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Abstract
Bluetooth Low Energy (BLE) is the mainstream Bluetooth
standard and BLE Secure Connections (BLC-SC) pairing is a
protocol that authenticates two Bluetooth devices and derives
a shared secret key between them. Although BLE-SC pairing
employs well-studied cryptographic primitives to guarantee
its security, a recent study revealed a logic flaw in the protocol.

In this paper, we develop the first comprehensive formal
model of the BLE-SC pairing protocol. Our model is com-
pliant with the latest Bluetooth specification version 5.3 and
covers all association models in the specification to discover
attacks caused by the interplay between different associa-
tion models. We also partly loosen the perfect cryptography
assumption in traditional symbolic analysis approaches by
designing a low-entropy key oracle to detect attacks caused by
the poorly derived keys. Our analysis confirms two existing
attacks and discloses a new attack. We propose a countermea-
sure to fix the flaws found in the BLE-SC pairing protocol
and discuss the backward compatibility. Moreover, we ex-
tend our model to verify the countermeasure, and the results
demonstrate its effectiveness in our extended model.

1 Introduction

Bluetooth is a wireless technology standard for exchanging
data between devices in short-range. Because of require-
ments evolution, the standard was divided into Bluetooth
Classic (BC) and Bluetooth Low Energy (BLE) in 2010 [14].
Compared with BC, BLE is more prevalent and is widely used
in daily life to connect devices, such as Bluetooth keyboards
and sports watches, with minimal energy overhead. The Blue-
tooth Special Interest Group (Bluetooth SIG) predicts that
95% of Bluetooth-enabled devices will support BLE by 2026,
where about 42% BLE devices support BLE single-mode and
53% devices support BLE + BC dual-mode [1].

The Bluetooth standard adopts pairing protocols to estab-
lish a trusted connection between Bluetooth devices. Roughly
speaking, a pairing protocol enables two devices to authen-
ticate each other and derive a shared secret key to protect

subsequent messages. The latest pairing protocols in BLE
and BC are BLE Secure Connections (BLE-SC) and Secure
Simple Pairing with Secure Connections (SSP-SC), respec-
tively [16]. These two protocols are almost the same except
for key derivation and Input/Output (IO) support (see Sec-
tion 2.5 for details).

Despite the widespread use of BLE, the security of the
BLE-SC pairing protocol has not been systematically stud-
ied. Recently, Tschirschnitz et al. [36] disclosed the method
confusion attack, which abuses the design flaws of the BLE-
SC pairing protocol in the Bluetooth specification version
5.2 [15] to perform Man-in-the-Middle (MITM) attacks. Al-
though they proposed several countermeasures to fix those
design flaws, the Bluetooth SIG does not accept their counter-
measures because of the backward compatibility issue, which
leaves BLE devices still at risk. Moreover, their work just dis-
closed a specific kind of attack to witness design flaws rather
than systematically analyzing the security properties of the
BLE-SC pairing protocol. This situation raises the following
two questions:

1. How to formally analyze the security of the BLE-SC
pairing protocol and disclose the design flaws?

2. How to fix the found design flaws while maintaining
backward compatibility?

In this paper, we aim to use Tamarin Prover [33] to analyze
the BLE-SC pairing protocol in the latest Bluetooth specifi-
cation version 5.3 [16]. Tamarin Prover is one of the most
preeminent symbolic tools based on formal methods. It has
achieved great success in analyzing real-world security proto-
cols such as TLS 1.3 [18, 19], 5G-AKA [8, 17], EMV [9, 10],
WPA2 [21], and Distance Bounded protocols [31, 32].
Challenges. We face the following three challenges in for-
mally analyzing the BLE-SC pairing protocol.

First, the flow of the BLE-SC pairing protocol is compli-
cated. The protocol consists of three phases: pairing feature
exchange, Long Term Key (LTK) generation, and transport
specific key distribution. In the LTK generation phase, there
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are four association models: Just Work (JW), Numeric Com-
parison (NC), Passkey Entry (PE), and Out-of-Band (OOB).
These make it difficult to model the whole BLE-SC pairing
protocol formally. Note that existing studies [12,26,29,34,35]
only consider the LTK generation phase and usually analyze
at most one association model. Besides, the BLE-SC pairing
protocol not only exchanges messages between devices but
also involves interactions between the device and the user.
Therefore, we need to model the user’s capabilities and the
interface between the device and the user.

Second, existing symbolic models do not fully capture the
adversary capability in the BLE-SC pairing protocol. Specifi-
cally, symbolic models employ the perfect cryptography as-
sumption, in which encryption schemes are black boxes such
that an adversary cannot learn anything from encrypted mes-
sages without possessing the key. However, LTK is resized
to not exceed the shorter of the initiating and responding de-
vices’ maximum encryption key sizes in the BLE-SC pairing
protocol. The resize operation may result in a low-entropy
key and provide additional capabilities to the adversary.

Third, there are various pairing situations in practice. Ac-
cording to the IO capabilities (whether to use the defined IO
capabilities or undefined IO capabilities, called OOB capabil-
ities) and security configurations (does this connection need
to be resistant to MITM attacks), we have 29 different pair-
ing models. This means that even if we model the BLE-SC
pairing protocol, we need to derive a different model for each
pairing situation, which is a tedious and error-prone process.
Contributions. Our main contributions are as follows.

• We develop the first comprehensive formal model of the
BLE-SC pairing protocol that is compliant with the latest
Bluetooth specification [16]. Our model covers all phases
and available association models. In addition, we model the
user and the interactions between the user and the devices.

• We extend the adversary capability in symbolic models to
capture attacks caused by low-entropy keys, such as the key
negotiation downgrade attack [5]. Specifically, we design
an oracle that allows an adversary to know the secret key
from an encrypted message if the entropy of that key is low.

• We perform a full-scale study of 29 pairing situations by
instantiating the device in the general model with different
device configurations. Our analysis confirms two existing
attacks. Moreover, we disclose a new attack called keysize
confusion attack.

• We propose a backward-compatible countermeasure to re-
sist the attacks found in the BLE-SC pairing protocol and
provide computer checked security proofs for the patched
protocol. The proofs show that our countermeasure is suffi-
cient to prevent the found attacks.

Responsible Disclosures: We have reported our findings and
countermeasure to the Bluetooth Special Interest Group (SIG).
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Figure 1: Overview of BLE-SC Pairing

The Bluetooth SIG has acknowledged our findings. They also
claim that manufacturers are free to adopt our fixes during im-
plementation, but it is atypical to be recommended or manda-
tory in the core specification since our fixes require additional
steps from a user.

2 Bluetooth Pairing

We review the pairing protocols in the Bluetooth specification
version 5.3 [16] and refer the interested readers to the speci-
fication for further details. We focus on the BLE-SC pairing
protocol but also describe the difference between BLE-SC
pairing and the SSP-SC pairing.

2.1 Overview of BLE-SC Pairing
BLE-SC pairing aims to establish keys to encrypt a link and
distribute specific keys in the encrypted link to verify signed
data and random address resolution. The BLE-SC pairing
protocol is performed when two devices do not share a link
key (for example, they are connected for the first time) or
when the stored keys cannot satisfy the security requirements.
The BLE-SC pairing protocol consists of the following three
phases, as shown in Figure 1.

1. Pairing Feature Exchange (Phase 1). The devices ex-
change their authentication requirements and capabilities.

2. Long Term Key (LTK) Generation (Phase 2). The devices
derive an LTK based on their authentication requirements
and capabilities.

3. Transport Specific Key Distribution (Phase 3). The devices
distribute specific keys in the link encrypted by the LTK.

38    32nd USENIX Security Symposium USENIX Association



Table 1: Specification-defined IO capabilities. The input and
output capabilities are mapped to a single IO capability.

