
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

ZbCAN: A Zero-Byte CAN Defense System
Khaled Serag, Rohit Bhatia, Akram Faqih, and Muslum Ozgur Ozmen,

Purdue University; Vireshwar Kumar, Indian Institute of Technology, Delhi;
Z. Berkay Celik and Dongyan Xu, Purdue University

https://www.usenix.org/conference/usenixsecurity23/presentation/serag

ZBCAN: A Zero-Byte CAN Defense System

Khaled Serag*, Rohit Bhatia*, Akram Faqih*, Muslum Ozgur Ozmen*,

Vireshwar Kumar†, Z. Berkay Celik*, and Dongyan Xu*

*Purdue University, {kserag, bhatia13, afaqih, mozmen, zcelik, dxu}@purdue.edu

†Indian Institute of Technology Delhi, viresh@cse.iitd.ac.in

Abstract

Controller Area Network (CAN) is a widely used network pro-

tocol. In addition to being the main communication medium

for vehicles, it is also used in factories, medical equipment,

elevators, and avionics. Unfortunately, CAN was designed

without any security features. Consequently, it has come un-

der scrutiny by the research community, showing its security

weakness. Recent works have shown that a single compro-

mised ECU on a CAN bus can launch a multitude of attacks

ranging from message injection, to bus flooding, to attacks ex-

ploiting CAN’s error handling mechanism. Although several

works have attempted to secure CAN, we argue that none of

their approaches could be widely adopted for reasons inherent

in their design. In this work, we introduce ZBCAN, a de-

fense system that uses zero bytes of the CAN frame to secure

against the most common CAN attacks, including message in-

jection, impersonation, flooding, and error handling, without

using encryption or MACs, while taking into consideration

performance metrics such as delay, busload, and data-rate.

1 Introduction

Modern vehicles contain hundreds of sensors and actuators,

administered by Electronic Control Units (ECUs), including

brake, engine, and steering control units. The most central

communication channel among ECUs is CAN. Although re-

liable and robust against electromagnetic interference, CAN

lacks any security measures. Researchers have demonstrated

the feasibility of remotely compromising an ECU on the CAN

bus [4,36,40,41,57]. With the ever-increasing connectivity of

today’s vehicles, the ease of such compromises is expected to

increase. Several works have shown that a compromised ECU

can launch a plethora of attacks, including message injec-

tion, impersonation, and flooding [4,36,40,41,57]. Moreover,

recent works have unveiled vulnerabilities in CAN’s error

handling mechanism [3,5,30,38,43,47,48,60]. These vulner-

abilities allow attackers to deliberately inject collisions, map

message sources, control the error states of certain ECUs or

even persistently disable them [5, 38, 47].

To secure CAN traffic, two primary approaches have been

proposed. One is the cryptographic approach, which relies

heavily on cryptographic primitives (e.g., encryption, MACs,

and hash functions). [1, 2, 20, 24–26, 42, 44, 45, 54, 56, 59].

Unfortunately, this approach suffers from fundamental issues.

The first is its impact on performance as cryptographic op-

erations incur an unaffordable processing overhead for most

commercial ECUs. Even worse, since the maximum payload

length of a CAN message is 64 bits, these solutions are forced

to either carve out a portion of an already-short message to

attach authentication information, dropping the effective data

rate, or use a completely different message, doubling the bus-

load. Another issue is the lack of intrusion confinement. Since

most of these solutions use group keys, if one ECU gets com-

promised, it can impersonate any node in the group. The last

downside is the lack of incremental deployability or the abil-

ity to incrementally secure messages transmitted by a single

ECU, without needing to update all ECUs at once.

The second approach is the intrusion detection (IDS) ap-

proach, which avoids the group-key problems and the compu-

tationally expensive cryptographic operations by delegating

all security operations to a super-node that may have special

equipment [7, 8, 18, 27, 31–33, 39, 49, 50, 63]. This powerful

node uses its abilities to detect traffic anomalies and flag them.

However, this approach has its problems. First, IDSs take no

measure to stop or prevent attacks. Second, most CAN IDSs

do not achieve single-message detection. Instead, they retro-

spectively detect flows of injected messages. This allows inter-

mittent or gradual intrusions to pass unnoticed and contributes

to these IDSs’ inability to translate their attack detection into

prevention, for a flow of messages is composed of a stream

of individual messages. Being unable to determine whether

an individual message is malicious or not prevents the IDS

from taking action against any of the individual malicious

messages that constitute the flow.

Additionally, the entire research field suffers from a hyper-

focus phenomena. A relatively vast amount of research has

been dedicated to message injection and its variations in com-

parison with other attacks. Further, many defenses contradict

one another and thus cannot be combined to protect against

a more extensive attack-set. These problems have prevented

any defense from being widely adopted.

USENIX Association 32nd USENIX Security Symposium 6893

Table 1: How ZBCAN compares with other CAN defense systems.

Defense Approach

Attacks Features Cost

Flood Injection Replay
Collision

Injection

Error

Passive

Bus

Off

Incremental

Deployability

Single-Msg

Detection

Intrusion

Confinement

Modifies

Message

Increases

Busload

Processing

Overhead

Cryptographic 1‡ X ✓ ✓ X X X X ✓ X X ✓

Cryptographic 2† X ✓ ✓ X X X X ✓ X ✓ X

Voltage

IDS

Detection - ✓ ✓ - - -
✓ X - X X

Prevention X X X X X X

Frequency

IDS

Detection ✓ ✓ ✓ - - -
✓ X - X X

Prevention X X X X X X

Clk-Skew

IDS

Detection ✓ ✓ ✓ - - -
✓ X - X X

Prevention X X X X X X

ZBCAN
Detection ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ X X∗
Prevention ✓ ✓ ✓ ✓ ✓ ✓

‡: Approach that uses extra messages to send authentication data.
†: Approach that uses message fields to send authentication data.

∗: Sometimes, ZBCAN may cause a minute busload-increase (Sec. 6.3).

We present Zero-Byte CAN, a versatile, low-overhead de-

fense system that uses zero bytes of the CAN message fields

to protect against several attacks and offers intrusion confine-

ment, incremental deployability, full backward compatibility,

and individual message guarantees. This last feature allows

ZBCAN to translate some of its detection abilities, into pre-

vention ones, since individual malicious messages could be

identified and stopped. ZBCAN does not use message fields,

authentication messages, or computationally expensive opera-

tions such as encryption. Instead, it uses message timing alone

to protect against the most common CAN attacks, including

injection, impersonation, fuzzing, flooding, collision injection,

voltage corruption, and bus-off.

ZBCAN is composed of a trusted officer node that can in-

terrupt transmission and several software agents, installed on

ECUs. The officer and each agent agree on a secret, endless,

and dynamically generated sequence of inter-frame spaces,

which the officer monitors for every message. The officer

could be set to issue warnings, interrupt messages, or com-

pletely suspend violating nodes. Aside from attaching the

officer to the bus, ZBCAN does not require any hardware

changes. Further, since ZBCAN uses no message fields, it

could be combined with solutions that do use them. For inclu-

sivity, we evaluated ZBCAN’s performance on a testbed using

a real vehicle’s data, its security and scalability on a testbed

using artificial data, and finally, several security and perfor-

mance aspects of ZBCAN on a real vehicle. Using ZBCAN,

we achieved a detection rate of 100% for injection and replay

attacks, and prevention rates of 100%,100%,99.4%,99.33%,

and 98.5% for error-passive, bus-off, collision injection, flood-

ing, and injection attacks, respectively. We summarize our

contributions as follows:

• We present ZBCAN, a versatile defense system that uses

inter-frame spaces to defend against the most common CAN

attacks, offering both detection and prevention abilities.

• We introduce a new method to suspend any ECU as soon

as it starts transmitting a frame called Instant Bus-Off. This

method could be used to suspend intruding nodes.

• We offer worst-case response time analysis to systems with

ZBCAN. We apply our analysis on a real CAN bus and

CAN Controller

CAN Transceiver

Transmit Buffer Receive Buffer

Application Code

CAN Library

CAN Bus

Figure 1: Architecture of an ECU.

show that all messages are guaranteed to be schedulable.

• We offer a probabilistic security analysis of ZBCAN

against different attack types.

• To show its applicability, we evaluate different aspects of

our system on a CAN testbed, on a real vehicle’s traffic,

and directly on a real vehicle’s CAN bus.

2 Background

ECU Architecture. As shown in Fig. 1, an ECU is composed

of three components: (1) A micro-controller unit running a

vehicle control application. (2) A CAN controller to enable

CAN communication and enforce protocol rules. (3) A CAN

transceiver to encode the CAN controller’s bit-stream into the

differential voltage signal used on the CAN bus.

CAN Basics. CAN is a broadcast-based bus that uses a

publish-subscribe communication model. It uses differen-

tial voltage signaling to represent zeros (dominant) and ones

(recessive). If a zero and a one are being transmitted by two

ECUs at the same time, the zero wins. Messages conclude

by sending 7 ones called the End Of Frame (EOF) sequence

(Fig. 2). Following EOF, any ECU that wishes to transmit a

new frame will have to wait for 3 additional bits called the

Inter-Frame Spacing (IFS).

Arbitration and Priority. At the beginning of every CAN

message, there is an ID field. Often, an ECU has multiple

message IDs, but an ID has only one transmitter. CAN uses

the ID as a priority field, with lower ID values having higher

priorities. If two ECUs attempt to transmit simultaneously,

they first go through an arbitration phase. Each ECU sends

one bit at a time and senses the bus; if it is sending one but

6894 32nd USENIX Security Symposium USENIX Association

S

O

F

I

D
Control Data

C

R

C

A

c

k

E

O

F

I

F

S

S

O

F

I

D
Control Data

C

R

C

A

c

k

E

O

F

Figure 2: CAN frame fields of two back-to-back frames.

senses a zero, it stops transmission. Thus, CAN guarantees

that beyond arbitration, there is, at most, one transmitter.

Errors. Whenever a CAN message is being transmitted, every

ECU is considered a receiver except for the transmitter. Every

ECU keeps two error counters, a TEC for errors encountered

during transmission, and an REC for errors encountered dur-

ing reception. CAN defines 5 different errors types for which

every ECU should watch. If a transmitter encounters an er-

ror, its TEC increases by 8. If a receiver encounters an error,

its REC increases by 1. Upon encountering an error, a node

signals the error by broadcasting an error frame.

Error States. For fault confinement, CAN enforces a system

of error states. By default, ECUs operate in the error-active

state. Once their REC or TEC exceeds 127, they enter the

error-passive state. If the TEC exceeds 255, they enter the

bus-off state, where they stop communicating with the bus.

