHE that reduces information leakage far beyond currently
proposed designs. The design employs a low-latency index-
randomization scheme that operates on the entire address ex-
cept the offset bits. The cornerstone of CLEPSYDRACACHE
is an eviction strategy based on timing rather than contention.
This strategy is also known as cache decay and has been con-
sidered for the purpose of reducing power leakage in [22]
and for access-trace-based side-channels on AES in [23]. The
combination of randomization and cache decay is unique
for CLEPSYDRACACHE and is further improved by a dy-
namic TTL scaling mechanism. These features are indispens-
able for the security against state-of-the-art attacks including
PRIME+PRUNE+PROBE. We propose the first hardware de-
sign of the cache decay feature which demonstrates the poten-
tial of low-overhead implementations of CLEPSYDRACACHE
by CPU developers.

4 Threat Model

Our threat model follows previous work in this field [37, 46,
53]. We consider a black-box attacker in an ideal, noise-free
scenario. Hence, the attacker is able to perfectly distinguish
between a cache hit and a cache miss. As in real-world at-
tacks, the attacker has no insights on the internal state of the
cache except those leaked by the timing of memory accesses.
Further, the attacker is able to access an arbitrary number of
addresses and measure the execution time of a victim pro-
gram, potentially revealing the cache hit and miss behavior
of the victim. We assume the index randomization function

1994 32nd USENIX Security Symposium USENIX Association

to be pseudorandom, i.e., the attacker cannot predict or guess
the cache entry to which an address is mapped. Attacks on the
hardware level are out of scope for this paper, i.e., the attacker
cannot snoop or manipulate the memory, memory buses, or
random numbers. While we consider the influence of the
chip temperature for our hardware design, attacks tampering
the physical circuity, or the environment are also beyond the
scope of this paper. Our design specifically aims to prevent
conflict-based attacks like PRIME+PROBE and deviates. To
protect against flush-based attacks like FLUSH+RELOAD, one
can either restrict access to the flushing instruction (clflush),
or use the memory duplication method presented in [53]. We
investigate in detail the security of our approach in Section 6.

5 Concept

In this section, we provide a detailed description of the CLEP-
SYDRACACHE concept. The design is suited for all levels of
caches, especially including shared last-level caches.

5.1 CLEPSYDRACACHE in a Nutshell
In traditional caches, entries can either be evicted using a
special instruction defined by the ISA or as a result of conflict-
ing addresses that are mapped to the same entry. All current
cache attacks exploit either one of these two properties. While
the former could easily be addressed by not offering such an
instruction - in fact, many ISAs do not feature a cache line
flush instruction - the latter is more of a fundamental problem
in current cache designs and cannot easily be mitigated.

The main design goal of CLEPSYDRACACHE is to dras-
tically reduce the overall amount of cache conflicts and
to remove the direct linkage between cache accesses and
cache evictions. With our design, we achieve this goal
and therefore prevent conflict-based cache attacks including
PRIME+PROBE and PRIME+PRUNE+PROBE. CLEPSYDRA-
CACHE is compatible with cache duplication of shared mem-
ory as proposed in [53] to defend against flush-based attacks
like FLUSH+RELOAD.

Instead of evicting entries when a conflicting address is
accessed, in CLEPSYDRACACHE each entry is assigned with
a time-to-live (TTL) value that is randomly initialized. The
TTL is steadily reduced and when expired, the entry is evicted
from the cache. By dynamically adapting the global rate with
which the TTL of each entry decreases, we achieve a high
cache utilization with minimal conflicts. Secondly, CLEP-
SYDRACACHE uses a highly randomized address to cache
mapping, and in doing so, efficiently prevents constructing
minimal eviction sets without observing conflicts.

The CLEPSYDRACACHE design is developed with large
caches (i.e., typical LLC caches) in mind and therefore must
respect the high performance requirement. We hold on to the
traditional set-associative design and implement a variant of
the randomized address-to-cache-mapping. The access-path

of CLEPSYDRACACHE is therefore equal to traditional caches
with the addition of the randomization function. Instead of
checking the valid bit in traditional caches, CLEPSYDRA-
CACHE needs to check if the TTL is not zero. Similar to all
randomized cache architectures, a low-latency randomization
function is key to a low access time of the cache. The TTL
mechanism does not affect the critical path. As studied in
recent years, index-randomization makes finding conflicting
addresses much more challenging for an attacker, see [46,53].
In combination with the time-based eviction, finding eviction
sets becomes infeasible as we discuss in detail in Section 6.

5.2 Per-Entry Time-To-Live (TTL)

Each entry in CLEPSYDRACACHE is assigned with a TTL
value that indicates for how long the entry remains in the
cache. On a cache miss, the accessed data is loaded from the
memory and the addressing function determines the target
entry in the cache. Simultaneously, a uniformly random TTL
in between a lower and an upper bound is chosen and assigned
to the entry. From there on, the TTL is steadily reduced with
a reduction rate RTTL. When the TTL for an entry expires, the
data is immediately invalidated and - if required - written back
to the main memory. If a cache hit occurs, i.e., an entry with
TTL > 0 is accessed, the data is served from the cache and the
TTL is reset to a new uniformly random value between the
lower and upper bound. This is to make sure that frequently
accessed entries stay cached. The reduction rate RTTL globally
applies to all entries in the cache and is scaled dynamically
as described later in this paper.

5.3 Addressing and Replacement

CLEPSYDRACACHE implements a randomized address-to-
cache-mapping. In traditional caches, the index bits of the
address determine the line in which the data is placed, such
that the entries in one line of the cache form a set (c.f. Fig. 1).
Therefore, building a minimal eviction set is trivial once the
addressing scheme is known to the attacker. In CLEPSYDRA-
CACHE, we use a low-latency randomization function that
assigns pseudorandom cache lines in each way to a given
address as shown in Fig. 2. A single address deterministically
maps to the same entry in each respective way at every ac-
cess. For an address A, we call such a collection of indices
A →{i1, ..., iw} a dynamic set that maps the address to an in-
dex in each cache way. For now, we assume that upon access
each dynamic set contains at least one invalid entry due to the
time-based evictions. One of the invalid entries is randomly
selected to store the data without causing a conflict. We con-
sider the case where all entries in a dynamic set are filled (i.e.,
the TTL of each of these entries is greater than zero) in the
following section.

Since the amount of cache entries is limited and much
smaller than the address space, addresses with conflicting

USENIX Association 32nd USENIX Security Symposium 1995

ROW 1

ROW 2

ROW N

WAY 1

...

WAY 2

...

WAY 3

...

WAY 4

...

ADDRESS 1 ADDRESS 2

Figure 2: Address mapping of in CLEPSYDRACACHE design.
Each address maps to a pseudorandom cache line in each
way.

mappings are inevitable. In the following we state the proper-
ties of an ideal-keyed addressing function that is indistinguish-
able from a true random mapping of addresses to a dynamic
set. Such a function fw : (Ft

2,Fi
2)→ (Ft ′

2 ,Fi
2) is instantiated

in way w and maps a t-bit input-tag and i-bit address-index to
a t ′-bit output-tag and an i-bit cache-index. We do allow t ̸= t ′

for practicality though an ideal instantiation has t = t ′. For
an address A = (tag||index||offset) in a W -way cache with N
cache lines per way, f should yield the following properties:

• Invertibility: Given a set (tag, idx) in way w, it must be
easy to compute f−1

w (tag, idx). This is required for write-
backs of cache entries with expired TTL. Invertibility
implies injectivity, i.e., there must not be a set of tuples
a = (tag, idx) and b = (tag′, idx′) with a ̸= b such that
fw(a) = fw(b).

• Index-Pseudorandomness: The probability that a set of
tuples a = (tag, idx) and b = (tag′, idx′) with a ̸= b map
to the same index in way w must be close to 1/N for all
w ∈W . It must be difficult to construct such pairs. Note
that N is typically small. Hence, this is not a genuine
hash function.

• Independence: For w,w′ ∈ W and w ̸= w′, fw and fw′

behave independently.

