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Abstract
Researchers have responded to various cyber attacks on con-
troller area network (CAN) by studying technologies for iden-
tifying the source of an attack. However, existing attack source
identification technologies have shown significantly lower
accuracy depending on changes in the vehicle environment
(temperature, humidity, battery level, etc.), or have proven to
be circumvented by identification-aware attackers, or do not
provide real-time identification. A real-time attack node iden-
tification technology that cannot be bypassed by an attacker
while not being affected by changes in the vehicle environ-
ment is essential for cyber attack response technologies such
as node isolation, security patch, digital forensics, etc.

To meet this need, we propose a novel real-time attack node
identification method, called RIDAS, which can identify the
attack source by using the error handling rule of CAN. RIDAS
injects bit errors into the abnormal messages that have been
detected by an existing intrusion detection system (IDS). The
source that sent the abnormal message become the error pas-
sive state defined in CAN in which it cannot send consecutive
messages. RIDAS then sequentially inspects all electronic
control units (ECU) and identifies the node in the error pas-
sive state by checking the priority reduction phenomenon that
occurs in that state. Moreover, RIDAS address two challeng-
ing issues, identification robustness and identification errors.
Our experimental results, conducted on both a CAN bus pro-
totype and one real vehicle, have demonstrated that RIDAS
can accurately identify an attack source while remaining unaf-
fected by changes in the vehicle’s environment. Additionally,
RIDAS is able to deal with RIDAS-aware attackers.

1 Introduction

Over years of research and development, autonomous driv-
ing technologies such as the advanced driver assistance
system (ADAS) have become prevalent in automotive IT

*Co-first authors
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systems. Despite the advantages of ADAS, they introduce
numerous security issues. For example, researchers have
demonstrated that a vehicle can be remotely controlled
through an in-vehicle network after compromising an elec-
tronic control unit (ECU) with a vulnerable remote inter-
face [2, 9–11, 14, 18, 22–24, 28, 36–38].

To address these security concerns, various methods for
detecting cyber attacks on vehicles have been introduced
[3, 8, 15, 17, 21, 26, 29, 33, 34]. Although these intrusion de-
tection systems (IDS) can detect cyber attack attempts on
in-vehicle networks, they struggle to locate the attack source,
i.e., a compromised ECU. This is mainly because in-vehicle
networks are largely based on a Controller Area Network
(CAN), which adopts a bus network topology, and because
message source identifiers can be easily altered by attackers.
Identifying the source of the attack is one necessary step that
must be performed for security incident management, includ-
ing network isolation, software patch, and so on. In previous
studies, researchers have proposed several methods to identify
an attack source on a CAN based on voltage-based finger-
prints [5,7,16]. Voltage measurement allows a monitor device
like an oscilloscope to fingerprint minor inherent discrepan-
cies in voltage signals of different ECUs when they transmit
CAN messages. However, identification using voltage-based
fingerprints can result in errors because these fingerprints are
subject to change as a result of varying environmental factors
like power supply level, ambient temperature, humidity, and
more. Moreover, an attack that manipulates the fingerprint
information may occur during the periodically performed fin-
gerprint update process. Other researchers have also found
that voltage-based fingerprints can be corrupted by two com-
promised ECUs [1].

In light of this, in this paper, we propose real-time identifi-
cation of attack sources (RIDAS). This approach identifies a
compromised ECU based on the error confinement rule in the
CAN standard. RIDAS is the first method that can effectively
handle identification robustness and identification errors is-
sues existing solutions have not adequately addressed.

Identification robustness. RIDAS is resilient to variable
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environments and can identify an attack ECU while driving
without affecting any vehicle operations. This is achieved by a
system composed of four modules: a TEC emulation module,
an attack handling (AH) module, a naive attack source identi-
fication (NASI) module and an RIDAS-aware attack source
identification (RASI) module. When an attack message is de-
tected by an existing IDS, a continuous transmission error on
that message is intentionally generated a pre-defined number
of times by the AH module before message transmission is
completed. This places the ECU detected by the IDS into the
error passive state, in which CAN messages cannot be con-
tinuously transmitted due to the suspend transmission time
defined in the CAN standard. When the AH module creates
a detection alert, the NASI module intentionally generates a
bit error up to kadd times for every representative message
of all ECUs in order to find the error passive ECU. (kadd is
a system parameter.) Furthermore, RIDAS includes a RASI
module that can deal with RIDAS-aware attackers.

Identification error. RIDAS can handle false positives from
an intrusion detection system, which is an inherent problem
that most IDSs have. In the event that the AH module in-
troduces bit errors into a normal CAN message, the NASI
module must rectify the error by determining whether the
ECU, which enters the error passive state due to a pre-defined
number of consecutive errors, is a normal node or an attack
node. The NASI module utilizes an ECU mapping table that
links each CAN message with its source for this purpose. If
the identifier pair (i.e., the abnormal identifier targeted by the
AH module and the representative identifier of the error pas-
sive ECU identified by the NASI module) does not match any
entry in the ECU mapping table, then the node identified by
the NASI module is considered a normal node. Otherwise,
the ECU identified by the NASI module is classified as an
attack node.

RIDAS has been validated on a CAN prototype and a real
vehicle. Our evaluation results show that RIDAS not only ad-
dresses both identification robustness and identification error,
but can also identify an attack ECU without affecting driving.
In summary, this paper makes the following contributions:

• Development of a novel method called RIDAS that can
deal with both identification robustness and identification
errors by using the error passive state of CAN error
handling (Sections 4.3, 4.4 and 4.5)

• Proposal of a methodology that deals with RIDAS-aware
attackers (Section 4.6)

• Evaluation of RIDAS on a CAN bus prototype and one
real vehicle (Section 5).
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Figure 1: The structure of the CAN data frame and error frame

2 Background

2.1 Controller Area Network
The CAN, one of a number of the in-vehicle networks,

was developed by Bosch in 1986. There are four different
types of CAN frames: a data frame, a remote frame, an error
frame, and an overload frame. Note that we focus on the data
frame, remote frame, and error frame. The structure of the
data frame is shown in Fig. 1a and consists of seven fields:
a start of frame (SOF), an arbitration field, a control (CTL)
field, a data field, a cyclic redundancy check (CRC) field,
an acknowledge (ACK) field, and an end of frame (EOF).
The arbitration field contains an identifier (ID) and a remote
transmission request (RTR) and plays an important role in
the data frame. The priority of the data frame is determined
by the bit-wise arbitration of the arbitration field, such that
the lower the identifier of the arbitration field, the higher the
priority. Additionally, by using the arbitration field, each node
can decide whether to receive the data frame or not. If a CAN
data frame’s RTR bit is set to 1, it is known as a remote
frame. When a remote frame is transmitted, the receiver ECU
responds to the request by sending a data frame. The error
frame is used to notify the detected errors and consists of an
error flag and an error delimiter. As shown in Fig. 1b, there are
two types of the error frames that depend on the error state of
the node, i.e., an active error frame and a passive error frame.
The active error frame and passive error frame have an error
flag with six dominant bits and six recessive bits, respectively.
The error delimiter is eight recessive bits on both frames.

2.2 CAN Error Handling
2.2.1 Error Type

The CAN protocol defines five types of errors:

• Bit error: The CAN node monitors the bus as it sends
a bit to the bus. A bit error occurs if the monitored bit
and the transmitted bit are different, with the exception
of the arbitration field.