Injection Attacks. Attacks where a malicious ECU injects

messages into the bus. We broadly consider the following as

injection attacks: (1) Targeted Injection: Forging and injecting

messages that look similar to those transmitted by a specific

ECU in charge of certain functions in order to alter those

functions. (2) Replay Attacks: Replaying one or more mes-

sages transmitted by a different ECU. (3) Random Injection:

Forging IDs randomly or semi-randomly to cause damage or

to discover hidden message semantics (e.g. fuzzing attacks).

Flooding Attacks. The attacker injects an endless stream

of back-to-back high-priority messages to deny other ECUs

access to the bus and cause them to drop messages.

Error Handling Attacks. An ever-widening attack surface,

these attacks cause a victim ECU to encounter errors us-

ing a technique called simultaneous transmission in order

to achieve various purposes. For instance by accumulating

these errors, attackers could push ECUs to the error passive

or bus-off states. These error states could then be exploited to

launch persistent DoS attacks, evade voltage intrusion detec-

tion systems, or map the network.

Simultaneous Transmission. A technique used by attackers

to inject collisions and increase the error counter of a victim.

As shown in Fig. 3, the attacker injects a message with the

same ID as a target-message exactly at the same time but

with a different payload. This causes both the attacker and

the victim to experience an error and increase their T EC by 8.

For the attacker to synchronize the two messages, they inject

one or more synch messages with a higher priority slightly

before the message, followed by a message with the same ID.

Attacker

CAN Bus

Victim

ID:A Payload 1

ID:A Payload 2

ID:A Error

ID:B<A Payload

ID:B<A Payload

Figure 3: Collision injection.

3 Related Work

Intrusion Detection Approach. To avoid using cryptography,

researchers proposed using lightweight Intrusion Detection

Systems. Some IDSs rely on traffic features such as mes-

sage frequencies, lengths, payloads, or clock skews to detect

anomalies [6, 27, 39, 49, 50, 63]. Others use physical features

such as the unique electrical characteristics of each ECU, man-

ifesting in their transmission voltage levels [7, 8, 18, 32, 33].

Nevertheless, IDSs have their problems. Namely, many of

these systems were shown to be evadable [3, 46]. Further,

despite the high detection rates they present, most of them do

not detect single injections, but flows of N injections, leaving

room for low-level attacks to pass unnoticed and preventing

them from translating their detection abilities into prevention.

Timing-Based Approach. INCANTA [21] proposed adding

secret delays to the expected arrival times of periodic mes-

sages, with receivers inspecting the delay of every message.

However, the accuracy of such delays degraded significantly

for lower-priority IDs. CANTO [22] suggested pre-scheduling

bus traffic to avoid unexpected delays of lower priority mes-

sages. Unfortunately, both methods use up to 8 message bits

and incur processing overhead on the receiving side. Other

works [55,61] used similar techniques with variations such as

using authentication messages, a monitor node, the delays be-

tween each message and its authentication message, or using

multiple covert channels. Similar to INCANTA and CANTO

they did not eliminate using frame bits or authentication mes-

sages. Additionally, all the aforementioned solutions use a

primitive form of delay that is vulnerable to an attacker pur-

posely injecting higher priority messages and causing a target

message to be late, do not offer prevention, focus only on

injection, and work only for periodic messages. We propose a

different kind of timing channel, based on inter-frame spacing,

which cannot be tampered with and works for periodic as well

as aperiodic messages. We use it to defend against an exten-

sive set of attacks and offer both detection and prevention,

without using any message field.

Other Approaches. Few works have addressed attacks other

than injection. Namely, to prevent bus flooding, researchers

suggested modifying the network’s hardware to allow for the

isolation of attackers [23, 28]. Such solutions are very ex-

pensive to implement. Other works suggested manipulating

the ID to bypass targeted flooding [12, 29] or randomizing

portions of it to prevent error handling attacks [3]. Nonethe-

less, these systems cannot be deployed where IDs are used to

convey commands, responses, or anything beyond their usage

as mere identifiers as in most diagnostic protocols.

USENIX Association 32nd USENIX Security Symposium 6895

4 Threat Model

Similar to prior CAN security papers [3, 4, 19, 34, 36, 40, 41,

47, 58], we assume a remote attacker who has successfully

compromised an ECU through Bluetooth, Internet, or any

other remote means. The attacker can execute any code but

has no control over the protocol controller and cannot alter

protocol’s rules. The attacker has no physical access to the

bus and hence cannot attach devices with special hardware.

5 ZBCAN

5.1 Architecture and Operation Overview

As shown in Fig. 5, ZBCAN consists of a central monitor

node, able to stop messages during transmission, called the

officer, and a set of software agents, installed on every ECU.

Each ECU privately agrees on a secret, non-repeating, and

unique sequence of inter-frame spaces, called the In BetweeNs

(IBNs), with the officer, and then enforces these sequences

upon outgoing messages. If the officer detects a message

with the wrong IBN, or an unknown ID, it stops it right after

the ID portion of the message, thus preventing the message

from being received by any ECU. Depending on the officer’s

setting, it may ignore the message, issue a warning, stop it,

or disable its transmitter (Sec. 9). This way, several attacks

could be prevented at once. Namely, error handling attacks

rely on a technique called simultaneous transmission (Sec. 2),

where attackers have to send a message exactly at the same

time their victim transmits. With ZBCAN, they need to guess

the exact IBN value for every message to transmit simulta-

neously. Similarly, injection and flooding attackers need to

guess the correct IBN value for every message. Otherwise,

their messages will be stopped by the officer.

Message ID: A Message ID: BCAN Bus

Time

IBN

IFS TSuspend TO

Zero-Point

Figure 4: IBN basic concept.

The In BetweeN (IBN) As shown in Fig. 4, we use the term

(IBN) to refer to the spacing between any two consecutive

frames, measured from a zero-point (explained in Sec. 5.2).

Although this definition is similar to that of the Inter-Frame

Spacing (IFS), in most definitions, IFS refers specifically to

the three bits following the end of a frame. To avoid confusion,

we use the term IBN. Per the standard [16], CAN controllers

initiate transmission after sensing the bus idle. This happens

by sampling voltage at time intervals equal to one-bit each.

As a result, the spacing between the end of one frame and the

beginning of another is not continuous but discrete, meaning,

it is a multiple of a bit’s length, plus a small extra delay caused

by clock skews and propagation delay. Therefore, if we can

find ways to ignore this small delay, as explained in Sec. 6.3,

we can view the spacing as discrete and measure it using

bit-length units or simply bits.

CAN Bus

Transceiver

Application Code

Agent

M M

Controller

Transceiver

Application Code

Agent
MM

GPIO

Officer Code

Controller

Transceiver 1

M M

GPIO

Transceiver 2

b b

OfficerECU-1

ECU-2

Transceiver

Application Code

Agent

M M

ECU-4

Transceiver

Application Code

Agent

M M

ECU-3

Controller Controller Controller

Figure 5: Architecture of a system implementing ZBCAN.

Symbol (M) refers to messages. Symbol (b) refers to bits.

IBN Sequence. To illustrate how to use IBN as a signature,

assume that a generic message is currently being transmitted

on the bus. Further, assume messages of ID = X have a se-

quence of endless, secret, and non-repeating IBN values to be

followed. As shown in Fig. 6, when wishing to transmit a new

instance of X , the agent of X waits until the ongoing generic

message transmission concludes, counts a distance equal to

the scheduled IBN (IBNsc) in the sequence, then transmit. The

agent does not wait until IBN ≥ IBNsc but exactly = IBNsc.

Generic ID: X, Cycle: 1CAN Bus

IBN1

GenericCAN Bus

IBN2

ID: X, Cycle: 2

Generic ID: X, Cycle: 3CAN Bus

Time

IBN3

T
im

e
\

C
y

cl
e

s

Figure 6: A running IBN sequence as a message ID signature.

Officer. As shown in Fig. 5, the officer is a trusted node that

has the ability to securely store keys and has access to the

bus through two channels, one through a CAN controller, and

another directly through a GPIO and a CAN transceiver. The

GPIO channel serves three purposes: (1) accurately measur-

ing the IBN of every message, (2) reading message IDs before

their data is delivered, and (3) allowing the officer to inject

error frames on demand to stop any message. The officer is

connected to the CAN bus in parallel as other nodes. It is

not a gate or a bottleneck and causes no delay to messages.

Instead, it acts as an observer who can immediately intervene.

Its role is to monitor the enforcement of the IBN sequence. If

it detects a message violating its IBN sequence or a message

ID that is not allowed, it stops it before being received by any

ECU. To be able to do so, the officer knows all the allowed

IDs on the bus and their secret sequences.

Agent. The agent is a software installed on every ECU we

wish to protect. It does not require any hardware changes

to the ECU. Agent’s components are further detailed in Ap-

pendix. B.1. The agent’s role is to apply the IBN sequence

upon outgoing messages. This sequence is unique per mes-

6896 32nd USENIX Security Symposium USENIX Association

GenericCAN Bus

Time

IBNSpan

IBNsc

IBNSpan IBNSpan

IBNsc IBNsc

Figure 7: Dividing the timeline into distances = |IBNSpan|
allows for using Modulo IBN instead of Absolute IBN.

sage ID and shared between two parties only: a ZBCAN

agent, and the ZBCAN officer. One agent does not know the

sequences of any other agent.

Message Reception. Upon reception, agents do not perform

any computations. If a message is received successfully, it is

approved by the officer. This way, we eliminate any process-

ing overhead on the receiving side.

5.2 IBN Implementation Details

Zero-Point Calibration. The zero-point cannot be the same

as last frame’s last IFS bit for two reasons. First, nodes op-

erating in the error-passive state have an additional 8-bit

suspend-transmission penalty (TSuspend), enforced at the pro-

tocol controller’s level. If IBNsc is 0, and the zero-point is

the last IFS bit, an error-passive node will violate this value.

Second, if IBNsc is too low, an ECU with low computational

power may not have enough time to initiate transmission in

time but after an overhead period (TO). TO should be measured

empirically for every system. Accordingly, as shown in Fig. 4,

we set zero-point ≥ IFS+TSuspend +TO.

Measuring TO. Agents are composed of a library and three

Interrupt Service Routines (ISRs) (Appendix. B.1). TO is de-

pendent on the end of frame (EOF) ISR, which is responsible

for clearing the transmit buffer, updating the sequence index,

checking if there are pending messages to be transmitted,

then applying the IBN value at the next transmission. Ideally,

the ISR should be able to execute these tasks by the end of

TSuspend in Fig. 4. However, some ECUs may take longer. The

effective ISR processing time for an ECU could be measured

during the system design phase by sending a test message at

the end of the EOF ISR (without any IBN), then measuring

the distance between the last message on the bus and the test

message. The system’s TO, should be set to the longest ISR

processing time of any ECU.