Note, that these properties do not require a collision-
resistant hash function or a cryptographically secure block
cipher. The reason for that is that the attacker never observes
the actual index to which an address maps. Instead, the only
observable behavior is when one address causes an eviction
of another address, thus indicating that both addresses collide
in at least one cache way.

Hence, we leverage a round-reduced block cipher with
strong diffusion characteristics. The addressing function in
CLEPSYDRACACHE is interchangeable and related work pro-
poses several different techniques [31, 46, 53]. For our proof-
of-concept design, we choose a round-reduced version of the
lightweight block cipher PRINCE [7] which is designed to
provide full diffusion - that is, every output bit depends on
every input bit - after two rounds. In order to make hardware
reverse engineering attacks on the key less attractive, the se-

cret key should not be hardwired for an implementation but
instead chosen on system startup.

Using a block cipher for the address randomization comes
with the advantage of having encrypted tags in the cache and
hence preventing attacks that tamper the address within the
cache. Traditional block ciphers have a fixed block length
which may result in a small storage overhead for the tag bits.
By using a 64 bit block cipher like PRINCE the ciphertext
has a length of 64 bit and all bits of the ciphertext are required
for the decryption. The tag bits of the address are stored just
like in traditional caches and the index bits of the encrypted
address are stored implicitly by the location within the cache.
However, in traditional caches the 6 offset bits can be dis-
carded. When a 64 bit block cipher is used, the offset bits
can be zeroed but the ciphertext includes 6 bits that are not
zero and need to be stored as part of the tag. To get around
this storage overhead, one could choose a format-preserving
encryption (FPE) scheme [3, 4, 43]. These schemes encrypt
an n-bit input to an n-bit output and are hence ideal for the
task. Another, likely more efficient solution, is the design of
a tailored mapping function that matches the security require-
ments and the ideal block size exactly.

5.4 Conflict Resolution

CLEPSYDRACACHE dynamically controls the global speed
with which the TTL of the entries is reduced using the re-
duction rate RT T L. In general, a high RT T L means that entries
are evicted faster while a low RT T L yields longer lifetimes.
As long as no cache conflicts occur, i.e. a dynamic set is
accessed which does contain empty entries or the accessed
entry is already cached in the dynamic set, RT T L is slowly
decreased towards the minimum value, e.g. R′

T T L = RT T L −1.
When a conflict occurs, RT T L is reset to a higher value, e.g.
R′

T T L = RT T L · 2. This way many consecutive conflicts will
lead to fast eviction of entries (and hence, less conflicts).

In an idealized model, one would adapt RT T L such that
every dynamic set has at least one free entry at all times. How-
ever, this would require expensive monitoring of the cache
utilization in each dynamic set. Hence, with CLEPSYDRA-
CACHE we approximate the desired behavior by dynamically
adapting RTTL based on experienced conflicts. The approach
is comparable to TCP congestion control [2]. Fig. 3 illustrates
the conceptual evolution of the TTL reduction rate over time.
We start by setting RT T L to an initial value and over time de-
crease it slowly towards a minimal value, i.e., the lifetime of
the entries increases. If a dynamic set with no empty entries
is selected on a cache miss (i.e. a conflict occurs), a random
replacement policy is used to replace one entry. The new entry
is assigned with a uniformly random TTL value. Simultane-
ously, RT T L is increased significantly, shortening the lifetime
of all entries which increases the amount of empty entries and
hence, reduces the probability of further conflicts. As before,
RT T L is slowly reduced towards the minimal value over time.

1996 32nd USENIX Security Symposium USENIX Association

This results in a shark-fin shaped evolution of the reduction
rate function as shown in Fig. 3. The choice of the initial
value and the function with which the reduction rate develops
is strongly dependent on the target architecture as well as the
targeted security level and performance and hence needs to
be optimized individually. We describe our implementation
of CLEPSYDRACACHE using a CPU simulator in Section 7.

! Conflict-based eviction

R
TTL

R

Time

TTL
RMAX

RMIN

c0 c1c2

!
! !

c3

!

Figure 3: Evolution of the global TTL reduction rate that
globally regulates the speed with which the TTL of each entry
is reduced.

6 Security

In the following section, we evaluate the security properties
of CLEPSYDRACACHE. The security of cache architectures
using index randomization to thwart side-channel attacks has
been extensively studied, and it has been shown that find-
ing fully congruent eviction sets is not feasible in reason-
able time [37, 46, 53]. However, recent work [8, 37] chal-
lenges the assumption that index randomization alone pre-
vents cache attacks and proposes a variant of PRIME+PROBE
called PRIME+PRUNE+PROBE which relies on partially con-
gruent eviction sets. CLEPSYDRACACHE implements index
randomization which prevents traditional PRIME+PROBE at-
tacks by design since the attacker can no longer construct
eviction sets trivially. The unique combination of random-
ization and cache decay adds a second layer of security, the
benefits of which we will outline in the following. Our main
focus lies on the PRIME+PRUNE+PROBE attack since this
is the most relevant attack for index-randomization-based
schemes. We consider other attack vectors in Appendix A.

6.1 Statistical Observations on TTL
We start the security analysis of CLEPSYDRACACHE by ana-
lyzing how an attacker may distinguish between time-based
evictions and conflict-based evictions. The ability to tell
those types of evictions apart enables the attacker to gain
a more comprehensive insight to the cache state and therefore
strengthen its capabilities.

In traditional caches, a conflict is detected in two phases:
after populating the cache with a set of candidate addresses,
the attacker accesses a target address which may evict a can-
didate address from the cache. We refer to this phase as the
eviction phase. Subsequently in the probe phase, the attacker

searches for the evicted address by measuring the access la-
tency to all candidate addresses. A high latency in that phase
indicates a cache miss and hence, the searched conflict. In
the absence of noise, this works for an arbitrarily large set of
candidate addresses. In CLEPSYDRACACHE however, the in-
troduction of random time-based evictions introduces a level
of uncertainty for the attacker: during the eviction phase, the
access may or may not evict an address from the cache. Since
the TTL is dynamically balanced to maintain empty entries
in the cache, in most cases, no entry is evicted upon access.
During the probe phase, the attacker then accesses a set of
prior known-cached addresses. However, when they observe a
cache miss, there is no way to distinguish whether the missed
address was previously evicted based on timing or contention.
That is, since the attacker’s information is binary (hit or miss)
and does not reveal whether a miss was based on an expired
TTL or a conflict. This breaks the direct linkage between
accesses and evictions in the general case. However, it must
be noted, that for a small set of candidate addresses, the time
between the eviction and the observation is short and hence,
the likelihood of a time-based eviction is low. Therefore, the
attacker can make an educated guess that the observed cache
miss was caused by a conflict if the time delta between the
initial access and the probe step is small. However, we show
in Section 6.2 that for a useful attack, the attacker must probe
extensively large sets of candidate addresses which make
time-based evictions much more likely than conflicts.

A different aspect of cache conflicts in CLEPSYDRACACHE
is that a sophisticated attacker might be able to monitor
cache conflicts during the eviction phase by estimating RT T L.
Thereby, they aim to distinguish cache accesses that cause
a cache conflict from those that do not. To achieve this, the
attacker needs to access a set of addresses and periodically
probe them for a cache miss. Note that continuously monitor-
ing a single address is not feasible since a hit access resets the
TTL of the respective entry to a new random value. The fea-
sibility of this heavily depends on other actions taken by the
attacker, the precision of the RT T L estimation, and the overall
noise level. Even if the attacker can observe when a conflict
occurs, they cannot know during the probe phase which ad-
dress caused the conflict. For example, if the attacker knows
that a conflict occurred and during the probe phase two ad-
dresses result in a cache miss, they cannot distinguish which
of these addresses was evicted by the conflict and which by
timing. In the following, we assume that the attacker knows if
an access caused a conflict even though in real world scenarios
this may not be feasible.

