
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Cookie Crumbles: Breaking and Fixing
Web Session Integrity

Marco Squarcina, TU Wien; Pedro Adão, Instituto Superior Técnico, ULisboa,
Instituto de Telecomunicações; Lorenzo Veronese and Matteo Maffei, TU Wien

https://www.usenix.org/conference/usenixsecurity23/presentation/squarcina

Cookie Crumbles: Breaking and Fixing Web Session Integrity

Marco Squarcina
TU Wien

Pedro Adão
Instituto Superior Técnico, ULisboa

Instituto de Telecomunicações

Lorenzo Veronese
TU Wien

Matteo Maffei
TU Wien

Abstract
Cookies have a long history of vulnerabilities targeting
their confidentiality and integrity. To address these issues,
new mechanisms have been proposed and implemented in
browsers and server-side applications. Notably, improvements
to the Secure attribute and cookie prefixes aim to strengthen
cookie integrity against network and same-site attackers,
whereas SameSite cookies have been touted as the solution
to CSRF. On the server, token-based protections are consid-
ered an effective defense for CSRF in the synchronizer token
pattern variant. In this paper, we question the effectiveness of
these protections and study the real-world security implica-
tions of cookie integrity issues, showing how security mecha-
nisms previously considered robust can be bypassed, exposing
Web applications to session integrity attacks such as session
fixation and cross-origin request forgery (CORF). These flaws
are not only implementation-specific bugs but are also caused
by compositionality issues of security mechanisms or vul-
nerabilities in the standard. Our research contributed to 12
CVEs, 27 vulnerability disclosures, and updates to the cookie
standard. It comprises (i) a thorough cross-browser evaluation
of cookie integrity issues, that results in new attacks originat-
ing from implementation or specification inconsistencies, and
(ii) a security analysis of the top 13 Web frameworks, expos-
ing session integrity vulnerabilities in 9 of them. We discuss
our responsible disclosure and propose practical mitigations.

1 Introduction

HTTP cookies are the oldest and most widely used mecha-
nism for state sharing between Web clients and servers. They
are a cornerstone of Web sessions and play a crucial role in
the authentication and authorization of users. Despite their
prominence in Web applications, cookies have a long history
of vulnerabilities and several known pitfalls [41,44,64,76,89].

Entire classes of attacks revolve around compromising ei-
ther the confidentiality or the integrity of cookies [48]. For
instance, session hijacking attacks aim to leak the value of

a session cookie (e.g., via cross-site scripting) and use it to
obtain unauthorized access to a website [72]. Session fixation
attacks involve compromising cookie integrity to force an
attacker-controlled cookie in the victim’s browser, and then
impersonate the victim on the target website [61]. Cross-site
request forgery (CSRF) attacks, instead, are a typical session
integrity violation problem where the attacker issues cross-
site requests from the victim’s browser to execute unwanted
actions on a website in which the victim is authenticated [41].

In response to these attacks, new mechanisms have been
proposed on both the client and the server side. On the client
side, major browsers now support the updated cookie standard
RFC6265bis [50] which includes extended security features
compared to the original RFC from 2011 [39]. A notable
example is the SameSite attribute, which has been touted
as a robust solution against CSRF attacks [58, 59]. Other
changes focused on strengthening cookie integrity against
same-site and network attackers, with improvements to the
Secure flag and the introduction of __Host- and __Secure-
cookie name prefixes [69]. On the server side, traditional pro-
tections against CSRF attacks include the usage of a secret
token shared between browsers and servers [41]. This ap-
proach has been widely adopted by popular Web frameworks
and considered an effective defense in the synchronizer token
pattern variant [62, 71].

In this paper, we question the effectiveness of existing pro-
tections and study the real-world security implications of
cookie integrity issues. In particular, we focus on network
and same-site attackers [44], a class of attackers increasingly
becoming a significant threat to Web application security [78].
We show how security mechanisms considered to be robust
against these threat models can be bypassed, exposing Web ap-
plications to session integrity attacks such as session fixation
and cross-origin request forgery (CORF). We suggest that
these vulnerabilities are due to compositionality challenges
between Web standards, browsers, and servers, and we pro-
pose a set of countermeasures to reconcile these issues. Over-
all, our research contributed to 12 CVEs, 27 vulnerability dis-
closures, and updates to the RFC of the cookie standard [50].

USENIX Association 32nd USENIX Security Symposium 5539

We identified novel attack vectors that bypass modern cookie
protections and precisely characterize a class of attacks called
CORF token fixation that highlights weaknesses in current
CSRF protections. We performed a systematic security analy-
sis of the top 13 Web frameworks, exposing session integrity
vulnerabilities in 9 of them. We showed that these vulnerabil-
ities are not only implementation-specific bugs but are caused
by compositionality issues of security mechanisms or flaws in
the standard. We also discussed the response of developers to
our responsible disclosure and proposed mitigation strategies
to improve the security of the Web ecosystem.

Contributions. Our contributions are summarized as follows:

• We extend the work of Squarcina et al. [78] to propose a
taxonomy of threat models that describes network and
same-site attackers in terms of their capabilities and
goals (Sec. 3).

• We perform a thorough cross-browser evaluation of
known cookie integrity attacks and introduce new at-
tacks classified along 4 different categories: serialization
collisions due to nameless cookies, server-side parsing
vulnerabilities, cookie jar desynchronization issues, and
broken composition of (compliant) parsers. We present
our methodology and discuss the result of a measurement
study on nameless and prefixed cookies (Sec. 4).

• In Sec. 5, we precisely define the class of CORF to-
ken fixation attacks which captures known and novel
bypasses of real-world CSRF protections, including the
synchronizer token pattern which is considered robust
against same-site and network attackers.

• Sec. 6 presents a systematic security analysis of the top
13 Web frameworks, exposing CORF and session fixa-
tion vulnerabilities in 9 of them. We discuss the response
of developers to our responsible disclosure and propose
a set of practical countermeasures to prevent our attacks.

• We formally verify the correctness of our proposed
mitigation to the synchronizer token pattern using the
ProVerif protocol verifier [42] (Sec. 7).

We publish all artifacts developed during this research, includ-
ing the browser test suite (Sec. 4.3), the dataset and processing
code of our measurement (Sec. 4.4), the ProVerif models and
scripts (Sec. 7), as well as the reproducible proof-of-concept
attacks against Web frameworks (Sec. 6) [77].

2 Background

In the following, we provide an overview of cookie attributes,
including existing mechanisms for cookie integrity, and CSRF
protections. We first revise standard notions such as origins
and sites being instrumental to the rest of the paper.

2.1 Origins and Sites
The same-origin policy (SOP) [40] defines the traditional
Web security boundary between websites. The SOP is based
on the notion of origin, defined as a tuple of scheme, host,
and port. For instance, the origin of https://example.com:443
is <https, example.com, 443>. The SOP prevents an origin
from reading or modifying the contents of a different origin.
However, some components of the Web platform have a differ-
ent scope. Cookies, for instance, are scoped to the registrable
domain of the website that set them. A registrable domain is a
domain name with one label on the left side of an effective top-
level domain, as defined by the Public Suffix List (PSL) [66].
Hosts sharing the same registrable domain are considered
to be same-site, e.g., example.com, auth.example.com, and
api.staging.example.com all belong to the same site exam-
ple.com. Same-site hosts are also called sibling domains.

In recent years, the definition of same-site evolved to in-
clude the URL scheme [84]. Hence, sibling domains with
different schemes are considered same-site, but not schemeful
same-site. To avoid ambiguities, we maintain both terminolo-
gies and refer to same-site only when the scheme is irrelevant.

2.2 Cookies
Cookies are the main state management mechanism of the
Web, allowing servers to maintain a stateful session over the
stateless HTTP protocol [50]. Servers can set a cookie in the
browser through the Set-Cookie header. This cookie is then
automatically attached by the browser to all following HTTP
requests to the server via the Cookie header. Additionally,
JavaScript code running in Web pages can access and set
the value of cookies using the traditional Document.cookie
property or the new Cookie Store API [68].

Attributes. Cookies can be configured with attributes, or
flags, which specify additional properties or constraints. The
Path attribute allows to limit the cookie to a set of URL paths,
i.e., the browser will include the cookie in HTTP requests if
the path of the request URL matches or is a subdirectory of
the Path attribute. The Domain attribute broadens the scope of
a cookie. The value of this attribute can be assigned to any of
the parent domains of the origin that sets the cookie, up to the
registrable domain. For instance, a server at foo.example.com
can set a cookie with Domain=example.com to specify that the
cookie should be attached to all subdomains of example.com.
If the attribute is omitted, the browser will send the cookie
only to the host that set it. HttpOnly prevents the cookie from
being accessed by JavaScript, e.g., via the Document.cookie
property. The Secure attribute limits the scope of the cookie
to secure connections. Browsers must reject the insertion of
a cookie from a non-secure origin if the cookie jar already
contains a secure cookie with the same name and scope.

Same-Site Cookies. The SameSite attribute has been intro-
duced in 2016 as a defense in depth protection against CSRF

5540 32nd USENIX Security Symposium USENIX Association

attacks by confining cookies to same-site requests [86]. In par-
ticular, the standard defines three same-site policies: Strict,
cookies are attached to same-site requests only, i.e., no cookie
is attached to cross-site requests; Lax, cookies are attached to
same-site requests and cross-site top-level navigations, e.g.,
clicking on a link, using the GET request method; None, cook-
ies are attached to all requests, cross-site included. According
to the standard, SameSite cookies follow the schemeful same-
site definition to determine whether a request is cross-site.
This is in contrast to Domain cookies which do not consider
the URL scheme, unless used in combination with the Secure
attribute. SameSite cookies also represent one of the most
effective protection against XS-Leaks, an emerging class of
attacks that exploits gaps in the same-origin policy (SOP)
to infer information such as PII and the authentication sta-
tus of a user from a cross-site position [55, 73, 79, 81]. The
SameSite attribute restricts the ability to initiate authenticated
requests to same-site attackers, thus preventing traditional
Web attackers from leaking the user’s state on a website.

Cookie Prefixes. Cookie prefixes, originally introduced in
2015 [85], enable additional security constraints on cookies
based on their name. The specification defines two prefixes:
when a cookie name begins with __Secure-, the cookie must
be set with the Secure attribute and from a page served over
HTTPS; when the name of a cookie starts with __Host-, in
addition to all restrictions of the __Secure- attribute, the Path

attribute must be explicitly set to /, and it must not contain
the Domain attribute, locking the scope of the cookie to the
host that created it. These additional constraints guarantee the
integrity of __Host- cookies against same-site attackers, as
such cookies are unaffected by shadowing attacks performed
from a same-site position (see Sec. 4).

2.3 CSRF Protections
CSRF attacks are a well-known class of attacks where the
adversary executes unauthorized state-changing actions under
the victim’s authenticated session. A CSRF attack is always
preceded by a setup phase where the attacker prepares a mali-
cious website that silently performs a cross-site request to the
target website to execute the unauthorized action, e.g., via an
automatic form submission or the fetch API.