IBNSpan. If the bus is busy and IBNsc is too long, the agent

may never find the opportunity to transmit. To prevent this, all

IBN values should be kept within a span (IBNSpan) so that

any message with IBNsc ∈ IBNSpan is guaranteed to trans-

mit within a window not exceeding its deadline (explained

in Sec. 6.2). We use the notation |IBNSpan| to refer to the

number of elements (IBN values) in the IBNSpan set.

Modulo IBN. Since IBN is counted from the last frame on

the bus, if a message is generated during a long idle period,

it will have to wait until a message appears. Even worse, if

all ECUs are also waiting for a message to appear, no mes-

sages will transmit. To prevent such problems, starting at the

last zero-point, we divide the timeline into slots of length

Generic MessageCAN Bus

Time

IBNSpan

PSpan0 PSpan1 PSpan2

Figure 8: Dividing IBNSpan into exclusive priority spans.

= |IBNSpan|. Instead of having to send the message only

at a spacing = IBNsc, we send it at any spacing (d) that sat-

isfies the condition: d mod |IBNSpan| = IBNsc. This way,

if a message is generated within an idle period, it waits un-

til the beginning of the next IBNSpan, counts a number of

bits = IBNsc, then initiates transmission, as shown in Fig. 7.

Beginning from here, the term IBN refers to Modulo IBN.

Priority and IBN. Without ZBCAN, if two messages with

IDs 0 and 10 are pending transmission at the same time,

they will both go through an arbitration phase that ends in

ID : 0 winning and transmitting first. With ZBCAN, if ID : 0’s

scheduled IBN is 10 b, while ID : 10’s scheduled IBN is 0 b,

ID : 10 will transmit first, inverting the priority system.

To guarantee that such a scenario does not cause tim-

ing deadline violations for time-sensitive messages, we en-

force our own priority system. First, we divide IBNSpan fur-

ther into Npri non-overlapping ranges called priority spans

(PSpans), each representing one priority level as shown in

Fig. 8. Next, we arrange all message IDs in ascending order,

based on their deadlines, then group them into Npri ≥ 1 pri-

ority groups (Pgroups). Each Pgroup contains one or more mes-

sage IDs sharing the same PSpangroup, where PSpangroup ∈
IBNSpan. P0 is dedicated PSpan0 and contains the IDs with

the shortest deadlines, while PNpri−1 is dedicated PSpanNpri−1

and contains IDs with the longest deadlines. This way, we

guarantee that messages with the shortest deadlines have a

higher priority. In Sec. 6.1, we model the worst-case response

time (WCRT) for messages in a ZBCAN system, then use this

model to map message IDs into priority groups and guarantee

that time-sensitive messages arrive in time.

Dummy Messages. To prevent IBN inaccuracies due to the

inherent clock skew among ECUs, dummy messages of zero-

byte length may need to be inserted after long idle periods to

force all ECUs to resynchronize. We detail this in Sec. 6.3.

5.3 Operation Implementation Details

Registration and Sequence Exchange. Each agent starts

its operation by an exchange with the officer to establish

the first sequence for each ID. This exchange (detailed in

Appendix B.2) happens only at the beginning of operation.

Sequence Usage and Extension. Every agent keeps an

indexid for each ID’s IBN sequence. With every transmitted

message, the agent consumes the bits pointed at by indexid

from the sequence and then increments indexid . After the

initial sequence exchange, each sequence could be used to

generate new sequences throughout the operation without

having to re-exchange sequences with the officer. We call this

operation, detailed in Appendix B.2, sequence extension.

USENIX Association 32nd USENIX Security Symposium 6897

32 TimesTarget Message 1 Bus Off

Interrupt Transmission

Dominant (0)Dominant (0) 1

Figure 9: Successively interrupting error frame delimiters 32

times instantly pushes transmitters to the bus-off state.

Officer Policing. If the officer detects a message with a wrong

IBN, it interrupts it using an active error right after reading

its ID field, preventing its payload from appearing on the bus.

Right after the interruption, it issues a warning and resynchro-

nization message with an ID = IDwarn, a system parameter.

Only the officer is allowed to send this ID. The message con-

tains the violating ID and the indexid of the next expected

IBN. Upon reception of a warning message, ECUs read which

ID violated its sequence. If an ECU is a transmitter of the

violating ID, it updates its indexid to the one in the message.

If it is a receiver, it takes note of the possibility of the data

being compromised. After Nwarn successive warnings or if the

message has a prohibited or unknown ID, the officer suspends

the intruding node (Sec. 5.4).

Errors. If an agent encounters an error while transmitting

a message, it should increment its indexid since most errors

happen after the ID portion of a message, meaning, after the

officer has witnessed and approved the ID and IBN.

Queuing. Since we group every message on the bus into

Npri priority groups and consider all IDs within a group to

have the same priority, we recommend that within each agent,

messages in the same priority group share a FIFO queue.

5.4 Disabling Transmitter (Instant Bus-Off)

We propose a new technique to push an ECU to the bus-off

state by targeting a single message. It requires equipment that

is able to accurately inject individual bits directly into the bus.

Only the officer could do that per our threat model (Sec. 4).

The method is as follows. (1) We pick a frame on the bus

and wait until a one is being transmitted. Once that happens,

we inject a zero. (2) After a single bit, the transmitter detects

this error and attempts to send an error frame composed of

6 zeros (flag) and 8 ones (delimiter). (3) After the delimiter

starts, we release the bus for a single bit, allowing the one to

appear. (4) After the one, we re-inject a zero. Consequently,

step (2) repeats. We repeat steps (1−4) 32 times, where the

transmitter enters the bus-off state as illustrated in Fig. 9. This

process could take as little time as (7∗32)+(1∗31) = 255

b (510 µs on a 500 kbps CAN bus).

Although the authors of [47] proposed the single-frame bus-

off (SFBO), this technique outperforms it in two ways: (1)
SFBO requires≈ 5 ms. Our technique requires 512 µs, up to≈
10X faster. (2) SFBO requires automatic re-transmissions to

be enabled. As such, an ECU could protect itself by disabling

automatic re-transmissions. Our technique does not rely on

re-transmissions and hence cannot be escaped once launched.

6 Performance Analysis

6.1 Worst-Case Response Time Analysis

Several works [9–11, 51–53, 62] have analyzed the Worst-

Case Response Time (WCRT) in CAN systems. We use the

findings of [9] as a starting point. In Equation 1, Rm refers to

the WCRT of a message, Jm refers to the queuing jitter or the

longest time between initiating queuing and actually queuing

a message, wm refers to the queuing delay or the maximum

time a message could wait in the queue before initiating trans-

mission, and Cm refers to the longest transmission time of

message m. Every message ID m should have two metrics

defined: (1) Tm to represent the period of a periodic message

or the minimum inter-arrival time between two instances of

an aperiodic message, and (2) Dm to represent the timing

deadline or the maximum allowed delay for the message. A

message is schedulable only if Rm ≤ Dm.

Rm = Jm +wm +Cm (1)

To calculate the worst case queuing delay wm in Equation 1,

we use Equation 2. Bm refers to the blocking delay or the time

message m could wait for a lower priority message, currently

in transmission, to conclude. Tk refers to the minimum time-

interval between successive launches of the queuing task of

message k, and τbit to the bit-time.

wn+1
m = max(Bm,Cm)+ ∑

∀k∈hp(m)

⌈
wn

m + Jk + τbit

Tk

⌉Ck (2)

With ZBCAN, messages wait IBNsc before transmission.

The effective transmission time for message m then could be

viewed as IBNsc,m +Cm. Assuming m ∈ priority group (Pn)

and PSpann starts at point (Spann,beg), the maximum IBNsc,m

message m could wait is Gmax,n = |PSpann|−1+Spann,beg.

As a result, we define ECm = Gmax,n +Cm to represent the

effective maximum transmission time of m, or the maximum

time it could wait if the bus is available plus its actual maxi-

mum transmission time Cm. Similarly, the effective maximum

blocking delay EBm includes the lower priority message’s

waiting time. Since message m shares the same priority level

with a whole group, defining which IDs have higher priorities

within the group becomes difficult. The worst case is for the

longest message to be currently in transmission, for all mes-

sages of higher-priority and same-priority groups hp(m) and

sp(m), to be pending transmission at the same time, for all

higher-priority messages to receive the maximum IBN value

for their PSpans, for all messages of the same group, includ-

ing message m to wait for Gmax,n, and for m to lose arbitration

to every message and transmit last. The worst queuing delay

for our system could be represented by Equation 3.

wn+1
m = max(EBm,ECm)+ ∑

∀k∈hp(m)∪sp(m)

⌈
wn

m + Jk + τbit

Tk

⌉ECk (3)

Equations 1 and 3, give us insight on what factors influence

the WCRT of a message. We expect for factors such as the bit-

time (baud-rate), message length, jitter, number of messages

6898 32nd USENIX Security Symposium USENIX Association

Algorithm 1 Priority Grouping Algorithm

1: AllIDs← System ID list

2: n← 0

3: Ratiosafe← 0

4: while Ratiosafe ≤ 1 do

5: System← Schedulable

6: while AllIDs ! = Empty && System! = Unschedulable do

7: Create new group Pn
8: while Pn ! = Full && AllIDs! = Empty do

9: Add ID to Pn
10: Remove ID from AllIDs

11: if !(All Pn IDs are safe) then

12: Remove ID from Pn
13: Add ID back to AllIDs

14: if Pn Empty then

15: System← Unschedulable

16: Return IDs from all groups to AllIDs

17: Pn← Full

18: n++
19: Ratiosafe = Ratiosafe+0.05

20: if Ratiosafe > 1 && AllIDs! = Empty then

21: System← Unschedulable

and their inter-arrival times, number of priority groups, and

|PSpan| to have a direct influence. We also expect for mes-

sages in the higher priority groups to have a higher influence

on the WCRTs of the system than lower priority groups.

6.2 Priority Grouping

We define the ratio Ratiosa f e = Rm/Dm to represent the

WCRT of a message m divided by its deadline. To guarantee

that time-sensitive messages will not violate their deadlines

(schedulable), we map different message IDs to different pri-

ority groups such that the condition: Ratiosa f e ≤ 1 holds for

all messages and groups. Grouping should take place dur-

ing the system design phase and not during operation. To

optimize our grouping, we define two objectives. The first

is to minimize Ratiosa f e. Assuming the system has a fixed

IBNSpan, then it is obvious that the security of the system

drops with every division of this span. Hence, the second

objective is to minimize the number of priority groups. Alg. 1

illustrates how to achieve these objectives. In the algorithm,

the term "safe" means Ratiosa f e ≤ 1.