6912    32nd USENIX Security Symposium USENIX Association



Error 

Ac!ve

Error 

Passive
Bus off

TEC > 255

Figure 2: Error confinement mechanism

IFS (3bits)

IFS + Suspend transmission (11 bits)

CAN Bus

Lose to priority 

comparison

Priority reduc!onPriority :  ID A and ID B > ID C

: Error passive state : Error ac!ve state 

ECU A

ECU B

ECU C

ID A ER frame ID A

ID AER frame ID C

ID C

ID CER frame

ID B ER frame ID B

ID C

ID B

Figure 3: Priority reduction

• Stuff error: The CAN frame should be encoded using
the bit stuffing method, except for the EOF. If six con-
secutive equal bits are observed, a stuff error occurs.

• CRC error: If the verification of the CRC value of the
received frame fails, a CRC error occurs.

• Form error: A form error occurs when an illegal bit
violates the format of a CAN frame.

• ACK error: If the node receiving the CAN frame does
not transmit the dominant bit (0) in the ACK slot, an
ACK error occurs.

2.2.2 Fault Confinement

Each ECU maintains two error counters: the transmit error
counter (TEC) and the receive error counter (REC). If an error
is detected during transmission, the TEC is incremented by 8.
Conversely, if an error is detected during reception, the REC
changes incrementally by 1. When a message is successfully
transmitted, both counters decrease by 1. The CAN defines
three error states based on the values of the TEC and the REC:
error active, error passive, and bus-off. The CAN error states
and their corresponding counters are depicted in Fig. 2.

Error active state. By default, all ECUs start in this state.
A node in this state has a minimum idle time 3-bit idle time
duration between consecutive frame transmissions and sends
an active error frame to alert other nodes.

Error passive state. An ECU enters this state when the
value of either the TEC or the REC surpasses 127. A node
in this state requires an additional 8-bit duration, known as
suspend transmission time, in addition to the 3-bit duration
for consecutive frame transmissions. It also sends a passive
error frame to notify other nodes.

Bus-off state. An ECU enters this state when the TEC
value exceeds 255. The node can return to the error active
state after observing at least 128 instances of recessive bits
on the CAN bus or after a CAN controller reset.

2.3 Priority Reduction
As mentioned in section 2.1, the lower the identifier in the

arbitration field, the higher the priority of a message. How-
ever, if there is an error passive node on the CAN bus, a
high-priority message from the passive node may be trans-
mitted later than a low-priority message due to the suspend
transmission time. This phenomenon is referred to as priority
reduction in [32].

For example, if an intentional error is injected on the mes-
sage transmission of an error passive node, retransmission
is immediately attempted due to the message transmission
failure. However, in order to retransmit the message, it waits
for the duration of the suspend transmission time, which is
a penalty time in the error passive state. During this time,
other nodes may transmit messages with a lower priority than
the retransmission message. Thus, the priority reduction can
be used to differentiate between a message transmitted by a
passive node and a message transmitted by an active node.
The principle of priority reduction is shown in Fig. 3.

2.4 Unified Diagnostic Services
The Unified Diagnostic Services (UDS) is a diagnostic

communication protocol used for diagnosing vehicle status
or updating an ECU, and is defined by ISO 14229-1 [13].
UDS allows functions such as diagnostic session control and
ECU reset to be performed using diagnostic messages over
the CAN. Generally, diagnostic messages use identifiers in
the range of 0x700 to 0x7FF and include the service identi-
fier (SID) to be diagnosed in the data field. Specifically, one
diagnostic identifier is assigned to each ECU, and diagnos-
tic messages are communicated through UDS request and
response messages.

3 System Model

3.1 Assumptions
System assumption. In general, the network structures

adopted by vehicle manufacturers are divided into several
buses— including powertrain, comfort, body, etc.—and these
separate buses are connected via a gateway. Thus, we assume
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that RIDAS is installed as an additional node on the individ-
ual buses or is integrated into the gateway. Additionally, we
assume that RIDAS maintains an ECU mapping table for a
target vehicle, which maps each CAN identifier to its source
ECUs. The table includes a list of ECUs installed on the vehi-
cle, the identifiers (CAN IDs) assigned to each ECU, and the
message transmission cycle of each identifier.

Adversary assumption. It is important to note that an ECU
can be compromised by vulnerable connectivity interfaces
such as USB, cellular, WiFi, or Bluetooth [2, 24]. Therefore,
a cyber attack can be performed on vehicles if an attacker
can access network buses through a physically or remotely
compromised ECU. However, in our system model, we do not
consider attackers who have physically accessed the network
buses through an additional node (e.g., a device plugged into
the OBD-II port) because this node can be easily recognized
by drivers. Since RIDAS is not designed to detect attack
attempts on the CAN bus, we assume attacks are detected by
a CAN IDS.* Furthermore, we assume that remote attackers
cannot compromise RIDAS or the ECU mapping table.

3.2 Threat Model

An attacker can perform masquerade attacks to control
vehicle operations by injecting attack messages into the CAN
bus through a compromised ECU. In this paper, we consider
two different types of masquerade attackers: naive and RIDAS-
aware attackers.

A naive attacker does not have any knowledge of how
RIDAS identifies attack sources. Thus, the attacker uses the
default setting of the CAN controller and does not attempt
to tamper with the CAN controller settings to evade RIDAS.
The naive attacker simply injects attack messages whenever
he/she wants.

A RIDAS-aware attacker, however, understands how an
attack source can be identified by RIDAS. Thus, the attacker
leverages his/her knowledge to evade RIDAS by modifying
the CAN controller settings. Since RIDAS utilizes the CAN’s
error handling (i.e., the characteristic of the error passive state)
to identify attack sources, the attacker can choose one of the
following three ways—CAN controller reset, one-shot mode,
and fast message transmission—as a method to decrease the
TEC.

• CAN controller reset: This method sets the TEC to zero
by initializing all registers, including the TEC register
of the CAN controller.

• One-shot mode: In this mode, even if there is message
transmission failure due to a CAN error, the message is
not retransmitted.

*The detection of cyber attacks on the CAN bus is beyond the scope of
this paper.

• Fast message transmission: As the TEC is decremented
by 1 for each successful message transmission, a fast
message transmission leads to a quick decrease in the
TEC.

4 RIDAS

4.1 Design Challenges
In order to identify an attack node by checking the priority

reduction of the error passive state, the following challenges
should be considered.

Challenge 1. How can we identify an attack node on
the CAN bus within such a short time in which the error
passive state can be detected? In the default setting of a
CAN controller, an ECU in the error passive state can re-
vert to the error active state when its own TEC drops below
128 through successful transmission of messages. The time
it takes for a node in the error passive state to convert to the
error active state varies from tens of milliseconds to several
thousand milliseconds, depending on the node’s error state
(i.e., the TEC and REC states), the number of identifiers as-
signed to the node, and the message transmission cycle of the
identifiers. Therefore, the process of distinguishing the attack
node from the normal nodes through the priority reduction
phenomenon should, in the worst case, be performed within
tens of milliseconds.

Challenge 2. How can we identify an attack node that
can control its own TEC? If an attacker exploits the CAN
controller’s reset function or the one-shot mode function, the
compromised ECU cannot be in the error passive state. In
this case, it is impossible to identify the attack node by check-
ing the priority reduction phenomenon of the error passive
state. In addition, the attacker can transmit a large volume
of messages with the fastest transmission cycle to drastically
decrease the TEC, which shortens the duration of the error
passive state.

Challenge 3. How can we deal with identification errors
originating from false positives, an inherent problem of
IDSs? In order to identify an attack source using the priority
reduction of the error passive state, an attack message from
the attack node must be detected by an IDS and destroyed
by a bit error before its transmission is complete. However,
since false positives from IDSs are an inherent problem, it is
difficult for IDSs to address this issue completely. Therefore,
attack source identification should be designed to be robust
against IDS false positives.