Over the years, many types of CSRF defenses have been
proposed in the literature, including (i) origin/referrer checks,
(ii) token-based mechanisms to ensure request unguessability,
(iii) the SameSite cookie attribute, and (iv) explicit user in-
teraction such as CAPTCHAs [41, 62]. All these protections
have some limitations and drawbacks. For instance, Same-
Site cookies are not effective against attacks performed from
a same-site position. To avoid ambiguity, we use the term
Cross-Origin Request Forgery (CORF) in the rest of the paper,
as it includes the attack scenario of a network or same-site
attacker. We focus our analysis on token-based protection
techniques as they are the most common defense adopted by

Web frameworks [62], and – as shown in Sec. 7 – can offer
robust protection if correctly implemented. The main idea is
to send an unguessable parameter t, commonly named CSRF
token, with every state-changing request, typically as a hidden
input field in a form. By ensuring that t remains secret to the
attacker, cross-origin forged requests will be discarded by the
target website, as the token t is missing. Below, we discuss
the two most popular token-based protection patterns [62,71].

Synchronizer Token Pattern (STP). In STP, the server gen-
erates CSRF tokens and inserts them in every webpage that
may lead to a state-changing operation, e.g., as a hidden field
in a form for transferring funds. This token is then bound
to the user’s session and the server validates newly received
tokens by verifying the correctness of this binding. Multiple
implementations (see Sec. 6) generate a fixed CSRF secret
s per session, and use it to derive CSRF tokens t(s). Other
implementations generate a fresh CSRF secret s per request,
and derive CSRF tokens t(s) similarly to the previous case.
In this pattern, secrets are always linked to the user session,
irrespective of whether it is stateful or stateless. In the former
case, secrets are stored in the server session, whereas in the
latter, client-side storage mechanisms, e.g., cookies, are used
to synchronize the secret between the server and the browser.

Double Submit Pattern (DSP). In this pattern, the CSRF
token is a random value stored in a cookie other than the
session cookie. The server typically renders the CSRF token
in the HTML page as a hidden input field, and the browser
sends it back to the server as part of the authenticated request.
The server then verifies the validity of the request by checking
the equivalence between the cookie value and the CSRF token.
This makes DSP more suitable for stateless sessions, as it
does not require the server to store the CSRF secrets or tokens
in the session. Notice that CSRF cookies can be encrypted
or signed with a fixed key or secret stored on the server. In
this case, the server-side validation should account for an
additional decryption or validation step before performing the
comparison. Additionally, servers could store a CSRF secret
in a cookie and use it to derive the CSRF token: whenever the
CSRF secret or token is not cryptographically bound to the
current session identifier, we still refer to this pattern as DSP.

3 Threat Model

In this paper, we aim to investigate the security risks that arise
from the interaction between a website and a victim’s browser
when a network or a same-site attacker can forge cookies
scoped to the target website. As shown in recent works, these
two threat models are still relevant today. According to Zheng
et al. [90], only 0.13% of the top 1M websites in 2015 were
protected from network attackers thanks to full HSTS de-
ployment. The situation improved in 2022, although 90% of
websites remain vulnerable [46]. Large-scale studies on sub-
domain takeover vulnerabilities demonstrated the impact of

USENIX Association 32nd USENIX Security Symposium 5541

Capability Description

headers Control arbitrary HTTP response headers at wa.
js Execute arbitrary JavaScript on a page at wa.
https The scheme of wa is https.

Table 1: Capabilities required to set cookies in the victim’s
browser from a sibling domain of the target (wa).

same-site attackers. In 2016, Liu et al. [63] identified 227 of
the Alexa top-10K sites affected by vulnerable subdomains.
Borgolte et al. [43] studied deprovisioned cloud instances,
finding 700K vulnerable domains. Squarcina et al. [78] es-
timated 13K potentially vulnerable domains due to deprovi-
sioned cloud instances and discovered 887 sites with other
subdomain takeover vulnerabilities among the top 50K sites
in the Tranco list. They also discussed the dangers posed
by corporate networks, roaming services, and dynamic DNS
providers, which put users in a same-site position without
carrying out attacks.

We consider a range of threat models corresponding to
different levels of control and visibility that an attacker may
have over the network and sibling domains of the website.
To exclude trivially vulnerable scenarios, we assume that the
victim accesses the target website over a correctly-configured
secure channel. We do not discuss specific attack vectors
that can be exploited to acquire a certain position since they
have been extensively covered in the past [43, 53, 63, 78]. We
focus, instead, on the capabilities of standard threat models
that are relevant to violations of cookie integrity. To do so, we
build on the framework introduced by Squarcina et al. [78].
Table 1 outlines the capabilities that are relevant to set cookies,
assuming a target website w, the set of its sibling domains Sw,
a website controlled by an attacker wa ∈ Sw, and the victim’s
browser B. Different combinations of these capabilities enable
precise characterization of the threat models considered in
this work, as shown in Fig. 1.

SS-HOST-S maps to a same-site attacker, also called related-
domain attacker, with full control over a sibling domain of the
target with a valid TLS certificate. This attacker can render
arbitrary content over a secure channel, having the full set of
capabilities https , js , and headers .
SS-HOST-I is similar to SS-HOST-S, excluding the ability to
host pages over a secure channel. This threat model captures
the case where an attacker controls a sibling domain of the
target but cannot obtain a valid TLS certificate, e.g., due to
the presence of a CAA DNS record defining a strict allow-list
of permitted CAs [78]. The capabilities are js and headers .
SS-XSS-S is a same-site attacker obtaining indirect control
over a sibling domain via a script injection vulnerability (XSS)
on a page served via HTTPS. Since the attacker is not in
control of the response headers returned by the page, the
capabilities are https and js .

SS-HOST-S
{https , js , headers}

SS-XSS-S
{https , js}

NET, SS-HOST-I
{headers , js}

SS-XSS-I
{js}

Figure 1: Taxonomy of threat models for cookie integrity
violations.

SS-XSS-I is an attacker with an XSS vulnerability on a sib-
ling domain served over an insecure connection. The only
available capability is js .
NET maps to a standard network attacker who can fully con-
trol cleartext traffic generated by the victim’s browser. This at-
tacker is able to intercept, modify, and inject network traffic of
any sibling domain of the target domain, including the target
domain itself. These capabilities translate into the headers

and js , similarly to the SS-HOST-I attacker. Notice that net-
work attackers cannot manipulate cleartext network traffic if
the domain enforces a strict HSTS policy that includes the
includeSubDomains directive [90].

We also formulate a precise definition of cookie integrity
violations, taking into account the cookie’s intended recipient.
We assume that the attacker aims to compromise a cookie
c = ⟨n,v⟩ with name n and value v, stored in the victim’s
browser B for the origin o. In a server-side integrity violation,
the attacker implants a cookie c′ = ⟨n′,v′⟩ in the victim’s
browser B with the goal of forcing the browser B to send
c′ to o. The server at o parses the Cookie header obtaining
a cookie with name n but tampered value v′ ̸= v. We refer
to a client-side integrity violation when the attacker causes
the JavaScript Document.cookie property on o to return a
key=value pair where the key corresponds to n and the value
is chosen by the attacker. Additionally, we consider cookie
eviction attacks as integrity violations, i.e., attacks that evict
the cookie c from requests to o or remove the cookie from the
key=value pairs returned by the Document.cookie API on o.

4 Violationg Cookie Integrity

In this section, we show how attacker capabilities, and there-
fore the standard threat models discussed in Sec. 3, map to
concrete attacks. First, we systematize known cookie integrity
pitfalls and evaluate them on the top 3 Web browsers. Then,
we introduce a range of novel attacks along 4 attack classes
enabled by inconsistencies between servers, browsers, and
the cookie specification. We show that these attacks are pos-
sible in practice and can be used to break cookie integrity
in unprecedented ways. Finally, we discuss the methodology

5542 32nd USENIX Security Symposium USENIX Association

RFC Browsers

Attack �

Tossing (creation date, latest first) Ë Ë

Tossing (insecure over secure cookie) Ë Ë

Eviction (cookie jar overflow) Ë

Eviction (__Host- via secure cookies) Ë

Serialization collision (=a=b→a=b) ≥04 Ë

Serialization collision (__Host-) ≥11 <104 <105 Ë

Cookie jar desynchronization Ë Ë

Server-side parsing issues − − −

Parser-chaining − − −

Table 2: Evaluation of cookie integrity attacks against the
cookie standard RFC6265bis-11 and browsers: Chrome
(v109), Firefox (v109), and Safari (v16.0). compliant,
violation, Ë unaffected, vulnerable, − does not apply.

adopted to discover these issues and report on a measurement
study performed using the HTTP Archive dataset [37].

4.1 Weak Integrity
Due to their legacy design, cookies have a long history of in-
tegrity issues, as documented in the cookie specification [50].
A comparison of the top 3 browsers on the integrity pitfalls
discussed below is included in Table 2 together with the new
attacks introduced in this section.

4.1.1 Cookie Tossing

Cookies scoped for a target origin o are sorted by standard-
compliant browsers by the most-specific matching Path at-
tribute, meaning that cookies set with Path=/foo are sent be-
fore cookies with Path=/. When Path attributes are equal,
cookies are sorted by creation time, i.e., cookies set first are
sent before cookies that are set later. Although the standard
states that servers should not rely on the order of cookies sent
by browsers, most implementations only consider the first
occurrence of a cookie name in the Cookie header field [90].
Since attributes are not sent along with cookies, duplicated
cookies with the same name but different Path attributes are
indistinguishable to the server [50, §5.7.3].

Attackers can exploit this behavior to violate cookie
integrity. For example, consider a Web application at
https://site.tld/login/index.php that sets a cookie via the re-
sponse header Set-Cookie: sid=good; Path=/. Assume also
an attacker in control of http://atk.site.tld/. The attacker can
set a domain cookie for site.tld with name sid and value evil.
By setting a more specific path in the new cookie, the attacker
can cause the victim’s browser to send the attacker’s con-
trolled cookie first, as in Fig. 2. This specific attack is called
cookie tossing, or shadowing.

As mentioned in Sec. 2, __Host- prefixed cookies are
considered to be unaffected by shadowing attacks from a

Browser
Victim

Application
site.tld

Attacker
atk.site.tld

GET /

Set-Cookie: sid=good; Path=/

GET /

Set-Cookie: sid=evil; Path=/login; Domain=site.tld

POST /login/index.php
Cookie: sid=evil; sid=good

!

Figure 2: Cookie tossing attack.

same-site position. Furthermore, the standard specifies that se-
cure cookies have strong integrity against non-secure origins.
To summarize, cookie tossing requires the https capability
only for cookies with the Secure flag. Otherwise, either the
headers or the js capability is needed.

4.1.2 Eviction Techniques

Cookies are evicted from the browser’s storage when the stor-
age limit is reached. The eviction policy and precise limits are
not specified by the standard, and are left to browser vendors
to decide. In practice, recent versions of Firefox and Chrome
limit the size of the cookie jar to 180 cookies per scheme-
ful site, while Safari does not enforce any limit. In addition,
browsers evict cookies in a least-recently-used (LRU) fashion,
i.e., the oldest cookies are evicted first. This is problematic
because it allows attackers to control the eviction of cookies
by overflowing the cookie jar, and then use cookie tossing to
replace the evicted cookies with their own. It is worth mention-
ing that the HttpOnly flag does not provide integrity against
an attacker with the js capability. Indeed, while HttpOnly
cookies cannot be read via JavaScript, they can be evicted by
any of the threat models considered in this paper. On the other
hand, the Secure flag does provide integrity against attackers
without the https capability, since modern browsers partition
cookies by scheme.

4.2 Novel Attacks

The cookie standard evolved in recent years to provide
stronger integrity guarantees. In particular, the __Host- prefix
was proposed in 2015 [85] to prevent cookie tossing attacks.
In the following, we present a range of novel cookie integrity
attacks that exploit issues in the cookie standard, server and
client implementation problems, and the combination of both.