6.3 Discretizing IBN Challenges

ZBCAN works by discretizing the spacing between consecu-

tive frames, then controlling this spacing (IBN) to achieve its

security goals. Nonetheless, the impact of factors such as the

propagation delay on this "discretization process" should be

studied to prevent any IBN inaccuracies.

Propagation Delay. Controllers read the value of a bit by

taking voltage samples from the bus at bit-lengthed intervals.

A bit-time is divided into four segments. The sample point is

configurable, and is taken between the third and fourth [16].

For the propagation delay to cause IBN inaccuracies, it needs

to exceed the sampling point. Assuming a typical propagation

delay of 5 ns [17], a baud rate of 500 kbps, and an officer’s

sampling point of 65%, the round trip propagation delay

needs to exceed 1300 ns (cable length of > 130 m) to consti-

tute a problem. For a typical CAN bus with a 2 to 15 m length,

this problem is irrelevant.

Clock Skew and Dummy Messages. Due to the inherent

clock skews among ECUs, they gradually lose synch. To

counter that, CAN requires all controllers to re-synchronize at

the rising edge of every new frame’s SOF . In ZBCAN, if the

clock skew of one ECU causes it to start transmitting past the

sampling point of the officer, it will cause a false positive. To

prevent that, we take advantage of CAN’s re-synchronization

mechanism. Specifically, we define the metric dskew that refers

to the minimum spacing between messages that causes any

ECU’s clock skew to start causing IBN inaccuracies. By in-

serting a dummy message of zero-byte length at an idle spac-

ing ddummy < dskew, all clocks re-synchronize before the clock

skew causes inaccuracies.

6.4 Overhead Analysis

A sequence extension operation for a specific ID happens

every Lseq/ log2(|PSpan|) messages. On the officer’s side, the

sequences are extended for every message ID in the system.

However, On the agent’s side, sequences are extended only

for the message IDs that the agent transmits.

To function properly, the agents and the officer need

a minimum amount of memory to hold variables such as

keys, sequences, etc. Specifically, agents require at least (2∗
Lsequence) + ((3 ∗ Lsequence) + Lindex) ∗Nids−agent bits, where

Lsequence refers to the length of the sequence, Lindex to the

length of the index, and Nids−agent to the number of IDs

that the agent sends. Similarly, the officer requires at least

(2∗Lsequence ∗Nagents) +((3∗Lsequence)+Lindex) ∗Nids−system

bits, where Nids−sys and Nagents refer to the number of IDs and

number of agents in the system, respectively. A more detailed

analysis of the memory and processing overhead is provided

in Appendix C.1.

7 Security Analysis

Compromised Agent Abilities. Our threat model (Sec. 4)

assumes a remote attacker that has all the information of an

agent but is limited by the ECU’s hardware. While ECUs

communicate on the CAN bus through a CAN controller,

the officer can connect directly to the bus. Further, an agent

knows only its pre-shared key (Sec. 5.1), which is used to

agree on an IBN sequence. The officer, on the other hand,

knows the pre-shared keys of all agents. Consequently, a com-

promised agent cannot read message IDs during transmission,

stop messages on demand, alter protocol rules, or establish

IBN sequence agreement with other agents, since it does not

have the necessary hardware or keys. This limits its abilities

to receiving and transmitting full messages and controlling

their IBN values, which could be used to push another ECU’s

messages off sequence, launch message injection (including

impersonation, masquerade, etc.), error handling, or flooding

attacks. Here, we discuss these attacks.

USENIX Association 32nd USENIX Security Symposium 6899

7.1 Off Sequence Attack

In ZBCAN, each message ID follows a strict IBN sequence.

If an attacker is able to guess the scheduled IBN for a target ID

once, the officer will update its indexid but the legitimate trans-

mitter will not. Consequently, when it sends its next instance

of the message with IBN = IBNsc, it will be off-sequence,

since the officer will be expecting an IBN = IBNsc+1. How-

ever, since each ID has its own sequence, even if one ID is

pushed off sequence, the agent will be able to transmit the

rest of the IDs normally. Further, since the officer will stop the

first message with unexpected IBN then issue a warning and

resynchronization message containing the expected indexid ,

the legitimate agent will be able to resynchronize.

This method turns a security weakness into a strength, guar-

anteeing that injections will be detected in 100% of cases,

since even a successful injection always results in the le-

gitimate ECU going off sequence and the officer issuing a

warning message to all receivers. Further, it is better than

having each agent monitor whether its messages are being

impersonated then automatically resynchronizing in terms of

performance, since agents have to only watch for messages

with IDwarn, instead of every ID they transmit.

7.2 Injection and Detection Window

Attackers could inject messages with IDs that exist in the

network (e.g., masquerade and impersonation) or random IDs

that do not necessarily exist (e.g., fuzzing attacks). Assum-

ing a smart attacker that knows the system IDs, their groups

and PSpan, ZBCAN offers three probabilistic security guar-

antees for injection attacks: Individual-Message Detection,

Individual-Message Prevention, and Flow Detection.

Individual-Message Detection. Assume a periodic message

m with a period T belonging to a priority group with a

|PSpan|= n and a scheduled IBN = IBNsc. The probability

of guessing IBNsc is 1/n. Within a time period ≤ T , the legit-

imate ECU will send its message with the same IBN = IBNsc.

Since the officer will be expecting an IBN = IBNsc+1, the

injection will be detected within a time window ≤ T , except

if IBNsc+1 is randomly = IBNsc. Since the sequence is gen-

erated using a PRF , the probability of IBNsc+1 being equal

to IBNsc is also 1/n. To generalize, let the detection window

(w) be an integer representing the number of periods/cycles

of duration T since the injection, the probability of detecting

an injection within a window w is represented by Equation 4.

Note that P(w)det always tends to 1 given enough cycles.

P(w)det = 1−
1

|PSpan|w+1
(4)

Individual-Message Prevention. To prevent an injection, the

officer needs to detect it as soon as it appears on the bus, and

before it is delivered to the receivers. This means that the

probability of prevention Pprevent = P(0)det , as shown below:

Pprevent = 1−
1

|PSpan|
(5)

The expected number of trials before a successful injec-

tion is E(in j) = |PSpan|, not |PSpan|/2, since the officer

increments indexid for the sequence with every observed ID

instance whether its IBN is accurate or not.

Injection Flow Detection. For a flow of f messages not to be

detected, every single message in the flow should pass unno-

ticed. In other words, an injection flow is detected when any

of its messages are detected. Equation 4 could be generalized

to quantify this probability to become:

P(w, f)det = 1−
1

|PSpan|w+ f
(6)

Random Injections. ZBCAN allows a message to transmit

if the message ID is allowed on the bus and the message

is following its Seqid . Since random injections violate both

conditions, their rate of prevention and detection is ≈ 100%.

7.3 Error Handling Attacks

Collision Injection. To inject a collision using simultaneous

transmission (Sec. 2), one needs to estimate the transmission

time of the victim message, send a synch message slightly

before its expected arrival, followed by a message of the same

ID. With ZBCAN, the attacker cannot randomly inject a high

priority message for synchronization or it will be stopped

by the officer. Further, the attacker has to accurately guess

the scheduled IBN for the victim’s message. Finally, with

Modulo IBN, the attacker has to guess which |IBNSpan| slot

to inject its message. Assuming that the attacker only has to

guess IBN, Equation 5 could be applied to estimate a proba-

bilistic lower bound for the prevention rate.

Error Passive. The fastest way to push a victim to the error-

passive state requires the attacker to cause at least 16 suc-

cessive collisions, the prevention rate for this scenario is:

Pprevent ≥ 1− (1/|PSpan|16).

Bus-Off. The fastest bus-off attack requires the attacker to

cause 32 successive collisions. The prevention rate of this

scenario is: Pprevent ≥ 1− (1/|PSpan|32).

7.4 Flooding Attacks

ZBCAN prevents flooding by suspending the attacker using

the instant bus-off technique. The success of flooding attacks

is measured by the drop rate (ratedrop) they cause to mes-

sages. We define our prevention rate of flooding attacks to be

rateprevent = 1−ratedrop. rateprevent will differ from a system

to another depending on factors such as the busload and the

ID allocation of the network more than the |IBNSpan|.

7.5 Choosing |PSpan|

Looking at Equations 4 through 6, we notice that regardless

of the value of |PSpan|, injections will always be detected,

given enough cycles. Therefore, the value of |PSpan| could be

viewed as mainly affecting the detection speed, and the single

injection prevention rate. The system designer should ini-

tially define their security objectives. A high single injection

6900 32nd USENIX Security Symposium USENIX Association

prevention rate requires a high |PSpan|. However, ZBCAN

provides high detection rates, even for small |PSpan| values.

For instance, a |PSpan| value as low as 16 b will result in a sin-

gle injection prevention rate ≈ 93.75%, but a single injection

detection rate≈ 99.61% within a single cycle. This is already

higher than most of the current IDSs detection rates for flows.

Meanwhile, its detection rate of a malicious flow composed of

only two messages is > 99.97% within a single cycle. Within

5 cycles, both the flow and single injection detection rates

for the aforementioned scenarios become ≈ 100%. Outside

injection attacks, the same |PSpan| prevents error passive

and bus off attacks at a ≈ 100% rate. To choose a |PSpan|
value, a compromise between the security of the system and

its performance has to be reached. The busier the system, the

smaller the |PSpan| values it could afford.

8 Evaluation

For a thorough analysis, we evaluated ZBCAN’s false positive

rate, security, performance, and scalability on a testbed using

artificial data, on a testbed using a 2011 Chevy-Impala’s data,

and finally on a 2011 Chevy-Impala’s CAN bus.

Trusted Officer Platform. We use a Renesas RA6M5 MCU

board as the officer. RA6M5 MCU runs on an ARM Cortex

M-33 and is equipped with TrustZone. It offers memory and

peripheral access isolation, secure boot-loading and process-

ing with TrustZone, a CAN module, and a GPIO module.

Pseudo Random Function. We use Chaskey [37], an open

source PRF that takes ≤ 0.5 ms to generate a Seqlength =
128 b on an Arduino Uno board and ≈ 1.9 µs on the RA6M5.

Zero-point. As explained in Sec. 5.2, we measured the value

of TO on an Arduino Uno and determined it to be 7 b. The

zero-point is TO +TSuspend = 15 b after the IFS.