4.2 Overview
The architecture of RIDAS is shown in Fig. 4. RIDAS

is composed of four modules: a TEC emulation module, an
attack handling (AH) module, a naive attack source identifica-
tion (NASI) module, and a RIDAS-aware source identification
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Table 1: Notations

Notations Descriptions
kinit The number of bit errors injected by the

error generator #1 of the AH module.
kadd The number of additional bit errors injected

by the error generator #2 of the NASI mod-
ule to observe a priority reduction.

TEC ts
estimate The estimated value of TEC at the time, ts,

when RIDAS was started.
TEC tc

estimate The estimated value of TEC at the current
time, tc.

TECbase The TEC value that should be reduced using
remote frames after a compromised node is
identified.

module (RASI).
The TEC emulation module estimates the TEC of each

ECU by monitoring the error frames of all CAN messages.
The AH module consists of two components: 1) an error

generator #1, which generates bit errors on abnormal CAN
messages detected by an IDS to transition a suspicious ECU
from an error active state to the error passive state, and 2) a
frame trigger that instigates the transmission of CAN packets
from a specific ECU using a report frame or a UDS request
message, aiming to reduce the ECU’s TEC below a predefined
threshold.

The NASI module comprises three components: 1) a traf-
fic generator that generates background traffic, and 2) an er-
ror generator #2 that introduces suitable additional bit errors
based on the ECU’s TEC state, as estimated by the TEC em-
ulation module, to monitor priority reduction, and 3) naive
attacker identification and verification, which can identify an
ECU in the error passive state in real-time and validate the
identification result.

The RASI module is composed of two components: 1)
RIDAS-aware attack identification and 2) an error generator
#3. The RIDAS-aware attack identification checks for a dras-
tic TEC decrease resulting from the use of the reset function,
one-shot mode setting, or fast message transmission by a com-
promised node. Specifically, it monitors the CAN bus to: 1)
observe changes in the transmission cycle of CAN messages
not transmitted during the CAN controller’s reset process, 2)
check for retransmission on an erroneous message due to the
one-shot mode setting, and 3) detect excessive message injec-
tions, which could decrease the TEC. If a failed transmission
message is not retransmitted or fast message transmission
attempts are detected, the error generator #3 produces a bit
error to locate the compromised ECU enabling one-shot mode
or to prevent the TEC value of the compromised ECU from
decreasing. The system flows and notations of RIDAS are
described in Fig. 5 and Table 1, respectively.

4.3 TEC Emulation

The goal of the TEC Emulation module is to monitor the
CAN bus in real-time and measure the TEC of each ECU. The
CAN bus may experience transmission errors due to various
factors such as temperature variations, collision events, and
CAN wiring issues. Consequently, an ECU’s TEC may not
always be zero. Therefore, if RIDAS’s error generators cause a
transmission error while the ECU’s TEC is in a non-zero state,
the ECU could transition to the bus-off state. To prevent an
ECU from entering the bus-off state, a TEC emulator capable
of emulating the TEC of all ECUs is necessary. Algorithm 1
in Appendix A.1 illustrates how the TEC emulator measures
each ECU’s TEC by counting the error frames and monitoring
the CAN bus.
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4.4 Attack Handling (AH)

When an IDS detects an abnormal message, the AH mod-
ule’s error generator #1 must inject bit errors kinit times before
the transmission of the attack message completes, to transition
the suspect node into an error passive state. The value of kinit
should be set between 16 and 32. After kinit bit errors have
been injected into the suspect node, its TEC reaches a value
between 128 and 256, and this value is defined as TECinit .

If the IDS falsely identifies messages from normal ECUs as
attacks, normal nodes could be forced into a bus-off state by
error generator #1. To prevent this, before restarting RIDAS,
the frame trigger checks all TEC values, TEC tc

estimate, obtained
from the TEC emulation module. (TEC tc

estimate represents the
estimated TEC value at the current time, tc.) If TEC tc

estimate
exceeds TECbase, a RIDAS system parameter, the frame trig-
ger sends a remote frame or a UDS request message to the
respective ECUs to lower their TEC values below TECbase.
The total number of remote frames or UDS request messages
sent by the frame trigger can be calculated by the following
equation.

# trigger f rames = ∑
∀ECU∈E

⌈
(TEC tc

estimate−TECbase)

8

⌉
, where E represents a set of all ECUs installed in a vehicle.

4.5 Naive Attack Source Identification (NASI)

The main objective of the NASI module is to identify the
node that has transitioned to the error passive state due to the
AH module’s actions.

When the AH module activates the NASI module, the traf-
fic generator begins generating background traffic. At the
same time, the error generator #2 introduces kadd bit errors

into the transmission of each ECU, where kadd is the value
dynamically calculated as follows.

kadd =

⌈
(TEC ts

estimate−TEC tc
estimate)

8

⌉
+ kcheck

,(0≤
⌈
(TEC ts

estimate−TEC tc
estimate)

8

⌉
< 16− kcheck)

, where kcheck is a system parameter that is determined by the
ratio of the background traffic and is the minimum number
of bit error injections required to observe priority reduction
in nodes that have transitioned to the error passive state, and
TEC ts

estimate represents the estimated value of TEC at the time
when starts, expressed as ts.

The ECU interrupted by the error generator #2 will re-
transmit the interrupted message kadd times. During this re-
transmission process, the NASI module monitors the node’s
priority reduction to determine if it has transitioned to the er-
ror passive state. If the ECU performing kadd retransmissions
is not the abnormal node targeted by the AH module, it should
not be in the error passive state, and thus, no priority reduction
should occur. Conversely, priority reduction can be observed
during the suspend transmission time of the abnormal node
because kinit bit errors have been injected by the AH module.
Once a node in the error passive state is identified, the ECU
mapping table is used to verify whether the node is indeed an
attack node. For instance, if the abnormal ID detected by the
IDS and the error passive node’s representative ID identified
by NASI do not violate the ECU mapping table, this node is
not an attack node, but a normal node that the IDS falsely de-
tected. Otherwise, the error passive node identified by NASI
is an attack node.

Successfully observing priority reduction depends on four
conditions: 1) the default number of bit error injections
(kcheck), 2) the representative ID for each ECU, 3) the schedul-
ing of the ECU inspection order, and 4) the background CAN
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traffic. To increase the probability of the NASI module observ-
ing priority reduction, these four conditions must be managed
as follows.

4.5.1 The default number of bit error injections (kcheck)

In order for the NASI module to check priority reduction
of a node in the error passive state, the default number of
bit error injections (kcheck) must be determined. Suppose we
define an event A where priority reduction does not occur
in a single bit error injection when there is an error passive
node. The expected number of bit error injections (kcheck) for
a given probability p can be calculated as follows.

minimize: kcheck

subject to: (1−Pr(A))kcheck ≥ p
kcheck ≥ 1 (kcheck is an integer)

, where Pr(A) represents the probability of the event A, and p
is a system parameter in RIDAS that represents the probability
of successful identification by the NASI module. p is typically
set to a value that approximates 1, such as 0.99999.

However, since it is not feasible to accurately obtain Pr(A)
from the CAN bus due to various factors like the execution
time of the NASI module, the number of attack message trans-
missions, and the number of normal message transmissions,
kcheck for each vehicle type should be experimentally deter-
mined as demonstrated in Section 5.3.

