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Abstract
Go Ethereum is by far the most used Ethereum client. It orig-
inally implemented the Ethereum proof-of-work consensus
mechanism, before the switch to proof-of-stake in 2022. We
analyse the Go Ethereum implementation of chain synchro-
nisation – the process through which a node first joining the
network obtains the blockchain from its peers – in proof-of-
work. We present three novel attacks that allow an adversary
controlling a small fraction of the network mining power to
induce synchronising nodes to deviate from consensus and
eventually operate on an adversary-controlled version of the
blockchain. We successfully implemented the attacks in a
test network. We describe how the attacks can be leveraged
to realise financial profits, through off-chain trading and via
arbitrary code execution. Notably, the cheapest of our attacks
can be mounted using a fraction of one GPU against both
Ethereum Classic and EthereumPoW, two Ethereum forks
still relying on the proof-of-work consensus mechanism and
whose combined market capitalisation is around 3 billion
USD. Our attacks would have also applied to the pre-Merge
Ethereum mainnet during the period 2017–2022.

1 Introduction

Ethereum is the most widely used blockchain technology for
decentralised applications, with a market capitalization of
about 200 billion USD. Hence, protecting users’ funds and
digital properties, as well as ensuring users an honest view
on the state of affairs about such funds and properties, is of
utmost importance. Before the Merge in September 2022 [14],
Ethereum was based on a proof-of-work (PoW) consensus
mechanism. Today, there are still Ethereum forks using PoW,
notably Ethereum Classic (ETC) and EthereumPoW (ETHW).
These two have a combined market capitalization around 3
billion USD, a daily trade volume around 390 million USD,
and tens of thousands of daily on-chain transactions.

Go Ethereum is the de-facto standard Ethereum client,
adopted by about 80% of all Ethereum nodes before the

Merge, and currently by at least 70% of ETC nodes [6]
(ETHW usage is harder to assess, but is likely to be around
the same level). The official Ethereum website reads [10]:

Go Ethereum (Geth for short) is one of the original
implementations of the Ethereum protocol. Cur-
rently, it is the most widespread client with the
biggest user base and variety of tooling for users
and developers.

When a Geth node first joins a network, it engages in a syn-
chronisation (sync) process, during which it obtains a copy
of the blockchain and the system state from its peers. In this
work, we introduce three novel, practical attacks on Geth
nodes undergoing this sync process from scratch. Our attacks
exploit two independent vulnerabilities in the Geth implemen-
tation of the PoW consensus mechanism. They force a victim
node onto a malicious chain, thus deviating from consensus
and getting an arbitrarily modified view of the Ethereum state.

Our first attack, Ghost-128, is presented in Section 3. It is
enabled by a countermeasure to another attack on the Geth
implementation of the state pruning and chain import mecha-
nisms. The countermeasure can incorrectly cause the rejec-
tion of a valid chain during chain sync. As we show, this can
cause a victim node to break the longest chain rule, one of
Ethereum’s core principles. This attack requires the adversary
to control a fraction f = 0.23% of the honest mining power
and expend a computational effort equal to that needed to
mine about 20 blocks. It causes the victim to permanently de-
viate from consensus. The attack parallelises to target multiple
synchronising nodes at no additional cost.

Our second attack, SNaP, is presented in Section 4. It stems
from the fact that, due to efficiency concerns, not all blocks are
fully verified during chain sync. Here, Go Ethereum breaks
the “Don’t trust, Verify” principle, another fundamental pillar
of the Ethereum PoW consensus model. Geth chooses which
blocks to verify at random, but using a weak PRNG. By inter-
acting with a victim node and observing its behaviour, we are
able to recover the state of the PRNG, predict which blocks
will be verified, and thereby introduce invalid blocks. This
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attack requires the adversary to control a fraction f ≥ 1.6%
of the honest mining power. It causes the victim to temporar-
ily deviate from consensus, for a length of time increasing
with the expended effort. As an example, if f = 5% then the
adversary can create a deviation lasting at least 45 minutes by
expending effort equivalent to mining 86.5 blocks.

Our third attack, Ghost-SNaP, is presented in Section 5.
It combines the first two attacks. Surprisingly, it is much
cheaper to mount, requiring only a fraction f = 5.5×10−7

of the honest mining power and computational effort equal
to that needed to mine 0.0072 blocks. Like Ghost-128, it
causes permanent deviation from consensus, but it does not
parallelise for free. It can be mounted on synchronising nodes
in the ETC and ETHW networks using a fraction of one GPU.

We have implemented the three attacks in a scaled-down
test network and verified their correctness and stability (see
Section 6). Section 7 presents countermeasures.

Since users rely on the information contained in the
Ethereum state to make decisions with economic implica-
tions, and our attacks manipulate that state, our attacks can be
used to make financial gains. We discuss two methods, one
relying on off-chain trading, the other based on fake smart
contract execution (see Section 8).

The consensus flaws we report represent severe weaknesses
in pre-Merge Ethereum. They were firstly exposed by a Go
Ethereum opt-in feature in 2015 and were included in default
settings in 2017.1 So they were exploitable for at least 5
years until the switch to Proof-of-Stake in 2022. They remain
exploitable in Ethereum Classic and EthereumPoW.

1.1 Ethical Considerations
We only carried out experiments on our own test network,
far smaller than the Ethereum network, as described in Sec-
tion 6. No live blockchain systems were affected. We initiated
a 60-day disclosure period with the maintainers of Ethereum
Classic and EthereumPoW on February 3, 2023. We also
contacted the Ethereum Foundation, but post-Merge, there
is no vulnerability to remediate in Ethereum. The ETC Co-
operative was responsive and collaborative throughout the
entire disclosure period. Upon their request, we extended the
period to 90 days. We agreed on publishing our results on
May 15, 2023. They were also helpful to our research as they
identified an issue affecting two of our attacks (see Section
5). Unfortunately, we did not receive any replies from the
ETHW maintainers, despite making multiple attempts to con-
tact different individuals associated with the project. As a
result, users of EthereumPoW running Go Ethereum nodes
are still vulnerable to our attacks at the time of writing.

Our malicious version of Go Ethereum was made available
on GitHub on May 15, 2023.2 It consists of roughly 4 kLOC

1https://github.com/ethereum/go-ethereum/releases/tag/v1.
6.0.

2https://github.com/massitaverna/malicious-go-ethereum.

added to the original Go Ethereum codebase, and can be used
to launch any of the three attacks.

In addition, we made available a Git patch file to the ETC
Cooperative, which can be applied to geth-v1.10.23 in or-
der to mitigate all our attacks, as explained in Section 7.

1.2 Related Work
DeFi has been the target of numerous attacks [20, 21, 29].
Several attacks have been presented on Ethereum [5], mostly
aimed at maximising miners’ profits through, e.g., transaction
reordering and front-running. Daian et al. [7] generalise this
attack class by introducing the concept of miner-extractable
value, and illustrate how miners are willing to expend some
extra computational power – deviating from honest behaviour
– if this leads to making more profits. Sandwich attacks, an-
other form of front-running, are discussed in [30]. Selfish
mining allows miners to make unfair profits [16,19]. Sun [22]
also observes that miners can be incentivised to misbehave
through bribery. Marcus et al. [18] achieve eclipse attacks on
Ethereum by monopolising all of the victim’s incoming and
outgoing connections and thus filtering the victim’s view of
the blockchain. Our attacks do not require any tampering with
the victim’s honest connections; moreover, they only require
one or two adversarial nodes in the victim’s peerset. Like us,
the Uncle Maker attack [28] exploits Ethereum difficulty ad-
justment mechanism, but again to dishonestly increase mining
rewards. Wüst and Gervais [27] realize eclipse-like attacks on
Ethereum. Some of our techniques are similar to theirs, but
we exploit completely new vulnerabilities.

2 Background

We cover aspects of the pre-Merge Ethereum specification
and the Go Ethereum mechanisms most relevant to our
work. The description of Ethereum is based on the Ethereum
Yellowpaper [26] and various EIPs [11]. Go Ethereum
descriptions in this and later sections of our work derive from
our analysis of the Go Ethereum codebase, as the features
our attacks exploit are not documented anywhere else.3

Blocks. Ethereum blocks are divided into a body, which con-
tains transactions, and a header, which contains numerous
fields. The relevant ones for our purposes are:

• number: An integer equal to the number of ancestor
blocks; also referred to as the block’s height.

• stateRoot: A Keccak-256 digest computed over the
Ethereum state after executing the block’s transactions.

• timestamp: A UNIX timestamp at the block’s inception.

3We refer to Geth release v1.10.23. Available at: https://github.com/
ethereum/go-ethereum/tree/v1.10.23.
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• difficulty: An integer representing the expected required
computational effort to mine the block.

• nonce: An integer which constitutes the block’s proof-
of-work (PoW).

State. The Ethereum state is represented as a Merkle-like tree
data structure containing all Ethereum accounts, balances,
smart contract bytecodes and storages [3]. Thus, it is where
the most valuable information for users is stored. Data
integrity is achieved by including the root hash of the state
tree into the stateRoot field of a block header: the Ethereum
specification makes sure no one can modify the state at some
block without modifying its header, which in turn requires to
recompute the block’s PoW.

Difficulty Adjustment Algorithm (DAA). The difficulty of
a block is determined from the block timestamp and its parent
block, omitting other practically irrelevant terms.4 Given a
block B and its parent P, writing B.di for B.difficulty and
B.ts for B.timestamp, and similarly for P, we have:

B.di := P.di+

(⌊
P.di
2048

⌋
·max

{
1−
⌊

B.ts−P.ts
9

⌋
,−99

})

In other words, when the difficulty is D at some block, the next
block will have difficulty (1+ ε)D, with − 99

2048 ≤ ε ≤ 1
2048 .

Along the chain, the difficulty is adjusted depending on how
long it takes to mine blocks, attempting to achieve an average
time of 13 seconds per block.

Header Validity. A header H is considered valid if it satisfies
a number of constraints, which can be found in [26]. Most of
them are cheap to verify; one example is the following:

H.timestamp < time.Unix()+15 (1)

where time.Unix() is the UNIX time at which a node receives
H, in seconds. In other words, blocks must not be not too far
into the future. PoW validity is more expensive to check. A
node receiving H must run the ETHash [2, 8, 15] algorithm
over H to verify that the output matches with H.nonce.
ETHash is significantly slower than other hash functions
(e.g., SHA-256), to prevent the usage of ASICs for mining.