Numeric Output¬ No Output

Keyboard Input® KeyboardDisplay KeyboardOnly
Yes-No Input¯ DisplayYesNo NoInputNoOutput

No Input° DisplayOnly NoInputNoOutput

¬: Device has the ability to display a 6-digit number. :
Device does not have the ability to display a 6-digit number.
®: Device has a numeric keyboard that can input the digits ‘0’
to ‘9’ and a confirmation. ¯: Device has the ability to indicate
“yes” and “no”. °: Device does not have the ability to indicate
“yes” or “no”.

2.2 Pairing Feature Exchange
This phase aims to determine the parameters used in the
subsequent phases. It can be invoked by the initiating device
sending a pairing request or the responding device sending a
security request. The following four fields are important to
our model. They are sent by the initiating/responding device
in the pairing request/response.

• IOCap: This field indicates the specification-defined IO
capability used in the LTK generation phase. The Bluetooth
specification defines five IO capabilities of the device, as
shown in Table 1.

• OOB: This field indicates whether the device has received
authentication data using Out-Of-Band (OOB) capabilities,
i.e., IO capabilities that are not defined in the specification.

• MITM: This field indicates whether the device requires pre-
venting Man-In-The-Middle (MITM) attacks.

• KeySize: This field indicates the maximum encryption key
size that the device can support, from 7 to 16 bytes.

2.3 LTK Generation
This phase aims to generate an LTK to establish an encrypted
link between the initiating and the responding devices. The
LTK phase consists of three stages, as shown in Figure 1.

2.3.1 Public Key Exchange

In this stage, the two devices run an Elliptic Curve Diffie-
Hellman (ECDH) key exchange protocol to derive a Diffie-
Hellman (DH) key. Specifically, suppose (PkI,SkI) and
(PkR,SkR) are the public-private key pairs of the initiating
and responding devices. After exchanging their public keys,
the initiating and responding devices calculate their DH keys
DHKeyI = PkRSkI and DHKeyR = PkISkR, respectively.

Algorithm 1 Association Model Selection.

Input:
Fields OOBI, MITMI, IOCapI in pairing request
Fields OOBR, MITMR, IOCapR in pairing response

Output:
An association model M

1: if OOBI == 1 or OOBR == 1 then
2: M = OOB
3: else if MITMI == 0 and MITMR == 0 then
4: M = JW
5: else
6: M = mapIOCap2AssModel(IOCapI,IOCapR)

2.3.2 Authentication Stage 1

In this stage, the two devices authenticate the public keys to
determine whether the derived DH key should be used. This
authentication process is controlled by association models
and may involve the user’s participation.
Association Models. The Bluetooth specification defines
four association models: Numeric Comparison (NC), Just
Work (JW), Passkey Entry (PE), and Out-of-Band (OOB).
The user needs to interact with the devices in the NC and PE
association models. In the NC association model, the user
compares two 6-digit numbers displayed on two devices and
indicates “Yes” on the devices if the two numbers are equal.
In the PE association model, the user inputs a self-chosen
6-digit number to the two devices respectively or inputs the
number displayed on one device to another. The JW and OOB
association models do not need the user to interact with the
devices. However, the OOB association model relies on the
two devices’ OOB channel to exchange authentication infor-
mation. The OOB channel, such as an NFC connection, is
always deemed as a secure channel that the adversary cannot
access. The sequence diagrams of the four association models
are shown in Appendix A.

The association model is chosen by Algorithm 1 during
the execution of the pairing protocol. The function mapIO-
Cap2AssModel in Algorithm 1 maps IO capabilities to an
association model according to Table 2.

2.3.3 Authentication Stage 2

This stage confirms that both devices have successfully com-
pleted authentication stage 1. First, each device computes
two keys, MacKey and LT K, as shown in Eq. (1), where f5
is a pseudorandom function, DHKey is either DHKeyI or
DHKeyR, and NI and NR are two random string exchanged in
authentication stage 1. I and R are the device addresses of the
initiating and responding devices, which are exchanged in the
head of the Bluetooth packet.

MacKey||LT K = f5(DHKey,NI ,NR,I,R) (1)
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Table 2: Definition of mapIOCap2AssModel that maps the IO capabilities to an association model

IOCapR

IOCapI DisplayOnly DisplayYesNo KeyboardOnly NoInputNoOutput KeyboardDisplay

DisplayOnly JW JW PE JW PE
DisplayYesNo JW NC PE JW NC
KeyboardOnly PE PE PE JW PE

NoInputNoOutput JW JW JW JW JW
KeyboardDisplay PE NC PE JW NC

Then, two devices exchange their confirmations and verify
the received confirmation by MacKey. The confirmation EI of
initiating device is computed by Eq. (2) and the confirmation
ER of the responding device is computed by Eq. (3), where f6
is a pseudorandom function and ra and rb are two numbers
determined by the used association model.

EI = f6(MacKey,NI ,NR,ra,IOCapI,I,R) (2)
ER = f6(MacKey,NR,NI ,rb,IOCapR,R,I) (3)

Finally, LT K is resized to not exceed the shorter of the initiat-
ing and responding devices’ KeySize.

2.4 Transport Specific Key Distribution
In this phase, the link is encrypted by LT K. The initiating
and responding devices may distribute specific keys such
as Identity Resolving Key (IRK) and Connection Signature
Resolving Key (CSRK) in the encrypted link.

2.5 Overview of SSP-SC Pairing
The protocol flow of SSP-SC pairing and BLE-SC pairing are
almost the same. The SSP-SC pairing also uses Algorithm 1
to choose the association model, but it does not support the
KeyboardDisplay IO capability. In addition, the function ma-
pIOCap2AssModel of SSP-SC is the same as Table 2 except
that the last row and column are removed. As a result, the
number of the pairing scenarios of SSP-SC pairing is fewer
than BLE-SC pairing. The sequence diagrams of the asso-
ciation models in SSP-SC pairing are the same as that of
the BLE-SC pairing, but some cryptographic functions are
different. More detailed differences between the two pairing
protocols are referred to the Bluetooth specification 5.3 [16].

3 Protocol Modeling

We first briefly introduce Tamarin Prover, the automatic sym-
bolic tool used in this paper and then describe the assumptions
and threat model. Finally, we present our formal model for
the BLE-SC pairing protocol. We provide our models and
results on our git repository [2].

3.1 Tamarin Prover
Tamarin Prover [33] is a powerful tool for symbolic modeling
and analysis of security protocols. It has been successfully
applied to real-world protocol analysis [8–10, 17–19, 21, 31,
32].

Tamarin Prover takes as input the specifications of the pro-
tocol, the adversary, and the desired properties. It can then
automatically construct a proof that, even if arbitrarily many
instances of the protocol’s roles are interleaved in parallel,
together with the adversary’s actions, the protocol satisfies its
specified properties.
Specify Protocol and Adversary. Tamarin Prover uses mul-
tiset rewriting rules to specify the concurrent execution of
the protocol and the adversary as a transition system, where
the state of the transition system is a multiset of facts and
the initial state is an empty multiset. Multiset rewriting rules
define how the system transitions from the current state to a
new one. In Tamarin Prover, a rule consists of a name and
three respective parts, each of which is a sequence of facts:
left-hand side, actions, and right-hand side. The rule can only
be executed if all the facts on its left-hand side are available
in the current state. When a rule is executed, it will consume
the facts on the left-hand side, i.e., removing them from the
state, and produce facts on the right-hand side, i.e., adding
them to the state. Note that facts are either linear or persistent.
The linear fact can only be consumed once but the persistent
fact can be consumed any number of times. Actions specify
observable facts in every trace and are used to express security
properties. There are three particular types of facts built in
Tamarin Prover as follows.