6.2 Prime+Prune+Probe Attacks

The PRIME+PRUNE+PROBE [37] attack described in Sec-
tion 3 builds a partially congruent eviction set G = ∪w

i=1Gi,
where addresses from Gi collide with the target address x
in way i. The attack consists of a profiling phase, where

USENIX Association 32nd USENIX Security Symposium 1997

G is constructed, and an attack phase, where G is used to
detect cache accesses by the victim. CLEPSYDRACACHE
features three distinct characteristics that prevent efficient
PRIME+PRUNE+PROBE attacks:

❶ The priming set needs to occupy the entire set of the
target address since otherwise, it will always be stored in
the empty cache entry. This increases the required size for
the priming set.
❷ Time-based evictions add noise to the profiling and con-
strain the maximum time between two accesses to each
address of the priming set. Conflicts during prime and
prune further reduce this timeframe due to the dynamic
scheduling of RT T L.
❸ The generalized eviction set must occupy all possible
target entries since otherwise, the target will always be
stored in one of the remaining cache entries. Therefore, the
eviction set needs to be much larger.

In the following, we give more details on these three
characteristics and compare the success probability of
PRIME+PRUNE+PROBE using CLEPSYDRACACHE to pure
randomization approaches like SCATTERCACHE [53]. We as-
sume that no noise from other processes is present. Finally, we
give a conservative complexity estimation of profiling attacks.
To put the theoretical security results into context, we use a
8 MiB, 16-way associative cache as reference. Similar cache
configurations can be found in recent desktop-level CPUs. We
further verified our theoretical results in a functional Python
simulation.
Catching Probability (❶) During the prime and prune
phases, the attacker repeatedly accesses a set of addresses
k and removes those addresses that result in frequent cache
misses, resulting in a set k′ ⊆ k of simultaneously known-
cached addresses. The catching probability pc describes the
probability that after filling the cache with |k′| addresses, the
access to the target address x evicts an address from k′.

CLEPSYDRACACHE is different from most other cache
architectures in that the cache is designed to never be com-
pletely filled. Though an attacker can deliberately fill many
cache entries by accessing a huge amount of addresses in a
very short time frame, the global TTL scheduling mechanism
is designed to regulate the utilization and quickly invalidate
entries in such a scenario. The TTL mechanism is designed to
balance the utilization in a way that on average, each dynamic
set contains at least one free entry and therefore, the amount
of conflicts is minimized. Importantly, on a cache miss, the
requested address will always be assigned to an empty cache
entry, if one exists within the dynamic set of the address. Only
if the dynamic set is completely filled, CLEPSYDRACACHE
uses a random replacement policy to make room for the re-
quested address. Hence, contrary to other randomized cache
architectures, the catching probability will be zero if k′ does
not occupy the dynamic set of x, which in this case contains
an empty entry. Since we assume that the attack takes place
in a noise free scenario, we can assume that addresses cached

Table 1: Size of profiling set k′ required to observe an eviction
from accessing x with probability pc in a 16-way cache with
8 MiB (131,072 entries). Both schemes use a random replace-
ment policy. Resulting cache utilization by k′ in parentheses.

pc CLEPSYDRACACHE SCATTERCACHE [53]
1% 98,312 (75.0%) 1,311 (1.0%)

50% 125,520 (95.8%) 65,536 (50.0%)
90% 130,216 (99.3%) 117,965 (90.0%)
95% 130,656 (99.7%) 124,519 (95.0%)

prior to the attack will quickly be eliminated based on timing.
Only a few very frequently accessed addresses by other pro-
cesses will remain in the cache. If the attacker relies on these
addresses from other processes, these addresses can, by the
rules of transitivity, be considered part of k′.

The dynamic set of x is determined by the addressing func-
tion and in our attacker model is assumed to be indistinguish-
able from truly random. Hence, the probability that after fill-
ing the cache with |k′| non-conflicting entries, the dynamic
set of x is completely filled follows the hypergeometric distri-
bution and calculates as

pc(k′) =

(|k′|
w

)(N
w

) . (1)

Since the attack catches the conflict if and only if the dy-
namic set of x is filled, the above probability is also the catch-
ing probability of the profiling step.

Another way to think about this problem is that every ad-
dress of the probing set k′ taints the entry in which it resides.
All cache entries that are empty remain untainted. Since the
addressing scheme assigns random entries to the addresses of
k′, we receive a cache that is partitioned to |k′| tainted entries
at random positions and the remaining N −|k′| untainted en-
tries. Importantly, due to the random placement, these entries
are equally distributed across the cache ways. The access to
address x selects a random entry from each way, which - due
to the equal distribution of tainted and untainted addresses
- can be considered as choosing w random entries from the
cache. Only if all w chosen entries are tainted, is the profiling
successful.

Tab. 1 shows the size of k′ required to observe an eviction
by the access to the victim address x with probability pc in
a 16-way cache for solely randomization-based caches like
SCATTERCACHE [53] compared to CLEPSYDRACACHE. The
results for SCATTERCACHE are calculated using the findings
by Purnal et al. [37]. The results show that the attacker re-
quires a much larger profiling set to achieve a decent catching
probability with CLEPSYDRACACHE.
Time-Based Evictions (❷) During the profiling, addresses in
k′ are selectively narrowed down from the initial set of ran-
dom addresses k. As discussed in ❶, achieving a reasonable
catching probability requires filling well over half of the cache
storage. The attacker must aim to minimize the time-based

1998 32nd USENIX Security Symposium USENIX Association

evictions and therefore avoid conflicts unrelated to the target
address. This keeps RT T L low and thus enables the attacker
to make useful observations during the probe phase. For an
initial priming set k, the expected number of conflicts during
the prime and prune can be computed using Eq. 2.

E[#c]≥
|k|

∑
i=1

∞

∑
j=1

((i
w

)(N
w

)) j

(2)

The amount of conflicts increases exponentially with the
size of k. Using the above example cache parameters, prim-
ing the cache to a 50% catching probability of the target
access would require more than 125,000 accesses and result
in approximately 4,682 conflicts during the priming. In the
original PRIME+PRUNE+PROBE attack, the attacker starts by
accessing the entire set of addresses during the prime step.
Subsequently, the set is pruned by re-accessing it until no
more cache misses occur. However, the vast number of con-
flicts produced by priming the cache would increase RT T L to a
level where entries are evicted by timing rapidly, undoing any
progress made. Hence, a better approach is to do the prime
and prune step incrementally. Therefore, the attacker adds
addresses to k until a conflict occurs. Then, they re-access
all current addresses from k which reduces the probability of
time-based evictions in k and gives time for RT T L to recover.
In the following we assume that the RT T L increase caused by
one cache conflict can be compensated by re-accessing the
primed addresses once. In reality, further accesses may be
necessary.

If we assume that the attacker managed to prime the cache
to a sufficient degree and the access to x results in a conflict
(increasing RT T L), the attacker must now probe all addresses
from k′ to find the one that was evicted by x. As discussed
above, even though the attacker may know that a conflict oc-
curred by monitoring RT T L, they do not know which address
of k′ was evicted. When the attacker finds the first cache miss
in k′, they cannot know if that address has been evicted due to
the conflict with x, or due to an expired TTL. The attacker has
no other option than to add all potential candidates to G and -
if required - filter false positives once a sufficiently large G is
constructed.
Eviction Probability (❸) Being able to carry out cache at-
tacks requires the attacker to find many entries that can col-
lide with x in the cache. We now investigate how many such
addresses are required to detect the victim access with proba-
bility pe.