Longest chain rule. Among all possible chains that a node
may have received and stored in its local database, the one
with the highest total difficulty – i.e., the sum of the difficulty
values over all of its blocks – must be regarded as the correct
one to use. In PoW-based blockchains, this is typically
referred to as the longest chain rule, although longest may
mislead the reader to think of block count instead of total

4We omit block uncles and the difficulty bomb from the DAA formula,
historically introduced in EIP-100 [4] and the Frontier thawing fork [25],
respectively.

difficulty. Hence, we will use the clearer expression heaviest
chain rule. The chain on which a node operates is the node’s
canonical chain. All other locally stored chains are called
sidechains. When a sidechain outgrows the canonical chain
in terms of total difficulty, the sidechain becomes canonical
and vice versa. This action is known as a chain reorg, and
the most recent block common to both chains is the fork block.

Peers. The peers of a node N are the other Ethereum nodes
with which N directly exchanges information. N finds other
nodes in the network by running a discovery protocol [9, 17].
Once a node is found, N connects to it and the two nodes
become peers, unless errors occur in this process. Of course,
N can also accept connections from other nodes. The set
of peers of a node is called its peerset. In Geth the default
peerset size is capped to 50.

Chain synchronisation. Nodes in the Ethereum network have
a copy of the blockchain and the state, which get updated
when a new block is propagated in the network. However, a
new node which has just joined the network has neither the
blockchain nor the state of Ethereum, and needs to download
them from its peers. In such a case, single block information is
useless to the node. Thus, Go Ethereum uses a more complex
mechanism known as chain synchronisation (chain sync).
This mechanism is also used by a node which is already fully
operational, when it notices one of its peers has a heavier
chain. However, we will only focus on chain sync for nodes
starting from an empty chain and an empty state. We refer to
such nodes as synchronising nodes.

While the above paragraphs described the Ethereum
specification and thus apply to all clients, the remaining parts
of this section are Geth-specific.

Snap sync. Snap sync [13, 24] is the Geth default sync mode
for a synchronising node N . As soon as a node is fully op-
erational on the network, snap sync is disabled in favour of
full sync, an earlier sync mode, and which we omit from our
description. Very briefly, a snap sync consists of the following
tasks:

• Download headers from peers and, for each header, ver-
ify all constraints defined by Header Validity, apart from
PoW validity. PoWs are verified only for some randomly
chosen headers, at least one in every 100 headers. Bodies
are fetched concurrently to complete the blocks, however
they do not undergo any verification (e.g., transactions
are not executed and their signatures are not verified).

• Fix a pivot block close to the chain head, and download
the state from peers as defined by the pivot stateRoot.

• Move forward the pivot as the chain progresses, to pre-
vent it from being too far behind the chain head. Indeed,
Go Ethereum nodes delete states which are 128 blocks
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old or older, and cannot serve the syncing node a state
at a stale pivot. The node eventually resolves inconsis-
tencies in the downloaded data caused by pivot updates
through extra state queries to its peers.

• Once blocks up to the pivot and the pivot state are
fetched, apply the transactions of blocks following the
pivot on the downloaded state, transitioning to the state
defined by the chain head.

N chooses a master peer M at the beginning of the sync,
which instructs N on which blocks to download, sets a pivot
and updates it periodically. M is chosen as the peer announc-
ing the highest total difficulty (TD for short). If an error occurs
during the sync, M is kicked out of N ’s peerset, N rolls back
the chain by 2048 blocks and a new sync attempt starts by
choosing a new master peer. Errors include an invalid header
encountered, or a timeout for some query directed to M . An
error also occurs if no more blocks are available to fetch and
the chain fetched so far by N is below the total difficulty ini-
tially announced by M (which is what caused it to be chosen
as master peer and thus reveals malicious behaviour). Despite
M being dropped in such cases, there is no mechanism to
prevent it from rejoining N ’s peerset just a few seconds later.

At a high level, the pseudocode in Algorithm 1 formalizes
a snap sync between N and M . Observe the simplicity of
M ’s role: it replies to N ’s requests for headers as all N ’s
other peers do. In particular, M does not need to know it is
the master peer; N dictates the synchronisation logic.

The syncing node N

In: N ’s master peer M and
N ’s peerset P.

Out: N ’s canonical chain CN .

1 p←M .getPivot()
2 go {s← fetchState(p,P)}
3 a←M .findCommonAncestor()
4 repeat
5 I←M .getInstructions(

a+1, a+MAX_FETCH)
6 S← fetchHeaders(I,P)
7 err← verifyHeaders(S)
8 if err ̸= nil then fail()
9 CN .import(S)

10 a← a+ len(S)
11 p←M .updatePivot()

12 until len(S) = 0

13 if TD(CN )< M .td then fail()

14 for B←CN [p] to CN .head()
15 err← s.processTxs(B)
16 if err ̸= nil then fail()

subroutine fail()
1 CN .rollback(2048)
2 disconnectFrom(M )
3 stopSync()

M (and N ’s other peers)

In: The local chain C.
Out: ⊥

1 handleRequests(C)

Algorithm 1: Note that functions in the form M .f() boil
down to requesting certain headers to M .

After a correct sync, given the output chain CN and the net-
work R on which N operates, the following security property
must hold:

CV(CN ) ∧ ∀C ∈R
(
CV(C) =⇒ TD(CN )≥ TD(C)

)
(2)

Figure 1: Nodes keep the state at recent blocks (in black) close
to the head H. The state of older blocks (in red) is deleted.

where by CV we denote chain validity, satisfied if and only if
all a chain’s headers fulfil the Header Validity constraints. In
words, CN must be the heaviest valid chain in the network.

3 The Ghost-128 Attack

In this section we introduce our first attack, which we name
Ghost-128. Firstly, we shed light on some of the Go Ethereum
intricacies to put the first critical consensus-level vulnerability
we found into context. Secondly, we present the vulnerability
and describe how to mount a practical attack using it.

3.1 Relevant Go Ethereum Mechanisms
State pruning. When Go Ethereum nodes receive a new,
valid block, they import the block, i.e., they write its body and
header into their database, and process its transactions, updat-
ing the state tree. Not only does the tree store the Ethereum
state at the head block, but also at any block (canonical or
not) whose distance from the head is not greater than 128, as
Figure 1 shows. This is useful for chain reorgs, which require
nodes to switch to the state defined by the latest block of a
sidechain if it is to be promoted to canonical. Go Ethereum
assumes that, when a reorg happens, the fork block is highly
unlikely to be very old, i.e., behind the current head by 128
blocks or more. Therefore, upon a chain reorg, nodes already
have the state at the new head and they simply need to refer
to a different node in the tree as the new state root.5

Nodes in the tree which belong to states 128 blocks old or
older are deleted, to clean up the state and reduce disk usage.
This process – known as state pruning [12, 24] – makes old
states unavailable.

Sidechain import logic. When a node receives a sidechain
block, it processes its transactions on top of the state defined
by the block’s parent. However, if the state at the block’s
parent was deleted, its transactions cannot be executed. In
this case, the import mechanism is different: the block body
and header are stored as usual, but since the node cannot
derive the state defined by the block, such state remains

5We invite the reader to notice the difference between nodes as partici-
pants in the Ethereum network and nodes as items in the state tree.
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Figure 2: Representation of SGSA.

unavailable to the node. In case a chain reorg happens and the
sidechain head contains a stateRoot which cannot be found
in the state tree, the node moves back along the sidechain
looking for a block B with a known state. Once found, all
transactions of blocks after B are executed on top of B’s state
to build the state defined by the new head block.

Sidechain ghost-state attack (SGSA). The impossibility of
state processing when importing side(chain) blocks with un-
known parent state opened up the opportunity for an attack.
This would have allowed an adversary to write invalid blocks
in the canonical chain of a victim. There is no concrete refer-
ence for this attack, except for a comment in the Geth code.6

The attack description follows, accompanied by Figure 2.
Assume an adversary provides blocks B1, . . . ,Bm−1 to a

node, which imports them as a sidechain on top of a fork
block with unavailable state. Let C be a recent, canonical
block for which the node has the corresponding state. The
adversary builds Bm with Bm.stateRoot =C.stateRoot. The
node imports Bm, but cannot verify whether Bm’s state can
actually be obtained by applying Bm’s transactions to Bm−1’s
state, since this state is missing. However, when blocks
Bm+1, . . . ,Bn (n > m) arrive, Bm+1’s parent is Bm and the
node has the state specified by Bm, since it is the same state
specified by C. Thus, these blocks are imported regularly, i.e.,
their state is computed and stored. Suppose the sidechain has
become heavier than the canonical chain. Because the node
already has the state at the new head Bn, in order to complete
the reorg the node just flags blocks B1, . . . ,Bn as canonical.
At this point, the attack is completed: the state at blocks
B1, . . . ,Bm has never been verified, thus these blocks may
have an illegitimate stateRoot, i.e., a stateRoot which does
not result from the execution of corresponding transactions –
or is not even the root hash of any state reachable through
a finite sequence of transactions – and yet they are in the
node’s canonical chain. These unverified state roots sneak in
invisibly as a ghost, exploiting the sidechain import logic:
hence, the name of sidechain ghost-state attack.

SGSA mitigation. The Go Ethereum developers fixed SGSA
as follows: upon receipt of a side block Bn with unknown par-

6See: https://github.com/ethereum/go-ethereum/blob/
d901d85377/core/blockchain.go#L1815.

ent state, and given the canonical block Cn at the same height,
if Bn.stateRoot =Cn.stateRoot, then Bn is not imported. As
a consequence, blocks building on top of Bn are not imported
either, as their parents are missing. Although this mitigation
sounds drastic, one may argue that two distinct blocks with
same stateRoot are a clear indication of some malicious ac-
tivity. The countermeasure builds on the assumption that the
canonical chain already stored in the node’s database is cor-
rect, while the sidechain received later on – and replaying a
canonical state root – is malicious. However, this assumption
may not hold for a synchronising node. This is the basis for
our Ghost-128 attack.

3.2 Attack Description

Our attack is based on two key components: it exploits the
countermeasure to sidechain ghost-state attacks, and requires
mining (at least) 128 blocks to leverage state pruning. Hence
the name Ghost-128.