4.5.2 The representative ID for each ECU

To identify an ECU in the error passive state, the NASI
module sequentially generates kadd bit errors on each ECU to
observe the priority reduction. Therefore, it is necessary to
select a representative CAN ID of each ECU to be used as a
target for bit error generation. To complete the NASI module
inspection as quickly as possible, the representative ID for
each ECU is set to the CAN ID with the fastest transmission
cycle among the CAN IDs assigned to that ECU. If an ECU
has two or more CAN IDs with the same fast transmission
cycle, the CAN ID with higher priority is selected as the
representative ID. An example of selecting a representative
ID for each ECU is shown in Table 2.

4.5.3 ECU inspection order Scheduling

The ECU inspection by the NASI module is carried out
sequentially, one at a time. However, if the ECU that gets
inspected last by the NASI module is the abnormal node
targeted by the AH module, even if kadd bit errors are injected,
the error passive state of that node may not be maintained due
to the delay caused by the inspection time of other ECUs. To
address this issue, the inspection order of the NASI module

Table 2: The example of selecting a representative ID (The
red color indicates the representative ID of each ECU)

ECU CAN ID
Transmission

Time (ms)
0x101 10
0x102 10

X

0x104 100
0x201 10
0x202 50

Rate of decrease in TEC 

(a) The TEC decrease rate of ECUs

ECU H ECU G ECU E ECU F ECU D ECU B ECU C ECU A ECU I

(b) ECU inspection order

Figure 6: Inspection schedule of the test vehicle (Vehicle A)

should be scheduled in descending order according to the
TEC decrease rate for each ECU. The TEC decrease rate
depends on the number of CAN IDs assigned to the ECU
and the message transmission cycle of the CAN IDs. Thus,
the TEC decrease rate, T DR, can be calculated through the
following formula.

TDRECUi = ∑
∀cidi, j∈ECUi

1
Pcidi, j

, where ECUi is the i-th ECU on a vehicle, cidi, j is the j-
th CAN ID of ECUi, and Pcidi, j is the message transmission
period of cidi, j. An example of inspection order scheduling
is shown in Fig. 6.

4.5.4 Background CAN Traffic

The generation of background traffic is a crucial component
of the NASI module’s success in observing priority reduction.
This is because priority reduction occurs probabilistically
and is dependent on the number of CAN messages that have
lower priority than the representative ID of each ECU. The
traffic generator creates background traffic comprised of CAN
IDs that have a lower priority than all other CAN IDs. This
background traffic thus enhances the probability of priority
reduction.

4.6 RIDAS-aware Attack Source Identification
(RASI)

The RASI module is designed to deal with a RIDAS-aware
attacker who can rapidly decrease the TEC. There are three
methods to quickly change the TEC: 1) resetting the CAN

USENIX Association 32nd USENIX Security Symposium    6917



CAN Communica!ons

RIDAS

(a) CAN bus prototype (b) Real Vehicle A (Inside) (c) Real Vehicle A (Outside)

Figure 7: Environment setup for the CAN bus prototype and real vehicle

Table 3: The reset time of three CAN controllers

Device CAN Controller CAN Transceiver Reset Time (ms)
Arduino Uno with
CAN Bus Shield† MCP2515 TJA1050

≤ 1
Arduino Due‡ SAM3X8E SN65HVD230

ESP32§ SJA1000

controller, 2) using the one-shot mode, and 3) sending a large
volume of data at a high transmission rate. To address the
aforementioned attack methods employed by a RIDAS-aware
attacker, the RASI module performs three processes as fol-
lows:

4.6.1 Response to a CAN controller reset

When a RIDAS-aware attacker resets the CAN controller of
a compromised ECU, it typically takes about 1ms for the com-
promised ECU to restart its own CAN controller, as shown in
Table 3. Despite the short reset time, the RASI module can
detect the change in transmission cycles of certain CAN pack-
ets originating from the reset CAN controller when a reset
event occurs. Therefore, the RASI module can examine the
CAN IDs whose transmission cycle has changed and identify
the corresponding node using the ECU mapping table.

4.6.2 Response to one-shot mode

If a compromised ECU is set to one-shot mode, the mes-
sage that failed to be transmitted by error generator #1 is not
retransmitted due to the one-shot mode setting. In this case,
the RASI module checks for message retransmission, rather
than priority reduction. To do this, the RASI module selects at
least one of the identifiers assigned to each ECU by referring
to the ECU mapping table. When messages containing the
selected identifiers are transmitted, error generator #3 gen-
erates a bit error on them, and the RASI module checks if

†https://github.com/DFRobot/DFRobot_MCP2515
‡https://github.com/collin80/due_can
§https://github.com/miwagner/ESP32-Arduino-CAN

these messages are retransmitted. For example, if message
retransmission does not occur after a bit error is injected into a
message containing a specific identifier, the RASI module can
check this by monitoring changes in the message transmission
cycle of the identifier. Then, the RASI module can identify
the ECU to which this identifier is assigned by referring to the
ECU mapping table. Finally, the RASI module can determine
that the ECU is the compromised node set to the one-shot
mode by the RIDAS-aware attacker.

4.6.3 Response to fast message transmission

If a compromised node injects a large volume of messages
in a fast transmission cycle, the duration of the compromised
node’s error passive state is shortened due to the TEC de-
crease. Thus, whenever the compromised node’s TEC de-
creases by 8, a bit error is injected to restore the node’s TEC
to its original value. To achieve this, the RASI module detects
a fast message transmission attempt aimed at reducing the
TEC when the CAN bus load is maintained at 70-100%, which
is higher than the normal CAN bus load range of 40-60%,
excluding background traffic.

In the case of attacks sending a large number of messages
with a single identifier, the attack identifier can be easily iden-
tified because this identifier is observed more frequently on
the CAN bus than other identifiers. However, since the RASI
module does not know which ECU is transmitting the fast
cycle message, it injects a bit error into each RID of all ECUs
whenever the messages with the corresponding identifier are
successfully transmitted 8 times.

In the case of attacks involving a large number of messages
with multiple identifiers, the RASI module selects all iden-
tifiers that are being transmitted in a fast transmission cycle.
Then, by counting the total number of message transmissions
for messages with the corresponding identifiers on the CAN
bus, a bit error is injected for each RID of all ECUs every
(8×n+1)-th message transmission, where n is a non-negative
integer.
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5 Evaluation

5.1 Experimental Setup
CAN DBC. Since there is no available CAN DBC, i.e.,

Database CAN, for the target real vehicle (Hyundai Avante
CN7), we collected CAN traffic from the target vehicle and
obtain the ECU mapping table using the existing mapper
solution [19]. As a result, the test vehicle was found to have
nine ECUs, and each ECU was indexed from A to I, as shown
in Table 6 in the Appendix.

CAN bus prototype. Fig. 7a shows the environment of
the CAN bus prototype, which consists of four components;
1) nine nodes that simulate ECUs on the target vehicle, 2)
a compromised node (a naive or RIDAS-aware attacker), 3)
RIDAS, and 4) the monitoring tool.

The nine normal nodes, highlighted in orange, and the com-
promised node, highlighted in red, are composed of Arduino
UNOs with CAN bus shields. The TEC Emulation module,
AH module, NASI module, and RASI module, highlighted
in green and yellow, are implemented in four devices, which
are two CANPico boards and two Arduino UNOs with CAN
bus shields¶. The monitoring tool, highlighted in blue, uses
a device called PCAN-USB Pro. All devices are connected
to the CAN bus, and RIDAS’s modules communicate with
each other through the UART. The nine nodes and the traffic
generator are configured to send CAN messages as shown in
Table 6 and Table 7 in the Appendix, respectively.

Real vehicle. To set up this environment, we used a real
vehicle (referred to as Vehicle A), Hyundai Avante CN7, as
shown in Fig. 7c. The environment is presented in Fig. 7b, and
the configuration is the same as the CAN bus prototype except
for the nine nodes simulating ECUs on the target vehicle.
RIDAS is connected through the OBD-II port of the vehicle.