Each address of G will occupy a conflicting cache entry
with probability 1

w . However, only if the entire dynamic set of
x is occupied after accessing all addresses from G, the access
to x will result in a conflict and therefore be observable. Thus,
the probability calculates as

pe =

1−
(

1− 1
w

) |G|
w

w

. (3)

Table 2: Size of the generalized eviction set G required to
observe an eviction from accessing x with probability pe in
a 16-way cache. Both schemes use a random replacement
policy.

pe CLEPSYDRACACHE SCATTERCACHE [53]
1% 344 3

50% 784 172
90% 1,247 571
95% 1,425 743

Tab. 2 lists the required size of G to observe an eviction
by x with probability pe for a 16-way cache and compares it
to pure randomization designs on the example of SCATTER-
CACHE [53].
Profiling Performance Estimation. We now conservatively
estimate the time it would take an attacker to construct a gen-
eralized eviction set for CLEPSYDRACACHE and compare it
to purely randomized caches. Therefore we assume a cache
hit latency of thit = 10 ns and a miss latency of tmiss = 20 ns.
We assume that the attacker knows when a conflict occurred
e.g. by using the statistical approach described in Section 6.1,
and, therefore can use the described methodology in ❷. Each
access to a new address results in a cache miss and is hence
counted with 20 ns. Accessing the i-th new address during the
construction of k results in a conflict with an already cached
address of k with probability pc. Furthermore, accessing the
address evicted by the conflict leads to a new conflict with
probability pc again, repeating the process. Hence, the prob-
ability for n conflicts calculates as pc + p2

c + ...+ pn
c . When

a conflict occurs from accessing a new address, the attacker
re-accesses all prior entries of k until all addresses from k,
including the one that has been evicted by the conflict, are
cached. For real implementations, the attacker would need to
further keep re-accessing entries from k until RT T L recovered
to a low level. Hence, we assume that in each iteration the
attacker adds an address to k and if this access causes a con-
flict, the attacker re-accesses k with which results in |k|i −1
cache hits and one cache miss. We do not consider the noise
effects introduced by time-based evictions or noise by other
processes which would make the profiling more complicated
in reality. We assume that the attacker aims to build an evic-
tion set G with pe = 50%. Overall, we calculate the time for
one iteration of profiling as

tpp =
k

∑
i=1

(
tmiss +

∞

∑
j=1

pc(i) j · ((i−1) · thit + tmiss)

)
. (4)

We estimate the time to construct G as

tk = |G| · 1
pc(k)

· tpp. (5)

Eq. 5 is composed of the size of G required for a probabilis-
tic eviction set with eviction probability pe, the probability
that a conflict is caught during profiling (pc), and the time

USENIX Association 32nd USENIX Security Symposium 1999

for one round of profiling. Using this estimation, the minimal
profiling time for a probabilistic eviction set with pe = 50%
and the 8 MB cache with 16 ways for CLEPSYDRACACHE
is 4,105 s (1.1 hours) if k occupies 70% of the cache. If the
attacker can only fill up to 50% of the cache, the construction
of G takes 69,575 s (19.3 hours). If the attacker attempts to fill
more than 70% of the cache, the conflicts will lead to a higher
profiling time. The same estimation for SCATTERCACHE with
random replacement policy yields a profiling time of 0.45 s
at 1% cache utilization by k (a small k reduces the impact of
conflicts during pruning). There are no directly comparable
numbers available for the recently proposed Mirage [41] and
careful analysis is required to assess the security of Mirage
against PRIME+PRUNE+PROBE. However, Mirage [41] is
similar to CLEPSYDRACACHE in that the over provisioned
tag store has empty entries and thus, conflicts are avoided
most of the time. Therefore, the characteristics regarding the
catching probability are similar in principle. Mirage does
not have time-based evictions which allows for more optimal
prime and prune without re-accessing entries from k. Since
our method uses very conservative assumptions, we expect
all designs to have a much higher profiling time in reality.
Our results show that CLEPSYDRACACHE can extend the
profiling time by several orders of magnitude compared to
SCATTERCACHE. Since CLEPSYDRACACHE does not intro-
duce indirection on the cache lookup path, the lookup latency
is only constrained by the randomization function which is
present in all randomized caches including Mirage and SCAT-
TERCACHE.

7 Implementation

Our implementation of CLEPSYDRACACHE is consists of two
parts. First, we implement a functional model of CLEPSYDRA-
CACHE using gem5 [33], which is the most established sim-
ulator for CPU microarchitectures. Secondly, to understand
the hardware cost, we take the effort to simulate a proof-of-
concept hardware design of CLEPSYDRACACHE using 65nm
CMOS technology in Cadence Spectre.

Intuitively, the performance of CLEPSYDRACACHE heavily
depends on time-to-live range supported by the implementa-
tion. While the TTL reduction rate RTTL dynamically adapts
the time-to-live to some extent, one should analyze the av-
erage lifetime of cache entries in a traditional cache for the
given platform. We analyzed this time using an unmodified
gem5 and different workloads. It shows that in regions of
heavy cache usage, each entry hardly lives longer than 50 ms
without being accessed. Though outliers exist, we expect them
to hardly affect the performance since they are rarely accessed
anyway. Following the setup chosen in related work [53], our
simulation features a two level cache hierarchy where the
1MB L2 cache is a CLEPSYDRACACHE. Further information
on the gem5 configuration is given in Section 8.

7.1 gem5 Implementation
For the randomization of the addressing scheme, we use
a round reduced version of the lightweight block cipher
PRINCE [7] with three rounds and randomize the input in
each cache way by xor-ing a way-specific 64-bit secret to
the input of the cipher. We further sample the bits used for
the cache index from the entire output of the randomization
function instead of using, e.g., the least significant bits as
motivated in the security analysis of the index-randomization
function in Appendix A. Since PRINCE operates on 64-bit
blocks, we use the entire memory address with zeroed offset
bits as input, and therefore get a 64-bit output. The bits used
for indexing do not need to be stored as they are implicitly in-
dicated by the location. However, the tag size in this scenario
increases by 6 bits due to the obfuscated offset bits. This over-
head can be avoided by using a format preserving encryption
scheme instead of PRINCE as discussed in Section 5.3.

For the TTL, we modified the base cache class of gem5
and implemented a counter for each cache entry. The TTL of
each entry is reduced based on a periodic event. Whenever a
conflict occurs – i.e., a new address cannot be cached without
evicting existing data – the event reducing the TTL for each
entry is immediately triggered. The time until the next event
is quartered. Every time the event executes without a conflict,
the time until the next event scheduling is slightly increased
by adding a constant value. This results in a behavior as
described for RT T L (c.f. Fig. 3).

7.2 Efficient Hardware Implementation

Figure 4: Schematic of the proposed delay element.

In this section, we introduce a proof-of-concept analog de-
lay circuit that demonstrates the feasibility of highly efficient
implementation of the TTL mechanism. In general, the place-
ment of analog elements on digital circuitry requires careful
decoupling, for example through shielding by ground planes
and separating the supply voltage. Since these challenges are
highly dependent on the technology and layout, they remain
for the CPU developer. It is also possible to implement the
TTL mechanism using digital counters for each entry. How-
ever, the analog solution is more area preserving as it is much

2000 32nd USENIX Security Symposium USENIX Association

simpler. We have designed and simulated the analog delay
element in a 65-nm CMOS technology. The delay element is
able to achieve TTLs of up to 50 ms (in terms of transistor
switching speed). The basic idea behind the proposed delay
element is to charge a capacitor to an initial value VC0 that
determines the TTL and to discharge it by a defined current
IDIS until a threshold voltage is reached. We expect, that a
metal-insulator-metal (MIM) capacitor with a capacitance of
up to 100 fF can be integrated within the metal stack over
each cache entry without competing for silicon area. The re-
quired maximum delay time of 50 ms consequently demands
a very low current of IDIS < 1pA. Such small currents can
be generated in an area-efficient manner by making use of
the leakage current of transistors, that are either completely
off (gate to source voltage = 0 V) or operate in the deep sub-
threshold region with very low gate to source voltages. The
schematic of the proposed delay element is shown in Fig. 4.
The signal SET_VALID is equivalent to the address line of
the cache entry. When the entry is selected, SET_VALID is
high, while the inverted signal nSET_VALID is low. As a
consequence, the storage capacitor C is charged to VC0 via
transistor M3. The value of VC0 determines the delay time
of the delay element and thus the TTL of the cache entry.
M3 is implemented by two series connected transistors by a
technique called stack forcing in order to reduce unwanted
leakage currents through M3 which would otherwise affect
the delay time.
After the cache entry is deselected (SET_VALID = 0), C is
discharged by the leakage currents of M0 and M1. The global
low voltage signal VDIS (≪ 100mV) is used to adjust the
discharge current through M0. It is used to control the TTL-
reduction rate RTTL.
We found that the addition of M4 improves the performance
of the delay element in two ways. First, it increases the delay
time without increasing the area of the capacitor and, sec-
ond, it allows to compensate for the temperature variation of
the leakage currents of M0 and M1 if all contributing transis-
tors are carefully parameterized. M1 and M2 form a positive
feedback loop referred to as a pseudo-CMOS-thyristor [17].
After C is discharged below the threshold voltage of M2, M2
charges the gate of M1 which then becomes conductive and
discharges the remaining charge of C in ≈ 10ns. The advan-
tage of this feedback loop is the drastic reduction of short
circuit current in the output inverter Inv1, which would be
severe if the complete discharge happened on a ms-timescale.
The simulated delay time of this circuit as a function of
VC0 is shown in Fig. 5 for three different temperatures. For
0.89V < VC0 < 1.2V delay times between 1 ms and almost
50 ms are achieved. It should be noted that the observed mod-
erate variation with temperature is actually beneficial, as it
adds randomness to the TTL.
To estimate the area required to implement this circuit, we
have designed the layout shown in Fig. 6. With an area of
3.5µm×1.4µm = 4.9µm2 we can estimate the area overhead