Adversary model. The assumptions we make for Ghost-128
are the following:

• The adversary controls one node which is part of the
victim’s peerset (A3.1);

• The adversary has a mining power equivalent to a frac-
tion f ≥ 0.23% of the total honest mining power (A3.2);

• The victim has not synced yet (A3.3).

The easiest way for an adversary A to satisfy assumption
(A3.1) is to choose the victim among the nodes opening
connections to it, or the nodes that A’s discovery protocol
finds. When the connection is opened, nodes exchange
information about their local canonical chains: hence, A gets
to know whether its new peer’s chain is empty and infers
that the node has to synchronise yet, satisfying assumption
(A3.3) as well. In order to observe more nodes joining the
network, A can run multiple nodes, or push the discovery
protocol beyond its normal operation to scan the network
more extensively. A can meet assumption (A3.2) by having
sufficient mining resources. Section 8 addresses this aspect.

Overview. As briefly mentioned in Section 2, a synchronising
node only downloads blocks chosen by its master peer. Block
broadcasts by other peers are ignored, as the node would
not know how to process them without a synced blockchain.
Hence, the node’s canonical chain at the end of the sync
is the chain suggested by its master peer. Denote by V a
synchronising node chosen as victim by an adversary A . At a
high-level, Ghost-128 consists of the following steps, which
will be explained in full detail below:

• A forces V to pick it as master peer.
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• Let Bn be the head of the honest chain. A waits for a new
block Bn+1 to be mined by honest miners, while serving
N the earliest blocks of the chain.

• A forks the blockchain at Bn and mines 128 blocks
B′n+1, . . . ,B

′
n+128 on top of Bn. In particular, A replays

Bn+1.stateRoot into B′n+1. In the meantime, V is still
fetching early blocks.

• The sync by V approaches the end of the chain, and A
instructs V to download B′n+1, . . . ,B

′
n+128 after Bn. The

sync ends with V ’s canonical chain CV not being the
honest one.

V is now fully operational and ready to process blocks
spread across the network by other peers. In particular, V
receives and processes honest block Bn+1. Since its par-
ent Bn is 128 blocks behind V ’s canonical head B′n+128,
V has deleted the state at Bn because of state pruning. In
other words, Bn+1 has an unknown parent state. Also, A set
Bn+1.stateRoot = B′n+1.stateRoot. This makes the SGSA
countermeasure kick in, and Bn+1 is not imported. None of
the honest blocks after Bn+1 are imported either. Observe that
the honest chain’s total difficulty is irrelevant: even if heav-
ier than the malicious chain, V will always refuse to import
the honest chain CH because it will consider it as attempting
SGSA. Thus, the security property in (2) does not hold, as
∃CH : CV(CH )∧ (TD(CV )< TD(CH )). Ghost-128 induces
V to permanently deviate from consensus.

A’s role is clearly more complex than an honest master
peer’s role, previously shown in Algorithm 1. Algorithm 2
shows the differences.

In: A’s chain CA
Out: ⊥

1 Bn←CA .head()
2 S = (B′n+1, . . .B

′
n+128)← buildBlocks(Bn,128)

3 B′n+1.stateRoot←CA [n+1].stateRoot
4 needingPoW ←{n+1, . . . ,n+128}
5 mineBlocks(S, needingPoW )
6 CA .import(S)
7 handleRequests(CA )

Algorithm 2: A’s role as master peer in Ghost-128.

We now elaborate on the attack steps in more detail.

Master peer selection. A synchronising node chooses its
master peer as the peer announcing the highest total difficulty.
A can then announce a total difficulty slightly higher than
any other node in the network. In particular, denoting by
D the difficulty at the honest head Bn and by θ the total
difficulty at Bn, A chooses to announce θ+4D. It is highly
unlikely that 4 or more blocks have been honestly mined
while A has not received them yet (the network should be
subject to propagation delays of one minute or higher for
this to happen). Therefore, A is really announcing a total

difficulty higher than all other nodes. On the other hand, A
cannot announce an arbitrarily large total difficulty, otherwise
it will not be able to fulfil its promise at the end of the sync,
thus leading to an error and making the attack fail. However,
since A mines 128 blocks, it will surely have a total difficulty
higher than θ+4D when reaching the end of the sync.

Attack parameters. In the following, we introduce a few
parameters and relate them to the computational power A
needs in order to mine 128 malicious blocks. We show how
A can exploit the DAA (introduced in Section 2) to minimise
the mining effort, defined as the sum of the difficulties of the
blocks A needs to mine. In symbols:

Eff :=
128

∑
j=1

B′n+ j.difficulty

Therefore, Eff is the expected number of ETHash values that
A needs to compute. We use H to denote this unit of measure.

Firstly, observe that A can mine as long as the sync is
running. In other words, the sync time bounds the time A has
for mining the 128 blocks. Denote this time by T , expressed
in seconds. According to both information on the web and
tests we carried out, in practice a chain sync on the ETH,
ETC, and ETHW networks lasts not less than 12 hours, and
often more. However, there are various ways by which A can
introduce delays in the chain sync, see Appendix C. So, T
is a parameter controlled by the adversary. Of course, users
noticing an unusually long sync and stopping it introduce a
practical upper bound to T . Realistically, users can let a sync
run for a couple of days without provoking suspicion.

Now, we show how A can minimise Eff by ensuring that
block difficulty drops as much as possible along the ma-
licious chain. Let c := 1− 99

2048 . According to the DAA,
given block B and its parent P, where P.difficulty = D and
B.timestamp−P.timestamp≥ 900, we have B.difficulty =
cD. A’s strategy is to mine the first 1 ≤ k ≤ 128 blocks at
timestamp distances of 900 to make the difficulty decrease by
a factor of c at each step, and the remaining 128− k blocks at
timestamp distances of 9 (the minimum to prevent difficulty
from increasing again). We recall that constraint (1) imposed
by Header Validity requires blocks not to be in the future to be
acceptable. Hence, we require 900k+ 9(128− k) ≤ T + 15.
Letting D be the current block difficulty, A needs to expend a
total effort:

Eff(k) : =
k

∑
j=1

c jD+(128− k)ckD

=

(
c

1− ck

1− c
+(128− k)ck

)
D [H]

Since honest miners mine a new block every 13 seconds on
average, we can approximate the honest network hashrate to
RH := D

13 [H/s]. A needs to expend Eff(k) in time T , so it

3336    32nd USENIX Security Symposium USENIX Association



needs a hashrate RA := Eff(k)
T [H/s]. So, A’s mining hashrate

must be at least a fraction f := RA
RH

= 13
T ·

Eff(k)
D of the total

honest hashrate to carry out Ghost-128 successfully.
As an example, T = 115,200 (32 hours) is enough to

allow k = 128. This choice of parameters then requires A to
expend an effort Eff(128) ≈ 20D and have f ≥ 0.23%, i.e.,
A needs to expend an effort equivalent to mining 20 blocks
and control 0.23% of the mining power.

Illegitimate states. Block B′n+1 has the same stateRoot as
Bn+1. Unless A includes exactly all and only the transactions
of Bn+1 into B′n+1’s body and sets the same address as Bn+1
for the block reward, B′n+1.stateRoot is illegitimate, i.e., it
is not the root hash of the state obtained by applying B′n+1’s
transactions on top of Bn’s state. However, this is not an issue:
during a snap sync, only transactions of blocks after the
pivot are executed and the state validated. The pivot is never
128 blocks old (if it was, then V could not fetch the pivot
state from the network due to other nodes’ state pruning). In
particular, B′n+1 is never after the pivot. Thus, V does not
validate the state at B′n+1. This shows that A can craft an
arbitrary (and illegitimate) state and provide it to the victim,
by including its root hash in the pivot header.

Parallelisation. The adversary can target v victims at the
same time, just by concurrently running v instances of Ghost-
128, mining the 128 blocks only once and providing the same
blocks to all of the v victims. Therefore, neither Eff nor f grow
with v: the cost and resources for the attack are constant, inde-
pendent of the number of victims targeted simultaneously by
the adversary. On the other hand, we observe that assumptions
(A3.1) and (A3.3) must hold for each victim. A parallelised
run of Ghost-128 puts multiple nodes on the same malicious
chain, breaking consensus in the network at a larger scale.

4 The SNaP Attack

We introduce a second attack, which we name the SNaP attack.
SNaP enables an adversary to provide a chosen victim with
a malicious chain, heavier than the honest one, yet invalid.
Nonetheless, the victim does not notice its invalidity and
accepts it according to the longest chain rule.

Similarly to Section 3, we briefly go through the crucial
elements of Go Ethereum paving the way to this second attack.
Afterwards, we describe and analyse SNaP.

4.1 Relevant Go Ethereum Mechanisms

Header batches. A synchronising node N requests and
downloads headers in batches of 192 headers each. Its master
peer instructs N on which batches to download, and N
fetches them through concurrent requests sent to all its peers.

Probabilistic verification. In snap sync mode – which we
recall to be the default mode for chain sync – N does not
verify the PoWs of all fetched headers [23]. Instead, snap
sync specifies that only one PoW in every 100 downloaded
headers must be verified, and the choice must be random
(see Algorithm 3). This design was chosen for performance
reasons: verifying one PoW implies one call to the ETHash
algorithm, which is slow. Thus, verifying all PoWs would slow
down chain sync significantly. From a security perspective,
no adversary should be able to guess N ’s random choices
many times consecutively. Intuitively, if snap sync completes
without verification errors, then any downloaded header not
too close to the head has enough validated headers following
it to believe it is honest. Since this logic does not apply to the
most recent headers, before completing snap sync N verifies
the PoW of all headers starting from 24 blocks before the
pivot. As the pivot is typically set 64 blocks behind the head,
N verifies the PoW of the 64+24 = 88 most recent headers.

The Go Ethereum implementation deviates from the speci-
fication in how frequently PoWs are verified. Since headers
are downloaded in batches of 192 elements, for a given batch
one header is randomly chosen among the first 100 and one
among the remaining 92. Furthermore, the last header of a
batch is always PoW-validated. Thus, most of the time N ver-
ifies 3 PoWs for every 192 headers, a fraction of 1

64 instead
of the 1

100 given in the specification.

In: A segment of headers S.
Out: An error err, or nil.