• Fr: This fact means producing a fresh (random) value and
is implicitly available in all states in Tamarin Prover.

• Out: This fact means sending a message to the public chan-
nel. The message will extend the adversary’s knowledge.

• In: This fact means receiving a message from the public
channel. The message is constructed by the adversary based
on his/her knowledge.

Example 1. Tamarin Prover adopts the following two rules
to model a step of a protocol and an adversary. In this step,
a participant encrypts a message m under a key k with a
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symmetric encryption function senc and sends the ciphertext
to the public channel, as defined in the following rule.

[ Fr(∼k),Fr(∼m ]−[ Send(∼m) ]→ [ Out(senc(∼m,∼k)) ]

Then, the adversary obtains that ciphertext from the public
channel, as defined in the following rule.

[ Out(x) ]−[ K(x) ]→ [ !KD(x) ]

The fact KD, which has the persistent symbol ‘!’ as the prefix,
indicates that the adversary knows x. The actions Send and
K are two observable facts that respectively indicate that a
participant sends a message and the adversary knows x.

Specify Trace Properties. Trace properties, such as secrecy
or variants of authentication, express that something never
occurs on any trace of a protocol. Tamarin Prover specifies
these properties as guarded first-order logic formulas with
time points and uses actions to specify the formulas.

Example 2. The definition of secrecy requires that there is no
trace where an adversary could know the secret message m.
This property can be encoded as the following lemma, which
means that if a participant sent a message m at time i, then
there does not exist a time j at which the adversary knows
that message.

All m #i. Send(m)@#i ==> not Ex # j. K(m)@# j

3.2 Assumptions and Threat Model
We make the following assumptions in our model.

• The OOB channel is a secure channel that provides confi-
dentiality and integrity to the transferred data.

• The devices in the user’s hand are honest. Furthermore,
the devices always support the field KeySize that provides
high entropy, such as 16 bytes.

• The user is honest and only has the following capabilities.

– When given two numbers a and b, the user pushes
“Yes” on the two devices in turn if a = b.

– When given a number a and an input field, the user
inputs a to the input field and pushes “Yes” if there is
a confirm button on the display device.

– When given two input fields, the user generates a fresh
number a and inputs a to the two input fields in turn.

We consider an extension of the Dolev-Yao (DY) adver-
sary [23] in the Bluetooth channel as our threat model. The
adversary can intercept, modify, and falsify any message trans-
ferred in the channel. The two devices are paired in a trusted
environment, which means that an adversary cannot see the

display or input field. We do not consider untrusted envi-
ronment [24] because the PE association model’s security
depends on the secrecy of the passkey. We abstract the field
KeySize into two values: “low entropy” means that the ad-
versary can implement brute-force attacks, and “high entropy”
means that the adversary cannot. We provide an adversary
with the capability of brute-force attacks on low entropy LTKs
by defining an oracle. The oracle, modeled by the following
rule, allows the adversary to know LTK from an encrypted
message if the field KeySize is “low entropy”.

let LT K = resize(_,“low entropy”) in
[ In(senc(m,LT K)) ]−[ ]→ [ Out(LT K) ]

3.3 Comprehensive Formal Model
We give a comprehensive formal model of the BLE-SC pair-
ing protocol. Our model covers all phases and association
models in the specification and can capture sophisticated at-
tacks such as the method confusion attack. We first give a
general formal model which captures all possible executions
of two devices by parameterizing their configuration. Then,
we instantiate the device parameters to generate specific mod-
els for all pairing situations. Note that we only specify the
protocol and the adversary in this section and leave the desired
properties of the BLE-SC pairing protocol in Section 4.

3.3.1 General Model

The scale of the general model is huge, which makes the
modeling task time-consuming and error-prone. To simplify
the modeling task, we adopt the M4 macro processor [27].
Then, we can define a macro and expand this macro with
different parameters to generate multiple rules.

For instance, we define the following macro for all branches
that the responding device selects the NC association model.

define(Gen_NC_ResDCmt ,
<!rule NC_ResDCommitment_$1_$2:

let
...
CR = f4(’g’^skR,DH pkI,∼NR,’0’)
IOCapabilityI = ’$1’
IOCapabilityR = ’$2’

in
[ ResDDHKey(..., IOCapabilityI , ...,

IOCapabilityR , ...),
Fr(∼NR) ]

--[]->
[ Out(<MacAddR,MacAddI,CR>),

NC_State_Res_Sent_Commitment(...,
IOCapabilityI , ..., IOCapabilityR , ...)

]!>)

The two parameters $1 and $2 of the macro are the IO
capabilities of the two devices from the view of the re-
sponding device and mapIOCap2AssModel(IOCapabilityI,
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IOCapabilityR) should be NC. The fact ResDDHKey(...,
IOCapabilityI, ..., IOCapabilityR, ...) represents
that the responding device has derived a DH key. This macro
generates the following rule. First, the responding device
generates a fresh value NR. Then, the responding device cal-
culates a commitment CR using the function f4, sends CR to
the initiating device through the Bluetooth channel, and trans-
fers to the next state. These steps are illustrated in Figure 3 in
Appendix A.

By expanding the above macro with IO capabilities pairs
which result in the NC association model, we can obtain four
rules to model all branches in which the responding device
selects the NC association model.
Interactions. There are interactions between the user and the
devices in the NC and PE association models. Based on our
assumptions (see Section 3.2), we model the interactions as
data transferred in a secure channel that offers confidentiality
and integrity. In other words, the 6-digit number is honestly
displayed and can only be seen by the user; the user’s input is
faithfully and secretly received by the devices.

To model the interactions, we use facts Out_S and In_S to
send and receive messages from the secure channel. For exam-
ple, Out_S(〈“Display”, “Device”, “User”〉, D, U ,V ) means
that the device D displays a number V to the user U and
In_S(〈“Display”, “Device”, “User”〉, D, U ,V ) means that the
user U sees the displayed number V from the device D.
Users. We abstract the user’s behaviors by a state machine,
as shown in Appendix B. We use six multiset rewriting rules
to specify the state machine.

The following rule models the user’s actions when the
devices select the NC association model.

[ In_S(〈“DisYesNo”,“Device”,“User”〉,D1,U,m),

In_S(〈“DisYesNo”,“Device”,“User”〉,D2,U,m) ]

−[ ]→
[ Out_S(〈“Confirm”,“User”,“Device”〉,U,D1, ‘Y’),
Out_S(〈“Confirm”,“User”,“Device”〉,U,D2, ‘Y’) ]

In this rule, a user U is pairing his/her two devices D1 and D2.
Both devices display the same number m and offer a “Yes”
button and a “No” button. The user confirms by pushing the
“Yes” buttons on the two devices.

The following two rules model the user’s actions when the
devices select the PE association model.

[ In_S(〈“AskInput”,“Device”,“User’〉,D1,U,“Input”),
In_S(〈“AskInput”,“Device”,“User’〉,D2,U,“Input”),
Fr(∼passkey) ]

−[ ]→
[ Out_S(〈“Input”,“User”,“Device”〉,U,D1,∼passkey),

Out_S(〈“Input”,“User”,“Device”〉,U,D2,∼passkey) ]

[ In_S(〈“Display”,“Device”,“User’〉,D1,U, passkey),

In_S(〈“AskInput”,“Device”,“User’〉,D2,U,“Input”) ]
−[ ]→
[ Out_S(〈“Input”,“User”,“Device”〉,U,D2, passkey) ]

In the first rule, the user is given two input fields. He/She
generates a fresh number passkey and inputs it to the two
devices. In the second rule, the device D1 displays a number
passkey, and the device D2 gives the user an input field. Then,
the user inputs passkey to the device D2. The second rule has
a symmetric rule which models the situation that the device
D2 displays a number passkey and the device D1 gives the
user an input field.