5.2 Evaluation of AH’s frame trigger
To evaluate the effect of frame triggers, we designated ECU

A in Vehicle A as an attack node and measured the TEC of
ECU A. Fig. 8a shows the variation in the TEC value of
ECU A without the frame trigger, while Fig. 8b shows the
variation in the TEC of ECU A with the frame trigger. In this
experiment, TECbase was set to 79. Remote frames were used
in the prototype environment, while UDS request messages
were used in Vehicle A. || Fig. 8 shows that the frame trigger
allows RIDAS to reduce the TEC value of ECU A, thereby
preventing it from reaching the bus-off state by RIDAS restart.

Moreover, in the prototype environment, it took approxi-
mately 10ms for the TEC to decrease to TECbase after being

¶AH module’s frame trigger and NASI module’s traffic generators are
highlighted in yellow color.

||As Vehicle A ECUs do not support remote frames, we substituted these
with UDS diagnostic request messages. For ECU A, the diagnostic request
ID is 0x7B3 and the diagnostic response ID is 0x7BB. This diagnostic ID
pair was obtained experimentally.

O

(a) TEC (w/o frame trigger)

OO

O

(b) TEC (w/ frame trigger)

Figure 8: TEC of ECU A (TECbase = 79, kinit = 17, kcheck = 5)
(Ts: The time at which RIDAS starts; Tkinit : The time at which
the TEC increase is completed due to injecting kinit bit errors;
Tkadd : The time at which the TEC increase is completed due to
injecting kadd bit errors; To:The time at which the observation
of priority reduction is completed.)

Table 4: The RID information of each ECU

CAN bus prototype & Real Vehicle A
ECU A B C D E F G H I
RID 0x48A 0x340 0x391 0x389 0x251 0x130 0x153 0x260 0x563

Transmission
Cycle (ms) 50 10 20 20 10 10 10 10 600

increased by both kinit and kadd . However, in Vehicle A, it
took approximately 678ms. The time difference stems from
the difference in using remote frames and UDS request mes-
sages. Experimental results show that the ECU’s response
time to remote frames is significantly faster than its response
time to UDS request messages. This means that, in Vehicle
A, it can be inferred that the time required for the restart after
RIDAS termination is over 678ms for Vehicle A However,
if software updates that support remote frames are applied
in Vehicle A, the time required for RIDAS to restart can be
reduced to a maximum of 10ms.

5.3 Evaluation of NASI
In this section, we experimentally measured the success rate

of the NASI module’s identification of error passive nodes.
This rate depends on the CAN bus load and the number of bit
error injections, kcheck. We also discuss the scheduling of the
NASI module’s inspection order and the module’s completion
time for each ECU. To evaluate the NASI module, we set
the representative identifier (RID) for each ECU installed in
Vehicle A. The RID information used in the experiment is
shown in Table 4.
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Figure 9: The probability of Priority Reduction according to the bus load and kcheck

5.3.1 Priority Reduction according to the CAN bus load
and kcheck

The probability of Priority Reduction correlates positively
with the CAN bus load and kcheck. To assess the probability
of Priority Reduction according to the CAN bus load and
kcheck, we maintained the bus load at 70%, 80%, or 90% and
conducted a Priority Reduction experiment corresponding to
kcheck. For this test, we generated background traffic with the
lowest priority, a CAN ID of 0x600, to maintain the bus load
at levels from 70% to 90%.

Then, after setting each ECU to an error passive state, kcheck
bit errors were injected into the ECU to observe if Priority
Reduction occurred. We conducted this test 100 times for
each ECU and kcheck. Fig. 9 depicts the average probability
of Priority Reduction (i.e., the identification probability of
the error passive node) according to kcheck when the CAN bus
load is maintained at 70%, 80%, or 90%. The probability of
Priority Reduction reached 100% for all ECUs when kcheck
was set to 8 with a CAN bus load of 70%, when kcheck was
set to 5 with a bus load of 80%, and when kcheck was set to 4
with a bus load of 90%.

As a result, we confirmed that a higher volume of back-
ground traffic increased the likelihood of observing Priority
Reduction, which corresponded to a lower number of bit error
injections, kcheck.

Table 5: The completion time of the NASI module (TECbase =
79, kcheck = 5, background traffic = 80%)

Compromised
ECU A B C D E F G H I

Completion
Time (ms)

Prototype 164.6 75.7 106.3 73 42.4 43.7 33.2 5.4 563.5
Vehicle A 150.1 75.8 99.6 72.3 38.4 40.1 29.7 5.1 458.67

5.3.2 Evaluation of NASI module’s inspection order

As outlined in section 4.5, the NASI module sequentially
injects bit errors into the RIDs of all ECUs and identifies the
attack source by detecting the ECU in the error passive state.
Therefore, the attack node must be in an error passive state
when the NASI module conducts an inspection on the com-
promised node. This is why it is crucial to schedule the NASI
module’s inspection order according to the TEC decrease rate.

The inspection schedules of the NASI module used in the
experiment are set in ascending and descending orders based
on the TEC decrease rate. As depicted in Fig. 10, when the
inspection schedule is set in ascending order, the additional
bit errors (kadd) for ECU B, D, F, E, G, and H exceed 16. On
the other hand, if the inspection schedule is set in descending
order, the additional bit errors (kadd) for all ECUs fall within
the range of 1 to 10. This shows that it is more advantageous
to arrange the NASI inspection sequence in descending or-
der based on the TEC decrease rate. The NASI inspection
sequence in descending order is shown in Fig. 6.
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Figure 10: kadd according to the ECU inspection schedule
(TECbase = 79, kcheck = 5, background traffic = 80%)

5.3.3 The completion time of NASI module

Table 5 presents the average completion time of the NASI
module in both the CAN bus prototype and Vehicle A. If
the compromised node is ECU H, which is first in the NASI
inspection order, the identification of this node (i.e., ECU H)
is completed in approximately 5ms in Vehicle A. Conversely,
if the compromised node is ECU I, which is last in the NASI
inspection order, we confirmed that the inspection completion
time does not exceed 500ms in Vehicle A.

5.4 Evaluation of RASI
In this subsection, we also evaluate the performance of the

RASI module. In this evaluation, since we cannot modify
the CAN controllers of ECUs installed on the actual vehicle
without compromising them, we used a simulated RIDAS-
aware attacker to evaluate the RASI module. To simulate the
RIDAS-aware attacker, three CAN IDs (i.e., 0x270, 0x330,
and 0x336) were assigned to a virtual ECU, termed ECU L.
This information can be found in Table 8 in the Appendix.

5.4.1 Evaluation of response to an ECU reset

Each time an ECU’s CAN controller is reset, there is a
notable change in the message transmission cycle of the re-
set ECU due to the rescheduling of packet transmission. To
examine the variation in the message transmission cycle af-
fected by a CAN controller reset, we implemented a CAN
controller reset every five seconds using ECU L and com-
pared the message transmission cycle both with and without
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Figure 11: Message transmission cycle variations of ECU L
(reset off vs. reset on)
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Figure 12: Message transmission cycle variations of ECU L
(Default mode vs. One-shot mode)

periodic resets.
Fig. 11 illustrates the variations of message transmission

cycles in two CAN controller settings: (a) the CAN controller
without a reset, and (b) the CAN controller with a periodic
reset. As depicted in Fig. 11a, there is no significant change
in the transmission cycle of messages sent from the CAN
controller without a reset. However, Fig. 11b demonstrates
a noticeable change in the transmission cycle of messages
sent from the CAN controller with a periodic reset. Hence,
we confirmed that an ECU resetting the CAN controller can
be identified by using the message transmission cycle varia-
tion and the ECU mapping table. However, an attacker who
precisely adjusts the timing of the CAN controller reset to
match the packet transmission schedule may be difficult to
identify by looking at variations in the message transmission
cycle. This scenario is discussed further in Appendix A.2.