1 pow[..]← f alse

2 for i← 0 to
⌊
len(S)

100

⌋
do

3 r← rand.Intn(100)+100i

4 pow[r]← true
5 pow[len(S)−1]← true
6 for i← 0 to len(S)−1 do
7 err← verify(S[i], pow[i])
8 if err ̸= nil then ret err
9 ret nil

Algorithm 3: verifyHeaders(), called in Algorithm 1.

4.2 Attack Description
Our attack exploits the probabilistic header verification
characterising snap sync, whose adoption has been the result
of a prioritisation of performance over security. Hence the
name SNaP, as an abbreviation for "Security: Not a Priority".

Adversary model. In order for a SNaP attack to be successful,
we need the following assumptions to hold:

• The adversary controls two nodes which can join the
victim’s peerset (A4.1);

• The adversary has a mining power equivalent to a frac-
tion f ≥ 1.6% of the total honest mining power (A4.2);

• The victim has not synced yet (A4.3).

Overview. Go Ethereum employs an insecure PRNG for the
probabilistic verification of headers. An adversary A able to
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predict the random choices of its targeted victim V can build
many blocks and mine only the ones which it knows will
be PoW-validated, thus saving a lot of computational effort.
By doing so, A can build a heavier chain than the honest
one. Despite being invalid, A’s chain will be accepted by V ,
since valid PoWs have been generated for the right headers.
Until the honest chain outgrows A’s chain in terms of total
difficulty, V will consider the malicious chain as canonical
and operate on it. The main steps of SNaP are:

• A boots up two nodes.

• A interacts with V to craft a perfect prediction oracle O
revealing all future random choices by V . We describe
this phase in more detail later on.

• V starts to sync with one of A’s nodes as master peer.

• Let Bn be the head of the honest chain. A forks
the blockchain at Bn and starts building new blocks
B′n+1, . . . ,B

′
n+h (h> 0), computing PoWs only for blocks

which O predicts will be PoW-validated by V . In the
meantime, A serves V early blocks.

• The sync approaches the end of the chain, and A instructs
V to download B′n+1, . . . ,B

′
n+h after Bn. The sync ends

with V ’s canonical chain CV not being the honest one.

After the sync, V is fully operational on the network. V
disables probabilistic verification, and from now on it will
validate the PoW of all new blocks it will receive. Hence, con-
tinuing to mine blocks on top of B′n+h is not advantageous for
A . On the contrary, honest miners keep mining on top of Bn,
and V receives these blocks and imports them as side blocks.
As a consequence, honest miners will eventually catch up with
the fake total difficulty of A’s chain and, when this happens,
V will undergo a reorg making the honest chain canonical.
Until then, however, V will stick with the malicious chain;
since CV(CV ) is not satisfied, the security property in (2)
does not hold. The attack induces V to temporarily deviate
from consensus.

The length of time during which V operates on the mali-
cious chain depends on the adversary’s relative mining power
f and the time T available for the attack. As an example,
given f = 2% and T = 86,400 (24 hours), A can make V
deviate from the honest chain for more than two days. We
further discuss A’s advantage over the honest chain below.

Algorithm 4 outlines A’s role as master peer after crafting
O, and highlights the differences from Algorithm 1.

Usage of randomness. For the probabilistic header verifi-
cation, V uses an instance of the PRNG defined in the Go
package math/rand. Go also has a CSPRNG, defined in the
package crypto/rand, however V uses this only to gener-
ate a 64-bit integer y to seed the PRNG from math/rand.
The PRNG can be initialised through its function Seed(seed

In: A’s chain CA , the oracle O and the number h of malicious
blocks.

Out: ⊥
1 Bn←CA .head()
2 S = (B′n+1, . . .B

′
n+h)← buildBlocks(Bn,h)

3 needingPoW ← predictPowVerificationsO(S)
4 mineBlocks(S, needingPoW )
5 CA .import(S)
6 handleRequests(CA )

Algorithm 4: A’s role as master peer in SNaP.

int64). But seed is reduced modulo M := 231−1 internally
to this function. This makes the seed space relatively small. In
particular, we observe that learning s∗ := y mod M is enough
to recover the initial state of the victim’s PRNG.

After initialisation, the PRNG is used only for the
verification of headers during a snap sync, and its function
Intn(n int) – which generates a uniformly random in-
teger in [0,n) – is always called twice per batch with n= 100.7

A prediction oracle. At a high level, we outline how to build
a prediction oracle O for the attack:

• We devise a way to make the victim leak information
about its PRNG outputs.

• We design a process to iterate the leakage above, in order
to learn as much information about the victim’s PRNG
as we wish.

• We analyse this information, and use it to recover the
reduced seed s∗ used by V for the PRNG initialisation,
giving us the PRNG initial state.

• We determine where the victim’s PRNG will be in its
period when the malicious blocks come to be processed.

• We create a local clone of the victim’s PRNG, initialised
with the same seed and moved forward along its period
by the number of steps determined above.

This gives A an exact copy of the victim’s PRNG at the time
malicious blocks are fetched and verified, thus making the
PRNG clone a perfect prediction oracle. In the next few
paragraphs, we describe how to achieve all of the steps above.

Information leakage. Let G := [H1, . . . ,H192] be a batch
built on top of block #0 such that Hi has a valid PoW if and
only if i > 50. Imagine the first thing A does as master peer
is to instruct V to download G. Then, two random indices
i1 ∈ [1,100], i2 ∈ [101,192] are generated by the PRNG and
Hi1 ,Hi2 are PoW-validated. Hi2 will pass the verification,
however the verification of Hi1 will fail with probability

7Actually, A has to instruct V in a particular way to make sure that the
PRNG is called exactly twice per batch. However, this does not add any
complexity to the attack and is just an implementation-level detail.
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Pr[i1 ≤ 50] = 50%. If it fails, the sync ends raising an error
and V sends a disconnection message to A . Otherwise,
V continues with the sync. Thus, V leaks to A one bit of
information, namely, 1{i1>50}.

Learning multiple bits. Clearly, learning one bit of informa-
tion as described above is not enough to recover s∗, which has
31 bits. In order to learn multiple bits, A proceeds as follows:

1. A pre-computes a prediction chain on top of block #0
made of 8 batches (1536 blocks), where all headers are
valid, except for the first 50 headers of the last batch
which have an invalid PoW. In other words, this chain
consists of 7 valid batches and one batch with the same
property as G above. This is offline work, carried out
before choosing a victim, and reusable across victims.

2. A boots up two nodes M and W . M joins V ’s peerset.

3. M lies about its available total difficulty to get chosen
as master peer by V .

4. M instructs V to download the prediction chain, and
serves it to V . In the meantime, W joins V ’s peerset.

5. When the last batch is verified, V drops M from its
peerset with probability 50% and A learns one bit of
information. If M is not dropped, M intentionally dis-
connects from V anyway.

6. Swap M and W , and restart from Step 3.

The key observation about the above strategy is that, when
one peer gets disconnected, the other one is already in V ’s
peerset, ready to be picked as master peer for a new iteration.
During one iteration, the peer dropped in the iteration before
reconnects to V . This allows A to carry out the process by
controlling as little as two nodes in the victim’s peerset, and
by alternating them at each iteration.

That also explains why the prediction chain consists of
more than one batch: if A delays the replies to V ’s requests
for each batch of a couple of seconds, A can extend the
duration of each iteration enough to allow the dropped peer
to reconnect to V before the master peer is dropped as well.
Without enough time between iterations, both peers may be
disconnected from V at some point, which would cause V
to pick an honest peer as master and start an honest sync,
making A’s process fail. We also observe that the same
prediction chain can be repeatedly provided to V , as the
master peer decides from which block the sync starts.

Seed recovery. Let us first analyse what exactly A learns
from the above process, and then how to use this to recover
s∗. As explained, V calls Intn(100) twice per batch. Af-
ter verifying the first 7 batches of the prediction chain, the
function has been called 14 times. Thus, the bit we leak at

the first iteration is 1
{Intn(15)

s∗ (100)≥50}
, where Intn

(k)
s (x) in-

dicates the k-th call to the function Intn with input x, after
calling Seed with input s.8 Generalising, at the j-th iteration
of the leaking process (starting from j = 0) A learns the bit
b j := 1

{Intn(16 j+15)
s∗ (100)≥50}

. After A runs γ iterations, it can

build the following bitstring:

σ
∗ := (b j) j∈{0,...,γ−1}

We show that σ∗ allows A to recover s∗, provided γ is large
enough. Define:

σs :=
(

1
{Intn(16 j+15)

s (100)≥50}

)
j∈{0,...,γ−1}

∀s∈{0, . . . ,M−1}

where, recall, M := 231 − 1. Before starting the attack, A
pre-computes a large table µ : {0,1}γ → {0, . . . ,M− 1} as
follows:

µ[σs] = s ∀s ∈ {0, . . . ,M−1}

choosing γ large enough to avoid collisions, i.e.:

∀s, t ∈ {0, . . . ,M−1}, s ̸= t =⇒ σs ̸= σt .

In other words, µ is built as a reverse lookup table: for each
s ∈ {0, . . . ,M− 1}, A computes σs and then stores s at the
entry σs in the table. We empirically determined that the
minimum value for γ to avoid collisions is γ = 62.9

Finally, A recovers the reduced seed as s∗← µ[σ∗].

Practicality. The seed recovery does not pose any major
challenges in terms of practicality. First, mining the entire
prediction chain is cheap, because it builds on top of block
#0 which has a significantly lower difficulty than current
blocks, and because we can exploit the DAA to decrease the
difficulty block-by-block. The total effort to build it is on the
order of 1011 [H]. Second, we built the table µ storing Θ(γM)
bits – where γM ≈ 237 – in one day on a server using 33 cores
and ∼200 GB of RAM. Finally, learning γ = 62 information
bits takes ∼80 minutes from a remote victim (see Section 6).

Prediction of PoW validations. After recovering s∗, A starts
a longer sync with V to provide it with the real chain. In the
meantime, A forks the chain at its head Bn. W.l.o.g, assume
Bn is the last block of a batch, i.e. n≡ 0 mod 192. If it is not
the case, A can make the sync fail shortly before reaching Bn,
and start a new sync from block #ω s.t. n−ω≡ 0 mod 192.
Indeed, batch alignment is not absolute, but depends on the
first block of the sync. A can compute the number λ of calls
to Intn(100) performed by V before reaching the fork, as
λ := 2n

192 +16γ (the PRNG usage during seed recovery must
be taken into account as well). At this point, A creates a

8We write "≥ 50" and not "> 50" because outputs from Intn are 0-
indexed.