USENIX Association 32nd USENIX Security Symposium 5543

Browser
Victim

Application
site.tld

Attacker
atk.site.tld

GET /

Set-Cookie: __Host-sid=good; Secure; Path=/

GET /

Set-Cookie: =__Host-sid=evil; Path=/login; Domain=site.tld

POST /login/index.php
Cookie: __Host-sid=evil; __Host-sid=good

!

Figure 3: __Host- cookie bypass via nameless cookies.

4.2.1 Nameless Cookies and Serialization Collisions

In 2020, a change to the cookie standard1 added support
to nameless cookies, i.e., cookies set with empty name and
non-empty value. This change was motivated by some servers
setting cookies with empty names, and the cookie standard did
not specify how to parse them. As a result, the standard now
mandates browsers to parse the Set-Cookie: token header
as a nameless cookie with value token. This cookie must be
serialized as Cookie: token, without any = character.

We found that this design introduces a novel attack vec-
tor that can bypass even the __Host- prefix. Consider, for
instance, a page at site.tld that sets a named cookie sid=good.
A same-site attacker can set a nameless cookie scoped to
site.tld with value sid=evil. This can be done via either
the Document.cookie property or the HTTP response header
Set-Cookie: =sid=evil; Domain=site.tld, which is a valid
header. According to the standard, the attacker-controlled
cookie is serialized as Cookie: sid=evil, resulting indis-
tinguishable to the server, or to frontends using the Docu-
ment.cookie getter, from a cookie named sid.

This attack is particularly dangerous because it can vio-
late the integrity guarantees enforced by __Host- cookies.
Indeed, any attacker in our taxonomy can shadow a cookie
__Host-<name>=<value> by forcing in the victim’s browser a
nameless cookie via Set-Cookie: =__Host-<name>=<value>;

Domain=<domain>. An example of the attack flow is in Fig. 3.
The same attack vector can shadow arbitrary secure cook-

ies from an insecure origin. As explained in Sec. 2, browsers
must reject a cookie set from a non-secure origin if the cookie
jar contains a secure cookie matching the name of the new
cookie scoped to the same site. Since secure cookies are parti-
tioned differently from insecure ones, the https capability is
typically required to perform an eviction or a cookie tossing
attack against a secure cookie. This attack, however, lowers
the preconditions for the integrity violation of secure cookies,
requiring only the headers or the js capability.
Disclosure. The attacks above are representative of a larger
class of serialization issues that we reported to the IETF HTTP

1RFC6265bis, Accept nameless cookies: https://github.com/
httpwg/http-extensions/commit/0178223

Working Group on the cookie standard [31] and jointly dis-
closed the __Host- cookie bypass to the Chrome [29] and Fire-
fox [34] security teams who issued CVE-2022-2860 and CVE-
2022-40958, respectively.2 Chrome fixed the issue in version
104 and Firefox in version 105. Safari is not affected by this
vulnerability because it deviates from the standard since it
serializes nameless cookies by prefixing the value with =. Our
contributions and extensive discussion with browser maintain-
ers [30] led to updates to the cookie standard [50, §5.6, point
22] that now mandates browsers to reject nameless cookies
with a value starting with a case-insensitive match for __Host-
or __Secure-.

4.2.2 Server-Side Parsing Issues

The cookie standard [50, §5.5] describes a set of parsing rules
for the Set-Cookie header that user agents must follow. Un-
fortunately, the standard does not clearly specify how servers
should parse cookies received via the Cookie header. This
discrepancy causes server-side cookie integrity violations
whenever servers parse two distinct cookies as the same one.

Although the problem is not new per se [90], we discov-
ered a new vulnerability that bypasses __Host- cookies in
PHP [35], the server-side language used by 78% of web-
sites [83]. Due to the legacy design derived from regis-

ter_globals [18], PHP replaces spaces, dots, and open square
brackets with the underscore symbol _ in the keys of $_POST
and $_GET superglobal arrays. The same string transformation
applies to the keys of the $_COOKIE superglobal array. As a
result, an attacker can fixate a cookie in the victim’s browser
via Set-Cookie: ..Host-sid=evil; Domain=site.tld, that
is parsed by PHP as Cookie: __Host-sid=evil. This vulner-
ability extends integrity concerns to all cookies that contain
the underscore symbol, e.g., non-secure origins can use this
bug to shadow secure cookies. Similarly, the HTTP server
component of the ReactPHP library incorrectly parses the
Cookie header by url-decoding cookie names [51]. This vul-
nerability can be exploited to bypass __Host- cookies using
percentage-encoded names, e.g., a cookie set via Set-Cookie:

%5F%5FHost-sid=evil; Domain=site.tld is parsed by React-
PHP as Cookie: __Host-sid=evil.

We also discovered a vulnerability in the Werkzeug li-
brary, the HTTP middleware used by the popular Flask frame-
work [52]. The Cookie header is incorrectly parsed by strip-
ping all leading = symbols. To exemplify, a nameless cookie
set via Set-Cookie: ==__Host-sid=evil; Domain=site.tld

is parsed by Werkzeug as a name-value pair corresponding to
(__Host-sid, evil).

All threat models discussed in Sec. 3 can mount these
attacks that exploit server-side parsing issues, meaning that

2The __Host- bypass vulnerability was reported 3 weeks earlier as an
independent effort by Axel Chong who is credited on both CVEs. Our issues
were merged into the previous vulnerability reports to jointly discuss the
mitigation and additional edge cases.

5544 32nd USENIX Security Symposium USENIX Association

https://github.com/httpwg/http-extensions/commit/0178223
https://github.com/httpwg/http-extensions/commit/0178223

1 / / Assume an empty c o o k i e j a r t h e n s e t 181 c o o k i e s
2 f o r (l e t i =1 ; i <=181; i ++)
3 document . c o o k i e = ’ a ’+ i + ’=_ ’ ;
4 / / Count t h e number o f c o o k i e s
5 document . c o o k i e . s p l i t (" ; ") . l e n g t h
6 > 181 / / Higher t h a n t h e l i m i t o f 180 c o o k i e s p e r s i t e

Listing 1: Cookie jar overflow desynchronization in Firefox.

only the headers or js capabilities are required.

Disclosure. The PHP vulnerability was assigned CVE-2022-
31629 and fixed in PHP 7.4.31, 8.0.24, and 8.1.11. ReactPHP
issued CVE-2022-36032 after our report and fixed the vulner-
ability in version 1.7.0. The Werkzeug vulnerability obtained
CVE-2023-23934 and has been patched in version 2.2.3.

4.2.3 Cookie Jar Desynchronization

We identified two vulnerabilities in Firefox that cause a desyn-
chronization between the cookies listed by Document.cookie
and the actual content of the cookie jar. We experimentally
discovered that a cookie jar overflow operated via JavaScript
sets more cookies than the maximum number of cookies al-
lowed on a single site. Surprisingly, these cookies can only be
retrieved via the Document.cookie API and are not effectively
set in the cookie jar, i.e., they are not attached to subsequent
HTTP requests [32].

The issue can be easily reproduced using the JavaScript
code snippet in Listing 1. This example stores 181 cookies
(a1 to a181) in Document.cookie, however, manual inspection
of the cookie jar reveals that only 151 cookies are set (a31 to
a181). Attempts to clear the cookie jar via the Firefox storage
inspector, setting an expiration date in the past via the Set-
Cookie header, or using the Clear-Site-Data header [82], fail
to remove the first 30 cookies (a1 to a31). This set of cookies
survives page reloads and schemeful-same-site navigations.
It is also preserved in new schemeful-same-site windows
created via the Window.open method. The only way to remove
them is to set a past expiration date via JavaScript, or by
closing the browser tab.

The described issue can be exploited to violate client-side
cookie integrity and requires the js capability, with the op-
tional https capability if the target website is on a secure
origin. Notice also that this inconsistent state could intro-
duce vulnerabilities in applications trusting cookies read from
Document.cookie, providing a novel avenue for attacks. For
instance, frontends often set custom HTTP headers using the
values of specific cookies read via the Document.cookie prop-
erty. Notable examples are ASP.NET [65] and Angular [36].

The second desynchronization issue happens when there is
a secure cookie set by a domain, and a page on a same-site
non-secure origin tries to set another cookie with the same
name using Document.cookie [33]. We discovered that the
insecure cookie is not stored as required by the standard, but
it is listed by the Document.cookie property. This inconsis-
tency can create confusion on frontends that rely on Docu-

ment.cookie to read cookies. However, the security impact of
this second desynchronization issue is limited since it only
affects insecure origins that are trivially vulnerable to cookie
integrity attacks.
Disclosure. We reported both issues to the Firefox security
team in June 2022. According to Firefox developers, the root
cause of these problems is the composition of cookies’ access
control policies with Firefox’s implementation of Site Isola-
tion, project Fission [67]. The second issue has been fixed in
Firefox 112 and obtained CVE-2023-29547, whereas the first
one is still under active investigation as of May 2023.

4.2.4 Parser Chaining Vulnerabilities

The serialization collision previously discussed introduces
a new attack vector against chains of cookie parsers. We in-
vestigated the presence of this configuration in real-world
applications by studying the AWS API Gateway, a service
that acts as a frontend for other AWS services. The AWS
Lambda proxy integration for HTTP APIs enables develop-
ers to bridge an API route with a Lambda function, passing
request payloads to the Lambda function using a JSON mes-
sage exchange format. According to the documentation [75]:
“Format 2.0 includes a new cookies field. All cookie head-
ers in the request are combined with commas and added to
the cookies field. In the response to the client, each cookie
becomes a set-cookie header.”

From our tests, this proxy introduces an additional parser
that serializes the cookies in the request payload. As a re-
sult, a cookie attached to a request, such as Cookie: =__Host-

sid=evil corresponding to a nameless cookie with value
=__Host-sid=evil, is serialized by the AWS Lambda proxy as
{"cookies": ["__Host-sid=evil"], ...}, resulting indistin-
guishable from a legitimate cookie named __Host-sid. Notice
that this specific attack is not prevented by recent Chrome and
Firefox mitigations against __Host- cookie collisions, since
the cookie value starts with the = symbol.
Disclosure. We reported the issue to the AWS security team
in October 2022 that deployed a fix in November 2022. The
mitigation consists of discarding key-value cookie entries
starting with the = symbol followed by a case-insensitive
match for __Host- or __Secure-. This approach, combined
with modern browsers that adhere to the latest draft of the
cookie standard [50], effectively protects against the threat
described in this section.

4.3 Discovering Cookie Integrity Issues
The methodology used to discover these attacks consisted of
three main stages.
Browser Testing. We performed a comprehensive evalu-
ation of known cookie integrity attacks across the top-3
browsers (Chrome, Firefox, and Safari). Inspired by the WPT
project [25], we developed a suite of test cases that simulated

USENIX Association 32nd USENIX Security Symposium 5545

various types of attacks and evaluated the behavior of the
browsers. The test cases were designed to cover all possible
combinations of secure and insecure origins between the vic-
tim and a same-site attacker. We also tested different ways
to set cookies, i.e., via the Set-Cookie header or using the
JavaScript Document.cookie property. The test cases were
run on the latest browser versions, and the results were ana-
lyzed to identify any inconsistencies between the browsers.
Additionally, we used BrowserStack3 to test all releases from
January 2021 to January 2023 of the three major browsers
against our test suite and identify any changes in the behavior
over time. This phase was crucial to uncover little-known
discrepancies between the browsers. For instance, Safari sorts
cookies by placing the most recent one first, while Firefox
and Chrome serialize cookies starting from the oldest one,
as mandated by the specification. We also verified that Sa-
fari does not prevent cookie tossing of secure cookies from
non-secure cookies, which is a violation of the standard [50].
Additionally, we experimentally verified that Safari does not
enforce limits on the maximum number of cookies stored
for a single site. Finally, the test suite enabled the automatic
discovery of the cookie jar desynchronization issue in Firefox,
which was previously unknown to the security community.