We also model the user’s Unexpected but Realistic (UR)
behavior as follows.

[ In_S(〈“DisYesNo”,“Device”,“User’〉,D1,U, passkey),

In_S(〈“AskInput”,“Device”,“User’〉,D2,U,“Input”) ]
−[ ]→
[ Out_S(〈“Confirm”,“User”,“Device”〉,U,D1, ‘Y’),
Out_S(〈“Input”,“User”,“Device”〉,U,D2, passkey) ]

One device displays a number passkey with a “Yes” button
and a “No” button, and the other gives the user an input field.
The user inputs passkey to the input field and pushes the
“Yes” button. This rule also has a symmetric rule. Despite
this behavior being unexpected in the specification, the user
indeed performs this behavior when faced with this scenario
according to the user study [36]. Basin et al. [11] model
human misbehavior in security protocols that involve humans
as endpoints; however, we model a human who aids the two
devices to authenticate mutually.
OOB Channel. The devices transfer their authentication data
through an OOB channel in the OOB association model. To
verify the security of the OOB association model, we con-
sider the OOB channel as a secure channel that resists MITM
attacks (see Section 3.2). This assumption is inferred from
the following statement in the Bluetooth specification [16].

[Vol 3, Part H, 2.3.5.4] Out of Band: If the OOB com-
munication is resistant to MITM attacks, then this asso-
ciation method is also resistant to MITM attacks.

Key Size. The key size of LTK is stated in the Bluetooth
specification by the following two declarative sentences.

[Vol 3, Part H, 2.3.4] Encryption key size: The shorter
of the initiating and responding devices’ maximum en-
cryption key length parameters shall be used as the
encryption key size.

[Vol 3, Part H, 2.4.4.2] Encryption setup using LTK:
The generated LTK size must not be longer than the
negotiated encryption key size and its size may need to
be shortened.
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Table 3: Device configuration and expected association model

Number of Configurations Device Configuration Expected Association Model

25 [〈0,0,0,0,1,1,InitDIOCap,ResDIOCap〉] † AS‡

〈1,0,0,1,−,−,NoInputNoOutput,NoInputNoOutput〉 OOB
3 〈0,1,1,0,−,−,NoInputNoOutput,NoInputNoOutput〉 OOB

〈1,1,1,1,−,−,NoInputNoOutput,NoInputNoOutput〉 OOB

1 〈0,0,0,0,0,0,KeyboardDisplay,KeyboardDisplay〉 JW

0,1,−: False, true, false or true.
†: A list of length 25. InitDIOCap, ResDIOCap is a Cartesian product of the set of the defined IO capabilities.
‡: AS = mapIOCap2AssModel(InitDIOCap,ResDIOCap), where mapIOCap2AssModel is defined in Table 2.

In our model, the maximum encryption key size is either
“low entropy” or “high entropy”. When the two devices send
pairing request/response messages, they set the KeySize field
to “high entropy”. Note that if a device only supports a “low-
entropy” value, an attacker can obtain the LTK by brute-force
attacks regardless of flaws in the protocol design. Since our
goal is to find design flaws, we assume that both honest de-
vices support a “high-entropy” value. Once all the devices’
maximum encryption key sizes in our model are configured
as “high entropy” (see Section 3.2), the encryption key size
of a device can be directly set to the peer device’s maximum
encryption key size. In other words, we resize the LTK of a
device as resize(_,KeySizePeer).

3.3.2 Specific Model

To verify the security of specific pairing situations, we use
device configurations to instantiate the general model and
obtain a specific model for each pairing situation. A device
configuration is in the form 〈 InitDOOBOutCap, InitDOOBIn-
Cap, ResDOOBOutCap, ResDOOBInCap, MITMofInitiator,
MITMofResponder, InitDIOCap, ResDIOCap 〉.

• InitDOOBOutCap (resp., ResDOOBOutCap): Whether the
initiating (resp., responding) device has the capability to
send data to an OOB channel.

• InitDOOBInCap (resp., ResDOOBInCap): Whether the ini-
tiating (resp., responding) device has the capability to re-
ceive data from an OOB channel.

• MITMofInitiator (resp., MITMofResponder): Whether the
initiating (resp., responding) device needs the result con-
nection resistant to MITM attacks.

• InitDIOCap (resp., ResDIOCap): The IO capability of the
initiating (resp., responding) device.

As a result, we generate 29 specific models from the gen-
eral model with parameters shown in Table 3. These specific
models cover all pairing situations in the specification. Each

specific model corresponds to one specific expected associa-
tion model and comprises 112 rules.

4 Property Specifying

We specify trace properties desired in our model, including
executability property and security properties. Executability
property guarantees that our model behaves as expected in the
specification without adversary involvement. Specifically, in
each specific model, we assess whether two devices execute
the expected association model and finish the pairing protocol.

We extract and interpret the security properties that the
BLE-SC pairing protocol should satisfy. Note that the Blue-
tooth specification [16] only explicitly requires Man-In-The-
Middle (MITM) protection, as shown below.

[Vol 3, Part H, 2.3.1] Security Properties: In LE Secure
Connections pairing, Authenticated man-in-the-middle
(MITM) protection is obtained by using the passkey en-
try pairing method or the numeric comparison method or
may be obtained using the out-of-band pairing method.

4.1 Authentication
The authentication property in the symbolic model is gener-
ally formalized by corresponding properties while formalized
as session matching in the computational model. We specify
the authentication property as the non-injective agreement
in Lowe’s hierarchy [30]. In the original non-injective agree-
ment, two facts Commit and Running are introduced. The
Commit fact represents an agent’s belief about its commu-
nication peer’s local state, whereas Running represents the
peer’s actual state. The non-injective agreement property is
formalized by the corresponding of the two facts. The fol-
lowing lemma is used to specify the non-injective agreement
in Tamarin, which means that if an agent I believes that a
message t was sent by an agent R, then t was indeed sent by
R.

All I R t #i. Commit(I,R,t) @#i
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==> (Ex #j. Running(R,I,t) @#j)

The authentication property in the BLE-SC pairing proto-
col is somewhat different from the original one. The Bluetooth
specification does not require the device which performs the
JW association model to satisfy the non-injective agreement.
Informally, the authentication property is represented as fol-
lows. If a device believes it has agreed on a key with the peer,
then the peer runs the protocol with the same key, unless the
device performs the JW association model. The following
lemma refers to agreement of the key K with device R from
the device I’s perspective.

(not Ex #t. IJW()@#t) ==>
All I R K #i. Commit(I,R,K) @#i

==> (Ex #j. Running(R,I,K) @#j)

To verify the authentication of the BLE-SC pairing pro-
tocol, we specify the authentication of DHKey and LT K
from the initiating and responding devices’ perspectives re-
spectively. Specifically, the predicate P1(I,R,DHKey) (resp.,
P2(R,I,DHKey)) refers to the agreement of the DHKey with
responding device R (resp., initiating device I) from the initiat-
ing device I’s (resp., responding device R’s) perspective, and
P3(I,R,LT K) (resp., P4(R,I,LT K)) refers to the agreement
of the LT K with responding device R (resp., initiating de-
vice I) from the initiating device I’s (resp., responding device
R’s) respective. We list the lemmas of the four authentication
properties (A1 - A4) in Appendix C.

4.2 MITM Protection

In MITM attacks, an adversary intercepts and modifies mes-
sages sent between honest devices executing the protocol
and makes each honest device derive and share an LTK with
him/her. The Bluetooth specification [16] describes the MITM
attack by the following sentences.