8.1 False Positive Test

Propagation Delay. This delay is proportional to the bus

length. To assess its impact, we attached the officer and a

reference message generator to a breadboard, an agent to

another breadboard, connected the two with a cable and added

a 120 Ω resistance on each board. We set the agent to transmit

a message immediately after every reference message with

IBN = 0 b. We set the cable length to 5 cm and measured the

average spacing between the reference and agent messages in

nanoseconds. Next, we changed the cable length from 5 cm to

30 m, and repeated the measurement. The difference between

the spacing at 30 m and at 5 cm was ≈ 340 ns, meaning, the

round trip propagation delay was ≈ 11.33 ns/m (one way

delay ≈ 5.66 ns/m). At a 500 kbps baud rate, for the round

trip delay to exceed our officer’s sampling point of 75%, the

cable length has to be ≥ 132.39 m.

Impact of Clock Skew. In a system composed of 20 ECUs,

the smallest dskew was 1189 b and the largest dskew = 1460 b.

The details of these measurements are explained in Ap-

pendix C.3. To assess the impact of clock skew on the false

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Absolute Inter-Frame Spacing (bits)

0

0.2

0.4

0.6

0.8

1

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

ECU Min.

ECU Max.

Figure 10: Message spacing vs. IBN accuracy.

positive rate, we connected the officer and a traffic source,

sending a reference message every 6 ms, to a 500 kbps bus.

Next, we connected the ECU with the largest dskew and set it to

transmit after every reference message with an ascending IBN

between 0 and 3000 b. This means sending the first message

with IBN = 0 b, the second with IBN = 1 b and so on until

3000 b, then rolling over to 0 b and repeating. Meanwhile, the

officer monitored the IBN of each message. We ran this test

for 30 min. Next, we connected the ECU with the smallest

dskew and repeated the test. Fig. 10 shows how for both ECUs,

the false positive rate is 0% before each ECU’s dskew, then

increases after exceeding it until it reaches 100%.

False Positive Test With Dummy Messages. To assess

whether the dummy message solution (Sec. 6.3) could keep

the false positive rate of a network with both propagation

delay and clock skews at 0%, we connected the officer and

a traffic generator to one breadboard and the agents to an-

other and connected the two with a 30 m cable to maximize

the propagation delay. We set each agent to register and ex-

change an IBN sequence of an IBNSpan = 128 b with the

officer as explained in Sec. 5.3. As previously determined,

the system’s dskew was 1189 b. Nonetheless, since the sys-

tem’s IBNSpan = 128 b and 1189 mod 128 ̸= 0, we chose

ddummy = 1152 b, the biggest value under 1189 whose mod

128 = 0 b. Next, we set up the traffic generator to send a

dummy message of length 0 B at 1152 b idle time and set up

each ECU to send 100K messages while following its own

IBN sequence. For all ECUs, the false positive rate remained

0% after 100K messages.

8.2 ZBCAN Security Evaluation on a Testbed

On a 500-kbps CAN bus, We connect the officer, 5 ECUs,

and a dummy message generator. ECUs are composed of Ar-

duino Uno boards, mcp2515 CAN controllers, and mcp2551

transceivers. One node is used as the attacker. We assume a

smart attacker who knows the IBNSpans of the system. There-

fore, we provide the attacker with an agent similar to the one

on all nodes with modifications to launch attacks. Below, we

report ZBCAN’s evaluation results.

Injection. We set the busload to 34% as in our Impala and

evaluated ZBCAN under |IBNSpan| values of 16, 32, 64, and

128 b and three types of injection: (1) Random Injections: At-

tacker uses the same PRF with a random seed to try different

IDs and IBN values within the IBNSpan. (2) Targeted Injec-

tions: Attacker injects an ID already in use in the network but

USENIX Association 32nd USENIX Security Symposium 6901

Table 2: Observed effectiveness of ZBCAN with different

|IBNSpans| against different single injection attack types.

Attack
Detection

Rate

Prevention Rate Per |IBNSpan|

16 b 32 b 64 b 128 b

Random Injection 100% 100% 100% 100% 100%

Targeted Injection 100% 93.6% 96.9% 98.5% 99.1%

Replay 100% 93.8% 96.8% 98.4% 99.3%

0 1 2 3 4 5
Detection Window (cycles)

94
95
96
97
98
99

100

De
te

ct
io

n
Ra

te
 (%

)

|IBNSpan| = 16b
|IBNSpan| = 32b
|IBNSpan| = 64b
|IBNSpan| = 128b

Figure 11: Average observed detection rates and windows for

targeted injections and replay attacks.

uses the same PRF to randomly select IBN values within the

IBNSpan. (3) Replay: Attacker replays a message with the

same ID and IBN as the last message on the bus.

As shown in Table 2, the prevention rates of the targeted

injection and replay attacks were similar to one another and

within Equation 5’s estimated range. The random injection

attack’s prevention rate was 100%. All attacks were detected

at a 100% rate. However, Fig. 11 shows that the detection

window for the targeted injection and replay attacks depended

on the |IBNSpan|, confirming the findings of Equation 4.

Error Handling. With |IBNSpan| values of 16, 32, 64, and

128 b, we set the attacker to inject collisions to a victim ECU

using simultaneous transmission, to count the number of col-

lision attempts, and the number of successful collisions. We

set the victim to record the number of times it is pushed to the

error-passive or bus-off states. As shown in Table 3, error-

passive and bus-off attacks were prevented at a rate of 100%.

Collision injections were prevented at rates ranging between

of 98.8% and 100%. To evaluate the analysis in Sec. 7.3, we

disable the Modulo IBN feature of our system, rerun the ex-

periment. Fig. 12 plots the prevention rate with Modulo IBN

on and off, as well as the theoretical lower bound.

Flooding. We operated the testbed under the following bus-

loads: 10, 20, 30, and 40%. We set one of the nodes as a

receiver to confirm message reception. We set the attacker to

send back-to-back messages with ID = 0h, and we measured

the message drop rate with the officer disconnected. For all

busloads, the drop rate was 100%. We repeated the same test

with the officer connected and we achieved the following drop

rates: 0%,0%,0%, and 0.67% for the respective busloads.

8.3 Performance with Real Vehicle Data

To evaluate the performance impact ZBCAN could incur if

installed on a real vehicle, we emulated the traffic of a 2011

Chevy-Impala containing 4 ECUs, 50 IDs, and a 34% bus-

load, whose data is shown in Appendix Table 8. We applied

ZBCAN under three IBN settings: (A) 3 Priority groups, each

Table 3: Observed effectiveness of ZBCAN with different

|IBNSpans| against different error handling attack types.

Attack
Prevention Rate Per |IBNSpan|

16 b 32 b 64 b 128 b

Collision Injection 98.8% 99.3% 99.4% 99.6%

Error-Passive 100% 100% 100% 100%

Bus-Off 100% 100% 100% 100%

16 32 64 128
|IBNSpan| (bits)

93

94

95

96

97

98

99

100

P
re

v
e
n
ti
o
n
 R

a
te

 (
%

)

Modulo IBN
Absolute IBN
Theoretical

Figure 12: Observed prevention rates of the collision injection

attack with Modulo IBN turned on and off.

|PSpan|= 32 b. (B) 3 Priority groups, each |PSpan|= 64 b.

(C) 3 Priority groups with ascending priority spans where

|PSpan0|= 32 b, |PSpan1|= 64 b, and |PSpan2|= 128 b.

Grouping. We ran Alg. 1 under the three aforementioned IBN

settings. We assumed that all messages are time-sensitive and

that each message’s deadline is equal to its period length.

Alg. 1 determined Ratiosa f e to be 0.59, 0.7 and 0.62 for

settings A, B, and C, respectively. The small value of Ratiosa f e

for all settings guarantees that no time-sensitive messages

will violate their deadline. Appendix Table 8 shows the group

boundaries for each setting.

Observed and Theoretical WCRTs. The top of Fig. 13

shows the observed and the theoretical WCRT of each ID

for all three IBN settings and without ZBCAN. The bottom

shows WCRT/Deadline ratio for each ID. The IDs are ar-

ranged from left to right based on their period lengths, with

the shortest period being on the left. As shown, no message

ID violated its timing deadline. The difference between the

theoretical WCRT with and without ZBCAN is small on the

left, but gets bigger as we move towards IDs with big periods

(right). However, when looking at the WCRT as a ratio of

each ID’s deadline, this increase becomes trivial. For example,

while the theoretical WCRT for ID 120h at |IBNSpan|= 64 b

approaches 50 ms, it has a period of 5 s, making the theoretical

WCRT/Deadline≤ 1%.

Without ZBCAN, the maximum WCRT/Deadline ratio

lies at ID : 1E5h around 0.7, the same as with ZBCAN, while

the observed ratio is much smaller. Note that the theoreti-

cal WCRT is always greater than or equal to the observed

WCRT, and that the difference gets bigger as we move right.

This is because our WCRT analysis in Sec. 6.1 is too pes-

simistic. However, even this pessimistic theoretical WCRT is

still below the timing deadline of all messages.

Observed Average and Minimum Response Times. For all

IBN settings, the average delay for P0 was ≈ 500 µs, and < 1

ms in 90% of the cases. For P1 and P2, the average delays were

≤ 2 ms, and ≤ 3 ms, respectively. For all groups, setting (B)

6902 32nd USENIX Security Symposium USENIX Association

5
10
15
20
25
30
35
40
45

W
C

R
T

 (
m

s
)

C
1

C
5

1E
5 F1

19
9 F9

C
9

19
1

1C
7
1C

D
1E

9
18

4
1C

3
19

D
1F

5
1A

1
33

4
1E

1
1F

3
2F

9
34

8
34

A
2C

3
17

D
17

F
1F

1
13

4
12

A
3C

9
3C

1
3E

9
3D

1
3F

1
3F

B
3F

9
4D

1
4C

1
4C

9
4E

1
77

3
50

0
77

1
4E

9
13

8
51

4
52

A
4F

1
77

2
77

F

C
1

C
5

1
E

5

F
1

1
9
9

F
9

C
9

1
9
1

1
C

7

1
C

D

1
E

9

1
8
4

1
C

3

1
9
D

1
F

5

1
A

1

3
3
4

1
E

1

1
F

3

2
F

9

3
4
8

3
4
A

2
C

3

1
7
D

1
7
F

1
F

1

1
3
4

1
2
A

3
C

9

3
C

1

3
E

9

3
D

1

3
F

1

3
F

B

3
F

9

4
D

1

4
C

1

4
C

9

4
E

1

7
7
3

5
0
0

7
7
1

4
E

9

1
3
8

5
1
4

5
2
A

4
F

1

7
7
2

7
7
F

1
2
0

Periodic Message ID

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

W
C

R
T

/D
e
a
d
lin

e

No ZBCAN

|IBNSpan|: Ascending (Theoretical)

|IBNSpan|: 32b (Theoretical)

|IBNSpan|: 64b (Theoretical)

|IBNSpan|: Ascending (Observed)

|IBNSpan|: 32b (Observed)

|IBNSpan|: 64b (Observed)

Figure 13: WCRTs (absolute and as ratios of message deadlines) for a 2011 Chevy-Impala traffic with and without ZBCAN.