5.4.2 Evaluation of response to the use of one-shot mode

In this experiment, we compared two test cases: an ECU
in normal (default) mode and an ECU in one-shot mode,
to observe that messages failing to be transmitted are not
retransmitted in the one-shot mode. We injected bit errors
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into messages with CAN IDs of ECU L in both cases and
measured the message transmission cycle. As depicted in
Fig. 12, in default mode, there were minimal variations in
the message transmission cycle even when bit errors were
injected on the ECU. However, for the ECU in one-shot mode,
the change in the message transmission cycle was noticeable
when bit errors were injected.

Specifically, in the one-shot mode, the messages that have
been interrupted by the bit-wise arbitration process are not re-
transmitted. Therefore, we confirmed that an ECU in one-shot
mode can be easily identified by using the message transmis-
sion cycle variation and the ECU mapping table.

5.4.3 Evaluation of response to the fast message trans-
mission

When a fast message transmission attack is detected, the
RASI module injects an additional bit error into the RID of
all ECUs every time the number of injected attack messages
becomes a multiple of eight. In this context, the number of
additional bit errors, kECUi

add , for any ECUi must be calculated
using the following equation.

kECUi
add =

⌈
(TDRECUi ×∆TECUi)

8

⌉
+

⌈
(AT R×∆TECUi)

8

⌉
+ kcheck

, where kECUi
add represents the number of additional bit er-

rors for ECUi, TDRECUi represents the TEC decrease rate of
ECUi, ∆TECUi represents the elapsed time between the initial
injection of RIDAS bit errors and the inspection start time
of ECUi, and AT R represents the number of attack messages
transmitted per unit of time (ms).

Given that kECUi
add must be at least 1 and less than 16, the

maximum time value of ∆T ECUi that satisfies this condition
is depicted in Fig. 13. According to Fig. 13, the shortest time,
approximately 44.81 ms, is ∆TECUH , while the longest time,
around 87.85 ms, is ∆T ECUI . If the maximum time value of
∆TECUi is shorter than the start time of inspection for each
ECU, the RASI module may not complete its operation re-
garding the fast transmission attack in one cycle and may need
to perform several cycles. For example, as shown in Table 5,
ECUs B, D, E, F, G, and H of Vehicle A can be inspected
in the first RIDAS operation. If fast message transmission is
detected again, the remaining ECUs A, C, and I, which were
not covered in the first RIDAS operation, will be inspected in
subsequent RIDAS operations.

6 Discussion

6.1 Intrusion detection system
Note that the higher the detection accuracy of the IDS, the

better the performance of RIDAS’s error passive node identifi-
cation. An IDS that can be integrated with RIDAS must detect
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Figure 13: The maximum time value of ∆TECUi under fast
message transmission attacks (kcheck = 5, AT R = 1)

attacks before the attack packets are completely transmitted.
Thus, existing IDSs such as [4] and [30], which detect attacks
based on the transmission period of CAN packets, can be
applied to RIDAS. Although research has been conducted on
the circumvention of periodic message-based IDSs, RIDAS
can distinguish false positives generated by the IDS. In light
of this, the advantage of RIDAS is that it can correct an in-
correctly detected message as the normal message using the
ECU mapping table. However, further research is necessary
on IDS based on non-periodic messages in addition to peri-
odic message-based IDS. In future research, we plan to study
lightweight IDSs and attempt to integrate them into RIDAS.

6.2 Handling RIDAS’s failure
RIDAS’s RASI module handles RIDAS-aware attackers

who are capable of rapidly changing the TEC. Through exper-
iments, we evaluated the performance of the RASI module in
detecting attacks using CAN controller reset, one-shot mode
setting, and fast message transmission. However, we observed
that if a fast transmission attacker is present, the time it takes
for the TEC of the attack node to decrease can be significantly
shortened, and as a result, the attack node may not be im-
mediately identified by the NASI module. Despite this, such
attacks can still be frequently detected by the IDS, and the
attack node can then be identified through multiple RIDAS
operations. Future research is needed to reduce the operation
time of RIDAS either by using the frame trigger or by per-
forming simultaneous inspections on multiple ECUs, rather
than inspecting one ECU at a time.

6.3 Other Attacks on RIDAS
Direct TEC manipulation attack. If an attacker can di-

rectly modify the value of the TEC register without resetting
the CAN controller, RIDAS may be unable to identify the
attack node based on the error passive state characteristic.
However, in general, the TEC registers of commonly used
CAN controllers such as MCP2515, SAM3X8E, SJA1000,
STM32F4, and TMS470R1x, are readable but not writable,
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and thus it is impossible to directly modify the value. Making
the TEC register writable would require a hardware redesign.
Therefore, assuming an attacker could directly manipulate the
TEC register in the current CAN controller environment may
be unrealistic.

Advanced one-shot mode attack. If an attacker enables
one-shot mode for a single attack packet and then disables
it thereafter, RIDAS might not be able to identify the attack
source. This is because the RASI module, which identifies
one-shot mode attackers based on the retransmission of nor-
mal packets, does not observe one-shot mode patterns. How-
ever, if the attack packet sent with one-shot mode is accurately
detected by an IDS, it will be destroyed by RIDAS’s bit error
injection and not retransmitted. As a result, the packet from
an attacker using an advanced one-shot mode is less likely to
be successfully transmitted on the CAN bus.

ID reuse attack. RIDAS is incapable of identifying attack
sources that reuse their own CAN ID to inject attack packets.
Since attacks that use the CAN IDs of other ECUs are more
common than attacks that reuse one’s own ID, RIDAS was
designed to identify nodes performing masquerade attacks.
Nevertheless, ID reuse attacks can also cause significant dam-
age to the vehicle operations. Therefore, further research is
required to identify nodes executing ID reuse attacks.

7 Related works

Automotive Intrusion Detection Systems. Automotive IDS
has been considered a promising solution to combat cyber-
attacks on the CAN bus, as it doesn’t necessitate modifications
to the vehicle. The IDS’s self-adaptation facilitates its direct
application to real vehicles, and researchers have extensively
studied the implementation of automotive IDS frameworks
[12, 20, 25, 35]. The periodicity of CAN messages is the most
commonly used characteristic because most CAN messages
are periodically transmitted to the CAN network, and the
injection of malicious CAN messages significantly increases
their transmission frequency [25, 35].
ECU Identification. Several automotive IDS methods have
been proposed that offer ECU identification in addition to
in-vehicle intrusion detection [6–8, 27]. These methods lever-
age the unique characteristics of each ECU for identification.
If the ECU characteristics previously obtained and the char-
acteristics monitored in the CAN network do not align, it
would be considered an anomaly, and ECU identification is
performed. Murvay and Groza proposed a method that utilizes
the electrical characteristics of CAN messages generated by
ECUs [27]. However, they do not account for scenarios where
CAN messages are simultaneously transmitted from multiple
ECUs, such as during the arbitration phase, which results in
mixed characteristics. Choi et al. [7] subsequently proposed
a method for ECU identification using electrical character-
istics, with arbitration phase consideration. Although this
method identifies ECUs with high accuracy, it necessitates an

extended CAN frame format to allow for an additional 19-bit
extended identifier field.