Reviewing the Cookie Standard. Whenever a discrepancy
was found between the browsers, we manually reviewed the
cookie standard [50] to determine what was the expected be-
havior. During this phase, we learned that the standard intro-
duced support to nameless cookies in 2020 and we discovered
the serialization collision issues. We engaged with the IETF
HTTP Working Group and browser vendors to address the
problems as we found them.

Testing Server-Side Parsers. As a third stage of the anal-
ysis, we investigated the presence of inconsistencies in the
cookie parsers of the server-side languages and core HTTP
handling libraries used by the frameworks discussed in Sec. 6.
For each target considered in our analysis, we developed a
small reflector program that parses the Cookie header and
returns pairs of cookie names and values. Then, we wrote a
simple fuzzer to generate variations of the Cookie request
header and automatically assessed how the header was parsed
by our programs. We acknowledge that this approach does
not constitute a systematic evaluation of server-side parsing
inconsistencies. However, our initial analysis provided strong
evidence of the pervasiveness of the issue. We leave such
comprehensive study as future work.

4.4 Measurement of Cookie Name Prefixes and
Nameless Cookies

We present the results of our measurement of the prevalence
of cookie name prefixes and nameless cookies in the top
100K websites. We based our evaluation on the public HTTP

3https://www.browserstack.com/

Archive dataset [37] and performed all queries against the
database provided by the Web Almanac initiative [46]. We
considered the website popularity rank in the Chrome User
Experience Report (CrUX) [56], which distinguishes the pop-
ularity of origins by orders of magnitude (top 1K, 10K, 100K,
etc.). CrUX introduced the rank metric in February 2021 [60],
thus we restricted the measurement to the last 2 years to avoid
any bias due to mixing different ranking metrics. We also
excluded third-party cookies from our analysis and focused
instead on first-party cookies to avoid popular CDNs and
analytics services from affecting the results.

Table 3 reports the outcome of our measurement performed
on the dataset from June 2022. The table shows the number of
origins that use the Secure attribute, the __Host- and __Secure-
prefix, and nameless cookies. Fig. 4 provides a direct com-
parison between July 2021 and June 2022 of the adoption
of cookies on the top 100K origins. As expected, prominent
websites are more inclined towards well-established security
features such as the Secure attribute. We found that more than
70% origins in the top 1K range are using secure cookies,
while the percentage decreases to 60% in the top 100K range.
Interestingly, while the adoption of secure cookies remained
overall stable in the last 2 years for the top 1K websites, lower-
ranked origins are increasingly adopting the Secure attribute.
This trend becomes even more evident by focusing on the
adoption of the __Host- prefix. Despite numbers being still
low, the popularity of __Host- prefix is growing rapidly in
the top 10K and top 100K ranges. Overall, 77 origins used
the __Host- prefix in 2021, in contrast to the 133 origins that
used it in 2022, which corresponds to a 72% increase in one
year. On the other hand, the distribution of nameless cookies
is more stable over time and does not show a clear correlation
with the website rank.

Table 4 provides a characterization of __Host- and name-
less cookies, showing the most common names and values, re-
spectively, across the top 100K origins. Intuitively, the names
adopted by __Host- cookies suggest that they are used to
store sensitive data such as session identifiers or CSRF to-
kens. Nameless cookies, instead, are likely to be the result of
misconfigurations on the server side, since the most common
values match cookie attribute identifiers. A manual analysis
of the full collection of nameless cookies did not reveal any
clear intended usage. To the best of our knowledge, our study
is the first to measure the prevalence of nameless cookies
in the wild. The results suggest that nameless cookies are a
byproduct of misconfigurations and are not actively used by
websites. For these reasons, we advocate for the removal of
nameless cookies from the cookie standard and browsers to
eradicate this source of confusion and the serialization col-
lision vulnerabilities discussed in Sec. 4.2. Conversely, we
believe that the increasing adoption of __Host- cookies is a
positive trend that should be further promoted among Web
developers and security practitioners.

5546 32nd USENIX Security Symposium USENIX Association

https://www.browserstack.com/

Rank Origins Secure __Host- __Secure- Nameless

1K 732 537 (73.4%) 6 (0.8%) 1 (0.1%) 1 (0.1%)
10K 5952 4005 (67.3%) 14 (0.2%) 19 (0.3%) 6 (0.1%)

100K 58068 35098 (60.4%) 113 (0.2%) 109 (0.2%) 86 (0.1%)

Table 3: Number of origins from the 2022-06-01 dataset set-
ting cookies, and the percentage of origins using the Secure
attribute, cookie prefixes, and nameless cookies.

Figure 4: Deployment of cookies between 2021 and 2022.

5 CORF Token Fixation

We present a class of attacks that we call CORF Token Fix-
ation that undermine implementations of the synchronizer
token pattern in the presence of network or same-site attack-
ers. The synchronizer token pattern is considered a robust
CSRF protection against the same-site threat model [71] and
is widely used in Web applications [62]. However, as we show
in Sec. 6, common implementations are vulnerable to CORF
attacks. The term CSRF Token Fixation has been used in the
past to refer to a vulnerability affecting the Devise authenti-
cation library [80]. Although this vulnerability is an instance
of our attack class, we provide for the first time a precise
characterization of the attack flow and discuss a more general
instance of the problem. Moreover, by factorizing the attacks
into fixation and replay phases, we show how known bypasses
to the double submit pattern can be framed in this class.

5.1 Token Fixation Attacks

Fig. 5 shows an instance of a token fixation attack (pre-
login) that performs a state-changing request to a token-
protected endpoint (/action). User sessions are represented as
sess[loggedin-status,csrf-secret], where sess is the identifier
for a session containing the loggedin-status and the csrf-secret
value. Sessions can be stored on the server or the client side:

__Host- cookie names # Nameless cookie values #

__Host-next-auth.csrf-token 26 HttpOnly 50
__Host-GAPS 23 <empty string> 16
__Host-csrf-token 13 Secure 6
__Host-PHPSESSID 10 = 5
__Host-SESSION_LEGACY 5 ACookieAvailableCrossSite 4
__Host-SESSION 5 =0 3
__Host-sess 4 secure 1
__Host-SWAFS 3 * 1
__Host-session 3 ˆ(.*)$ $1 1
__Host-js_csrf 3 =1 1

Table 4: Top-10 __Host- cookie names and nameless cookie
values from 2022-06-01.

Browser
Victim

Application
site.tld

Attacker
atk.site.tld

1 GET /login

Set-Cookie: sess[⊥,s]
form(t(s))

GET /foo

2 Set-Cookie: sess[⊥, token] ; Domain=site.tld

GET /login
Cookie: sess[⊥, token]

form(t ′(s))

POST /login
Cookie: sess[⊥,s]
user, pwd, t ′(s)

3 Set-Cookie: sess′[⊤,s]

4 POST /action
Cookie: sess′[⊤,s]

t(s)
!

pre-session
fixation

token
replayus

er
lo

gi
n

Figure 5: CORF token fixation attack (pre-login).

in the first case, typically referred to as stateful, the cookie
includes only the session identifier; in the latter, known as
stateless, the content of the session is used as the cookie value,
possibly after being encoded and signed. The attack flow is
identical in both scenarios.

The attack has the following preconditions: (i) the target
application uses the synchronizer token pattern, storing the
CSRF secret in the session; (ii) the application constructs
a pre-session for guest users (i.e., not logged-in) and has at
least one CSRF token-protected form visible to guests. Al-
ternatively, the CSRF token can be derived from information
present in the pre-session. In the diagram, t(s) represents the
token that is attached to forms and derived (e.g., hashed or
encoded) from the CSRF secret s; (iii) the CSRF secret is
shared unchanged between the pre-session and the session.

When these preconditions are satisfied, the attack is per-

USENIX Association 32nd USENIX Security Symposium 5547

formed as follows: 1 the attacker visits the target application
and obtains the value of the pre-session cookie and the CSRF
token that is bound to that pre-session; 2 the attacker per-
forms a pre-session fixation attack [61], setting the victim
pre-session cookie to the value previously obtained by the
attacker; 3 by logging into the application, the user has an au-
thenticated session sess′ which shares the CSRF secret s with
the attacker-known pre-session sess; 4 the attacker causes
the victim’s browser to execute a crafted request towards the
/action endpoint, attaching the value of the token t(s) ob-
tained in the first step. Given precondition (iii), the secret was
preserved during the login process, so a valid token for the
pre-session is accepted as a valid token for the authenticated
session. This allows the attacker to perform a CORF attack
that bypasses the CSRF token protection.

Note that the encoding/serialization mechanism used to
derive a token from the secret s may generate different tokens
(t(s) and t ′(s) in the figure) for different requests, e.g., by
including an expiration date. In such cases, a server could
disallow expired tokens or only accept the last token that was
generated. Still, an attacker could bypass this protection by
executing again step 1 before constructing the request 4 to
obtain a valid token. Furthermore, the attack can be performed
even if the victim has an already established authenticated
session with the website. Besides setting a more specific
path in the injected cookie, as described in Sec. 4.1.1, the
attacker can forcibly logout the victim from the website using
a cookie eviction technique (see Sec. 4.1.2) before fixating
the pre-session cookie.

Post-Login Variant. The double submit pattern typically
stores the CSRF secret in a separate cookie from the session.
Hence, overwriting/shadowing this cookie (fixation phase) is
sufficient to perform the attack, assuming that the attacker
subsequently crafts a request to the protected endpoint with a
CSRF token that matches the value of the overwritten cookie
(replay phase). Notice that this attack variant does not require
fixating the pre-session, thus lowering the set of preconditions
compared to the STP bypass. Additionally, the post-login
attack can be commonly performed without prior knowledge
of a valid CSRF token. Still, whenever the server performs
additional validation checks, an attacker can obtain a valid
cookie for the application and its related CSRF token and use
them to carry out the attack.

5.2 Mitigations
Token fixation attacks are enabled by cookie integrity viola-
tions from network and same-site attackers. Hence, prevent-
ing cookie tossing from sibling domains, i.e., via the __Host-
cookie prefix, would trivially prevent the attacker from exe-
cuting the fixation phase (step 2). However, __Host- cookies
may introduce compatibility issues on applications that use
multiple origins. For instance, sharing the same session at ac-
counts.example.com, where users log in, with the rest of the

application at example.com, requires setting domain cookies.

Token Secret Refresh for STP. A robust mitigation for token
fixation attacks for websites that implement the synchronizer
token pattern consists in refreshing the value of the CSRF
secret in the user session upon login. This update has the
effect of using different secrets in the pre-session and in the
authenticated session, so that precondition (iii) of the pre-
login attack is no longer satisfied. This leads to the rejection
of pre-session tokens in authenticated sessions and prevents
the attacker from executing step 4 of Fig. 5, since the token
obtained at step 1 is not valid for the new user session.