0 1 2
Priority Group

0
2
4
6
8

10
12
14
16

De
la

y
(m

s) 4B
6B
8B

Figure 14: Observed WCRTs vs. message length

had the largest minimum, average, and maximum response

times. This is explained by Equation 3, where the |PSpan|
which influences WCRT the most is |PSpan0|. Since setting

B has the largest |PSpan0|, its delay is also the largest.

Dummy Messages. The average spacing between messages

was ≈ 1.6 ms, while ddummy was > 2 ms. Consequently, the

dummy message did not need to be inserted most of the time,

resulting in a busload increase of < 1%.

8.4 ZBCAN Scalability Evaluation

To evaluate ZBCAN’s performance on a system with a large

number of ECUs and safety critical messages, we setup a

testbed with 20 ECUs and 100 message IDs. All messages

were assumed to be safety critical and time sensitive, with

their timing deadlines shown in Appendix Table 9. Note that

messages 1,6 and F are aperiodic.

Grouping. We ran Alg. 1 under a 3-priority setting, a

message-length= 8 B, a |PSpan|= 64 b, and an |IBNSpan|=
192 b. The calculated theoretical WCRTs were 7.3,37.1,96

ms and the Ratiosa f e to be 0.73,0.74 and 0.38 for groups 0,1
and 2. Appendix Table 9 shows the group assignments.

Observed WCRTs. We set the transmission rates of the ape-

riodic messages to the highest to achieve the worst possible

delays on the bus. The observed WCRTs were ≈ 6.5,11.5
and 17 ms for priority groups 0,1 and 2, respectively. No mes-

sages violated their deadlines or their theoretically calculated

WCRTs as shown in Appendix Table 9, which proves that

ZBCAN is safe to use in time-sensitive networks.

WCRT and Message Length. To evaluate the impact of

message length on WCRT, we repeated the evaluation with

message lengths set to 4 and 6 B and observed the WCRTs.

0 1 2
Priority Group

0
2
4
6
8

10
12
14
16

De
la

y
(m

s)

16b
32b
64b

Figure 15: Observed WCRTs vs. |PSPan|.

Fig. 14 shows the average, maximum, minimum, 10th and

90th percentile observed WCRTs. As shown, increasing the

length clearly increases the delay in every priority group.

WCRT and |PSpan|. To evaluate the impact of |PSpan|
on WCRT, we reset the message lengths to 8 B and, using

the same group assignments, repeated the evaluation with

|PSpan| of all groups set to 16 b then 32 b and observed

the WCRTs. As shown in Fig. 15, increasing |PSpan| clearly

increases the delay of messages in every priority group.

WCRT and Number of ECUs. To assess the impact of the

number of ECUs on WCRT, we reset all lengths to 8 B, all

|PSpan|s to 64 b and repeated the evaluation with 10 ECUs

instead of 20 (ECU sends 10 IDs instead of 5). As shown

in Fig. 16, the impact of increasing the number of ECUs on

the observed delay does not show a clear up or down trend.

For instance, while the observed WCRT for group 1 slightly

increased, it slightly decreased for group 2. Meanwhile, the

average WCRTs for all groups remained almost the same.

Per Sec. 6.1, the number of ECUs is not expected to di-

rectly impact the WCRTs. Similarly, per Alg. 1, the theoreti-

cal WCRTs are the same. Nonetheless, the WCRTs are not

identical. These differences are mainly due to the queuing jit-

ter that changed as a result of changing the number of IDs per

ECU. Specifically, while the maximum jitter in both scenarios

was ≈ 750 µs, the average jitter was slightly higher for the

10-ECU scenario, resulting in a very slightly higher average

WCRT for the 10-ECU scenario. The jitter’s standard devia-

tion, however, was higher for the 20-ECU scenario, resulting

in a slightly higher maximum WCRT for priority group 1.

Memory Consumption. We equipped a busy ECU transmit-

ting 20 IDs with a ZBCAN agent. We then measured the

USENIX Association 32nd USENIX Security Symposium 6903

0 1 2
Priority Group

0
2
4
6
8

10
12
14
16

De
la

y
(m

s)

10 ECUs
20 ECUs

Figure 16: Observed WCRTs vs. numbers of ECUs.

memory consumption of all the ECU’s and agent’s variables

and found it to be ≈ 1.72 kB.

Sequence Extension Overhead. With Lseq = 128 b and a

|PSpan|= 64 b, a busy agent with 20 IDs, each with a period

of 25 ms, performed a sequence extension operation every

≈ 26.25 ms (Pext). Each operation took ≈ 0.5 ms (dext). The

agent’s Oext = dext/Pext ratio was 0.5 ∗ 100/26.25 ≈ 1.91%.

On the officer’s side, each extension operation took ≤ 1.9
µs. On a busy system with a message observed every 0.5 ms,

a sequence extension operation happened every ≈ 10.5 ms,

resulting in a an Oext of 0.0019∗100/10.5≈ 0.018%.

8.5 ZBCAN on a Real Vehicle

Incremental Deployment. Incrementally adding a protected

ECU to an unprotected bus is different from adding it to a

protected one. Specifically, only the protected ECU’s mes-

sages will have IBN delays. Therefore, we expect such an

ECU to have higher delays than one deployed on an already

protected bus (Sec. 8.3). To evaluate these delays, we attached

the officer and an ECU equipped with ZBCAN to the CAN

bus of a 2011-Chevrolet Impala. We set the agent to trans-

mit at a period = 50 ms and under the following |IBNSpans|:
16,32,64, and 128 b. Fig. 17 shows the average, minimum,

maximum, 10th, and 90th percentile response times.

Table 4: Effectiveness of ZBCAN against flooding attacks.

Setting
Testbed

Chevy-Impala
10% 20% 30% 40%

Prevention Rate 100% 100% 100% 99.33% 100%

Flooding. We attached an attacker to send back-to-back mes-

sages of ID= 0h with the officer disconnected. We connected

an additional receiver node to confirm the reception of mes-

sages. The message drop rate was 100%, which means no

messages whatsoever were being received. We repeated the

experiment with the officer connected and the drop rate be-

comes 0%. This means that the attack prevention rate with

the officer connected was 100%. Table 4 shows ZBCAN’s

prevention rates of flooding in different testing conditions.

9 Benchmark Comparison

Since ZBCAN is versatile, it is difficult to compare its ef-

fectiveness against its entire set of attacks with systems that

may not defend against the same set. Instead, we make three

separate comparisons between ZBCAN and other systems.

16 32 64 128
|IBNSpan| (bits)

0
5

10
15
20
25

De
la

y
(m

s)

Figure 17: Observed WCRTS on a 2011 Chevy-Impala.

Compared to IDSs. While most defense systems focus only

on injection attacks, ZBCAN protects against a wider attack-

set, encompassing injection, error handling, and flooding. Fur-

ther, while most intrusion detection systems are able to detect

attacks composed of message flows with a high degree of ac-

curacy, ZBCAN offers security guarantees to single messages

as well as flows. These abilities guarantee that, unlike other

IDSs, gradual, intermittent, and single-message attacks will

not pass unnoticed. They also allow ZBCAN to extend some

of its detection abilities to prevent attacks. Table 5 compares

ZBCAN’s evaluation results with the evaluation results of

other IDSs against the same attack set. As shown, ZBCAN’s

prevention rate compares with the best IDS’s detection rates.

Meanwhile, its detection rate is 100%.

Table 5: How ZBCAN’s evaluation results at |IBNSpan| =
64b compare with other intrusion detection systems.

IDS Targeted Injection Replay

Scission [32] 96.8%-98.5% 96.8%-98.5%

Clock-Skew [6] 97% 97%

Detection 100% 100%
ZBCAN

Prevention 98.5% 98.4%

In conclusion, ZBCAN protects against a bigger attack

set than any other defense system, does not require dynamic

retraining, offers higher detection abilities of attack flows as

well as single attack instances than any other IDS, and finally,

attack prevention as well as detection.

Table 6: Comparing the probability of a single injection going

undetected with different benchmarks.

PundetDefense
1 cycle 5 cycles 10 cycles

Message

Bytes
Busload

Leia [45] 1/264 1/264 1/264 2 +100%

LCAP [26] 1/216 1/216 1/216 2 +0%

CACAN [35] 1/28 1/28 1/28 1 +100%

IA-CAN [24] 1/232-1/28 1/232-1/28 1/232-1/28 1-4 +0%

ZBCAN 1/214-1/28 1/242-1/224 1/277-1/244 0 +0-1%

Compared to Cryptographic Solutions. We define the met-

ric Pundet , which quantifies the probability of a single injec-

tion going undetected. As shown in Table 6, while Pundet

within one cycle is lower for Leia and LCAP, it is constant

with w. As explained by Equation 4, this probability is 0

with ZBCAN, given enough cycles (w). As shown, at w = 10

cycles, ZBCAN’s Pundet is the lowest. Further, these systems

use message bytes and some of them double the busload.

ZBCAN is the only one to use zero message bytes and cause

6904 32nd USENIX Security Symposium USENIX Association

no or a very small busload increase. Finally, while Pundet for

IA-CAN and CACAN are comparable to ZBCAN’s at w = 1

cycle, an attacker may exhaustively try injecting all different

combinations. With ZBCAN, this cannot happen since the

officer will suspend nodes that try this approach.

Table 7: CANARY and ZBCAN are effective defenses against

error handling and flooding attacks.

Defense

System

Response

Time

Attacker

Isolation

Hardware

Changes

CANARY [23] 5ms-100ms Partial
1 Guardian Node

+ 8 Relays + Wiring

ZBCAN 22-72 us Full 1 Officer Node

Compared to Other Solutions. CANARY is one of the few

defense systems that addressed error handling and flooding

attacks. As shown in Table 7, in addition to the expensive

costs of wiring and adding relays, relays work by isolating en-

tire sections of the CAN bus, which may result in the isolation

of benign nodes, together with the attacker. Moreover, relays

often have high relaying times, resulting in attacks taking

place for a long time before soliciting a response.

10 Discussion

Intrusion Confinement. ZBCAN provides intrusion confine-

ment in two ways. First, since agents do not share the same

keys or sequences, a compromised ECU agent cannot predict

the IBN sequences of other nodes and hence cannot inject

messages impersonating other nodes or reliably inject colli-

sions. Second, a compromised node cannot launch flooding

or error handling attacks against other nodes, since the officer

will actively interrupt any such attempt.