Recently, Choi et al. [8] and Kneib et al. [16] both proposed
improved intrusion detection and identification methods based
on the electrical properties of CAN messages. However, all
methods utilizing the electrical characteristics of ECUs face
the significant issue of device aging. Moreover, these electri-
cal characteristics can be easily affected by various external
factors, such as temperature or electromagnetic interference.
Instead of leveraging the electrical characteristics, Cho and
Shin [3] proposed a method to utilize the unique clock skew
of each ECU. Unfortunately, Sagong et al. [31] demonstrated
that this method could be evaded by an advanced attacker
emulating an ECU clock skew, which ultimately enables the
attacker to continue injecting malicious CAN messages unde-
tected. Cho and Shin [5] also proposed a method for identify-
ing a compromised ECU after an attack is detected by IDS.
However, despite being a state-of-the-art approach to identi-
fying malicious transmission sources, this method shares the
same limitations as the previously mentioned methods, as it
is based on the electrical characteristics of individual ECUs.

8 Conclusion

Automotive manufacturers have a practical interest in
adopting both intrusion detection and firmware updates to
enhance the security of in-vehicle networks. However, auto-
motive IDSs typically cannot identify the compromised ECU
even when they successfully detect automotive intrusions.
Given this, several attack node identification methods have
been proposed. Yet, the proposed methods have shown to be
unreliable as the success rate of attack node identification is
significantly affected by changes in a vehicle’s environment,
or the method does not address false positives of the intrusion
detection system. Consequently, it is challenging to accurately
determine which ECU requires an update in real-time.

To tackle this issue, we propose a new scheme named RI-
DAS, which identifies the attack source using the priority
reduction of an ECU’s error passive state. Our experiments
on a CAN bus prototype and a real vehicle demonstrate that
RIDAS is capable of identifying the attack source without im-
pacting driving, and we confirm that RIDAS is robust against
changes in a vehicle’s environment. We believe that attack
node identification through RIDAS is an important advance-
ment in bridging the gap between attack detection and attack
response (e.g., isolation, security patch, digital forensics, etc.).
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A Appendix

A.1 TEC emulation algorithm
The transmit error counter (TEC) emulation algorithm

shown in Algorithm 1 is explained as follows. Initially, the
TEC emulator creates a virtual TEC table (V ) to emulate the
TEC values of all ECUs, setting all TECs to zero. Next, mask
and match values are generated to distinguish the four types
of bitstreams: arbitration field, active error frame, passive er-
ror frame, and EOF. For instance, if a received bitstream is
16 bits, the match value should be set as 0x17FF to check
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Algorithm 1 Algorithm for the TEC Emulation module

1: function EMULATOR(T : an ECU mapping table of a
target vehicle)

2: IS, IC← mask and match for the arbitration field
3: ES,EC← mask and match for the end of frame
4: AS,AC← mask and match for the active error frame
5: PS,PC← mask and match for the passive error frame
6: V ← a virtual TEC table for emulating TEC of ECUs
7: arb_id, idx,cnt← local variables in TEC Emulator
8: while true do
9: B← read_bitstream()

10: // Checking what bitstream is
11: if B∧ IS = IC then
12: arb_id← destu f f _identi f ier(B)
13: // index of ECU with arb_id in T
14: idx← f ind(arb_id,T )
15: else if B∧AS = AC or B∧PS = PC then
16: cnt← cnt +1
17: else if B∧ES = EC then
18: if cnt = kinit then
19: // ALL: index of all ECUs
20: V [ALL]←V [ALL]+ (kinit ×8)−1
21: else
22: V [idx]←V [idx]+ (cnt×8)−1
23: cnt← 0
24: // RIDAS ends with
25: // when a node is identified
26: if NASI’s identification signal then
27: N← index_o f _compromised_node()
28: noti f y_to_AH(N)
29: // ALL-N: index except for N
30: V [ALL−N]←V [ALL−N]− (kinit ×8)
31: // when fast transmission is detected
32: if RASI’s fast transmission signal then
33: noti f y_to_AH(ALL)
34: V [ALL]← 0
35: // when an ECU reset is detected
36: if RASI’s reset signal then
37: N← index_o f _compromised_node()
38: V [N]← 0

whether the bitstream is end of frame (EOF). The reason is
that when an ECU has successfully received a data frame, the
value from the CRC delimiter to the inter-frame space (IFS)
will be 0x17FF because the acknowledge (ACK) slot is set
to dominant. Additionally, the mask value is set to 0x1FFF
because the match value must be obtained by AND operating
the bitstream with the mask value. Consequently, the TEC
emulator can determine the received bitstream’s type using
the mask and match values. If the received bitstream is an arbi-
tration field, the TEC emulator extracts the identifier (arb_id)
from the bitstream and locates the index (idx) of the ECU
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(a) ECU A without a reset
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(b) ECU A with reset four times

Figure 14: Identification of ECU A’s reset through a remote
frame

that owns the identifier using the ECU mapping table (T ). If
the bitstream is an active or passive error frame, the emulator
counts the number of error frames (cnt). If the bitstream is an
EOF, the emulator increases the TEC of the ECU, which is idx
in V , by (cnt× 8)− 1. However, if cnt equals kinit (Section
4.4), the TEC of all ECUs in V is increased by (kinit ×8)−1
because RIDAS cannot identify the compromised ECU before
RIDAS inspection.

The TEC emulator is designed to operate continuously,
unlike other modules in RIDAS. This allows it to inform the
attack handling (AH) module’s frame trigger and the native
attack source identification (NASI) module’s error generator
about each ECU’s TEC status. the emulator notifies the AH
module of the frame trigger’s target (Section 4.4) and sets the
TEC of V as follows: If the compromised node performed
fast message transmission (Section 4.6.3), the emulator sets
all ECUs’ TEC in V to 0. Otherwise, it decreases the TEC
of all ECUs, except for the compromised ECU, by (kinit ×8).
Additionally, when the RASI module signals a reset of an
ECU, the TEC value of the ECU where the reset occurred is
set to 0.

A.2 ECU reset identification issue

In the RASI module of RIDAS, an ECU reset can be iden-
tified by monitoring changes in the message transmission
cycles. However, it becomes challenging to detect a CAN
controller’s reset by variations in the message transmission
cycle when dealing with an attacker who accurately adjusts
the timing of CAN controller resets according to the packet
transmission schedule.

To address this issue, RIDAS can incorporate the use of a
frame trigger by sending a remote frame or a UDS request
message to prompt CAN message transmission to a specific
ECU. Consequently, if RIDAS’s traffic generator uses the
remote frame or UDS request message as background traffic,
additional CAN messages can be stimulated. To evaluate the
identification experiment of the CAN controller’s reset using
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the frame trigger, we used the remote frame of ECU A. In
this experiment, the remote frame of ECU A was set to be
transmitted at a cycle of 5 ms, and the number of data frames
generated by ECU A was counted for each time window
period (e.g., 15 ms in this case). As depicted in Fig. 14, when
there was no CAN controller reset, approximately three or
four CAN messages from ECU A were observed during one
time window. However, when resets were performed four
times, windows containing only two CAN messages were
observed three times.

Therefore, it was confirmed that the frame trigger can be
utilized to identify an ECU with a CAN controller reset. Es-
pecially, if the frame trigger randomly schedules the trans-
mission time of the triggering message, an attacker may not
be able to respond to that message due to a CAN controller’s
reset, since the attacker cannot predict the random timing of
the triggering message transmission.