Mitigating Attacks Against DSP. In 2012, Wilander [87]
proposed a variation of the double submit pattern named triple
submit cookies to address a specific version of the attack. The
mechanism employ random identifiers for both the name and
value of the cookie, attaching only the random value to forms,
and leveraging HttpOnly cookies to not disclose the random
name with client-side scripts. The server-side validation of
the submitted token may require storing the random name in
the user session (stateful triple submit), or enforcing that the
request contains only a single cookie with a random name,
discarding the request otherwise (stateless). The stateful vari-
ant is equivalent to a synchronizer token pattern, where the
random name acts as the CSRF secret and is stored in the
user session. The stateless variant relies on the assumption
that cookies cannot be erased since, otherwise, the attacker
can forge a request with a single random-name cookie [64].
This assumption is only valid for Safari (see Sec. 4.1.2), thus
the stateless triple submit is not effective in the general case.
Consequently, the post-login attack can only be mitigated by
(i) using __Host- prefix cookies, which are subject to com-
patibility issues, or (ii) switching to the synchronizer token
pattern and refreshing the secret upon login.

6 Systematic Evaluation of Web Frameworks

We perform a study of Web development frameworks aimed
at detecting session integrity vulnerabilities that may derive
from the composition of security libraries, focusing on session
management and CSRF protection components. In particular,
we apply the threat models defined in Sec. 3 and leverage the
techniques described in Sec. 4 to conduct the CORF token
fixation attacks presented in Sec. 5. Albeit developers are
ultimately responsible for securing their Web applications,
we believe security abstractions should provide defaults that
ensure safe composition. Hence we conducted the study on
the default settings enabled by each framework. Moreover,
we discuss relevant opt-in options that are listed in the docu-
mentation and assess how they affect security. As part of our
work, we responsibly performed a coordinated disclosure of
all the identified issues.

Selection Criteria. The selection criteria for the analyzed
Web development frameworks follow the approach adopted

5548 32nd USENIX Security Symposium USENIX Association

by Likaj et al. in their comprehensive study [62]. First, we
considered the top 5 languages used for Web development in
2022 according to [54], i.e., JS, Python, Java, C#, and PHP,
and then selected the most used frameworks from this pool.
For this purpose, we used the GitHub metrics watch, fork,
and stars, collected on April 8, 2022. We then picked the
top 10 of each category. This selection resulted in a total of
13 frameworks. We refer the reader to Appendix A for the
complete framework list and the associated GitHub metrics.

6.1 Frameworks Analysis Methodology

We conducted a manual security analysis to expose Web ses-
sion integrity vulnerabilities in the selected frameworks. For
each framework, we followed the official documentation to
develop a toy application that includes a login form and a
state-changing endpoint protected by a token-based CSRF
mechanism. The login and CSRF functionalities were imple-
mented using the official libraries provided by the framework.
When official libraries were not available, we used external
libraries that are widely used by the community, thus be-
ing considered the de facto standards. In two cases, we had
to implement the session management functionality at the
application level following the instructions provided in the
documentation since no standard libraries were available. For
each framework, we also developed an automated routine to
simulate the attacker’s website and to mechanize the CORF
token fixation attacks.

We performed a coordinated disclosure of the identified
vulnerabilities, and assisted framework developers to under-
stand the threat model and to implement appropriate solutions
that would improve the baseline security of their frameworks.
We focused our disclosure on unsafe defaults, avoiding re-
ports that would have been perceived by developers as poten-
tially deceptive. For instance, we reported vulnerabilities on
the double submit pattern only when this CSRF protection
mechanism was set as default or it was the only one available.
Double submit is indeed known to be vulnerable against same-
site attackers, although it provides some protection against
standard Web attackers.

Table 5 summarizes the results of our analysis categorizing
each framework by language and including the selection of
the libraries used to implement the login and CSRF functional-
ities, as well as the adopted CSRF protection mechanisms and
the tested versions. The table also shows the outcome of our
disclosure, denoted with an arrow symbol. Out of the 13 ana-
lyzed frameworks, we identified 12 supporting the synchro-
nizer token pattern, among which 7 were found vulnerable
to CORF token fixation attacks (pre-login). Furthermore, 6
frameworks implemented the double submit pattern, resulting
vulnerable to the post-login attack variant. We also discov-
ered 3 frameworks vulnerable to session fixation attacks, thus
allowing an attacker to fully compromise the victim’s account.

6.2 Synchronizer Token Pattern Bypasses

In the following, we present the security analysis of vulnerable
real-world implementations of the synchronizer token pattern.
All vulnerable frameworks, excluding CodeIgniter 4, failed to
refresh the CSRF secret after a successful login, thus allowing
an attacker to perform a CORF token fixation (pre-login)
by reusing the CSRF token issued for the attacker’s session
following the steps described in Fig. 5.

6.2.1 Passport-Based: Express, Koa, Fastify

Several frameworks based on Node.js integrate with the Pass-
port authentication middleware to support authenticated user
sessions. Express natively integrates with Passport, Koa re-
quires an additional Passport middleware (koa-passport), and
Fastify provides its own port of Passport (fastify-passport).
The CSRF protection is implemented by the csurf CSRF token
middleware in Express, while Koa uses a different middleware
called koa-csrf; Fastify, instead, provides CSRF protection via
the csrf-protection plugin. All implementations support the
synchronizer token pattern with the CSRF secret being stored
in the session object. The login and user validation functions
are performed by the authenticate function of Passport (and
fastify-passport). We discovered that this function does not
clear, nor reinitializes, the attributes in the session object other
than those specific to Passport, e.g., the passport attribute.
Hence, the session attribute csrfSecret (secret in Fastify)
is not renewed upon successful authentication, satisfying the
condition (iii) of our attack. Consequently, CSRF tokens is-
sued to the attacker during the pre-session fixation step can
be used to forge CORF requests after the victim authenticates
on applications developed using these frameworks.

Disclosure. We reported this issue to the Passport developer,
who promptly fixed it in version 0.6.0 by clearing all attributes
from the session object after login, effectively solving the vul-
nerability on Express. However, for backward compatibility,
Passport 0.6.0 supports the keepSessionInfo option that en-
ables Web developers to opt out from the new safe behavior,
and preserve the session attributes between pre-sessions and
authenticated sessions. This option is set to false by default.
CVE-2022-25896 was issued for this vulnerability. Fastify de-
velopers promptly fixed the vulnerability in version 2.3.0 by
clearing all attributes from the session object after login and
assigned CVE-2023-29020 to this vulnerability. The release
also introduced support to the clearSessionIgnoreFields op-
tion that enables Web developers to define a set of session
attributes to be preserved between pre-sessions and authen-
ticated sessions. On the other hand, the new version of Koa
middleware (6.0.0, published on February 2023) does not
benefit from the best practices implemented in Passport 0.6.0
and remains vulnerable. We are currently in touch with the
developers to identify an effective mitigation.

USENIX Association 32nd USENIX Security Symposium 5549

Framework Lang. Auth. Library CSRF Library CSRF Protection CORF Token Fixation Session
STP DSP Pre-L Post-L Fixation

Express (4.18.1) [5] JS passport (0.5.3) [57] csurf (1.11.0) [6] Ë Ë
Koa (2.13.4) [14] JS koa-passport (4.1.3) [16] csrf (3.0.8) [15] − − Ë

Sails (1.5.3) [20] JS in cookies as in docs csurf (1.10.0) [6] − −

Fastify (4.13.0) [8] JS fastify/passport (2.2.0) [10] csrf-protection (6.1.0) [9] Ë Ë Ë

Django (3.2.13) [4] Python built-in built-in Ë Ë
Flask (2.1.2) [11] Python flask-login (0.6.1) [12] flask-wtf (1.0.1) [13] − − Ë

Tornado (6.2.0) [26] Python in cookies as in docs built-in − − Ë

Laravel (9.1.5) [17] PHP built-in built-in − Ë − Ë

Symfony (5.4.19) [23] PHP built-in security-csrf (5.4.19) [24] − Ë − Ë
CodeIgniter 4 (4.2.1) [2] PHP shield (1.0.0-beta) [3] built-in − Ë − Ë
Yii2 (2.0.45) [28] PHP built-in built-in Ë Ë

ASP.NET Core (6.0.4) [1] C# built-in built-in − Ë − Ë

Spring (5.3.19) [21] Java Spring Security (5.6.3) [22] Spring Security (5.6.3) − Ë − Ë

Table 5: Analyzed Web frameworks, and their respective authentication and CSRF libraries. default, available, Ë unaffected,
 vulnerable, − not implemented. Ë safe (insecure options available), vulnerable (secure options available).

6.2.2 Symfony

Symfony provides user management natively and relies on the
official library security-csrf for CSRF protection. Symfony
supports three different ways to handle session identifiers and
session content while authenticating users, called strategies.
The default strategy (MIGRATE) regenerates the session identi-
fier upon login, but preserves the remaining session attributes.
As the CSRF secret is not refreshed, the framework is vul-
nerable to the pre-login CORF token fixation attack. One
specificity of Symfony is that the granularity of the CSRF
mechanism can be configured to support distinct CSRF se-
crets depending on the endpoint. In this case, the pre-login
attack still succeeds against all endpoints where it is possible
to obtain a valid CSRF token under a pre-login session. The
attacker simply needs to execute step 1 towards all these
endpoints to populate a pre-session with the corresponding
CSRF secrets before executing step 2 .

Disclosure. This vulnerability was reported to the Symfony
developers who updated the MIGRATE strategy to clear the
CSRF storage in new versions of the library (v4.4.50, v5.4.20,
v6.0.20, v6.1.12, v6.2.6). We stress that the two other strate-
gies are either insecure or could introduce compatibility prob-
lems on websites based on Symfony: NONE preserves the same
session after authentication, leading to session-fixation at-
tacks, whereas INVALIDATE regenerates the session identifier
and deletes all other attributes in the session. CVE-2022-
24895 was issued after our disclosure.

6.2.3 Sails

Sails does not implement a login handler function, however it
ships with a generator [19] that bootstraps a template applica-
tion providing a user-management service based on express-
session [7]. Sails can be configured to enable CSRF pro-
tection out of the box via the csurf library. Given that the

user-management logic is hard-coded at the application level
and that the session object is not refreshed upon login, any
token generated before authentication is still valid after the
user authenticates, thus satisfying the precondition (iii) of the
attack. We expect Web developers to build their applications
starting from the generated template application. For this rea-
son, we consider this unsafe code pattern to be likely inherited
by real-world websites.

Disclosure. The unsafe code pattern was reported to the Sails
development team. As a result, a new version of the generator
was released (2.0.7) with support for __Host- cookie prefixes
in production mode (non-default). Using a __Host- cookie
for the session addresses the vulnerability, although Web de-
velopers must be aware of cookie scope restrictions that may
hamper the deployment of the protection, as discussed in
Sec. 5.2.

6.2.4 Flask

Flask-based applications supporting user authentication often
rely on the Flask-Login library for session management and
Flask-WTF to provide CSRF protection using WTForms [27].
Login and user validation are performed by the login_user

function that, similarly to Passport, does not clear nor reini-
tialize the attributes in the session object other than those
specific for Flask-Login, thus satisfying precondition (iii) of
the attack.

Disclosure. This vulnerability was disclosed to the develop-
ers of Flask and Flask-login, proposing a fix that would allow
developers to define a set of opt-in attributes to be preserved
upon login and to clear all others. Given that the two libraries
operate separately, developers proposed instead to clear all
attributes from the session and let application developers ex-
plicitly copy the attributes that should be preserved. A pull
request for this issue is still open.