[Vol 1, Part A, 5.2.3] Man-in-the-middle protection:
¶A man-in-the-middle (MITM) attack occurs when a
user wants to connect two devices but instead of connect-
ing directly with each other they unknowingly connect
to a third (attacking) device that plays the role of the de-
vice they are attempting to pair with. ·The third device
then relays information between the two devices giving
the illusion that they are directly connected.

The sentence ¶ means that the two devices are not agree-
ment of the session key, representing as ¬P3(I,R,LT KI)∧
¬P4(R, I,LT KR). The sentence · means that the adversary
knows the session key of the two devices, representing as
K(LT KI)∧ K(LT KR). We represent the MITM protection
property between I and R as MITMP(I,R). The appearance
of MITM attacks means the violation of the MITMP property,
representing as ¬MITMP(I,R). The MITM protection in the

Bluetooth specification can be formally described as

¬MITMP(I,R)⇔ Ex LTKI LTKR #i #j.

¬P3(I,R,LT KI)∧¬P4(R, I,LT KR)

∧K(LT KI)@i∧K(LT KR)@ j;

or equivalently

MITMP(I,R)⇔ not(Ex LTKI LTKR #i #j.

¬P3(I,R,LT KI)∧¬P4(R, I,LT KR)

∧K(LT KI)@i∧K(LT KR)@ j).

This means that the MITM protection property is satisfied iff
there is not exist a case that sentences 1 and 2 simultaneously
occur. We list the guarded first-order logic formula of the
MITMP property in Appendix C.

4.3 LTK Confusion Protection
Zhang et al. [38] have described a LTK confusion attack,
which their called Denial of Service (DoS) attack. In LTK con-
fusion attacks, an adversary induces the two devices to derive
different LTKs (¬P3(I,R,LT KI) ∧ ¬P4(R, I,LT KR)), but
he/she cannot know both LTKs (¬(K(LT KI)∧K(LT KR))). In
this case, the adversary cannot perform MITM attacks. Both
devices treat this pairing as a successful pairing. However, the
two devices cannot mutually communicate directly or indi-
rectly despite they have completed the protocol, which leads
to a DoS attack. To resume the communication blocked by this
kind of DoS attack, the user needs to delete a previously stored
association and pair again to re-establish a pairing session
between devices, when the attacker is out of range. We repre-
sent the two devices I and R confuse the session keys LT KI
and LT KR as LTKCP(I,R,LT KI,LT KR). The appearance of
the LTK confusion attack means the violation of the LTKCP
property, representing as ¬LTKCP(I,R,LT KI,LT KR). We
formally specify the LTK confusion protection property as

¬LTKCP(I,R,LT KI,LT KR)⇔
¬P3(I,R,LT KI)∧¬P4(R, I,LT KR)

∧¬(Ex #i #j.K(LT KI)@i∧K(LT KR)@ j);

or equivalently

LTKCP(I,R,LT KI,LT KR)⇔
P3(I,R,LT KI)∨P4(R, I,LT KR)

∨ (Ex #i #j.K(LT KI)@i∧K(LT KR)@ j).

This means that the LTK confusion protection property is
satisfied iff the adversary knows both LTKs of I and R or
agreement of the key must hold from I’s or R’s perspective.
We list the guarded first-order logic formula of the LTKCP
property in Appendix C.
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4.4 Secrecy of Authenticated LTK

Although the specification does not claim this property, the au-
thenticated key should be kept secret from the adversary; oth-
erwise, the adversary can obtain all messages in the encrypted
link. We define agreement of the LT K with responding de-
vice R (resp., initiating device I) from the initiating device
I’s (resp., responding device R’s) perspective as P5(I,R,LTK)
(resp., P6(R, I,LTK)). We formally define the secrecy prop-
erty of authenticated LT K between I and R, representing as
AUTHSEC(I,R,LT K), as

AUTHSEC(I,R,LT K)⇔
P5(I,R,LT K) & P6(R, I,LT K) ⇒ ¬(Ex #i.K(LT K)@i).

This formula means that if LTK is authenticated, then it cannot
be known by the adversary. We list the guarded first-order
logic formula of the secrecy property in Appendix C.

5 Results

We perform a full-scale study of the pairing protocol by ana-
lyzing 29 specific models on a server running Ubuntu 18.04
with two Intel(R) Xeon(R) Gold 5218 @2.30GHz CPUs and
320GB RAM. We summarize the results in Table 4. We find
that 7 pairing situations violate the MITM protection prop-
erty. The counter-example traces show the method confusion
attack. All pairing situations except situations which perform
JW association model violate the LTK confusion protection
property and all pairing situations violate the secrecy of au-
thenticated LTK property. The counter-example traces that
violate the former show the keysize confusion attack, while
the counter-example traces that violate the latter show the key
negotiation downgrade attack.
Method Confusion Attack. In an ideal BLE-SC pairing pro-
tocol, the initiating and responding devices choose the same
association model. If the NC or PE association models are
chosen, the connection is MITM protection. However, an ad-
versary may manipulate the pairing request and response to
force the devices to execute different association models. This
kind of MITM attack is called method confusion attack and
was first found by Tschirschnitz et al. [36].

Our model automatically finds method confusion attacks
in 7 pairing situations as summarized in Table 5. The results
demonstrate that Tschirschnitz et al. [36] have found all af-
fected situations. The counter-example traces of MCA-PN
indicate that the adversary changes the IOCap field in the
pairing request to force the responding device to choose the
NC association model and impersonates the initiating device
to interact with the responding device. Correspondingly, the
adversary tampers the pairing response to force the initiating
device to select the PE association model and impersonates
the responding device. The responding device displays a num-
ber with a “Yes” button and a “No” button; the initiating

device asks the user to input a number. The user inputs the
displayed number in the responding device to the initiating
device as the passkey in the PE association model and pushes
“Yes” on the responding device. Finally, the adversary shares
two LTKs with the two devices.
Key Negotiation Downgrade Attack. All devices in our
model support 16 bytes of maximum encryption key size. Ide-
ally, the size of the result LTK should be 16 bytes. However,
an adversary can downgrade the size of the result LTK to 7
bytes. Antonioli et al. [5] first disclose this attack and call it
the key negotiation downgrade attack.

Our model automatically discovers the key negotiation
downgrade attack, which violates the secrecy of authenticated
LTK. The counter-example traces indicate that the adversary
manipulates the field KeySize to 7 bytes when two devices
exchange messages in the pairing feature exchange phase. In
the LTK generation phase, the two devices reduce the size of
LTK to 7 bytes. This low-entropy LTK offers limited security
assurance and is vulnerable to brute force attacks.
Keysize Confusion Attack. We discover this new attack in
our model, in which the adversary induces the two honest de-
vices to derive the LTKs with different key sizes. In this attack,
the adversary only modifies the KeySize fields on the pairing
request/response messages in the pairing feature exchange
phase. The security mechanism in the BLE-SC pairing proto-
col cannot detect the disparity of the key sizes. The two honest
devices derive the different LTKs after finishing the pairing
protocol. Since the adversary cannot know the LTKs of the
honest devices, the confidentiality of the communication is
not compromised. However, this attack results in an invalid
bonding without notification to the user. Comparing to other
DoS attacks in which the adversary blocks/jams messages, the
invalid bonding cannot self-correct without the user’s action.
The user needs to delete a previously stored association in the
system setting of both devices and pair again to re-establish a
pairing session between peers when the adversary is absent.

6 Patching

We first review existing countermeasures and then give our
countermeasure that can resist the found attacks. We formally
verify the proposed countermeasure to prove the security.
Finally, we discuss the countermeasure.