9Note that this value aligns well with a birthday-bound analysis.
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PRNG instance O from math/rand, calls Seed(s∗), and
Intn(100) λ times. Now, O is an oracle revealing which
malicious blocks will undergo PoW validation.

Attack parameters. A needs some minimum computational
resources to build a chain acceptable to V and heavier than
the honest one. Let TDA be the malicious chain’s total diffi-
culty, TDH the honest one’s when the attack terminates, and
∆ := TDA − TDH . A’s chain is heavier than the honest
chain if and only if ∆ > 0. If A’s hashrate is a fraction f of
the total honest mining hashrate RH , then its real hashrate
is RA := f RH . However, to V ’s eyes, it looks like A is min-
ing 64 times as fast, because A computes one PoW in ev-
ery 64 blocks on average. Thus, it is as if A has a hashrate
R′A := 64 f RH from the victim’s perspective. In order to have
∆ > 0, as soon as A forks the chain, A needs to produce
blocks that are acceptable to V faster than honest miners.
Thus, it must hold:

R′A > RH ⇐⇒ 64 f RH > RH ⇐⇒ f >
1
64
≈ 1.6%

which is guaranteed by assumption (A4.2).
A also needs to avoid future blocks, since these would be

rejected according to constraint (1). Given time T (in seconds)
for malicious mining, we must have:

B′n+h.timestamp−Bn.timestamp≤ T +15 (3)

As explained in Section 3 for Ghost-128, T is to some extent
under A’s control. A’s goal is to keep V from switching to
the honest chain for as long as possible. This is equivalent
to maximising ∆: the higher the advantage A gets w.r.t. the
honest chain, the longer it takes to honest miners to outgrow
A’s chain, and the longer V ’s usage of the malicious chain as
canonical. Maximising ∆ subject to constraint (3) and given
parameters f and T is an optimisation problem we analyse
and solve in Appendix A. Intuitively, ∆ increases with f
and T , although the attack cost increases as well: with more
computational power and more time to use it, A can mine a
heavier chain, yet more power means more resources. We
further go into the details of the attack cost in Section 8.

Parallelisation. Unlike Ghost-128, here the cost and re-
sources for the attack are not constant with the number of
victims. Assume A attacks v victims simultaneously. Each
victim has a distinct seed with high probability (for v≪

√
M),

and thus verifies a distinct subset of malicious blocks. A
needs to mine blocks verified by any of the victims. Assum-
ing such subsets are all disjoint (in practice there may be a few
overlaps), the effort is linear in v. Also, A requires f > v

64 .

5 The Ghost-SNaP Attack

Ghost-128 induces its victim to permanently deviate from
the honest blockchain, but requires mining each block of

the malicious fork; SNaP only needs a small fraction of
malicious blocks to be mined, but achieves only temporary
deviation from consensus. We now show how to combine
the two attacks, achieving the best of both at surpris-
ingly low cost. This makes our third attack, Ghost-SNaP,
practical for any adversary even with extremely low resources.

Adversary model. Ghost-SNaP requires the same assump-
tions as SNaP. See the adversary model in Section 4.

Overview. Let A be an adversary targeting a syncing node V ,
as in previous attacks. In Ghost-SNaP, A crafts a prediction
oracle O, exactly as in SNaP. However, instead of using O to
build a heavier chain than the honest one, A builds a lighter
chain and – apart from the last 88 blocks – mines only two
extra blocks, predicted to be PoW-validated by V . A does not
need a heavier chain because it replays an honest stateRoot
into the first malicious block in order to exploit the vulnerabil-
ity exposed by the SGSA mitigation, exactly as in Ghost-128.
However, it expends significantly lower effort due to needing
to mine only two extra blocks. The steps of the attack are:

• A boots up two nodes and let them join V ’s peerset.

• A recovers V ’s PRNG seed s∗ as in SNaP.

• Let Bn be the current, honest chain head. Define β :=⌈ n
192

⌉
, i.e., β is the number of the batch to which Bn be-

longs. Also, let η := 0. A initialises a Go PRNG instance
with s∗ and steps it forward by 16γ+2β steps.

• A uses the PRNG to generate two indices x ∈
{0, . . . ,99}, y ∈ {100,191}. Let P(a,b) be a boolean
predicate on integer variables a,b. The predicate P will
be fully defined below; as we will show, choosing it care-
fully enables A to minimise the attack cost by exploiting
the DAA. While P(x,y) is not satisfied, A increments η

by one and re-samples x,y.

• V starts to sync with one of A’s nodes as master peer. Af-
ter providing η batches from the honest chain, A makes
the sync fail, e.g., by disconnecting the master peer.

• V starts a new chain sync with A’s other node. A makes
the sync start over from block #1, and waits for block
B192β+x+2 to be mined by the network, while serving
early blocks to V .

• A forks the chain at B192β+x+1, and produces blocks
B′192β+x+2, . . . ,B

′
192(β+1), . . . ,B

′
192(β+1)+88. In particular,

it mines only B′192β+y+1,B
′
192(β+1) and the last 88

blocks. Furthermore, A sets B′192β+x+2.stateRoot =

B192β+x+2.stateRoot. In the meantime, V is fetching
early blocks.

• The sync approaches the end of the chain, and A in-
structs V to download B′192β+x+2, . . . ,B

′
192(β+1)+88 after
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B192β+x+1. The sync ends with V ’s canonical chain not
being the honest one.

V is now fully operational on the network. In particular, it will
receive block B192β+x+2. Observe that this block is behind the
head B′192(β+1)+88 by more than 128 blocks:

192(β+1)+88− (192β+ x+2) = 278− x > 128

since x < 100. Therefore, similarly to what happens in Ghost-
128, B192β+x+2 has an unknown parent state because of state
pruning. Also, B192β+x+2.stateRoot = B′192β+x+2.stateRoot.
Thus, when V processes B192β+x+2, the SGSA countermea-
sure will kick in, and the honest block will not be imported,
nor the rest of the honest chain CH . The security prop-
erty in (2) does not hold as both its clauses are unsatisfied:
¬CV(CV )∧∃CH :

(
CV(CH )∧TD(CV )<TD(CH )

)
. The at-

tack induces V to permanently deviate from consensus.
In the following, we give more detail, and in particular we

describe exactly how to minimise the computational effort
involved in the attack. This will show that Ghost-SNaP is
extremely cheap.

Batch completion. A fills up one batch with malicious
blocks. Indeed, in batch β+ 1, all blocks up to block x+ 1
are mined by the network and A only produces the remaining
ones up to block 192. This requires A to generate a PoW
only for blocks (y+1) and 192. After completing the batch,
A also mines the final 88 blocks.

Prediction correctness. Observe that V calls Intn(100)
16γ times while leaking PRNG information, 2η times when
verifying the η batches provided by A , and 2β times for the
sync up to batch β. After exactly 16γ+ 2η+ 2β steps, the
PRNG output is used to determine which malicious blocks
will be verified. On the other hand, A initialises the PRNG
and steps it forward 16γ+2β times. Then, A calls Intn(100)
twice every time η is incremented. Thus, the final x,y are
sampled after exactly 16γ+2β+2η PRNG steps, the same
as V . This shows that x,y truly mark which malicious blocks
will be PoW-validated by V .

Giving some intuition, A looks ahead in the outputs of the
victim’s PRNG to find x,y satisfying P(x,y), and then forces
V to verify more batches than necessary in order to move
forward its PRNG so that it will sample exactly x and y when
PoW-validating malicious blocks.

Effort minimisation. We define:

P(a,b) := (b−a≥ 160)∧ (b < 170).

Observe that B192β+x+1 is the last honest block and
does get PoW-validated. Recalling that c := 1 − 99

2048
and letting D = B192β+x+1.difficulty, A can set blocks in
{B′192β+x+2, . . . ,B

′
192β+y+1} so that they have timestamp dis-

tances equal to 900, in order to decrease block difficulty by a

factor of c at each block. Observe that B′192β+y+1 is the next
PoW-validated block after B192β+x+1. Thus, the first malicious
block needing a valid PoW has difficulty cy−xD. For blocks
after B′192β+y+1, A can keep decreasing the difficulty until it
reaches c192D. The remaining blocks are mined at this diffi-
culty. While one may go even lower than c192D, in practice
this makes little difference.

When P(x,y) holds, B′192β+y+1.difficulty ≤ c160D, and
B′192(β+1).difficulty≤ c182D, because y < 170 and thus there
are still at least 22 blocks in the batch to leverage the DAA af-
ter having reached difficulty c160D. Among the last 88 blocks,
we need to leverage the DAA for at most 10 blocks in order
to reach c192D. Therefore, the total effort EffA expended by
A can be upper bounded as follows:

EffA ≤
(

c160 + c182 + c183 1− c10

1− c
+78c192

)
D≤ 0.0072D

In Appendix D, we show that EffA is only 11% higher than
the theoretical minimum.

Assuming x∼U({0, . . . ,99}) and y∼U({100, . . . ,199}),
where U(S) denotes the uniform random distribution on the
set S, one can easily compute Pr[P(x,y)] = 0.55%. Thus,
E(η) = 1

Pr[P(x,y)] − 1 ≈ 181. In other words, A expects to
serve 181 ·192 = 34752 additional blocks to V , in order to
advance its PRNG up to a point where P(x,y) holds. This can
be done quickly, in a couple of minutes for a victim with
good network connectivity.

Attack parameters. Given time T for mining, A still has to
make sure no malicious blocks will be regarded as future
blocks when the sync finishes. Aiming to reduce difficulty
192 times, A needs T ≈ 192 · 900 = 172,800, that is, 48
hours. As mentioned in Section 3, the duration of the chain
sync can be easily extended to this extent. We refer to
Appendix C for more details. Based on this, A needs a frac-
tion f ≥ 0.0072D

T
13 D

≈ 5.5 ·10−7 of the total honest mining power.

Parallelisation. We can target v victims simultaneously. The
cost and effort of the attack are proportional to v similarly
to as explained in Section 4 for SNaP. In particular, A
needs a fraction f ≥ 5.5×10−7 ·v of the honest mining power.