5550 32nd USENIX Security Symposium USENIX Association

6.2.5 CodeIgniter 4

CodeIgniter 4 provides user management via the (official)
library Shield [3], while CSRF protection is included natively
and can be easily enabled. CodeIgniter 4 offers the synchro-
nizer token pattern and double submit as CSRF protections,
with the latter being the default option. For both mechanisms,
the framework supports the option to regenerate the CSRF se-
cret upon each CSRF-protected action (default), or to preserve
the secret per session, via the option security.regenerate =

true and false respectively. Similarly to the previous cases,
CodeIgniter 4 is vulnerable to the CORF token fixation (pre-
login) attack when the CSRF secret is not refreshed at login.
However, we discovered that CodeIgniter 4 is also vulner-
able when the CSRF secret is regenerated at login via the
security.regenerate = true setting.

CodeIgniter 4 sessions objects are stored on the server and
contain CSRF secrets as attributes called csrf_test_name.
When a user accesses the application, a session object sess
is created with secret s, and upon login, a new session sess′

is created with secret s′. However, while creating sess′, the
attribute csrf_test_name of sess is also updated to s′. Thus,
the attack illustrated in Fig. 5 is still possible as the attacker,
knowing sess, can perform an additional request between
steps 3 and 4 to, e.g., /login, and obtain a fresh token t ′(s′)
that is valid for both the pre-session sess and the authenticated
session sess′.

Disclosure. This vulnerability was communicated to the de-
velopers of Shield, who released a new fixed version of the li-
brary (1.0.0-beta.2) that (i) always refreshes the CSRF secrets
at login, (ii) deletes pre-sessions upon login, and (iii) discon-
tinues the double submit pattern in combination with Shield.
CVE-2022-35943 was issued for this vulnerability.

6.3 Double Submit Pattern Issues
All analyzed frameworks implementing the double submit
pattern were vulnerable to CORF token fixation attacks (post-
login). Although this pattern is known to enable same-site
attackers to bypass CSRF protections, our study aimed at
identifying if any of the frameworks was applying mitigations
such as the __Host- cookie prefix. We concluded that none
of the frameworks applied the above mitigation. Fastify tried
to mitigate this attack by including information related to the
logged-in user in the CSRF token in order to prevent cookie
tossing. It turns out that the attack was still possible if the
userInfo associated with the target was predictable.

Disclosure. As discussed in Sec. 6.1, we did not contact
developers of frameworks that were already applying safe
defaults (Express) or were already aware of the risks asso-
ciated with the double submit pattern (Django). The other
vulnerabilities were communicated to the developers of the
4 remaining frameworks. Fastify addressed the vulnerability
by performing an HMAC of the userInfo in order to pre-

vent cookie tossing. CVE-2023-27495 was issued for this
vulnerability. The CodeIgniter 4 Shield library disallowed the
combination with the double submit pattern, relying now only
on the synchronizer token pattern as a more robust CSRF
protection. Tornado added optional support for the __Host-
prefix to the CSRF cookie in version 6.3.0 4. Yii2 develop-
ers initially replied to our disclosure but, to the best of our
knowledge, did not follow up on the issue.

6.4 Session Fixation Vulnerabilities

We also found 3 frameworks vulnerable to session fixation
attacks. Session fixation attacks happen when pre-session
cookies are preserved after authentication, thus allowing an
attacker to hijack the session of an authenticated user violating
its confidentiality and integrity [61]. The attack flow is the
following: (i) the attacker obtains an unauthenticated session
cookie session_cookie=S by visiting https://example.com;
(ii) the victim is lured into visiting https://atk.example.com
that sets a domain cookie for https://example.com/ in the
victim’s browser, such that session_cookie=S; (iii) the victim
authenticates on https://example.com/; (iv) the attacker uses
the session cookie session_cookie=S to hijack the victim’s
session at https://example.com/. Notice that regenerating the
session cookie prevents session fixation, but it is not enough
to mitigate CORF token fixation attacks if CSRF secret values
still propagate unchanged to the authenticated session.

6.4.1 Passport

We identified a session fixation vulnerability in Passport stem-
ming from the fact that the session attribute sessionId of the
pre-session was not cleared nor reinitialized upon login, but
rather preserved after user authentication.

Disclosure. This vulnerability was disclosed to the devel-
opers of the Passport library and was fixed in version 0.6.0
using the Session.regenerate method of the express-session
module to generate a new sessionId after a successful login.
CVE-2022-25896 was issued for this vulnerability.

6.4.2 Fastify

A session fixation attack similar to the one in Passport was
also identified in Fastify when using the fastify/session plugin
as the underlying session management mechanism (stateful).

Disclosure. This vulnerability was disclosed to the develop-
ers of fastify-passport and was fixed in version 2.3.0 using the
session.regenerate method of fastify/session to generate a
new sessionId after a successful login. CVE-2022-29019
was issued for this vulnerability.

4https://www.tornadoweb.org/en/stable/releases.html

USENIX Association 32nd USENIX Security Symposium 5551

https://www.tornadoweb.org/en/stable/releases.html

6.4.3 Sails

A session fixation attack similar to the one in Passport was
also identified in Sails. We recall that, although Sails does
not implement a native login interface, it provides an applica-
tion template that bootstraps a project. Consequently, unsafe
code patterns embedded in the application template could be
inherited by real-world websites.

Disclosure. This unsafe code pattern was disclosed to the
Sails team. No particular action was taken to mitigate this
unsafe pattern in the template application, although the ad-
dition of the optional __Host-sails.sid in production mode
described before mitigates the impact of this attack.

7 Formal Verification of Web Frameworks

We complement the analysis of the top Web frameworks
(Sec. 6) with the formalization of their session management
mechanism and CSRF protections. The goal of our formaliza-
tion is to verify the correctness of the mitigation to vulnerable
synchronizer token patterns, i.e., the CSRF secret refresh dis-
cussed in Sec. 5.2. To this end, we use the WebSpi [38] library
for the ProVerif [42] protocol verifier, which enables auto-
mated security proofs for Web applications.

Our formalization focuses on the 7 frameworks that are
vulnerable to the pre-login token fixation attack and resulted
in 4 different framework models that differ depending on
whether the session is stored on the client or the server side,
and on implementation details of the synchronizer token pat-
tern adopted by the framework. This is the case since most
JavaScript frameworks share the user management mecha-
nism based on the Passport library, and, for instance, Express
and Sails implement CSRF protection with the csurf library.
The framework models implement a common API used by a
generic application model to implement login and protected
form elements. The application is run in parallel with a power-
ful same-site attacker that can overwrite any cookie on its sib-
ling domains, independently from path or flags/prefixes. This
attacker model over-approximates the threat models in Sec. 3,
essentially considering cookies with no integrity and resulting
more powerful than SS-HOST-S. This over-approximation
ensures stronger security proofs, which are valid irrespectively
of integrity assumptions on cookies.

A CSRF attack results from an unauthorized authenticated
request to a protected endpoint performed by the attacker,
thus we define our expected security property as follows.

Invariant. Every action executed by a token-protected end-
point must be explicitly initiated by an honest user by per-
forming a request containing the token.

We encode the invariant as a correspondence assertion [88]
between the two events (i) app-action-successful, that happens
when the server successfully validates the CSRF token and
performs the token-protected state-changing action, and (ii)

app-action-begin, that happens when the honest user submits
the form that contains the CSRF token.

∀(c : Cookie)(b : Browser)(token : CSRFToken).

event(app-action-successful(c, token))⇒ event(app-action-begin(b, token))

Intuitively, the correspondence requires that every instance of
the app-action-successful event must be preceded by the app-
action-begin event. This property explicitly forbids execution
traces where the attacker successfully executes the protected
action without the honest user submitting the form.

ProVerif confirms that the property does not hold on any of
the four models, producing counterexamples that closely re-
semble the token fixation attack of Fig. 5. We then update the
models to include the token refresh mitigation, i.e., generate a
new CSRF secret upon user login (Sec. 5.2). Additionally, we
refresh the session identifier on the model for Sails, Express,
and Fastify (see session fixation attacks, Sec. 6.4). With these
modifications, we obtain four fixed models for which ProVerif
proves that our correspondence property is valid. Notice that
in the presence of a session fixation attack, refreshing the
CSRF secret is not enough for the property to hold, as the at-
tacker can perform a full session hijacking attack and execute
the token-protected action.

This analysis shows that refreshing the CSRF secret upon
login makes the synchronizer token pattern a robust mitigation
for CORF attacks, even in presence of same-site or network
attackers who can fully compromise cookie integrity. We
refer the reader to the extended version of our paper [77] for
additional details on the formalization of Web frameworks.

8 Related Work

Several studies have focused on cookie integrity issues, with a
particular emphasis on session integrity [44,45,47,49,70,90].
In their seminal work, Bortz et al. [44] introduce the related-
domain attacker model and propose a mechanism, named ori-
gin cookies, to bind cookies to specific origins. The __Host-

prefix builds on this proposal and has been integrated into
modern browsers [50]. Other studies suggest browser exten-
sion, e.g., to transparently strip session (cookie) identifiers
from network requests to avoid session hijacking [45, 70];
Calzavara et al. [47] focus on the server-side by proposing
a type system for verifying session integrity of PHP code
against a variety of attackers, including network and related
domain attackers. These works, except for [90], do not assess
the implications of the lack of cookie integrity for real world
application. Zheng et al. [90] present an empirical assessment
of cookie injection attacks on the Web, taking into account
both browser-side and server-side cookie handling inconsis-
tencies, and discovering attacks on popular Web sites (e.g.,
Google, Amazon). Similarly to our work, the authors discover
browser implementation differences in storage limits for cook-
ies and cookie ordering in requests, and inconsistencies in
server-side languages such as the automatic percent decoding

5552 32nd USENIX Security Symposium USENIX Association

of cookie names in PHP. Our findings uncover that, even after
seven years, these types of cross-browser/language incon-
sistencies are still relevant and also affect newly introduced
security mechanisms such as __Host- prefix cookies.

Recently, Squarcina et al. [78] measured and quantified
the threats posed by same-site attackers to Web application
security. In their study of cookies, they discovered that the
majority of the cookies on sites vulnerable to subdomain
takeover has no integrity against related domain attackers.
The authors highlight that the __Host- prefix was used only
once in their dataset. Our measurement (Sec. 4.4) confirms
the infrequent usage of the prefix in the wild, but shows a
promising positive trend on its adoption in the last 2 years,
especially on lower-ranked websites. Sanchez-Rola et al. [74]
performed a large-scale measurement to characterize cookie-
based Web tracking. The study shows that third-party script
inclusion enables cookie sharing in the context of first-party
cookies, thus enabling third parties to set cookies on behalf
of the visited website. Additionally, the authors report on
instances of cookie collisions, where scripts from different
actors in the same website access cookies created with the
same name but different semantics. This setting matches our
SS-XSS-S threat model (Sec. 3), where different parties gain
control of a domain on a page served via HTTPS. However,
unlike the study of Sanchez-Rola et al., which does not con-
sider domain cookies, we focus on cookie integrity violations
from attacker-controlled subdomains.

Concerning the analysis of Web frameworks, Likaj et
al. [62] evaluated the mechanisms implemented by major
Web frameworks, quantifying their exposure to CSRF attacks
as a result of implementation mistakes, cryptography-related
flaws, cookie integrity violations, or leakage of CSRF tokens.
The authors discover that 37 out of 44 frameworks are affected
by such issues. Our analysis of Web frameworks (Sec. 6)
shows that further implementation issues in the synchronizer
token pattern (deemed secure in [62]), originating from the
composition of different libraries, lead to a bypass of the pro-
tection in the presence of same-site attackers. For instance,
the CORF token fixation attack sidesteps the Flask framework
protection, which was considered secure in previous work.