6.1 Countermeasure Review
We introduce the countermeasures that have been proposed to
mitigate the method confusion attack and the key negotiation
downgrade attack. The patch of Bluetooth should consider the
backward compatibility, which means the countermeasures
should take into account the pairing of a patched device and
an unpatched device. Unfortunately, the countermeasures pro-
posed by Tschirschnitz et al. [36] and Antonioli et al. [5] re-
quire a significant change in protocol or the device interfaces
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Table 4: Analysis Results of BLE-SC Pairing

No. Pairing Situation Executability A1 A2 A3 A4 P1 P2 C

1 DisplayYesNo-DisplayYesNo NC ! ! % % ! % %

2 DisplayYesNo-KeyboardDisplay NC % % % % % % %

3 KeyboardDisplay-KeyboardDisplay NC % % % % % % %

4 KeyboardDisplay-DisplayYesNo NC % % % % % % %

5 DisplayOnly-KeyboardOnly PE ! ! % % ! % %

6 DisplayOnly-KeyboardDisplay PE ! ! % % ! % %

7 DisplayYesNo-KeyboardOnly PE % % % % % % %

8 KeyboardOnly-DisplayOnly PE ! ! % % ! % %

9 KeyboardOnly-DisplayYesNo PE % % % % % % %

10 KeyboardOnly-KeyboardOnly PE ! ! % % ! % %

11 KeyboardOnly-KeyboardDisplay PE % % % % % % %

12 KeyboardDisplay-DisplayOnly PE ! ! % % ! % %

13 KeyboardDisplay-KeyboardOnly PE % % % % % % %

14-25 Other Pairs (12) JW ! ! ! ! ! ! %

26 No-OOB-No-MITM JW ! ! ! ! ! ! %

27 Uni-direction OOB (I→ R) OOB ! ! % % ! % %

28 Uni-direction OOB (I← R) OOB ! ! % % ! % %

29 Bi-direction OOB (I↔ R) OOB ! ! % % ! % %

No. 1-25: the two devices cannot communicate OOB data, and at least one device needs resistance to MITM attacks.
No. 26: the two devices cannot communicate OOB data, and both do not need resistance to MITM attacks.
No. 27-29: the two devices can communicate OOB data.
!: property verified %: property falsified A1-A4: authentication properties
P1: MITM protection. P2: LTK confusion protection. C: secrecy of authenticated LTK.

Table 5: Method Confusion Attacks

IOCapR

IOCapI Display
YesNo

Keyboard
Only

Display
Keyboard

DisplayYesNo N/A MCA-PN MCA-PN

KeyboardOnly MCA-NP N/A MCA-NP

KeyboardDisplay MCA-NP MCA-PN MCA-NPT

MCA-NP: method confusion attack, by letting the initiating
device performs the NC association model and the respond-
ing device performs the PE association model.
MCA-PN: method confusion attack, by letting the initiating
device performs the PE association model and the respond-
ing device performs the NC association model.
T: There is a symmetrical attack MCA-PN, but Tamarin
Prover only throws one attack trace.

and affect backward compatibility significantly. Therefore, the
Bluetooth SIG does not incorporate those countermeasures
into the specification.

6.1.1 Countermeasures for Method Confusion Attack

Tschirschnitz et al. [36] propose countermeasures to the pro-
tocol itself by letting a passkey used by the PE association
model have to be distinctly distinguishable to a number dis-
played in the NC association model. For instance, the devices
use the Latin letters for passkey in the PE association model
but 6-digit numbers for the NC association model. They also
propose three countermeasures that do not require changes to
the BLE-SC pairing protocol.

• Enforcing Pairing Method: setting the devices’ IO capabili-
ties to the pairing situations deemed secure. Only specific
Bluetooth devices can implement this countermeasure.

• User Interface Design Hotfix: designing a UI to warn the
user against misusing the number presented. This coun-
termeasure heavily relies on the display capability of the
device, which needs to display not only a 6-digit number
but also a character string.

• Authenticating Association Model: relying on the user to be
aware of the association model and confirm that the two de-
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vices use the same association model. This countermeasure
reduces the user’s experience since the user needs to not
only compare the numbers or input numbers but also recog-
nize and compare the association models of both devices.
This countermeasure makes a strong security assumption
that the user has a strong security awareness.

6.1.2 Countermeasures for Key Negotiation Downgrade
Attack

We review the countermeasures proposed by Antonioli et
al. [5] to fix the key negotiation downgrade attack.

• Higher Minimum Entropy: setting the minimum entropy,
which is used to restrict the minimum entropy of the en-
cryption key, to a higher value. For example, the devices set
their minimum entropy to 16 bytes. The connection will be
rejected once the entropy of the resulting LTK is lower than
16 bytes. However, if one device’s maximum encryption
key size is lower than the other device’s minimum entropy,
the two devices cannot be connected.

• Remove Entropy Negotiation: removing entropy negotia-
tion from the pairing protocol. The LTK’s entropy does not
rely on the two devices’ maximum encryption key size but
is set to a fixed size such as 16 bytes. This countermeasure
affects backward compatibility.

6.2 Patched BLE-SC pairing
The root cause of the found three attacks is that there is no
mechanism to authenticate the pairing request and response
messages. As a result, the adversary can modify the fields
IOCap or KeySize to perform attacks. Redesigning associa-
tion models from scratch will affect the backward compatibil-
ity of the protocol. Therefore, we add a patch to the current
association models to fix the security flaws and maintain back-
ward compatibility. The OOB association model can be easily
patched by authenticating the field KeySize through the OOB
channel. Thus, we do not propose a countermeasure to patch
the OOB association model.

6.2.1 Patched NC

We describe the patched NC association model and show its
sequence diagram in Figure 2a.

1. The two devices perform the standard NC association
model. Specifically, they displayed numbers VI and VR (re-
fer to Figure 3, in Appendix A) with a “Yes” button and a
“No” button. The user pushes the “Yes” button in the two
devices if VI =VR.

2. The initiating device computes HI = g3(VI ||req||rsp),
where req and rsp are pairing request and response mes-
sages and g3 is a function that outputs a 6-digit number,
and displays HI with a “Yes” button and a “No” button.

3. The responding device computes HR = g3(VR||req||rsp)
and displays HR with a “Yes” button and a “No” button.

4. The user compares HI and HR, which are two 6-digit num-
bers, then pushes the “Yes” button if HI = HR.

6.2.2 Patched PE

The PE association model has two pairing situations.
Display-Input situation. In this situation, one device (sup-
pose the responding device) displays a number passkey while
the other (suppose the initiating device) asks the user to input
the displayed number. We describe the patched PE association
model and show its sequence diagram in Figure 2b.

1. The user inputs passkey and the standard PE association
model is executed (refer to Figure 4, in Appendix A).

2. If the standard PE association model is success, the re-
sponding device computes DR = g3(passkey||req||rsp)
and displays DR.

3. In the meanwhile, the initiating device computes H = g3
(passkey||req||rsp) and asks the user to inputs DR.

4. After inputting, the initiating device checks if H = DR.

Input-Input situation. In this situation, both two devices ask
the user to input a number. The user generates a passkey and
inputs it to the input fields of both devices. The two devices
then execute the standard PE association model.

6.3 Analysis of Patched BLE-SC Pairing
We formally model our patched BLE-SC pairing protocol and
verify the model using Tamarin Prover. This model make the
same assumptions as Sec. 3.2. We show the results in Table 6.

The patched NC association model satisfies the MITM
protection, LTK confusion protection, and secrecy of authen-
ticated LTK properties. These security properties are satisfied
in the display-input situation for the patched PE association
model. In the pairing situation that the two devices ask for
input, the MITM resistance property is satisfied, but the DoS
resistance and the secrecy of the authenticated LTK properties
are violated. In other words, an adversary can still perform
the keysize confusion attack and the key negotiation down-
grade attack when two devices with KeyboardOnly as their IO
capability are running the patched BLE-SC pairing protocol.
To complement our countermeasure, we recommend dividing
more fine-grained security levels for LTK and no longer trust
LTK negotiated by performing the PE association model in
the situation that the two devices ask for input.