Collaboration with the ETC Cooperative. During disclo-
sure, the ETC Cooperative detected an issue affecting Ghost-
SNaP, which did not manifest in our tests reported in Sec-
tion 6. The issue caused V to exit from the malicious fork
only a couple of minutes after the attack completion. We fixed
this in our code: now, V is guaranteed to stay on the malicious
chain for about 45 days, which by far exceeds any amount
of time A may need to practically cheat V . Nevertheless, A
can extend this time frame if needed, by interacting with V
periodically. The fix requires a 6% increase in EffA , and no
other additional costs. Ghost-128 is similarly affected by the
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issue and can be similarly fixed, with a 0.6% increase in EffA .
Details can be found in the full version of the paper.

6 Experimental Validation

In order to prove the practicality of our attacks, we set up a
testing environment to simulate them. Below, we describe our
methodology and results.

6.1 Methodology
Blockchain and state. Experimenting with the mainnet
Ethereum blockchain and state is excessively costly: more
than 16 million blocks and approximately 600 million state
accounts make up a Go Ethereum database of 500-600 GB, to
replicate on each node we need to simulate. For this reason,
we built our own custom blockchain, with 2 million blocks
and 80 million transactions overall, generating 80 million
accounts in the resulting state. Our nodes database size is
about 50 GB, more manageable for simulation purposes. All
blocks have a difficulty D = 216, making it feasible to mine
on a modern server.

Test network. We use AWS [1] to set up a private Ethereum
test network. We used four t3.xlarge EC2 instances:

• Instance I1 hosts the software to run the adversary, the
two malicious peers and the seed recovery table.

• Instance I2 hosts 2 honest nodes, of which one mines
blocks on our custom chain. Its hashrate RH represents
the total honest mining power in the network.

• Instance I3 hosts 2 other honest nodes.

• Instance I4 hosts the victim node.

I1, I2, I3 are located in Frankfurt. I4 is located in Ireland, in
order to assess our attacks on a truly remote victim. I2 and
I3 run geth-v1.10.21, and I4 runs geth-v1.10.23, one of
the last Go Ethereum versions supporting pre-Merge chain
sync. We modified both distributions to reduce the minimum
allowed block difficulty from 217 to 200. On one hand, this
is necessary to prevent our custom blockchain from being
rejected, since its blocks have difficulty D = 216, as well as to
allow the adversary to leverage DAA and reduce its mining
effort; on the other hand, this modification does not affect the
realism of our simulations. I1 runs adversary code.

Hashrate limiting. In the above setting, RH depends on the
hardware and workload of I2, which makes it unpredictable
and subject to changes. To give us more control over the sim-
ulations, we modified the geth distribution on I2, so that we
can set RH to a constant. By implementing hashrate limiting,
we can choose any value R below the real hashrate of I2 and
make sure RH = R. This is particularly helpful to simulate an

attacker supposed to have a hashrate equivalent to a fraction
f of RH , since we can explicitly limit its hashrate to ⌊ f R⌋ in
the adversary code. We choose R = 5200, so that a new block
is mined every D

R ≈ 13 seconds on average.

6.2 Tests and Results
Seed recovery. We ran SNaP, recovering the correct seed
from the remote victim 10 out of 10 times. By delaying
replies to the victim, we allow 80 seconds on average to
malicious peers for each recovered bit of information, thus
the average time to complete the seed recovery phase is
82 minutes. Lower delays would make seed recovery fail
in some cases, due to insufficient time for a dropped peer
to reconnect to the victim before the other peer is dropped
as well. The seed recovery phase is the most prone to
errors, because of the repeated peer disconnections and the
fine-grained peer alternation it requires. Nevertheless, our
results show that it is consistently stable.

End-to-end Ghost-SNaP simulation. We ran the full Ghost-
SNaP attack, from choosing a suitable victim, through seed
recovery, malicious mining and up to observing the victim
deviate from consensus permanently. We used parameters
f = 0.01 and T = 36,000. The attack completed successfully.

7 Countermeasures

Ghost-128. The current countermeasure to SGSA is what
enables Ghost-128. Updating the code to mitigate SGSA,
whilst avoiding introducing any new vulnerabilities, would
require a redesign of the block import logic in Go Ethereum
and careful testing. Instead, we propose a patch that prevents
Ghost-128 while keeping the SGSA countermeasure as is.

Let N be a synchronising node adopting snap sync, M
the chosen master peer, and tM the total difficulty announced
by M . Our proposal is to check – periodically during the
sync – the total difficulty available at each of N ’s peers, and
raise an error if there is at least one peer P announcing a total
difficulty t s.t. t− tM ≥ 10D, where D is the block difficulty
at P’s head. As explained in Section 2, the error causes a
new master peer to be chosen. We observe that this additional
check makes the sync fail in more cases than before, thus
potentially allowing a peer to maliciously force a sync failure.
However, in Go Ethereum as it stands, any peer can already
make N ’s sync fail by simply providing a block with an
invalid PoW. Thus, our proposal does not pose any new threats
to a synchronising node. On the other hand, it mitigates Ghost-
128 for adversaries whose hashrate f expressed as a fraction
of the total honest hashrate satisfies f < 2

3 . Indeed, assume
an adversary A is attempting a Ghost-128 attack. Denote by
D the difficulty at the fork block, and by θ the total difficulty
at the same block. As described in Section 3, the minimum
total difficulty of the malicious fork is 20D. After A has
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mined τA ≥ 20D, honest nodes have mined τ = τA
f on the

honest fork. Thus, while A has a total difficulty tA = θ+ τA ,
there are nodes on the network with total difficulty t = θ+ τ.
Since t − tA = (θ+ τ)− (θ+ τA) = τ− τA = τA(

1
f − 1) >

20D ·( 3
2−1) = 10D, our mitigation kicks in and A is dropped

as master peer before the attack can complete. Observe that it
is unlikely to have adversaries with f ≥ 2

3 .
In conclusion, we claim that our mitigation does not

affect the performance of syncing nodes in an honest setting.
Indeed, it is unlikely for a node to miss the latest 10 or more
blocks because of delays in the propagation of blocks through
the network. Therefore, it is unlikely that an honest master
peer is dropped because of our countermeasure. Experimental
results support our claim: we ran an honest snap sync on the
ETHW network with a version of Geth patched as described,
and the sync completed successfully in less than 24 hours.

SNaP. Fixing SNaP is straight-forward. Our mitigation
simply consists of replacing the usage of math/rand
in the probabilistic header verification algorithm with
crypto/rand. We ran an honest snap sync on the ETHW
network with a version of Geth patched like this, and the
sync completed successfully in less than 24 hours. We also
monitored the overall wall time taken by the generation
of random values for the probabilistic PoW verification,
and we got an outcome of 558 ms. Thus, using a cryp-
tographically secure PRNG does not affect performance at all.

Ghost-SNaP. The Ghost-SNaP attack is mitigated as soon as
the previous attacks are.

8 Economics

We first discuss the costs incurred to run our attacks. Then,
we show how the attacks can be used to make financial gains.

8.1 Costs
Our three attacks all have a cost made of two components:
namely, a loss of rewards and a cost for necessary resources.

Loss of rewards. For the time of malicious mining, the
adversary’s resources are busy when they could have been
used for honest mining. Every time an honest block is mined,
it produces a block reward for the miner, in terms of ether
(symbol: Ξ), the Ethereum native cryptocurrency. This means
that the adversary is giving up those rewards. As an example,
the loss of rewards for a Ghost-SNaP adversary taking 48
hours away from honest mining is about 0.015 Ξ. We report
more figures for our attacks in Appendix B, where we also
give more detail on how the loss of rewards is computed.

Resources. In order to mine the malicious chain, adversaries
need computational resources, which depend on the minimum

fraction fmin of the total honest hashrate RH necessary for the
attack, and RH itself. Since Ethereum mining uses GPUs, we
focus on measuring the adversary’s needs in the same terms.

As an example, Ghost-SNaP requires fmin = 5.5 · 10−7,
and the ETC network has a total hashrate RH ≈ 121 TH/s.
Thus, the adversary needs hashrate RA ≥ fmin ·RH ≈ 67 MH/s.
Since one NVIDIA GeForce RTX 3090 GPU has a hashrate of
about 121 MH/s, launching Ghost-SNaP on the ETC network
requires about half a GPU. For ETHW, the figure is only 0.07
GPU. One such GPU costs around 1,800 USD.

Ghost-128 and SNaP have a much higher fmin, so they re-
quire considerably more GPUs. However, there do exist mul-
tiple miners in the ETC and ETHW networks having enough
resources to launch these attacks, and such miners existed for
pre-Merge Ethereum too.10 Other potential threat actors are
colluding or bribed miners [22], and even large organisations
not involved in the mining business. Also, resources can be
rented from cloud providers; renting 1% of the total ETHW
hashrate on AWS for 12 hours costs about 5,000 USD. We
give full data on the resources needed for each attack on the
ETH (pre-Merge), ETC and ETHW networks in Appendix B.

8.2 Cashing Out
We briefly present a few ideas on how an adversary A
can use our attacks against a victim V to make financial gains.

Off-chain trading. If V sells some item which lives outside
of Ethereum and accepts payments in ether, A can simply
issue a transaction to transfer the necessary amount of ether
to V ’s address, and include it in the malicious chain. V
will see the transaction in its canonical chain, accept the
payment, and deliver the item to A . The block difficulty
at the malicious chain head is low enough to easily mine
new blocks on top of it. So A can include the transaction
in the malicious chain even after the attack has completed,
including further blocks as confirmations, and making V
more likely to accept the payment. Since this transaction is
on the fake chain and involves fake ether, A’s real balance
on the honest chain remains unchanged. This is an example
of double spending. A can also tamper with the Ethereum
state, so he can assign any arbitrary value to his balance and
perform fake payments for any amount of ether.

Arbitrary code execution. A transaction to call a function of
a smart contract includes the address of the smart contract, the
name of the function, and its input, but no cryptographically
secure reference to the actual code that will be executed. For
this reason, A could mount an attack as follows:

• A loads a smart contract S with an arbitrary, malicious
function f into the honest Ethereum state. S will be
assigned some address x in the state tree. As an example,
f may transfer money to A’s balance.