9 Conclusion

This study is a modern look at cookie integrity issues and their
impact on Web application security. Our research showed that
integrity vulnerabilities are not limited to implementation
bugs, but are a pervasive threat across the Web due to com-
positionality problems at multiple levels. We engaged with
browser vendors, the IETF HTTP Working Group, and Web
framework developers to address the discovered issues, which
resulted in several high-impact updates, e.g., Chrome and
Firefox, PHP (the server-side language powering 78% of all
websites), major authentication libraries such as Passport (2M
weekly downloads), and the cookie standard [50].

Acknowledgments

We thank the anonymous reviewers for their helpful sug-
gestions. We also thank Bernhard Kralofsky for perform-
ing an initial investigation of Web frameworks as part of
his bachelor thesis at TU Wien in 2021 and Leonardo
Nodari, who suggested studying the AWS Lambda proxy
and prepared a testing environment for us. This work has
been partially supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search (grant agreement 771527-BROWSEC); by the Vi-
enna Science and Technology Fund (WWTF) and the City
of Vienna [Grant ID: 10.47379/ICT22060]; by the Austrian
Research Promotion Agency (FFG) through the COMET
K1 SBA; by the Fundação para a Ciência e a Tecnologia
(UIDB/50008/2020, Instituto de Telecomunicações), project
DIVINA (CMU/TIC/0053/2021), and the European Commis-
sion under grant agreement 830892 (SPARTA).

References

[1] ASP.NET. https://dot.net.

[2] CodeIgniter 4. https://codeigniter.com/user_
guide/index.html.

[3] CodeIgniter Shield. https://codeigniter4.github.
io/shield/.

[4] Django Framework. https://www.djangoproject.
com/.

[5] Express. https://expressjs.com/.

[6] Express csurf: CSRF token middleware. https://
github.com/expressjs/csurf.

[7] Express Session. https://github.com/expressjs/
session.

[8] Fastify. https://www.fastify.io/.

[9] Fastify csrf-protection. https://github.com/
fastify/csrf-protection.

[10] Fastify Passport. https://github.com/fastify/
fastify-passport.

[11] Flask. https://flask.palletsprojects.com/.

[12] Flask Login. https://flask-login.readthedocs.
io/.

[13] Flask WTF. https://flask-wtf.readthedocs.
io/.

[14] Koa. https://koajs.com.

[15] Koa CSRF. https://github.com/koajs/csrf.

USENIX Association 32nd USENIX Security Symposium 5553

https://dot.net
https://codeigniter.com/user_guide/index.html
https://codeigniter.com/user_guide/index.html
https://codeigniter4.github.io/shield/
https://codeigniter4.github.io/shield/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://expressjs.com/
https://github.com/expressjs/csurf
https://github.com/expressjs/csurf
https://github.com/expressjs/session
https://github.com/expressjs/session
https://www.fastify.io/
https://github.com/fastify/csrf-protection
https://github.com/fastify/csrf-protection
https://github.com/fastify/fastify-passport
https://github.com/fastify/fastify-passport
https://flask.palletsprojects.com/
https://flask-login.readthedocs.io/
https://flask-login.readthedocs.io/
https://flask-wtf.readthedocs.io/
https://flask-wtf.readthedocs.io/
https://koajs.com
https://github.com/koajs/csrf

[16] Koa Passport. https://github.com/rkusa/
koa-passport.

[17] Laravel Framework. https://laravel.com/.

[18] PHP Manual: Using Register Globals. https://web.
archive.org/web/20201205183413/https://www.
php.net/manual/en/security.globals.php.

[19] Sails Generate. https://sailsjs.
com/documentation/reference/
command-line-interface/sails-generate.

[20] Sails.js. https://sailsjs.com/.

[21] Spring. https://spring.io/.

[22] Spring Security. https://spring.io/projects/
spring-security.

[23] Symfony. https://symfony.com/.

[24] Symfony CSRF. https://github.com/symfony/
security-csrf.

[25] The Web Platform Tests Project. https://
web-platform-tests.org/.

[26] Tornado Web Server. https://www.tornadoweb.
org/.

[27] WTForms. https://wtforms.readthedocs.io/.

[28] Yii PHP framework. https://www.yiiframework.
com/.

[29] Chromium Bugs. Issue 1351601: Cookie pre-
fixes bypass via nameless cookies (rfc6265bis).
https://bugs.chromium.org/p/chromium/
issues/detail?id=1351601, 2022.

[30] Chromium Bugs. Issue 1354090: post-CVE-2022-
2860 security limitations of cookie prefixes and
nameless cookies. https://bugs.chromium.org/p/
chromium/issues/detail?id=1354090, 2022.

[31] IETF HTTP Working Group, HTTP Extensions. Issue
2229: [rfc6265bis] nameless cookies, client/server in-
consistencies #2229. https://github.com/httpwg/
http-extensions/issues/2229, 2022.

[32] Mozilla Bugzilla. Issue 1782561. document.cookie
desynchronization after cookie jar overflow.
https://bugzilla.mozilla.org/show_bug.cgi?
id=1782561, 2022.

[33] Mozilla Bugzilla. Issue 1783536. document.cookie in
an insecure origin process allows setting an insecure
cookie in that process that has the same name as a se-
cure one. https://bugzilla.mozilla.org/show_
bug.cgi?id=1783536, 2022.

[34] Mozilla Bugzilla. Issue 1783982: Cookie pre-
fixes bypass via nameless cookies (rfc6265bis).
https://bugzilla.mozilla.org/show_bug.cgi?
id=1783982, 2022.

[35] PHP Bug Tracker. Issue 81727: cookie integrity vul-
nerabilities. https://bugs.php.net/bug.php?id=
81727, 2022.

[36] Angular. HTTP: Security - XSRF Protec-
tion. https://angular.io/guide/http#
security-xsrf-protection, 2022.

[37] HTTP Archive. The HTTP Archive. https://
httparchive.org/.

[38] C. Bansal, K. Bhargavan, and S. Maffeis. Discovering
Concrete Attacks on Website Authorization by Formal
Analysis. In CSF. IEEE, 2012.

[39] A. Barth. HTTP State Management Mechanism. RFC
6265, IETF, 2011.

[40] A. Barth. The Web Origin Concept. RFC 6454, IETF,
12 2011.

[41] A. Barth, C. Jackson, and J. C. Mitchell. Robust De-
fenses for Cross-Site Request Forgery. In CCS. ACM,
2008.

[42] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In WCSF. IEEE, 2001.

[43] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna.
Cloud Strife: Mitigating the Security Risks of Domain-
Validated Certificates. In NDSS, 2018.

[44] A. Bortz, A. Barth, and A. Czeskis. Origin Cookies:
Session Integrity for Web Applications. In W2SP, 2011.

[45] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan.
CookiExt: Patching the browser against session hijack-
ing attacks. Journal of Computer Security, 2015.

[46] Web Almanac by HTTP Archive. Http archive’s
annual state of the web report. https://almanac.
httparchive.org/, 2022.

[47] S. Calzavara, R. Focardi, N. Grimm, M. Maffei, and
M. Tempesta. Language-Based Web Session Integrity.
In CSF. IEEE, 2020.

[48] S. Calzavara, R. Focardi, M. Squarcina, and M. Tem-
pesta. Surviving the Web: A Journey into Web Session
Security. CSUR, 50(1):13:1–13:34, 2017.

[49] S. Calzavara, A. Rabitti, and M. Bugliesi. Sub-Session
Hijacking on the Web: Root Causes and Prevention.
Journal of Computer Security, 2019.

5554 32nd USENIX Security Symposium USENIX Association

https://github.com/rkusa/koa-passport
https://github.com/rkusa/koa-passport
https://laravel.com/
https://web.archive.org/web/20201205183413/https://www.php.net/manual/en/security.globals.php
https://web.archive.org/web/20201205183413/https://www.php.net/manual/en/security.globals.php
https://web.archive.org/web/20201205183413/https://www.php.net/manual/en/security.globals.php
https://sailsjs.com/documentation/reference/command-line-interface/sails-generate
https://sailsjs.com/documentation/reference/command-line-interface/sails-generate
https://sailsjs.com/documentation/reference/command-line-interface/sails-generate
https://sailsjs.com/
https://spring.io/
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://symfony.com/
https://github.com/symfony/security-csrf
https://github.com/symfony/security-csrf
https://web-platform-tests.org/
https://web-platform-tests.org/
https://www.tornadoweb.org/
https://www.tornadoweb.org/
https://wtforms.readthedocs.io/
https://www.yiiframework.com/
https://www.yiiframework.com/
https://bugs.chromium.org/p/chromium/issues/detail?id=1351601
https://bugs.chromium.org/p/chromium/issues/detail?id=1351601
https://bugs.chromium.org/p/chromium/issues/detail?id=1354090
https://bugs.chromium.org/p/chromium/issues/detail?id=1354090
https://github.com/httpwg/http-extensions/issues/2229
https://github.com/httpwg/http-extensions/issues/2229
https://bugzilla.mozilla.org/show_bug.cgi?id=1782561
https://bugzilla.mozilla.org/show_bug.cgi?id=1782561
https://bugzilla.mozilla.org/show_bug.cgi?id=1783536
https://bugzilla.mozilla.org/show_bug.cgi?id=1783536
https://bugzilla.mozilla.org/show_bug.cgi?id=1783982
https://bugzilla.mozilla.org/show_bug.cgi?id=1783982
https://bugs.php.net/bug.php?id=81727
https://bugs.php.net/bug.php?id=81727
https://angular.io/guide/http#security-xsrf-protection
https://angular.io/guide/http#security-xsrf-protection
https://httparchive.org/
https://httparchive.org/
https://almanac.httparchive.org/
https://almanac.httparchive.org/

[50] L. Chen, S. Englehardt, M. West, and J. Wilander. Cook-
ies: HTTP State Management Mechanism (IETF Draft).
RFC 6265bis, IETF, 2022.

[51] GitHub Advisory Database. ReactPHP’s HTTP server
parses encoded cookie names so malicious __Host- and
__Secure- cookies can be sent. https://github.com/
advisories/GHSA-w3w9-vrf5-8mx8, 2022.

[52] GitHub Advisory Database. Incorrect parsing of
nameless cookies leads to __Host- cookies by-
pass. https://github.com/pallets/werkzeug/
security/advisories/GHSA-px8h-6qxv-m22q,
2023.

[53] Detectify. Hostile subdomain takeover us-
ing heroku/github/desk + more. https:
//labs.detectify.com/2014/10/21/
hostile-subdomain/, 2014.

[54] GitHub. Top programming languages.
https://octoverse.github.com/2022/
top-programming-languages, 2022.

[55] T. Van Goethem, C. Pöpper, W. Joosen, and M. Vanhoef.
Timeless Timing Attacks: Exploiting Concurrency to
Leak Secrets over Remote Connections. In USENIX
Security, 2020.

[56] Google. Chrome UX Report. https://developer.
chrome.com/docs/crux/.

[57] J. Hanson. Passport – Simple, unobtrusive authentica-
tion for Node.js. https://www.passportjs.org/.

[58] S. Helme. Cross-Site Request Forgery is dead! https:
//scotthelme.co.uk/csrf-is-dead/, 2017.

[59] S. Helme. CSRF is (really) dead. https://
scotthelme.co.uk/csrf-is-really-dead/, 2019.