Time Triggered CAN. TTCAN systems use matrix schedul-

ing, in which each message is expected to be transmitted

during a specific interval. No other message is allowed to

be sent during this interval. Additionally, TTCAN systems

use reference messages to provide synchronization between

nodes. These two factors make TTCAN systems a good fit for

ZBCAN. Namely, reference messages eliminate the need for

additional dummy messages. Similarly, prescheduling mes-

sages eliminates the need for priority groups, increases the

security of the system, eliminates the interference delay in

Equation 3, and significantly improves the WCRT. The only

minor change these systems may need is to increase the accep-

tance window for each message by a distance = |IBNSpan|.

ZBCAN Controller. CAN controllers have all the hardware

required to monitor and change message spacing (e.g., sus-

pend transmission period). With slight modifications, the

functionality of the agents could be implemented in the form

of controllers, eliminating the overhead on the ECU’s side.

Content Authentication. Since we are trying to make

ZBCAN as lightweight as possible, we only discussed trans-

mitter authentication. However, ZBCAN could be easily ex-

tended to include content authentication by calculating a hash

or MAC for each message and then XORing the result with

IBNsc. On the officer’s side, the officer will have to read the

entire payload as opposed to reading only ID bits, calculate

the keyed hash or MAC, then XOR it with the expected IBNsc

value to see if the result is equal to the measured IBN.

Other Possible Extensions. In addition to content authentica-

tion, the officer’s design could be easily extended to support

more sophisticated operations. For example, it could be ex-

tended to provide protection to several buses operating at

varying levels of security (e.g., confidential, secret, top secret,

etc.) similar to monitoring solutions that have been designed

for other communication buses [15]. It could also be extended

to offer deep packet inspection or content authentication by

checking the DLC, RT R, or payload fields. For example, it

could be provided with the used payload fields, signal bound-

aries, and accepted value ranges specific to each message ID

to provide deep packet inspection as has been proposed on

other buses [13, 14].

11 Limitations

Officer Failure. Similar to most IDSs, the officer’s failure

removes the security it provides. However, the officer is not a

filter, a bottleneck, or a gateway that messages go through be-

fore reaching the bus, rather, it is connected in parallel as any

other ECU. We designed ZBCAN this way so that even if it

fails, it fails safe. Further, applying IBN values, transmission,

and reception are the agent’s, not the officer’s, responsibility.

Consequently, if the officer fails, agents continue following

their IBN sequences normally. This means that while the pro-

tection against injection and flooding attacks will be removed,

it remains intact against error handling attacks, since they do

not rely on the officer, but the unguessability of the IBN that

the attacker needs for the collision.

Compromised Officer. The officer is assumed to be trusted;

a limitation not unique to ZBCAN. Although existing IDSs

only monitor the network, they have access to the bus through

a CAN controller and/or special pins. Both channels could

launch attacks if the IDS is compromised. Nonetheless, to

minimize the probability of such a scenario, we used a board

that provides secure processing, secure boot-loading, secure

memory access isolation, and peripheral access isolation.

Further, except for the channels connecting the officer to the

bus, it is assumed to be air-gapped.

In-Group Priority Inversions. Although ZBCAN guaran-

tees that a message belonging to priority group Pn will always

have a higher priority than one belonging to group Pn+1, it

does not guarantee the priority hierarchy within the same

group. Nonetheless, ZBCAN guarantees that even if an in-

group priority inversion takes place, every message in the

group is guaranteed not to violate any timing deadlines.

Unschedulable Systems. We assume all messages are time

sensitive and use Alg. 1 to plan the system’s schedulability.

However, it is theoretically possible to find unschedulable sys-

USENIX Association 32nd USENIX Security Symposium 6905

tems. In such cases, we have to make the decision of lowering,

or even dropping, the security of certain messages, to guaran-

tee the schedulability of all messages. For instance, assuming

a 3-priority system with each |Pspan| = 64 b, in Appendix

Table 9, if we lower the periods/deadlines of the first five

messages to 5 ms, the system becomes unschedulable unless

we lower the span of all groups to 32 b. Further lowering the

periods/deadlines of the first five messages to 3 ms, renders

the system unschedulable again. In this case, we may drop

the security of the first 5 messages by adding them to group

0, then setting |Pspan0|= 0 b, while keeping the protection

for other groups to preserve the system’s schedulability.

Corrupt Payloads. The discussed design of ZBCAN does

not prevent an ECU from corrupting the payload of its own

messages. However, the officer could be easily extended to

check the DLC, RT R, and payload fields to detect or prevent

this scenario, as mentioned in the discussion section.

12 Conclusions

In this paper, we proposed ZBCAN, a novel defense sys-

tem that exploits inter-frame spacing to protect against the

most common CAN attack vectors, offering attack detection,

prevention, individual message guarantees, intrusion confine-

ment, incremental deployability, and full backward compat-

ibility without using any message fields or computationally

expensive operations such as encryption. We introduced a

novel and instant way to suspend nodes called the instant bus-

off technique, which we used for defense purposes against

intruding nodes. We proved the schedulability of messages

on systems implementing ZBCAN by offering a theoretical

worst-case response time analysis for such systems. We of-

fered a probabilistic security analysis for ZBCAN against

different attack types. Finally, we proved the applicability of

our system by evaluating different aspects of it on a testbed

using artificial data, then a testbed using a real vehicle’s data,

and finally on a real vehicle’s CAN bus.

Acknowledgments

We thank the anonymous reviewers for their valuable com-

ments and suggestions. This work was supported in part by

the Office of Naval Research (ONR) under Grants: N00014-

22-1-2671 and N00014-18-1-2674. Any opinions, findings,

and conclusions in this paper are those of the authors and do

not necessarily reflect the views of the ONR.

References

[1] CP AUTOSAR. Specification of secure onboard communica-

tion. AUTOSAR CP Release, 4(1), 2017.

[2] Giampaolo Bella, Pietro Biondi, Gianpiero Costantino, and

Ilaria Matteucci. Toucan: A protocol to secure controller area

network. In Proceedings of the ACM Workshop on Automotive

Cybersecurity, pages 3–8, 2019.

[3] Rohit Bhatia, Vireshwar Kumar, Khaled Serag, Z Berkay Celik,

Mathias Payer, and Dongyan Xu. Evading voltage-based intru-

sion detection on automotive CAN. In Network and Distributed

System Security Symposium (NDSS), 2021.

[4] S. Checkoway, D. Mccoy, B. Kantor, et al. Comprehensive ex-

perimental analyses of automotive attack surfaces. In USENIX

Security Symposium, pages 77–92, 2011.

[5] K.-T. Cho and K. G. Shin. Error handling of in-vehicle net-

works makes them vulnerable. In ACM SIGSAC Conference on

Computer and Communications Security (CCS), pages 1044–

1055, 2016.

[6] K. T. Cho and K. G. Shin. Fingerprinting electronic control

units for vehicle intrusion detection. In USENIX Security

Symposium, pages 911–927, 2016.

[7] K. T. Cho and K. G. Shin. Viden: Attacker identification on in-

vehicle networks. In ACM SIGSAC Conference on Computer

and Communications Security (CCS), pages 1109–1123, 2017.

[8] W. Choi, K. Joo, H. J. Jo, et al. VoltageIDS: Low-level com-

munication characteristics for automotive intrusion detection

system. IEEE Transactions on Information Forensics and

Security, 13(8):2114–2129, 2018.

[9] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J

Lukkien. Controller area network (can) schedulability analysis:

Refuted, revisited and revised. Real-Time Systems, 35(3):239–

272, 2007.

[10] Robert I Davis, Steffen Kollmann, Victor Pollex, and Frank

Slomka. Schedulability analysis for controller area network

(can) with fifo queues priority queues and gateways. Real-Time

Systems, 49(1):73–116, 2013.

[11] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb

Ghosal. Understanding and using the controller area network

communication protocol: theory and practice. Springer Sci-

ence & Business Media, 2012.

[12] Shan Ding, Tong Zhao, Ryo Kurachi, and Gang Zeng. Id hop-

ping can controller design with obfuscated priority assignment.

In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and

Secure Computing (DASC), pages 94–99. IEEE, 2018.

[13] Josh D Eckhardt, Thomas E Donofrio, and Khaled Serag. Sys-

tem and method of monitoring data traffic on a mil-std-1553

data bus, November 5 2019. US Patent 10,467,174.

[14] Josh D Eckhardt, Thomas E Donofrio, and Khaled Serag. Bus

data monitor, June 23 2020. US Patent 10,691,573.

[15] Josh D Eckhardt, Thomas E Donofrio, and Khaled Serag. Mul-

tiple security level monitor for monitoring a plurality of mil-

std-1553 buses with multiple independent levels of security,

June 16 2020. US Patent 10,685,125.

[16] International Organization for Standardization (ISO). Road

Vehicles — Controller area network (CAN). Part 1: Data link

layer and physical signalling, ISO-11898-1, 2015.

[17] International Organization for Standardization (ISO). Road

Vehicles — Controller area network (CAN). Part 2: High-

speed medium access unit, ISO-11898-2, 2016.

[18] M. Foruhandeh, Y. Man, R. Gerdes, et al. SIMPLE: Single-

frame based physical layer identification for intrusion detection

and prevention on in-vehicle networks. In Annual Computer

Security Applications Conference (ACSAC), pages 229–244,

2019.

6906 32nd USENIX Security Symposium USENIX Association

[19] Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Sav-

age. Fast and vulnerable: A story of telematic failures. In

9th USENIX Workshop on Offensive Technologies (WOOT 15),

2015.

[20] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and

Ingrid Verbauwhede. Libra-can: a lightweight broadcast au-

thentication protocol for controller area networks. In Interna-

tional Conference on Cryptology and Network Security, pages

185–200. Springer, 2012.

[21] Bogdan Groza, Lucian Popa, and Pal-Stefan Murvay. Incanta-

intrusion detection in controller area networks with time-covert

authentication. In Security and Safety Interplay of Intelligent

Software Systems, pages 94–110. Springer, 2018.

[22] Bogdan Groza, Lucian Popa, and Pal-Stefan Murvay. Canto-

covert authentication with timing channels over optimized traf-

fic flows for can. IEEE Transactions on Information Forensics

and Security, 16:601–616, 2020.

[23] Bogdan Groza, Lucian Popa, Pal-Stefan Murvay, Yuval Elovici,

and Asaf Shabtai. CANARY-a reactive defense mechanism

for controller area networks based on active relays. In 30th

USENIX Security Symposium, 2021.

[24] Kyusuk Han, André Weimerskirch, and Kang G Shin. A practi-

cal solution to achieve real-time performance in the automotive

network by randomizing frame identifier. Proc. Eur. Embedded

Secur. Cars (ESCAR), pages 13–29, 2015.

[25] Oliver Hartkopp and R Schilling. Message authenticated CAN

(MaCAN). In Escar Conference, Berlin, Germany, 2012.