10ETC and ETHW live statistics: https://miningpoolstats.stream.
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• A loads another smart contract S′ with an honest-looking
function f ′ into the malicious Ethereum state, at address
x. Since A can build an arbitrary state, he can also choose
at which address S′ is loaded. f and f ′ must have the
same name and the same input list, but they can have
different code. As an example, f ′ may transfer money to
a charity organisation.

• The victim is induced to call f ′ from S′ (possibly through
social engineering), and signs a transaction to do so.

Although the state is fake and the victim’s decision to sign
a transaction is based on fake information, the signature is
perfectly valid. A can broadcast the signed transaction to
miners on the honest chain. They accept it and include it in an
honest block. In fact, this causes f to be executed. So A has
deceived the victim by making her believe that she was calling
f ′, but instead she authorised a call to f from her account.

9 Alternative Scenarios

Although our focus has been on syncing nodes starting from
an empty chain, and on the most used client Go Ethereum, in
this section we briefly discuss alternative scenarios.

Partially synced nodes. Whether our attacks extend to Geth
nodes which have already downloaded a part of the blockchain
depends on a number of factors. Let Bn be the honest chain
head, V a victim node already synced up to Bs (with s < n),
and A an adversary. Firstly, it is always possible for a node
to interrupt another node’s sync, as long as the nodes are
peers. Thus, A can stop an ongoing sync of V and force it
to choose A as master peer for the next sync. For Ghost-128,
A’s strategy to run the attack requires no substantial changes:
A serves blocks to V starting from Bs+1 instead of B1, and
otherwise behaves as per Section 3.

Regarding SNaP and Ghost-SNaP, the difference from
our original setting lies in the prediction of PoW-verified
blocks. A can entirely roll back V ’s chain, and make use of
the same prediction chain described in Section 4 to induce V
to leak a bitstring σ∗. However, σ∗ will exist as a key in the
seed recovery table µ if and only if V ’s PRNG is in its initial,
post-seeding state when A starts the seed recovery part of
the attack. We distinguish two reasons why V is partially
synced: either a user started V and stopped it before the sync
was completed, only to resume it now; or A takes over a
running sync as described above. In the former case, since V
has just rebooted, its PRNG has just been initialised with a
new seed. A can successfully complete either a SNaP or a
Ghost-SNaP attack as described in Sections 4 and 5. In the
latter case, the PRNG is no longer in its initial state because
it has been used to verify blocks up to Bs. Although A can
approximately guess the number ρ of calls to the PRNG
as ρ ≈

⌊ 2s
192

⌋
, seed recovery is clearly harder. Offline work

is needed to build a much bigger seed recovery table; this
would represent only part of the necessary work, since online
work would also be needed due to ρ changing on a per-victim
basis. The higher space and time complexity makes PRNG
state recovery infeasible with the techniques we employ in
SNaP. However, because the PRNG is not cryptographically
secure, cryptanalysis may reveal other, feasible ways to
predict verified blocks. So, while our SNaP and Ghost-SNaP
attacks do not extend naturally to this setting, variants of the
attacks may exist.

Other clients. Before the Merge, the second and third most
used Ethereum clients were Erigon and Besu. Their imple-
mentations of the block import and state storage mechanisms
differ from Geth. In particular, there is no concept of SGSA.
Thus, Ghost-128 and Ghost-SNaP are obviously not applica-
ble to them. In addition, all PoWs are verified in Erigon chain
sync. It is therefore slower than Geth, but safe against ran-
domness prediction attacks. On the other hand, Besu employs
a probabilistic verification of headers based on the insecure
java.util.Random class. While building a seed recovery
table for Besu is impractical due to the longer 48-bit seeds
used by this class, the PRNG it offers may present other weak-
nesses making a variant of SNaP possible.

10 Conclusion

It emerges from our work that Go Ethereum failed to deploy
a secure chain sync mechanism. It is instructive to examine
how and why this happened.

Trusting a master peer. One of the core principles of
blockchains is trustlessness. Despite this, Go Ethereum
opted for a fully trusted chain sync mechanism, in which a
synchronising node’s master peer can control the node’s sync
process in a variety of ways. Furthermore, being chosen as
master peer is as easy as making a fake announcement about
the total difficulty locally available. Even assuming this was
harder to do, the fundamental issue is that a synchronising
node trusts a single peer to lead its sync, despite having a
whole set of peers which could serve information.

Prioritisation of performance over security. The conflict
between performance and security is an age-old problem.
Go Ethereum is just another example where performance
prevails. One of the core principles of blockchains is to
have everyone verify all information, and the Ethereum
specification [26] explicitly states that all PoWs must be valid
in order to accept a chain. Despite this, Go Ethereum opted
for a partial header verification mechanism, neglecting both
the principle and the specification.

Lack of security awareness. Web3 is a new, dynamic and
fast-paced environment in which information security aware-
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ness is arguably less mature than in more established software
engineering environments.11

One of the two key vulnerabilities we found derives from
the countermeasure to another attack. When security fixes are
made without proper formal analysis, the outcome can be very
far from expectation: in this case, fixing one attack enabled
another, much worse, one. The other key vulnerability we
found stems from use of a cryptographically insecure PRNG
in an adversarial setting. Code comments indicate that this
was not an oversight, but a design choice.12 Again, this shows
a lack of security awareness.

We invite developers and stakeholders of blockchain tech-
nologies to commission assessments by security experts, as
blockchain adoption can only succeed if sufficient trust can
be placed in it by its users.
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A An Optimisation Model for SNaP

In SNaP, the adversary A has to choose how many blocks to
build and how to build them, given an upper bound on the
time available for the attack, and aiming to maximise the mali-
cious chain’s total difficulty. This is not a straightforward task.

Notation. We now introduce the notation to formalise the
problem. Let RA and RH be the adversary’s hashrate and the
total honest hashrate, respectively. Let f := RA

RH
, and let T be

the time available for the attack, expressed in seconds. Also,
let Bn be the fork block, B′n+1, . . . ,B

′
n+h be the h malicious

blocks mined on top of Bn by A in time T , and Bn+1, . . . ,Bn+w
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be the w blocks mined on top of Bn by honest miners in time
T . We define:

TDA :=
h

∑
j=1

B′n+ j.difficulty ; TDH :=
w

∑
j=1

Bn+ j.difficulty

∆ := TDA −TDH .

In words, TDA and TDH denote the total difficulty of the
malicious and honest branches of the fork, respectively, and ∆

the adversary’s advantage. We denote by EffA the sum of the
difficulties of the malicious blocks for which A computes a
valid PoW, and we let D := Bn.difficulty. Finally, we define:

δk :=B′n+k.timestamp−B′n+k−1.timestamp ∀k∈{1, . . . ,h}

Constraints. A’s goal is to maximise TDA , as A has no
control over TDH . Given the parameters f and T , A must
satisfy two constraints:

• Effort constraint: since both the time and computational
resources available to A are limited, EffA is limited as
well. In particular, it must hold EffA ≤ RA T . We have
RA = f RH , and we can approximate RH = D

13 , since
we know that the DAA keeps the mining time on an
average of 13 seconds. Therefore, the first constraint for
the optimisation problem is:

EffA ≤ f D
T
13

(4)

• Timestamp constraint: blocks with a timestamp in the
future are discarded by Go Ethereum nodes. There-
fore, A has to make sure that B′n+h.timestamp is
not in the future when the victim receives the mali-
cious blocks. Since this happens after time T from
the start of the attack, we can write the constraint as
B′n+h.timestamp−Bn.timestamp≤ T or, recalling our
definition of (δk)k∈{1,...,h}:

h

∑
j=1

δ j ≤ T (5)

The question then becomes how to choose (δk)k∈{1,...,h} in
order to maximise ∆ subject to constraints (4) and (5).

A naïve approach. A may decide to set δk = 13 for
all k ∈ {1, . . . ,h}. However, observe that this would allow
h =

⌊ T
13

⌋
blocks to fit in the time window T , all with difficulty

D. Therefore, TDA ≈ T
13 D. Honest miners also produce one

block every 13 seconds on average, therefore w ≈ T
13 and

TDH ≈ T
13 D as well, assuming honest block difficulty stays

constant, which is approximately true. In conclusion, such
choice for (δk)k∈{1,...,h} would give ∆≈ 0. For this reason, A
needs a more sophisticated method for choosing (δk)k∈{1,...,h}.

Model. We introduce now our optimisation model. Firstly, we
limit A to produce an integer number ℓ ∈N of batches, plus
88 blocks. In other words, we impose h = 192ℓ+88. This is
because V verifies three PoWs per batch during snap sync,
but verifies each PoW of the last 88 blocks. Therefore, such
choice simplifies the analysis which will follow. Secondly,
we define two more integer variables m ∈ {0, . . . ,192} and
q ∈ {1,2,4,8,16,32,64}. At this point, A sets:

δk =


9 if k ≤ 192ℓ−m∧ k ̸≡ 0 mod q
1 if k ≤ 192ℓ−m∧ k ≡ 0 mod q
900 if 192ℓ−m < k ≤ h−88
9 if k > h−88

Let us provide some intuition for this choice. We set δk = 9
most of the time. This is the lowest value we can use to keep
the difficulty unchanged. However, once every q blocks, we
set δk = 1, which makes the difficulty increase by a factor
of u := 1+ 1

2048 , according to the DAA (see Section 2). This
is advantageous for two reasons: compared to what honest
miners do, it allows to squeeze more blocks into the time
window T , and each block has a difficulty equal or higher than
D. More blocks with a higher difficulty imply TDA > TDH
in the end. Of course, an increasing difficulty implies an
increasing mining effort by A . However, this is not an issue,
since with a higher effort comes a higher total difficulty. It
becomes an issue when A comes to mining the last 88 blocks:
at that point, A would need to expend computational effort
for each of them – and they even have a difficulty higher than
D – so this is undesired. This is why, in our definition of
(δk)k∈{1,...,h}, we have m blocks before the last 88 for which
we set δk = 900, making the difficulty decrease by a factor
of c = 1− 99

2048 at each block. In this way, block difficulty
drops quickly before A reaches the point when partial PoW
verification is turned off in favour of full verification.