The violations of authentication properties A1, A2, A3,
and A4 only induce the one-side pairing. In this attack, one
device is pairing successfully while the other fails. Users can
easily detect the exception and then restart pairing the two
devices. Furthermore, resistance to the one-side pairing is not
the security goal of the Bluetooth specification.

USENIX Association 32nd USENIX Security Symposium    47



Initiating Device Responding Device

Standard NC association model

Display HI =
g3(VI ||req||rsp)

Display HR =
g3(VR||req||rsp)

Wait for
user confirm

Wait for
user confirm

(a) Patched NC

Initiating Device Responding Device

Standard PE association model

Display-Input

H = g3(passkey||req||rsp) DR = g3(passkey||req||rsp)

Enter DR and check H = DR Display DR

(b) Patched PE

Figure 2: Patched BLE-SC pairing

Table 6: Analysis Results of Patched BLE-SC Pairing

No. IOCap-Pair(I-R) Executability A1 A2 A3 A4 P1 P2 C

1 DisplayYesNo-DisplayYesNo Patched NC ! ! ! ! ! ! !

2 DisplayYesNo-KeyboardDisplay Patched NC % ! % ! ! ! !

3 KeyboardDisplay-DisplayYesNo Patched NC ! % ! % ! ! !

4 KeyboardDisplay-KeyboardDisplay Patched NC % % % % ! ! !

5 DisplayOnly-KeyboardOnly Patched PE ! ! ! ! ! ! !

6 DisplayOnly-KeyboardDisplay Patched PE ! ! ! ! ! ! !

7 DisplayYesNo-KeyboardOnly Patched PE % % % % ! ! !

8 KeyboardOnly-DisplayOnly Patched PE ! ! ! % ! ! !

9 KeyboardOnly-DisplayYesNo Patched PE % % % % ! ! !

10 KeyboardOnly-KeyboardOnly Patched PE ! ! % % ! % %

11 KeyboardOnly-KeyboardDisplay Patched PE % % % % ! ! !

12 KeyboardDisplay-DisplayOnly Patched PE ! ! ! ! ! ! !

13 KeyboardDisplay-KeyboardOnly Patched PE % % % % ! ! !

!:property verified %:property falsified A1-A4: authentication properties
R1: MITM protection. R2: LTK confusion protection. C: secrecy of authenticated LTK.

6.4 Discussion of the Patch

User Experience. The patched BLE-SC pairing improves the
security but requires more interactions which may degrade
the user experience. The user interacts with the devices only
once in the standard NC and PE association models. However,
in the patched NC and PE association models, the devices
ask the user to interact with them twice. We deem that the
reasonable additional interactions are acceptable. The two
devices only perform the pairing protocol almost when they
connect for the first time. Once the pairing is complete, the
devices store the LTK to construct a secure channel when
the devices are connected next time. The user rarely needs to
involve in the pairing process again.
Backward Compatible. The backward compatibility cannot
increase the security of the standard association models but
offers the connection of the two devices.

• Numeric Comparison: When the device D1 is patched and
the other device D2 is unpatched, the device D1 computes
H1 and displays H1 with a “Yes” button and a “No” button
but the device D2 does not display anymore. In this situ-
ation, the user is aware the device D1 is pairing with an
unpatched device and can push the “Yes” button to continue
the pairing or push the “No” button to interrupt the pairing.
When the user continues the pairing process, the security
level is downgraded to the standard NC association model.

• Passkey Entry: There are three backward compatibility
cases of the PE association model, shown as follows.

– Pairing a patched input device with an unpatched display
device. After the devices finish the standard PE asso-
ciation model, the input device computes H and asks
the user to input a number displayed on the display de-
vice. However, the unpatched display device no longer
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computes and displays DR. The user can cancel the con-
nection or input a reserved number (e.g., "999999") to
infer the input device to skip the comparison.

– Pairing an unpatched input device with a patched dis-
play device. After finishing the standard PE association
model, the display device computes and displays DR. The
input device starts authentication stage 2 and sends its
confirmation EI . The display device escapes waiting for
the user’s input once it has received the confirmation.

– Pairing a patched input device with an unpatched input
device. In this situation, the two devices execute the
standard PE association model.

Summary. Our patched BLE-SC pairing sacrifices the user ex-
perience to enhance the security of the pairing process while
guaranteeing the compatibility of old devices. Our counter-
measure only assumes that the user has capabilities to com-
pare and input numbers. In addition, we do not need the de-
vices to have the capability to display any suggestive words. In
conclusion, the patched NC and PE association models could
be incorporated into the current Bluetooth specification.

7 Related Work

We briefly introduce the formal and informal works on the
security of Bluetooth protocols.
Formal Works. Chang et al. [13] present the first auto-
matic formal analysis for the NC association model using
ProVerif [12] and Jia et al. [26] conduct the analysis with the
Murphi model checker [22]. Lindell [29] also analyzes the
security of the NC association model but in the computational
model. Sethi et al. [34] enhance the previous model of the
Bluetooth SSP to verify the NC and OOB association models.
However, the two association models are modeled severally.
Cremers et al. [20] also reduce the "perfect cryptography"
assumption, but their work is orthogonal to ours since they
model an algebraic attack while we model brute-force attacks.
Troncoso et al. [35] computationally analyze the PE asso-
ciation model of SSP-SC. Unfortunately, the above formal
studies consider only the individual association model. Their
works cannot cover the attacks which interplay between the
different association models.

A recent independent study by Wu et al. [37] is the first
model that considers all available association models. How-
ever, their model does not cover all phases of the pairing
process. In contrast, we give the first comprehensive for-
mal model covering all available association models and all
phases of the BLE-SC pairing protocol. As a result, we find
the method confusion attack in 7 pairing situations but Wu’s
model can only detect the method confusion attack when the
PE and NC association models interplay. Our analysis dis-
closes the key negotiation downgrade attack and the keysize
confusion attack caused by adversaries tampering with the

field KeySize in the pairing feature exchange phase, while
Wu’s model does not find these attacks. In addition, we pro-
pose a countermeasure and formally verify it.

Fischlin et al. [25] prove that the Bluetooth connection is
indeed secure if the pairing protocol is not attacked. Our work
investigates the hypotheses of their study.
Informal Works. The attacks against pairing protocols found
by the informal works [7, 28, 38] rely on the reused passkey
or compromised device, which is beyond our assumptions.
The method confusion attack [36] and the key negotiation
downgrade attack [5] are disclosed by Tschirschnitz et al. and
Antonioli et al. respectively. They also propose countermea-
sures to prevent the attacks. However, Bluetooth SIG does
not accept their countermeasures because of the backward
compatibility. Our model automatically discovers these two
attacks. We also propose a countermeasure that is backward
compatible and analyze the security.

Antonioli et al. disclose and exploit the flaws of the se-
cure connection establishment process in Bluetooth Classic.
Key Negotiation Of Bluetooth (KNOB) attacks [3] target the
session key negotiation and allow an adversary to control
the entropy of the session key. Bluetooth Impersonation At-
tackS (BIAS) [4] target the link key authentication and allow
an adversary to impersonate a legal device without possessing
the link key. These studies aim at the protocols after pairing
protocols and are beyond the scope of our research. Antonioli
et al. [6] also find vulnerabilities in cross-transport key deriva-
tion (CTKD), which enables devices to establish BT and BLE
security keys by pairing just once. The CTKD is deprecated
in the last Bluetooth Specification v5.3 [16].