Figure 5: Simulated delay of the proposed delay element as a
function of the initial capacitor voltage VC0. VDIS was set
to 0 V in this simulation.

Figure 6: Layout of the proposed delay cell (excluding the
MIM capacitor).

of this circuit: Assuming the size of an SRAM cell in 65-nm
CMOS technology to be 0.5µm2 as reported in [34], the area
of a 128 bit cache entry (64 bit data, ≈ 60 bit tag plus some
flags) is 64µm2 (without overhead). We therefore estimate
the area overhead of the analog TTL implementation circuit
to be < 8%. In the simulation we used a MIM capacitor with
an area of 30µm2 which can be conveniently placed in the
metal stack above the cache entry.
If the charge time of the capacitor tc is too long, it may in-
crease the access time of the cache. We have therefore sim-
ulated how fast the capacitor is charged. The result of our
simulations was that tc depends on VC0. For VC0 = 1.2V
the recharge time was 8 ns while for the minimal value of
VC0 = 0.89V, tc was 41 ns. This corresponds well to the re-
ported L3 cache latency of an i7 CPU [27] of 40 to 300 cycles
(13 ns to 100 ns with a clock frequency of 3 GHz).
The generation of the analog control signals VC0 and VDIS is
not within the scope of this work since many suitable digital-
to-analog converters (DAC) have been published. DACs can
be realized with a small area and power consumption. E.g.
in [26] a current steering DAC with an area consumption of
0.1mm2 in 65-nm CMOS technology and a power consump-
tion of 12 mW is reported.

8 Evaluation

We evaluate CLEPSYDRACACHE using the gem5 CPU
simulator [33]. In order to compare the performance of our
new cache concept we execute popular benchmarks including

USENIX Association 32nd USENIX Security Symposium 2001

Parsec [6] and SPEC CPU 2017 [20]. We provide a detailed
performance evaluation of CLEPSYDRACACHE and compare
it to traditional caches. We execute the Parsec benchmark
using gem5’s full system mode to get the most precise per-
formance result. We simulate Ubuntu 18.04 LTS with kernel
4.19.83. For the SPEC CPU 2017 Benchmark we use gem5’s
Syscall Emulation (SE) mode. Due to the vast resource usage
and high simulation time it is not feasible to use full system
mode. The SE mode also provides high accuracy in perfor-
mance measurements, but omits the simulation of the entire
operating system. Other related work often only chooses rep-
resentative code slices of the benchmark [46, 53].

For the purpose of the evaluation we use gem5’s default
cache implementation as reference, hereinafter referred to as
classic. We focus on the comparison of CLEPSYDRACACHE
and classic caches since the most related concepts, e.g., SCAT-
TERCACHE [53] are close to the classic cache performance.
As discussed earlier in this paper, Mirage [41] changes the
critical path of the cache access and may therefore induce ad-
ditional overhead. In CLEPSYDRACACHE, the access latency
is only affected by the randomization function which must
be low-latency in order to avoid delays. Following related
work [53], both the classic cache and CLEPSYDRACACHE
have a two level cache hierarchy with a L1 and and a mostly
inclusive L2 cache. Based on our observations regarding the
average lifetime of cache entries (Section 7), we have chosen
a maximum TTL of 50ms for the evaluation. We describe the
simulation details including cache associativity and choosen
benchmark workloads in Appendix B.
Performance. We use clock cycles as a metric to measure
the absolute performance of the benchmarks. For the Parsec
benchmark suite, the overall performance results are shown
in Fig. 7. Overall, the performance of CLEPSYDRACACHE
matches the performance of traditional caches with a penalty
between -0.37% and +5.25%. On average the performance
penalty is at 1.38%.

Figure 7: Comparison of clock cycles for programs from the
Parsec benchmark suite.

While the fact that CLEPSYDRACACHE improves the per-

formance for some benchmarks appears counterintuitive at
first glance, the reason for this can be found by looking at
the average miss latency depicted in Fig. 8. It shows that
with the exception of the streamcluster benchmark, CLEP-
SYDRACACHE consistently lowers the average miss latency
and thus, compensates for the slightly increased miss rate.
The reason for that can be found in the writeback of dirty

Figure 8: Comparison of the average miss latency for the
programs from the Parsec benchmark suite.

cache entries. While a traditional cache performs writebacks
on modified data when a conflict occurs, CLEPSYDRACACHE
performs writebacks based on timing and thus is independent
of any cache misses. Hence, the miss latency on traditional
caches includes the time needed for a potential writeback
whereas CLEPSYDRACACHE usually invalidates and writes
back the entries before a conflict occurs. Therefore, nearly
all benchmarks have a slightly lower average miss latency.
The streamcluster benchmark is the one outlier of this obser-
vation. The workload characteristic given in [6] reveals that
this benchmark performs exceptionally few writes and hence,
hardly any cache entries need to be written back. Thus, the
influence of this effect is minimized and the occurrence of
some conflict-based evictions leads to a slightly higher aver-
age miss latency for CLEPSYDRACACHE. The low overall
miss latency of streamcluster supports this finding.

While the performance increase of CLEPSYDRACACHE in
gem5 appears like a genuine improvement over traditional
caches, from a security point of view a constant time cache
would be much preferable. Though in our simulation the
timing difference between a cache miss with and without a
writeback was sufficiently small to not be reliably measurable,
this may not be the case with all caches. Equally, it may also
be that some cache implementations do not have this timing
difference. Even if we assume that the miss latency is constant
between the classic cache and CLEPSYDRACACHE in our
evaluation, the overall average miss latency only increases by
about 2.3% on average. This would only marginally affect the
performance data shown in Fig. 7.

As one would expect, CLEPSYDRACACHE experiences a

2002 32nd USENIX Security Symposium USENIX Association

Figure 9: Comparison of the miss rate for the programs from
the Parsec benchmark suite.

Table 3: Benchmark results of the SPEC CPU 2017 bench-
mark suite using CLEPSYDRACACHE in comparison to a
traditional cache.

Benchmark Clock
Miss Rate

(difference)
Avg.

Miss Latency
Conflict

Evictions
Deepsjeng -1.72% ±0% -4.38% -94.13%
Exchange2 +0.04% +8% -0.78% -100%

Gcc +0.39% +5% -2.87% -95.71%
Leela +0.11% +2% -2.34% -95.55%

Perlbench ±0% +3% -0.2% -100%
x264 +0.24% +2% -1.36% -98.93%

Xalancbmk +0.3% +3% -2.35% -98.61%
Xz -0.11% +1% -2.83% -95.54%

slightly increased miss rate compared to classic caches. That
is, since sometimes entries are evicted based on expired TTLs,
but are later referenced and need to be re-loaded. Fig. 9 shows
the miss rate for Parsec, i.e. the ratio of cache accesses that
resulted in a cache miss. The hit rate is the inverted value
and calculates as 1−Miss Rate. The miss rate is generally
close to the miss rate of traditional caches. Benchmarks with
a low miss rate for classic caches experience a low miss rate
for CLEPSYDRACACHE. Table 3 reports the results for SPEC
CPU 2017. Generally, the results we obtained using SPEC
CPU 2017 are very similar to the ones reported for Parsec.