We now formalise the model. We change the notation for
TDA into TDA(ℓ,m,q) as the total difficulty depends on these
three variables. Similarly, let EffA(ℓ,m,q) be the total effort
expended by A , and Time(ℓ,m,q) := ∑

h
j=1 δ j. Finally, we

denote the batch size by β, i.e., β := 192. Figure 3 reports
the analytical expressions for TDA(ℓ,m,q), EffA(ℓ,m,q) and
TimeA(ℓ,m,q). The first two expressions are derived by ap-
plying the DAA. For EffA(ℓ,m,q), we assume for simplic-
ity that the PoW-validated blocks within a batch are always
blocks 64, 128, and 192.

In conclusion, maximising ∆, subject to constraint (4) and
constraint (5) and given parameters f and T , reduces to solv-
ing the following optimisation problem:

max TDA(ℓ,m,q)

s.t.


EffA(ℓ,m,q)≤ f D T

13
Time(ℓ,m,q)≤ T
ℓ > 0, 0≤ m≤ β, q|64
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TDA (ℓ,m,q) = D ·

(
qu · 1−u⌊(βℓ−m)/q⌋

1−u
+

+(q− (m mod q)) ·u⌊(βℓ−m)/q⌋+1 ·1{m ̸≡0 mod q}+

+u⌈(βℓ−m)/q⌉ · c · 1− cm

1− c
+88 ·u⌈(βℓ−m)/q⌉ · cm

)

EffA (ℓ,m,q) = D ·

(
u

64
q · 1−u

64
q ⌊(βℓ−m)/64⌋

1−u
64
q

+

+u
⌈

βℓ−m
q

⌉
· c(m mod 64)+64·1{m≡0 mod 64} · 1− c64⌈ m

64 ⌉

1− c64 +

+88 ·u⌈(βℓ−m)/q⌉ · cm

)

Time(ℓ,m,q) = (1+9(q−1))
⌊

βℓ−m
q

⌋
+

+
(

1+9(q−1− (m mod q))
)
·1{m ̸≡0 mod q}+

+900m+88 ·9

Figure 3: Analytical expressions of the quantities relevant to
our SNaP optimisation model.

Solving. A can solve the optimisation problem by exhaustive
search, thanks to the small size of the domains for m and q,
and because empirical observations show that ℓ < 500 even
for large values of f and T . We tested many practical choices
of the parameters f ,T on an ordinary personal computer: we
always found a solution in a few seconds.

Consideration. The need for a sophisticated optimisation
exploiting the DAA stems from the timestamp constraint in
(5). Without it, the naïve approach described above would
provide meaningful values for ∆, and is therefore a good base-
line for comparison with our model’s performance. With most
practical choices of f and T , our model achieves values of ∆

comparable to what the naïve approach would achieve without
imposing the timestamp constraint, and sometimes even out-
performs it. This empirically validates our model: designed
to work around the limitations imposed by the timestamp
constraint, it serves its purpose very well.

B Cost Figures

Loss of rewards. In Ethereum, every block reward consists of
2 Ξ. In addition, miners earn transaction fees, which average
to 0.1 Ξ per block. Thus, every block gives about 2.1 Ξ to
the successful miner. During the run of one of our attacks, an
adversary A expends computational effort EffA for malicious
mining, instead of expending it honestly. Therefore, the
expected Loss of Rewards the adversary incurs – expressed in
Ξ – is given by LoRA := 2.1EffA

D , where D is the difficulty of
the honest chain head. Table 1 illustrates the loss for the three

Attack EffA LoRA [Ξ]
Ghost-128 20D 42

SNaP 86.5D 182
Ghost-SNaP 0.0072D 0.015

Table 1: Rewards (in ether) an adversary gives up when
launching each of our attacks. The values for EffA are typical
for each attack. Note that the reward expressed in ether is in-
dependent of the network (ETH (pre-Merge), ETC, ETHW).

attacks, using for each typical values of EffA . In particular,
for Ghost-128 and Ghost-SNaP, we consider the same values
of EffA discussed in Section 3 and 4. Instead, for SNaP we
consider as a realistic example an adversary with f = 5%,
T = 22,500, and which mines according to the strategy
explained in Appendix A. Such adversary has an advantage
∆ ≥ 209, i.e., at least 45 minutes to cheat his victim. This
requires effort EffA = T

13 f D≈ 86.5D.

Resources. As mentioned in Section 8, the computational
resources our attacks require vary according to the total net-
work honest hashrate RH and the minimum required fraction
fmin of RH . RH depends on the specific network in which the
attack is run, while fmin depends on the specific attack. We
refer to Table 2 for an overview. For the ETH network, we
report a typical hashrate value in the 3rd quarter of 2022, i.e.,
before the Merge.13 For the ETC and ETHW networks, we
report the hashrates at the time of writing.14

Network RH [TH/s]
ETH 950
ETC 121.1

ETHW 17.1

Attack fmin

Ghost-128 0.0023
SNaP 0.016

Ghost-SNaP 5.5 ·10−7

Table 2: Total hashrate of Ethereum-based networks (left),
and the minimum fraction of it necessary to carry out our
attacks (right).

In Ethereum, powerful GPUs are used for mining. There-
fore, it is instructive to know how many GPUs an adversary
needs to carry out our attacks, the market value of such GPUs,
and the cost of the electricity they consume per day. An al-
ternative to buying GPUs and paying for electricity is to bear
the cost of renting computational power in the cloud. Tables
3, 4 and 5 supply this information for each attack, in each of
the three major networks.

We assume one GPU has a hashrate r = 121 MH/s, which
is the nominal hashrate for one NVIDIA GeForce RTX
3090 GPU. We also assume that one such GPU has a value
v = 1,800 USD, which reflects market reality at the time of
writing. Finally, we assume that its power consumption cor-

13Data retrieved from https://etherscan.io/chart/hashrate.
14Data retrieved on January 3, 2023 from https://2miners.com.
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Network #GPUs Market
value [$]

Electricity
cost [$/day]

Rental cost
[$/day]

ETH 18,058 33M 30k 139k
ETC 2,302 4.1M 3.8k 18k

ETHW 326 587k 548 2.5k

Table 3: Overview of the resource costs to run Ghost-128 in
the major Ethereum-based networks.

Network #GPUs Market
value [$]

Electricity
cost [$/day]

Rental cost
[$/day]

ETH 125,620 226M 211k 964k
ETC 16,014 29M 27k 123k

ETHW 2,262 4.1M 3.8k 17k

Table 4: Overview of the resource costs to run SNaP in the
major Ethereum-based networks.

responds with its thermal design power p = 350 W, and we
consider a price of electricity g = 0.20 USD/kWh. The num-
ber of required GPUs is computed as fminRH

r , the market value
as fminRH

r ·v, and the electricity cost per day as 24g · p · fminRH
r .

For the rental cost per day, our reference is the g4ad.xlarge
AWS instance in the Canada region.

C Extending Chain Synchronisation Time

Typically, a Geth node joining the ETH, ETC or ETHW
network takes 12-24 hours to complete its first sync using
snap mode, i.e., to complete the download and verification of
the Ethereum blockchain and state. As shown in Section 3,
this time is an upper bound on the time T that the adversary
A , defined in our attacks, has available to mine the malicious
chain, then served to the victim V . Here, we provide two
ideas by which A can delay V ’s chain sync, aiming to obtain
a larger value for T . This enables A to use fewer resources or,
in the case of SNaP, build a heavier malicious chain.

Delaying replies. In our attacks, A acts as master peer during
V ’s chain sync. In particular, V sends queries to A to know
which blocks have to be fetched. A can extend V ’s sync time
by introducing delays in the replies to these queries.

In more detail, in order to download one batch of 192
blocks, V sends two non-concurrent queries to A . Denot-
ing by τ the time (in seconds) that A waits before replying
to each query, and by n the length of the blockchain, A can
delay V ’s chain sync by χ := 2τ

⌈ n
192

⌉
seconds.

Pre-Merge ETH, ETC and ETHW all have n≈ 1.6×107.
In order to extend chain sync to 48 hours, assuming the sync
would last 12 hours without adversarial delays, we must have
χ = (48−12) ·3600, i.e., τ≈ 0.778. Therefore, chain syncs
lasting two days are easily achievable by replying to each
query with a delay of less than one second.

Network #GPUs Market
value [$]

Electricity
cost [$/day]

Rental cost
[$/day]

ETH 4.3 7,800 8 34
ETC 0.55 990 0.93 5

ETHW 0.07 125 0.12 0.60

Table 5: Overview of the resource costs to run Ghost-SNaP
in the major Ethereum-based networks.

Geth nodes set timers to the queries they send out. If a timer
for a query sent to the master peer fires, the peer is dropped.
This would make any of our attacks fail and force A to start
over. Timers are never set below 6 seconds. Thus, values
of τ smaller than one second do not significantly affect the
probability of incurring errors, especially when A and V are
connected through a network delivering good performance.

This strategy works well with any of our three attacks.

Stateless peers. In snap sync, a syncing node N queries all
of its peers to fetch the pivot state, as outlined in Section 2. If
a peer replies with an empty response, N marks it as stateless.
N sends the next requests only to non-stateless peers. If all
peers are stateless, the state download remains idle, without
raising errors (which may be considered a bug). Also, a snap
sync does not terminate until the state is fully downloaded.

In our attacks, recall A is V ’s master peer: if A pretends
no new blocks are being mined on the blockchain, V will not
notice the pivot is getting old. In a short time, all nodes in the
network will delete the state at V ’s stalling pivot because of
state pruning (see Section 3). Then, the state download will
stop, and the sync will not complete until A announces new
blocks causing a pivot update. Since no error is raised, A can
carve out as much time as it wants.

This strategy works with Ghost-128 and SNaP, but does not
work with Ghost-SNaP, due to implementation-level details.

D Optimality of the Ghost-SNaP Attack

One may argue that the strategy given for minimising the cost
of the Ghost-SNaP attack in Section 5 might not be optimal,
and in particular that there may be a better predicate than
P(a,b). However, we observe that with any other strategy
an adversary A would still need to mine the last 88 blocks,
always verified by the victim. Also, the lowest difficulty reach-
able with no more than one malicious batch is c192D, where
D is the difficulty at the fork block. Thus, the minimum effort
Effmin that A may ever reach is lower bounded by:

Effmin ≥ 88c192D≥ 0.0065D

while we achieved EffA = 0.0072D. This is only 11% higher
than the theoretical minimum. So while one could propose
some other predicate to replace our chosen predicate P(a,b),
this would not give a significant cost reduction in practice.
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