8 Discussion and Conclusion

Discussion on SSP-SC. Our model of the BLE-SC pairing
protocol can be easily adjusted to model the SSP-SC pairing
protocol. We also provide the models of the SSP-SC pairing
protocol in our anonymous website [2]. There are only 20 spe-
cific models for the pairing situations in the SSP-SC pairing
protocol. Our analysis of the SSP-SC pairing protocol shows
that two pairing situations are vulnerable to method confu-
sion attacks. We do not describe the details of the models
and the results of the SSP-SC pairing protocol in this paper.
The patched PE and NC association models can apply to the
SSP-SC pairing protocol to improve security.

Conclusion. We present the first comprehensive formal
model, which covers all phases and available association mod-
els of the BLE-SC pairing protocol, to analyze the BLE-SC
pairing protocol. Using Tamarin Prover, we automatically find
many security flaws, leading to method confusion attack, key
negotiation downgrade attack, and keysize confusion attack.
We propose a backward compatibility countermeasure to fix
the security flaws. Moreover, we provide computer checked
security proofs for the countermeasure. We hope that our work
will improve the security of the BLE-SC pairing protocol.
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A Sequence Diagrams of Association Models

• Numeric Comparison (NC): The sequence diagram of NC is
shown in Figure 3, where NI and NR are two random strings,
f4 is a pseudorandom function, and g2 is a function that
outputs a 6-digit number. The user only needs to indicate
“Yes” on the two devices if VI =VR.

Initiating Device Responding Device

random NI random NR

ra = rb = 0 ra = rb = 0

CR =
f4(PkR,PkI,NR,rb)

CR

NI

NR

Check CR =
f4(PkR,PkI,NR,ra)

Display VI =
g2(PkI,PkR,NI ,NR)

Display VR =
g2(PkI,PkR,NI ,NR)

Wait for
user confirm

Wait for
user confirm

Figure 3: Sequence Diagram of Numeric Comparison

• Just Work (JW): The sequence diagram of JW is almost the
same as NC, except that the display of a 6-digit number and
waiting for user confirmation are omitted.

• Passkey Entry (PE): The sequence diagram of PE is shown
in Figure 4. The number passkey is generated and displayed
on one device and entered by the user on the other one.
Alternately, the user can input an identical passkey into both
devices. The variables rai and rbi are i-th bit of passkey.
Finally, the NI and NR are set to N20

I and N20
R respectively.

Initiating Device Responding Device

ra = rb = passkey ra = rb = passkey

rep. 20 times

random Ni
I random Ni

R

Ci
I =

f4(PkI,PkR,Ni
I ,rai)

Ci
R =

f4(PkR,PkI,Ni
R,rbi)

Ci
I

Ci
R

Ni
I

Check Ci
I =

f4(PkI,PkR,Ni
I ,rbi)Ni

R

Check Ci
R =

f4(PkR,PkI,Ni
R,rai)

Figure 4: Sequence Diagram of Passkey Entry
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• Out-of-Band (OOB): The sequence diagram of OOB is
shown in Figure 5, where rI and rR are two random num-
bers, I and R are the addresses of initiating and responding
devices used during pairing. The OOB channel such as an
NFC connection is deemed as a secure channel, in which
the exchanged messages can be bi-direction or uni-direction.

Initiating Device Responding Device

random rI random rR

ra = rI ,rb = 0 rb = rR,ra = 0

CI = f4(PkI,PkI,ra,0) CR = f4(PkR,PkR,rb,0)

Out-of-Band Channel I,ra,CI

R,rb,CR

if received responding device’s
OOB data, reset rb to the

received value, and check if
CR = f4(PkR,PkR,rb,0).
if OOBR = 0, set ra = 0.

if received initiating device’s
OOB data, reset ra to the

received value, and check if
CI = f4(PkI,PkI,ra,0).
if OOBI = 0, set rb = 0.

random NI random NRNI

NR

Figure 5: Sequence Diagram of Out Of Band

B State Machine for User Modeling

The state machine of the user is determined by our assump-
tions (refer to Section 3.2).

User_NC

Compare displayed numbers

User_NC

Compare displayed numbers

User_Init

Pairing D1 and D2

User_Init

Pairing D1 and D2

User_PE_1

Get N from D1

User_PE_1

Get N from D1

User_PE_2

Get N from D2

User_PE_2

Get N from D2

D1 DisplayYN N

D2 DisplayYN N

Push Yes on D1

Push Yes  on D2

D1 Display N

D2 Ask  Input
Input N to D2

D1 Ask Input

D2 Display N

Input N to D1

User_PE_0

Random N

User_PE_0

Random N

D1 Ask Input

D2 Ask Input

Input N to D1

Input N to D2

User_PE_UR_1

Get N from D1

User_PE_UR_1

Get N from D1

User_PE_UR_2

Get N from D2

User_PE_UR_2

Get N from D2

D1 DisplayYN N

D2 Ask Input

D1 Ask Input

D2 DisplayYN N
Push Yes on D1

Input N to D2

Input N to D1

Push Yes on D2

Figure 6: State Machine for User Modeling. (Display: display
a 6-digit decimal number. DisplayYN: display a 6-digit dec-
imal number along with a “Yes” button and a “No” button.
Ask Input: ask user to input a 6-digit decimal number.)

C Guarded First-Order Logic Formulas

predicates: P1(a,b,dhk) <=>
(All #i.Commit_Init(a,b,<’DHKey’,dhk >)@i
==>
(Ex #j.Running_Res(b,a,<’DHKey’,dhk >)@j)
| (Ex #k. InitDJW()@k))

predicates: P2(a,b,dhk) <=>
(All #i.Commit_Res(a,b,<’DHKey’,dhk >)@i
==>
(Ex #j.Running_Init(b,a,<’DHKey’,dhk >)@j)
| (Ex #k. ResDJW()@k))

predicates: P3(a,b,ltk) <=>
(All #i.Commit_Init(a,b,<’LTK’,ltk >)@i
==>
(Ex #j.Running_Res(b,a,<’LTK’,ltk >)@j)
| (Ex #k.InitDJW()@k))

predicates: P4(a,b,ltk) <=>
(All #i.Commit_Res(a,b,<’LTK’,ltk >)@i
==>
(Ex #j.Running_Init(b,a,<’LTK’,ltk >)@j)
| (Ex #k. ResDJW()@k))

lemma A1:
"All I R DHKey. P1(I,R,DHKey)"

lemma A2:
"All I R DHKey. P2(R,I,DHKey)"

lemma A3:
"All I R LTK. P3(I,R,LTK)"

lemma A4:
"All I R LTK. P4(I,R,LTK)"

lemma MITMP:
"All I R #i. MP(I,R)@i
==>
not(Ex LTKI LTKR #t1 #t2.

not(P3(I,R,LTKI)) & not(P4(R,I,LTKR))
& K(LTKI)@t1 & K(LTKR)@t2)"

lemma LTKCP:
"All I R LTKI LTKR #i #j.

LTK(I,R,LTKI)@i & LTK(R,I,LTKR)@j
==>
not(not(P3(I,R,LTKI)) & not(P4(R,I,LTKR))

& not(Ex #k #l. K(LTKI)@k & K(LTKR)@l))"
predicates: P5(a,b,ltk) <=>

(All #i.Commit_Init(a,b,<’LTK’,ltk >)@i
==>
(Ex #j.Running_Res(b,a,<’LTK’,ltk >)@j))

predicates: P6(a,b,ltk) <=>
(All #i.Commit_Res(a,b,<’LTK’,ltk >)@i
==>
(Ex #j.Running_Init(b,a,<’LTK’,ltk >)@j))

lemma SecAuthLTK:
"All I R LTK #i #j.

FSecAuthLTK(I,R,LTK)@i
& FSecAuthLTK(R,I,LTK)@j

==>
(P5(I,R,LTK) & P6(R,I,LTK)

==> not(Ex #k. K(LTK)@k))"
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