We investigate the number of writebacks issued with and
without CLEPSYDRACACHE in Fig. 10. Since more entries
are written back using CLEPSYDRACACHE, the writebacks
per cycle are slightly increased. However, the main incen-
tive for this evaluation was to not overload the writeback
buffer. The increase in writebacks per cycle is only minor and
hence, hardly affects the size of the hardware logic required
for writebacks (e.g. the writeback buffer size). Finally, we
compare the average lifetime of cache entries for classical
caches and CLEPSYDRACACHE.Our implementation limits
the maximum lifetime of an entry to 50 ms. This value is
chosen based on the analysis of the average entry-lifetime in a
classic cache for our setup. It shows that the average lifetime
of entries in CLEPSYDRACACHE is very similar to the one in

Figure 10: Writebacks per cycle for CLEPSYDRACACHE
using the Parsec benchmark suite.

classic caches.
Security. Fig. 11 depicts the rate of cache conflicts in CLEP-
SYDRACACHE compared to traditional caches using the PAR-
SEC benchmark suite. Cache conflicts are an important oc-
casion for an attacker to learn conflicting addresses and con-
struct eviction sets. With CLEPSYDRACACHE, the number
of cache conflicts is reduced more than 90% for all Parsec
benchmarks (on average 94.6%) which greatly reduces the
chances of an attacker observing an eviction. As discussed in
our security analysis, provoking a targeted cache conflict is
very challenging with CLEPSYDRACACHE. Hence, the cost
for a successful attack is not proportional to the observed
conflicts. To verify that our CLEPSYDRACACHE implemen-
tation is secure against PRIME+PRUNE+PROBE attacks, we
implement the attack and execute it in the gem5 SE mode.
Using a pure randomized cache design which mimics SCAT-
TERCACHE [53], the construction of an eviction set with
pe = 90% took 2.15 seconds. Using CLEPSYDRACACHE we
were not able to find conflicting addresses. We aborted the
attack without success after 77 simulated seconds (two days
of simulation). After that time, not a single conflicting address
has been found. Furthermore, the small timing difference be-
tween cache conflicts with and without writebacks was not
measurable in our experimental setup. However, if one were
to implement a side-channel secure cache, such timing dif-
ferences should be avoided. Note that it is easily feasible to
reduce the amount of conflict-based evictions even further
by reducing the maximum time-to-live, albeit at the cost of a
higher miss rate and therefore, reduced performance.

9 Conclusion

We presented CLEPSYDRACACHE, a novel cache architec-
ture that eliminates cache attacks by preventing the attacker
from constructing (generalized) eviction sets. Our solution
is purely architectural and therefore backwards compatible
to the entire software stack. We are the first to explore an

USENIX Association 32nd USENIX Security Symposium 2003

Figure 11: Comparison of conflict-based evictions for the
programs from the Parsec benchmark suite.

analog proof-of-concept hardware design in 65nm CMOS
technology which facilitates an area efficient implementation
of CLEPSYDRACACHE. We showed that CLEPSYDRACACHE
has minimal performance overhead and in some cases even
outperforms traditional cache architectures using representa-
tive workloads.

10 Acknowledgements

This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy - EXC 2092 CASA - 390781972 and by
the DFG under the Priority Program SPP 2253 Nano Security
(Project RAINCOAT - Number: 440059533). "Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the funding agencies". Date of this
document: August 12th, 2022.

References

[1] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena
Milenkovic. Performance evaluation of cache replace-
ment policies for the SPEC CPU2000 benchmark suite.
In Seong-Moo Yoo and Letha H. Etzkorn, editors, Pro-
ceedings of the 42nd Annual Southeast Regional Confer-
ence, 2004, Huntsville, Alabama, USA, April 2-3, 2004,
pages 267–272. ACM, 2004.

[2] Mark Allman, Vern Paxson, and W. Richard Stevens.
TCP congestion control. RFC, 2581:1–14, 1999.

[3] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and
Till Stegers. Format-preserving encryption. In Inter-
national workshop on selected areas in cryptography,
pages 295–312. Springer, 2009.

[4] Mihir Bellare, Phillip Rogaway, and Terence Spies. The
FFX mode of operation for format-preserving encryp-
tion. NIST submission, 20:19, 2010.

[5] Daniel J. Bernstein. Cache-timing attacks on AES. On-
line, 2005.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC benchmark suite: Characteri-
zation and architectural implications. In Proceedings of
the 17th international conference on Parallel architec-
tures and compilation techniques, pages 72–81, 2008.

[7] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Le-
ander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for per-
vasive computing applications - extended abstract. In
Xiaoyun Wang and Kazue Sako, editors, Advances in
Cryptology - ASIACRYPT 2012 - 18th International Con-
ference on the Theory and Application of Cryptology
and Information Security, Beijing, China, December 2-6,
2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2012.

[8] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian
Tsai, Joel Emer, and Mengjia Yan. Casa: End-to-
end quantitative security analysis of randomly mapped
caches. In 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2020, Athens,
Greece, October 17-21, 2020, pages 1110–1123. IEEE,
2020.

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17). USENIX Associaton, 8 2017.

[10] Ang Chen, W. Brad Moore, Hanjun Xiao, Andreas Hae-
berlen, Linh Thi Xuan Phan, Micah Sherr, and Wen-
chao Zhou. Detecting covert timing channels with time-
deterministic replay. In Jason Flinn and Hank Levy,
editors, 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014, pages 541–554. USENIX As-
sociation, 2014.

[11] Jie Chen and Guru Venkataramani. CC-Hunter: Un-
covering covert timing channels on shared processor
hardware. In 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2014, Cam-
bridge, United Kingdom, December 13-17, 2014, pages
216–228. IEEE Computer Society, 2014.

2004 32nd USENIX Security Symposium USENIX Association

[12] Goran Doychev and Boris Köpf. Rigorous analysis
of software countermeasures against cache attacks. In
PLDI ’17: ACM SIGPLAN Conference on Programming
Language Design and Implementation, New York, NY,
USA, 6 2017. ACM.

[13] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Milos
Doroslovacki, and Guru Venkataramani. Prefetch-guard:
Leveraging hardware prefetches to defend against cache
timing channels. In 2018 IEEE International Sympo-
sium on Hardware Oriented Security and Trust, HOST
2018, Washington, DC, USA, April 30 - May 4, 2018,
pages 187–190. IEEE Computer Society, 2018.

[14] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed You-
nis, and K Asanovic. Replicating and mitigating spec-
tre attacks on an open source risc-v microarchitecture.
In Workshop on Computer Architecture Research with
RISC-V (CARRV), 2019.

[15] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A fast and stealthy
cache attack. In Proceedings of the 13th International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment - Volume 9721, DIMVA
2016, page 279–299, Berlin, Heidelberg, 2016. Springer-
Verlag.

[16] Berk Gülmezoglu, Ahmad Moghimi, Thomas Eisen-
barth, and Berk Sunar. FortuneTeller: Predicting mi-
croarchitectural attacks via unsupervised deep learning.
CoRR, abs/1907.03651, 2019.

[17] Gyudong Kim, Min-Kyu Kim, Byoung-Soo Chang, and
Wonchan Kim. A low-voltage, low-power CMOS de-
lay element. IEEE Journal of Solid-State Circuits,
31(7):966–971, 1996.

[18] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on Intel SGX. In EuroSys

’17: Twelfth EuroSys Conference 2017, New York, NY,
USA, 4 2017. ACM.

[19] J.L. Hennessy and D.A. Patterson. Computer Organi-
zation and Design: The Hardware / Software Interface.
Elsevier Science, 2014.

[20] John Henning. SPEC CPU 2017 Documentation.
Standard Performance Evaluation Corporation (SPEC),
Gainesville, VA, 6623 2021-04-07 edition, April 2021.

[21] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Cross processor cache attacks. In ASIA CCS ’16: ACM
Asia Conference on Computer and Communications Se-
curity, New York, NY, USA, 5 2016. ACM.