A.3 RIDAS’s effect on normal CAN messages
RIDAS could potentially influence the message transmis-

sion cycle of normal CAN messages, given that it generates
additional traffic via the traffic generator and error genera-
tors to identify the compromised ECU. To evaluate RIDAS’s
impact on the message transmission cycle of normal CAN
messages, we measured the transmission time for all mes-
sages both with and without RIDAS. As indicated in Table 6,
we observe that the difference in the message transmission
cycle variation with and without RIDAS is extremely minimal.
Interestingly, we noticed the variation in the message trans-

mission cycle of CAN packets even under normal conditions
without RIDAS. This confirmed that RIDAS exerts only a
minor effect on a normal message’s transmission cycle.

Table 6: RIDAS’s effect on normal CAN messages

ECU CAN ID
Transmission Time (ms)

Without RIDAS With RIDAS
min max mean min max mean

A
0x48A 46.51 53.50 49.99 45.77 54.09 49.99
0x48C 196.50 203.17 199.99 194.68 205.37 199.99
0x58B 44.77 55.22 49.99 43.68 56.51 49.99

B

0x340 8.53 11.46 10.00 8.52 11.45 10.00
0x42D 97.93 101.71 100.01 97.09 102.92 100.01
0x484 66.26 73.48 70.00 66.29 73.91 70.00
0x485 46.50 53.51 50.00 46.03 53.99 50.00
0x4A7 496.89 502.18 500.05 496.41 503.62 500.05
0x53E 96.65 103.46 100.01 95.31 104.78 100.01

C

0x391 17.40 22.59 19.98 16.81 23.12 19.98
0x4F1 14.85 24.38 19.98 13.84 26.09 19.98
0x50C 95.52 103.95 99.94 93.61 104.83 99.93
0x52A 39.70 204.15 198.57 194.54 202.98 199.87
0x5B0 995.38 1002.37 999.42 993.79 1002.88 999.38
0x5CD 195.10 204.29 199.88 194.00 203.82 199.87

D

0x389 15.73 24.26 20.00 15.19 24.73 20.00
0x38D 17.66 22.35 20.00 17.39 22.90 20.00
0x420 16.14 23.85 20.00 15.67 24.26 20.00
0x421 15.91 24.08 20.00 16.57 23.42 20.00
0x483 197.45 202.36 200.02 196.49 203.58 200.02
0x4A2 496.99 502.95 500.05 496.26 504.00 500.05
0x50A 196.89 203.02 200.02 196.30 203.67 200.02

E
0x251 8.55 11.44 10.00 9.00 11.00 10.00
0x2B0 8.55 11.45 10.00 8.40 11.50 10.00
0x381 17.96 22.03 20.00 17.61 22.31 20.00

F

0x130 9.50 10.46 10.00 9.44 10.57 10.00
0x140 9.51 10.46 10.00 9.44 10.56 10.00
0x495 95.83 104.33 100.06 94.87 104.80 100.06
0x500 95.96 104.01 100.06 95.30 105.41 100.06

G

0x153 9.10 10.93 10.00 9.05 10.92 10.00
0x164 9.03 10.95 10.00 9.03 10.95 10.00
0x220 8.84 11.16 10.00 8.80 11.20 10.00
0x394 17.61 22.29 20.00 16.51 23.55 20.00
0x47F 17.18 22.42 20.00 15.63 24.35 20.00
0x490 45.42 54.56 50.00 45.64 54.32 50.00
0x507 98.81 101.59 100.00 95.92 104.09 100.00

H

0x043 995.92 1002.06 999.34 996.94 1001.10 999.29
0x07F 998.88 1000.76 999.99 998.71 1001.05 999.99
0x260 6.56 13.58 10.00 5.69 14.42 10.00
0x329 5.79 14.15 10.00 6.15 13.86 10.00
0x356 7.52 12.48 9.99 8.40 11.77 10.00
0x366 5.82 13.92 9.99 5.70 14.40 9.99
0x367 6.86 13.41 9.99 7.05 12.96 9.99
0x368 7.43 12.49 9.99 7.68 12.42 9.99
0x386 16.46 23.78 20.00 16.84 23.05 19.99
0x387 15.70 24.19 20.00 15.61 25.08 20.00
0x410 198.93 200.85 199.99 198.30 201.57 199.99
0x412 198.61 201.49 199.99 195.15 204.89 199.99
0x436 47.03 53.04 49.99 46.88 53.42 49.99
0x44E 197.20 202.72 199.99 197.51 202.46 199.99
0x453 15.88 24.18 19.99 16.64 23.46 19.99
0x470 15.88 24.18 19.99 16.46 23.43 19.99
0x479 97.62 102.37 99.99 96.63 103.37 99.99
0x492 43.56 56.76 50.00 43.45 56.68 50.00
0x49F 196.17 203.56 199.99 196.89 202.66 199.99
0x4A9 196.10 204.03 199.99 194.89 205.07 199.99
0x4C9 197.31 202.85 199.99 197.36 202.06 199.99
0x4CB 197.83 202.22 199.99 197.07 202.25 199.99
0x50E 196.95 203.07 199.99 195.69 204.37 199.99
0x520 95.14 104.87 99.99 95.98 104.06 99.99
0x53B 197.84 201.78 199.99 197.68 201.99 199.99
0x53F 195.98 204.13 199.99 197.13 202.76 199.99
0x541 96.98 102.72 99.99 96.48 103.43 99.99
0x544 195.63 204.39 199.99 194.96 205.16 199.99
0x553 196.85 203.21 199.99 196.51 203.49 199.99
0x559 197.20 202.74 200.00 196.52 203.21 199.99
0x568 95.49 104.50 99.99 94.91 104.98 99.99
0x572 196.12 203.74 199.99 196.66 203.04 199.99
0x57F 1994.93 2004.87 1999.99 1995.76 2003.18 1999.98
0x593 194.75 208.82 199.99 190.69 209.66 199.99
0x5A6 196.03 203.75 199.99 196.64 202.57 199.99
0x5BE 997.79 1001.86 999.99 996.18 1002.00 999.99

I 0x563 595.16 604.58 600.00 596.23 603.72 600.00
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Table 7: An ECU mapping table of the traffic generator

ECU CAN ID
Transmission

Time (ms)
mean

J
0x600 1
0x601 1
0x602 1

K
0x603 1
0x604 1
0x605 1

Table 8: An ECU mapping table of a compromised ECU

ECU CAN ID Transmission
Time (ms)

L
0x270 10
0x330 50
0x336 100

6928    32nd USENIX Security Symposium USENIX Association


	Introduction
	Background
	Controller Area Network
	CAN Error Handling
	Error Type
	Fault Confinement

	Priority Reduction
	Unified Diagnostic Services

	System Model
	Assumptions
	Threat Model

	RIDAS
	Design Challenges
	Overview
	TEC Emulation
	Attack Handling (AH)
	Naive Attack Source Identification (NASI)
	The default number of bit error injections (kcheck)
	The representative ID for each ECU
	ECU inspection order Scheduling
	Background CAN Traffic

	RIDAS-aware Attack Source Identification (RASI)
	Response to a CAN controller reset
	Response to one-shot mode
	Response to fast message transmission


	Evaluation
	Experimental Setup
	Evaluation of AH's frame trigger
	Evaluation of NASI
	Priority Reduction according to the CAN bus load and kcheck
	Evaluation of NASI module's inspection order
	The completion time of NASI module

	Evaluation of RASI
	Evaluation of response to an ECU reset
	Evaluation of response to the use of one-shot mode
	Evaluation of response to the fast message transmission


	Discussion
	Intrusion detection system
	Handling RIDAS's failure
	Other Attacks on RIDAS

	Related works
	Conclusion
	Appendix
	TEC emulation algorithm
	ECU reset identification issue
	RIDAS's effect on normal CAN messages