[60] J. Henkel and B. Pollard. Adding Rank Magnitude to
the CrUX Report in BigQuery. https://developer.
chrome.com/blog/crux-rank-magnitude/, 2021.

[61] M. Kolšek. Session fixation vulnerability in web-
based applications. https://acrossecurity.com/
papers/session_fixation.pdf, 2002.

[62] X. Likaj, S. Khodayari, and G. Pellegrino. Where We
Stand (or Fall): An Analysis of CSRF Defenses in Web
Frameworks. In RAID. ACM, 2021.

[63] D. Liu, S. Hao, and H. Wang. All Your DNS Records
Point to Us: Understanding the Security Threats of Dan-
gling DNS Records. In CCS. ACM, 2016.

[64] R. Lundeen. The Deputies are Still Confused. https://
media.blackhat.com/eu-13/briefings/Lundeen/
bh-eu-13-deputies-still-confused-lundeen-wp.
pdf, 2013.

[65] Microsoft. Prevent Cross-Site Request Forgery
(XSRF/CSRF) attacks in ASP.NET Core.
https://learn.microsoft.com/en-us/aspnet/
core/security/anti-request-forgery, 2022.

[66] Mozilla. Public Suffix List. https://publicsuffix.
org/.

[67] Mozilla. Project Fission. https://wiki.mozilla.
org/Project_Fission, 2022.

[68] Mozilla Developer Network. Cookie Store API.
https://developer.mozilla.org/en-US/docs/
Web/API/Cookie_Store_API.

[69] Mozilla Developer Network. Set-Cookie.
https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Set-Cookie.

[70] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and
W. Joosen. SessionShield: Lightweight Protection
against Session Hijacking. In Engineering Secure Soft-
ware and Systems. Springer Berlin Heidelberg, 2011.

[71] OWASP. Cross-site request forgery prevention cheat
sheet. https://cheatsheetseries.owasp.org/
cheatsheets/Cross-Site_Request_Forgery_
Prevention_Cheat_Sheet.html.

[72] OWASP. Session hijacking attack. https:
//owasp.org/www-community/attacks/Session_
hijacking_attack.

[73] I. Sanchez-Rola, D. Balzarotti, and I. Santos. Baking-
Timer: Privacy Analysis of Server-Side Request Process-
ing Time. In ACSAC. ACM, 2019.

[74] I. Sanchez-Rola, M. Dell’Amico, D. Balzarotti,
P. Vervier, and L. Bilge. Journey to the Center of the
Cookie Ecosystem: Unraveling Actors’ Roles and
Relationships. In S&P. IEEE, 2021.

[75] Amazon Web Services. Working with
AWS Lambda proxy integrations for HTTP
APIs. https://docs.aws.amazon.com/
apigateway/latest/developerguide/
http-api-develop-integrations-lambda.html,
2022.

[76] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the
Incoherencies in Web Browser Access Control Policies.
In S&P. IEEE, 2010.

USENIX Association 32nd USENIX Security Symposium 5555

https://github.com/advisories/GHSA-w3w9-vrf5-8mx8
https://github.com/advisories/GHSA-w3w9-vrf5-8mx8
https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q
https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q
https://labs.detectify.com/2014/10/21/hostile-subdomain/
https://labs.detectify.com/2014/10/21/hostile-subdomain/
https://labs.detectify.com/2014/10/21/hostile-subdomain/
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://developer.chrome.com/docs/crux/
https://developer.chrome.com/docs/crux/
https://www.passportjs.org/
https://scotthelme.co.uk/csrf-is-dead/
https://scotthelme.co.uk/csrf-is-dead/
https://scotthelme.co.uk/csrf-is-really-dead/
https://scotthelme.co.uk/csrf-is-really-dead/
https://developer.chrome.com/blog/crux-rank-magnitude/
https://developer.chrome.com/blog/crux-rank-magnitude/
https://acrossecurity.com/papers/session_fixation.pdf
https://acrossecurity.com/papers/session_fixation.pdf
https://media.blackhat.com/eu-13/briefings/Lundeen/bh-eu-13-deputies-still-confused-lundeen-wp.pdf
https://media.blackhat.com/eu-13/briefings/Lundeen/bh-eu-13-deputies-still-confused-lundeen-wp.pdf
https://media.blackhat.com/eu-13/briefings/Lundeen/bh-eu-13-deputies-still-confused-lundeen-wp.pdf
https://media.blackhat.com/eu-13/briefings/Lundeen/bh-eu-13-deputies-still-confused-lundeen-wp.pdf
https://learn.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://learn.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://publicsuffix.org/
https://publicsuffix.org/
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Project_Fission
https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API
https://developer.mozilla.org/en-US/docs/Web/API/Cookie_Store_API
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/attacks/Session_hijacking_attack
https://owasp.org/www-community/attacks/Session_hijacking_attack
https://owasp.org/www-community/attacks/Session_hijacking_attack
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html

[77] M. Squarcina, P. Adão, L. Veronese, and M. Maffei.
Cookie Crumbles: Breaking and Fixing Web Session
Integrity – source code, artifacts, and extended ver-
sion of the paper. https://github.com/SecPriv/
cookiecrumbles, 2023.

[78] M. Squarcina, M. Tempesta, L. Veronese, S. Calzavara,
and M. Maffei. Can I Take Your Subdomain? Exploring
Same-Site Attacks in the Modern Web. In USENIX
Security, 2021.

[79] A. Sudhodanan, S. Khodayari, and J. Caballero. Cross-
Origin State Inference (COSI) Attacks: Leaking Web
Site States through XS-Leaks. In NDSS, 2020.

[80] J. Valim. CSRF token fixation attacks in Devise.
https://blog.plataformatec.com.br/2013/
08/csrf-token-fixation-attacks-in-devise/,
2013.

[81] T. Van Goethem, G. Franken, I. Sanchez-Rola,
D. Dworken, and W. Joosen. SoK: Exploring Current
and Future Research Directions on XS-Leaks through
an Extended Formal Model. In ASIA CCS. ACM, 2022.

[82] W3C. Working Draft: Clear Site Data. https://www.
w3.org/TR/clear-site-data/, 2017.

[83] W3Techs. Usage statistics of PHP for websites. https:
//w3techs.com/technologies/details/pl-php,
2023.

[84] web.dev. Schemeful Same-Site. https://web.dev/
schemeful-samesite/.

[85] M. West. Cookie Prefixes. https://tools.ietf.
org/html/draft-west-cookie-prefixes-05.

[86] M. West and M. Goodwin. RFC6265: Same-site Cook-
ies draft-west-first-party-cookies-07, 2016.

[87] J. Wilander. Advanced CSRF and Stateless Anti-
CSRF. https://owasp.org/www-pdf-archive/
/AppSecEU2012_Wilander.pdf, 2012.

[88] T. Y. C. Woo and S. S. Lam. A semantic model for
authentication protocols. In S&P. IEEE, 1993.

[89] M. Zalewski. The tangled web: A guide to securing
modern web applications. No Starch Press, 2011.

[90] X. Zheng, J. Jiang, J. Liang, Haixin Duan, S. Chen,
T. Wan, and N. Weaver. Cookies lack integrity: Real-
world implications. In USENIX Security, 2015.

A Web Framework Analysis

Table 6 lists the entire pool of Web frameworks considered
for this study. We restricted the analysis to the top 10 frame-
works according to the GitHub metrics watch, fork, and stars,
obtaining the final set of 13 frameworks.

Framework Language GH Watch GH Fork GH Star

ASP.NET MVC C# 75 329 739
ASP.NET Core C# 1.4k 7.7k 27.8k
Service Stack C# 515 1.6k 5k
Nancy C# 438 1.5k 7.2k

Spring Java 3.4k 33.3k 47.1k
Play Java 683 4k 12.1k
Spark Java 413 1.6k 9.3k
Vert.x-web Java 79 470 955
Vaadin Java 53 59 361
Dropwizard Java 398 3.4k 8.2k
Blade Java 302 1.1k 5.6k
ZK Java 46 169 350
Apache Struts Java 124 737 1.1k
Apache Wicket Java 61 354 616

Express JS 1.8k 9.6k 56.6k
Meteor JS 1.6k 5.2k 42.9k
Koa JS 847 3.2k 32.5k
Hapi JS 422 1.4k 13.8k
Sails JS 667 2k 22.2k
Fastify JS 281 1.7k 22.7k
ThinkJS JS 268 643 5.3k
Total.js JS 218 459 4.1k
AdonisJS JS 229 579 12.3k

Laravel PHP 4.6k 22.4k 69.3k
Symfony PHP 1.2k 8.6k 26.7k
Slim PHP 525 1.9k 11.3k
CakePHP PHP 573 3.5k 8.5k
Zend/Laminas PHP 18 56 1.4k
CodeIgniter PHP 1.6k 7.8k 18.2k
FuelPHP PHP 107 287 1.4k
Yii2 PHP 1.1k 7k 13.9k
Phalcon PHP 658 1.9k 10.6k
Li3 PHP 91 247 1.2k
CodeIgniter4 PHP 278 1.6k 4.2k

Flask Python 2.2k 15k 58.5k
Django Python 2.3k 26.9k 63.3k
Tornado Python 1k 5.4k 20.5k
Bottle Python 320 1.4k 7.6k
Pyramid Python 160 878 3.7k
Falcon Python 273 872 8.7k
Zope Python 91 99 288
Masonite Python 57 104 1.7k
TurboGears2 Python 32 76 777
Web2py Python 220 866 2k

Table 6: Web development frameworks from [62] ranked
according to GitHub metrics as of April 8, 2022.

5556 32nd USENIX Security Symposium USENIX Association

https://github.com/SecPriv/cookiecrumbles
https://github.com/SecPriv/cookiecrumbles
https://blog.plataformatec.com.br/2013/08/csrf-token-fixation-attacks-in-devise/
https://blog.plataformatec.com.br/2013/08/csrf-token-fixation-attacks-in-devise/
https://www.w3.org/TR/clear-site-data/
https://www.w3.org/TR/clear-site-data/
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://web.dev/schemeful-samesite/
https://web.dev/schemeful-samesite/
https://tools.ietf.org/html/draft-west-cookie-prefixes-05
https://tools.ietf.org/html/draft-west-cookie-prefixes-05
https://owasp.org/www-pdf-archive//AppSecEU2012_Wilander.pdf
https://owasp.org/www-pdf-archive//AppSecEU2012_Wilander.pdf

	Introduction
	Background
	Origins and Sites
	Cookies
	CSRF Protections

	Threat Model
	Violationg Cookie Integrity
	Weak Integrity
	Cookie Tossing
	Eviction Techniques

	Novel Attacks
	Nameless Cookies and Serialization Collisions
	Server-Side Parsing Issues
	Cookie Jar Desynchronization
	Parser Chaining Vulnerabilities

	Discovering Cookie Integrity Issues
	Measurement of Cookie Name Prefixes and Nameless Cookies

	CORF Token Fixation
	Token Fixation Attacks
	Mitigations

	Systematic Evaluation of Web Frameworks
	Frameworks Analysis Methodology
	Synchronizer Token Pattern Bypasses
	Passport-Based: Express, Koa, Fastify
	Symfony
	Sails
	Flask
	CodeIgniter 4

	Double Submit Pattern Issues
	Session Fixation Vulnerabilities
	Passport
	Fastify
	Sails

	Formal Verification of Web Frameworks
	Related Work
	Conclusion
	Web Framework Analysis