[22] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi.
Cache decay: Exploiting generational behavior to reduce

cache leakage power. In Proceedings 28th annual in-
ternational symposium on computer architecture, pages
240–251. IEEE, 2001.

[23] Georgios Keramidas, Alexandros Antonopoulos, Dim-
itrios N Serpanos, and Stefanos Kaxiras. Non deter-
ministic caches: A simple and effective defense against
side channel attacks. Design Automation for Embedded
Systems, 12(3):221–230, 2008.

[24] Lars R. Knudsen. Truncated and higher order differen-
tials. In Bart Preneel, editor, Fast Software Encryption:
Second International Workshop. Leuven, Belgium, 14-16
December 1994, Proceedings, volume 1008 of Lecture
Notes in Computer Science, pages 196–211. Springer,
1994.

[25] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[26] Y. Kwon, S. Lee, Y. Jeon, and J. Kwon. A 6b 1.4GS/s
11.9mW 0.11mm2 65nm CMOS DAC with a 2-D INL
bounded switching scheme. In 2010 International SoC
Design Conference, pages 198–200, 2010.

[27] David Levinthal. Performance analysis guide for Intel
Core i7 processor and Intel Xeon 5500 processors. Intel
Performance Analysis Guide, 30:72, 2009.

[28] Ankur Limaye and Tosiron Adegbija. SPEC CPU2017
Command Lines. Online, 2018.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[30] Fangfei Liu, Qian Ge, Yuval Yarom, Frank McKeen, Car-
los V. Rozas, Gernot Heiser, and Ruby B. Lee. CATalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE International Symposium on
High Performance Computer Architecture, HPCA 2016,
Barcelona, Spain, March 12-16, 2016, pages 406–418.
IEEE Computer Society, 2016.

[31] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee.
Newcache: Secure cache architecture thwarting cache
side-channel attacks. IEEE Micro, 36(5):8–16, 2016.

[32] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In 2015 IEEE Symposium on Security and
Privacy (SP). IEEE, 5 2015.

USENIX Association 32nd USENIX Security Symposium 2005

[33] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram,
Mohammad Alian, Rico Amslinger, Matteo Andreozzi,
Adrià Armejach, Nils Asmussen, Srikant Bharadwaj,
Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Ro-
drigues Carvalho, Jerónimo Castrillón, Lizhong Chen,
Nicolas Derumigny, Stephan Diestelhorst, Wendy El-
sasser, Marjan Fariborz, Amin Farmahini Farahani,
Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi,
Dibakar Gope, Thomas Grass, Bagus Hanindhito, An-
dreas Hansson, Swapnil Haria, Austin Harris, Timo-
thy Hayes, Adrian Herrera, Matthew Horsnell, Syed
Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley
Jeyapaul, Timothy M. Jones, Matthias Jung, Subash
Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama,
Tushar Krishna, Tommaso Marinelli, Christian Menard,
Andrea Mondelli, Tiago Mück, Omar Naji, Krishnendra
Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson,
Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy,
Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier
Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta,
Rahul Thakur, Giacomo Travaglini, Michael Upton, Ni-
lay Vaish, Ilias Vougioukas, Zhengrong Wang, Norbert
Wehn, Christian Weis, David A. Wood, Hongil Yoon,
and Éder F. Zulian. The gem5 simulator: Version 20.0+.
CoRR, abs/2007.03152, 2020.

[34] S. Ohbayashi, M. Yabuuchi, K. Nii, Y. Tsukamoto,
S. Imaoka, Y. Oda, T. Yoshihara, M. Igarashi,
M. Takeuchi, H. Kawashima, Y. Yamaguchi,
K. Tsukamoto, M. Inuishi, H. Makino, K. Ishibashi,
and H. Shinohara. A 65-nm SoC embedded 6T-SRAM
designed for manufacturability with read and write op-
eration stabilizing circuits. IEEE Journal of Solid-State
Circuits, 42(4):820–829, 2007.

[35] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In Top-
ics in Cryptology – CT-RSA 2006, pages 1–20. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1 2006.

[36] Dan Page. Partitioned cache architecture as a side-
channel defence mechanism. IACR Cryptol. ePrint
Arch., 2005:280, 2005.

[37] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede. Systematic analysis of randomization-
based protected cache architectures. In 42th IEEE Sym-
posium on Security and Privacy, volume 5, 2021.

[38] M. K. Qureshi. CEASER: Mitigating conflict-based
cache attacks via encrypted-address and remapping. In
2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 775–787, 2018.

[39] Moinuddin K Qureshi and Yale N Patt. Utility-based
cache partitioning: A low-overhead, high-performance,

runtime mechanism to partition shared caches. In 2006
39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06), pages 423–432. IEEE,
2006.

[40] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul
England. Resource management for isolation enhanced
cloud services. In Proceedings of the 2009 ACM Work-
shop on Cloud Computing Security, CCSW ’09, page
77–84, New York, NY, USA, 2009. Association for Com-
puting Machinery.

[41] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE:
Mitigating conflict-based cache attacks with a practical
fully-associative design. In 30th USENIX Security Sym-
posium (USENIX Security 21). USENIX Association,
August 2021.

[42] Daniel Sanchez and Christos Kozyrakis. Scalable and
efficient fine-grained cache partitioning with vantage.
IEEE Micro, 32(3):26—-37, 1 2012.

[43] Rich Schroeppel. Hasty pudding cipher specification.
In First AES Candidate Workshop, 1998.

[44] Kang G. Shin and Parameswaran Ramanathan. Real-
time computing: A new discipline of computer science
and engineering. In Proceedings of IEEE, Special Issue
on Real-Time Systems. IEEE, 1994.

[45] Wei Song and Peng Liu. Dynamically finding minimal
eviction sets can be quicker than you think for Side-
Channel attacks against the LLC. In 22nd International
Symposium on Research in Attacks, Intrusions and De-
fenses (RAID 2019), pages 427–442, Chaoyang District,
Beijing, September 2019. USENIX Association.

[46] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. Phan-
tomCache: Obfuscating cache conflicts with localized
randomization. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet
Society, 2020.

[47] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient
cache attacks on AES, and countermeasures. J. Cryptol.,
23(1):37–71, 2010.

[48] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Malicious management unit: Why
stopping cache attacks in software is harder than you
think. In 27th USENIX Security Symposium (USENIX
Security 18), pages 937—-954, 1 2018.

[49] Pepe Vila, Boris Köpf, and José F. Morales. Theory and
practice of finding eviction sets. In 2019 IEEE Sympo-
sium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019, pages 39–54. IEEE, 2019.

2006 32nd USENIX Security Symposium USENIX Association

[50] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, An-
drew C. Myers, and G. Edward Suh. SecDCP: secure
dynamic cache partitioning for efficient timing channel
protection. In Proceedings of the 53rd Annual Design
Automation Conference, DAC 2016, Austin, TX, USA,
June 5-9, 2016, pages 74:1–74:6, New York, NY, USA,
6 2016. ACM.

[51] Zhenghong Wang and Ruby B. Lee. New cache designs
for thwarting software cache-based side channel attacks.
In Dean M. Tullsen and Brad Calder, editors, 34th Inter-
national Symposium on Computer Architecture (ISCA
2007), June 9-13, 2007, San Diego, California, USA,
pages 494–505, New York, New York, USA, 1 2007.
ACM Press.

[52] Zhenghong Wang and Ruby B. Lee. A novel cache
architecture with enhanced performance and security.
In 41st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-41 2008), November 8-12,
2008, Lake Como, Italy, pages 83–93. IEEE Computer
Society, 2008.

[53] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting cache attacks via cache set
randomization. In 28th USENIX Security Symposium
(USENIX Security 19, pages 675—-692, 1 2019.

[54] Yuejian Xie and Gabriel H Loh. PIPP: Promo-
tion/insertion pseudo-partitioning of multi-core shared
caches. ACM SIGARCH Computer Architecture News,
37(3):174—-183, 1 2009.

[55] Mengjia Yan, Yasser Shalabi, and Josep Torrellas. Re-
playConfusion: Detecting cache-based covert chan-
nel attacks using record and replay. In 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016,
pages 39:1–39:14. IEEE Computer Society, 2016.

[56] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In Kevin Fu and Jaeyeon Jung, editors, Pro-
ceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014, pages 719–732.
USENIX Association, 2014.

A Security: Further Attacks

In this Appendix, we discuss attack scenarios beyond
PRIME+PRUNE+PROBE.

Evict+Time Attacks. In an EVICT+TIME [35] attack, the
attacker measures the execution time of a victim program

before evicting a specific cache set. The attacker then exe-
cutes the victim program again and measures whether the
timing differentiates from the first run. If so, the attacker can
conclude that the data in the set was accessed by the victim
process during execution. This attack does not work with
CLEPSYDRACACHE. Next to the requirement of performing
targeted evictions of data from a victim process, the random-
ization of the TTL induces random deviations to the execution
time of the victim program. This does not only affect the tar-
geted cache set but any memory access performed during the
execution of the victim process. Hence, the attacker has no
indication whether timing deviations in the execution time
of a program are a result of targeted evictions resulting from
conflicts or random evictions resulting from expired TTL
values.

Index Randomization. The TTL feature in combination
with index randomization successfully prevents a useful ob-
servation of a cache conflict. However, the design of the index
randomization function described in Section 5.3 requires that
an attacker is not able to construct additional conflicting ad-
dresses from already observed ones. In particular, it implicitly
requires that hardness of the problem deducing information
about the key from the observation that two addresses are
conflicting. As conflicting addresses correspond to certain
bits being identical in the output of the index randomization
function, this situation is similar to a truncated differential
attack on block ciphers as originally introduced by Knud-
sen [24]. Here the attacker could in principle try to guess part
of the first round key and, based on the guess, choose specific
input differences that increase the probability of the truncated
differential and thus the probability of creating conflicting
addresses. This implies that the probability of the truncated
differential should not be too large. Note that the attacker
cannot choose the truncated output difference to consider,
but this is implicitly defined by the design. In particular one
possibility to ensure small probability is to spread the output
bits used for defining the index across the entire output of the
cipher and in particular across as many S-boxes as possible.

The rather limited data complexity an attacker can use in
combination with the high level of noise created by the TTL
feature suggest that a reduced round version of secure block
cipher suffices to ensure security. However, analyzing the
details of such an approach is beyond the scope of this work.

Denial of Service Since the reduction rate RTTL of the TTL
reduction depends on the number of conflicts that occurred, an
attacker could effectively clear all cache entries by making a
huge amount of memory accesses to uncached addresses. This
behavior would cause frequent conflicts and hence increase
the reduction rate, evicting all entries in a short time period.
The attacker could further keep accessing new memory ad-
dresses and hence, effectively disable the cache as new entries
are deleted relatively fast due to the high TTL reduction rate.

USENIX Association 32nd USENIX Security Symposium 2007

In a traditional cache, the attacker could achieve a similar
behavior by accessing many uncached memory addresses and
therefore evicting existing entries from other processes. Im-
portantly, no information can be leaked during a DoS attack.

B Configuration Details

The Parsec benchmarks are executed in gem5’s full system
mode which simulates all of the hardware from the CPU to
the I/O devices and gives a precise performance result. We
simulate Ubuntu 18.04 LTS with kernel version 4.19.83. How-
ever, due to the vast resource usage and the corresponding
simulation time, it is not feasible to run a full system simula-
tion of SPEC CPU 2017. While related work mostly reduced
the workload of SPEC by choosing representative code slices
from the benchmark [46, 53], we simulate the SPEC Integer
Speed suite based on the command line interface described
in [28] using gem5’s Syscall Emulation (SE) mode which pro-
vides accurate performance simulation of the benchmark but
omits simulating the operating system. To further reduce the
simulation time, we use the test workloads for SPEC which in
many cases feature smaller input sizes but generally perform
the same tasks as the reference workloads. For the Parsec
benchmarks we use the input size simmedium.

For the simulated system we have chosen a setup with
4 GiB of RAM and a clock speed of 2 GHz. The L1 data and
the instruction caches in both scenarios, i.e. the classic gem5
reference and CLEPSYDRACACHE, are modeled as 4-way
set associative classic cache with a size of 64 KiB. The L2
cache, which is in our case also the LLC, has a size of 1 MiB
and is 8-way set associative in both cases. We apply the new
CLEPSYDRACACHE architecture to the LLC, i.e. L2, and use
a Random-Replacement-Policy (RRP). For the classic caches
we use LRU [1] replacement policy. We provide an overview
of the cache configuration of our setup in Table 4.

Table 4: Summary of cache settings in gem5’s simulation
environment.

Settings Classic CLEPSYDRACACHE

L1 Size 64kB 64kB
L1 Architecture classic classic
L1 Replacement Policy LRU LRU
L2 Size 1MB 1MB
L2 Architecture classic CLEPSYDRACACHE
L2 Replacement Policy LRU Random Replacement

C CLEPSYDRACACHE and Real-Time-
Systems

Systems can have different requirements towards expected
or mandatory response times. In case a system requires strict
deadlines towards response times, it is called a real-time sys-
tem. There are different types of real-time systems: hard, soft

and firm real-time systems. Those types can be differentiated
by their strictness towards deadlines. A hard real-time system
must meet its deadlines at all times. Otherwise, this can lead
to severe consequences. A good example for hard real-time
systems are control-units for airbags. In contrast, a firm real-
time system can accept infrequent deadline misses. Voice
transmission is such a system. A few missed bits of sound
will not degrade the entire system, but frequent misses will.
A real-time system which is neither hard nor firm, is called
soft. In a soft real-time system the value of the information
decreases over time. A good example is an air conditioning
system with regular temperature measurements. The air condi-
tioner operates on the most frequent measurements. Frequent
misses will be tolerated as long as there are a few timely
measurements available [44]. For a hard real-time system, it
is very important to be able to predict a worst-case time to
complete its deadlines.

Thus, for the compatibility of CLEPSYDRACACHE with
real-time systems, the worst-case delay of CLEPSYDRA-
CACHE needs to be considered. The worst-case delay is
known and represents the case with no cached entries. We
assume for the worst-case delay, that all cached entries are
evicted due to an expired TTL. Thus, like for all other caches
the (worst-case) influence of CLEPSYDRACACHE on the ex-
ecution time is precisely known. In general there is no con-
ceptual difference between a classic cache and CLEPSYDRA-
CACHE as in both scenarios the worst-case scenario i.e. no
cached entries needs to be considered by the real-time system.
The choice of the cache influences the time required for the
CPU to perform load and store instructions. For example, we
consider a hard real-time system with strict response times
tresponse. The system needs to have enough computing power p
to complete the task tsk before tresponse (deadline). A designer
of a hard real-time system always chooses enough power p to
complete tsk before tresponse under worst-case circumstances.
As a consequence, there is no difference for the choice of a
cache on a hard real-time system.

In case of a firm or soft real-time system an average re-
sponse time tavg for a deadline d can be considered. Since
a few missed deadlines are allowed in firm or soft real-time
systems, the system could be designed to operate on average
execution times. The choice of the cache will now influence
the (average) execution of load or store instructions on the
CPU. However, different caches will lead to different average
execution times for different use-cases. Thus, the design of
such a real-time system, needs to determine the average exe-
cution times for the used cache c with workload w. Therefore,
the only difference between a classic cache and CLEPSY-
DRACACHE is the average execution time under a specific
workload w.

2008 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Caches
	Cache Side-Channels

	Problem Description and Related Work
	Threat Model
	Concept
	ClepsydraCache in a Nutshell
	Per-Entry Time-To-Live (TTL)
	Addressing and Replacement
	Conflict Resolution

	Security
	Statistical Observations on TTL
	Prime+Prune+Probe Attacks

	Implementation
	gem5 Implementation
	Efficient Hardware Implementation

	Evaluation
	Conclusion
	Acknowledgements
	Security: Further Attacks
	Configuration Details
	ClepsydraCache and Real-Time-Systems