[26] Ahmed Hazem and HA Fahmy. Lcap-a lightweight can au-

thentication protocol for securing in-vehicle networks. In 10th

escar Embedded Security in Cars Conference, Berlin, Germany,

volume 6, page 172, 2012.

[27] T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automo-

tive CAN networks–practical examples and selected short-term

countermeasures. Reliability Engineering & System Safety,

96(1):11–25, 2011.

[28] Abdulmalik Humayed, Fengjun Li, Jingqiang Lin, and Bo Luo.

Cansentry: Securing can-based cyber-physical systems against

denial and spoofing attacks. In European Symposium on Re-

search in Computer Security, pages 153–173. Springer, 2020.

[29] Abdulmalik Humayed and Bo Luo. Using id-hopping to de-

fend against targeted dos on can. In Proceedings of the 1st

International Workshop on Safe Control of Connected and

Autonomous Vehicles, pages 19–26, 2017.

[30] K. Iehira, H. Inoue, and K. Ishida. Spoofing attack using bus-

off attacks against a specific ECU of the CAN bus. In IEEE

Annual Consumer Communications Networking Conference

(CCNC), pages 1–4, 2018.

[31] Sungwoo Kim, Gisu Yeo, Taegyu Kim, Junghwan "John" Rhee,

Yuseok Jeon, Antonio Bianchi, Dongyan Xu, and Dave (Jing)

Tian. Shadowauth: Backward-compatible automatic CAN au-

thentication for legacy ECUs. In the ACM on Asia Conference

on Computer and Communications Security, 2022.

[32] M. Kneib and C. Huth. Scission: Signal characteristic-based

sender identification and intrusion detection in automotive

networks. In ACM SIGSAC Conference on Computer and

Communications Security (CCS), pages 787–800, 2018.

[33] Marcel Kneib, Oleg Schell, and Christopher Huth. EASI: Edge-

based sender identification on resource-constrained platforms

for automotive networks. In Network and Distributed System

Security Symposium (NDSS), pages 1–16, 2020.

[34] K. Koscher, A. Czeskis, F. Roesner, et al. Experimental security

analysis of a modern automobile. In IEEE Symposium on

Security and Privacy (S&P), pages 447–462, 2010.

[35] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki

Adachi, Yukihiro Miyashita, and Satoshi Horihata. Cacan-

centralized authentication system in can (controller area net-

work). In 14th Int. Conf. on Embedded Security in Cars (ES-

CAR 2014), 2014.

[36] C. Miller and C. Valasek. Remote exploitation of an unaltered

passenger vehicle. Black Hat USA, 2015:91, 2015.

[37] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai

Watanabe, Bart Preneel, and Ingrid Verbauwhede. Chaskey:

an efficient mac algorithm for 32-bit microcontrollers. In

International Conference on Selected Areas in Cryptography,

pages 306–323. Springer, 2014.

[38] Pal-Stefan Murvay and Bogdan Groza. Dos attacks on con-

troller area networks by fault injections from the software layer.

In Proceedings of the 12th International Conference on Avail-

ability, Reliability and Security, pages 1–10, 2017.

[39] M. Müter, André Groll, and Felix C Freiling. A structured

approach to anomaly detection for in-vehicle networks. In

Sixth International Conference on Information Assurance and

Security (IAS), pages 92–98, 2010.

[40] S. Nie, L. Liu, and Y. Du. Free-fall: Hacking Tesla from

wireless to CAN bus. Briefing, Black Hat USA, 2017.

[41] S. Nie, L. Liu, Y. Du, and W. Zhang. Over-the-air: How we

remotely compromised the gateway, BCM, and autopilot ECUs

of Tesla cars. Briefing, Black Hat USA, 2018.

[42] Stefan Nürnberger and Christian Rossow. –vatican–vetted,

authenticated can bus. In International Conference on Cryp-

tographic Hardware and Embedded Systems, pages 106–124.

Springer, 2016.

[43] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano

Zanero. A stealth, selective, link-layer denial-of-service attack

against automotive networks. In International Conference

on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 185–206, 2017.

[44] Mert D Pesé, Jay W Schauer, Junhui Li, and Kang G Shin. S2-

can: Sufficiently secure controller area network. In Association

for Computing Machinery, ACSAC, page 425–438, 2021.

[45] Andreea-Ina Radu and Flavio D Garcia. Leia: A lightweight

authentication protocol for can. In European Symposium on Re-

search in Computer Security, pages 283–300. Springer, 2016.

[46] S. U. Sagong, X. Ying, A. Clark, et al. Cloaking the clock:

Emulating clock skew in controller area networks. In Pro-

ceedings of the 9th ACM/IEEE International Conference on

Cyber-Physical Systems (ICCPS), pages 32–42, 2018.

[47] Khaled Serag, Rohit Bhatia, Vireshwar Kumar, Z Berkay Ce-

lik, and Dongyan Xu. Exposing new vulnerabilities of error

handling mechanism in CAN. In 30th USENIX Security Sym-

posium, 2021.

USENIX Association 32nd USENIX Security Symposium 6907

[48] Khaled Serag, Vireshwar Kumar, Z Berkay Celik, Rohit Bhatia,

Mathias Payer, and Dongyan Xu. Attacks on can error han-

dling mechanism. International Workshop on Automotive and

Autonomous Vehicle Security (AutoSec), 2022.

[49] H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection

system based on the analysis of time intervals of CAN mes-

sages for in-vehicle network. In International Conference on

Information Networking (ICOIN), pages 63–68, 2016.

[50] A. Taylor, N. Japkowicz, and S. Leblanc. Frequency-based

anomaly detection for the automotive CAN bus. In World

Congress on Industrial Control Systems Security (WCICSS),

pages 45–49, 2015.

[51] K Tindell, Alan Burns, and Andy Wellings. Calculating con-

troller area network (can) message response times. IFAC Pro-

ceedings Volumes, 27(15):35–40, 1994.

[52] Ken Tindell and Alan Burns. Guaranteeing message latencies

on control area network (CAN). In Proceedings of the 1st

International CAN Conference, 1994.

[53] Ken Tindell, Alan Burns, and Andy J Wellings. Calculating

controller area network (can) message response times. Control

engineering practice, 3(8):1163–1169, 1995.

[54] Anthony Van Herrewege, Dave Singelee, and Ingrid Ver-

bauwhede. Canauth-a simple, backward compatible broadcast

authentication protocol for can bus. In ECRYPT Workshop on

Lightweight Cryptography, volume 2011, page 20, 2011.

[55] Stien Vanderhallen, Jo Van Bulck, Frank Piessens, and Jan To-

bias Mühlberg. Robust authentication for automotive con-

trol networks through covert channels. Computer Networks,

193:108079, 2021.

[56] Qiyan Wang and Sanjay Sawhney. Vecure: A practical security

framework to protect the can bus of vehicles. In 2014 Inter-

national Conference on the Internet of Things (IOT), pages

13–18. IEEE, 2014.

[57] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. Plug-n-

pwned: Comprehensive vulnerability analysis of obd-ii dongles

as a new over-the-air attack surface in automotive iot. In 29th

USENIX Security Symposium, pages 949–965, 2020.

[58] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A practical

wireless attack on the connected car and security protocol for

in-vehicle can. IEEE Transactions on intelligent transportation

systems, 16(2):993–1006, 2014.

[59] Samuel Woo, Daesung Moon, Taek-Young Youn, Yousik Lee,

and Yongeun Kim. Can id shuffling technique (cist): Moving

target defense strategy for protecting in-vehicle can. IEEE

Access, 7:15521–15536, 2019.

[60] Fuyu Yang. A bus off case of CAN error passive transmitter.

EDN Technical paper, 2009.

[61] Xuhang Ying, Giuseppe Bernieri, Mauro Conti, and Radha

Poovendran. Tacan: Transmitter authentication through covert

channels in controller area networks. In Proceedings of the

10th ACM/IEEE International Conference on Cyber-Physical

Systems, pages 23–34, 2019.

[62] Wang Yong. A scheduling algorithm for CAN bus. Master’s

thesis, National University of Singapore, 2004.

[63] Clinton Young, Habeeb Olufowobi, Gedare Bloom, and Joseph

Zambreno. Automotive intrusion detection based on constant

CAN message frequencies across vehicle driving modes. In

Proceedings of the ACM Workshop on Automotive Cybersecu-

rity, pages 9–14, 2019.

Figure 18: Testbed with 20 ECUs (agents) and the officer.

A Evaluation Details

Table 8 shows the messages of a 2011 Chevy-Impala. It also

shows their theoretical WCRTs under four different settings.

The first is without ZBCAN applied. The rest are after run-

ning Alg. 1 to find the optimum grouping and to calculate

the WCRT for each group under three different |IBNSpan|
settings. Table 9 shows the messages we used for our scala-

bility evaluation. In the table, (G) refers to the priority group

assignment, (Type) specifies whether the message is periodic

or aperiodic, and (R) refers to the theoretical WCRT. In both

tables, we used a queueing jitter Jm = 750 µs. This number

is based on the empirical observation of our testbed. Finally,

Fig. 18 shows our scalability testbed.

B System Design

B.1 Agent Components

As shown in Fig. 19, the agent is composed of four blocks:

a Start Of Frame (SOF) ISR, an End Of Frame (or re-

ceive/transmit/error) (EOF) ISR, a Timer ISR, and a buffering

and IBN sequence extension library.

B.2 Sequence Exchange and Extension

Sequence Exchange Details. Each agent has a secret key,

pre-shared only with the officer. Agents do not know each

others’ keys. However, the officer knows the pre-shared keys

of all agents. The details of pre-sharing this data are outside

the scope of this paper. Using these keys, each agent starts

its operation by securely and randomly generating a seed SR

then exchanging it with the officer. Both the agent and officer

use the seed, the pre-shared key and an agreed-upon pseudo-

random function (PRF) to generate a session key. Next, based

on the number of IDs per ECU (Nidsecu), both the agent and

officer generate Nidsecu seeds, each separated by an agreed-

upon offset O f f . The first ID’s seed is = SR+O f f and the

last ID’s seed is = SR+(O f f ∗Nidsecu). Finally, using the

6908 32nd USENIX Security Symposium USENIX Association

Table 8: WCRTs and groups for a 2011 Chevy-Impala.

Without ZBCAN With ZBCAN

ID
Length

(B)

Period

(µs)

WCRT

(µs)

(32,32,32) (64,64,64) (32,64,128)

WCRT (µs) WCRT (µs) WCRT (µs)

C1 8 9000 1274

P0 5290 P0 6250 P0 5546

C5 8 9000 1536

1E5 8 9000 6026

F1 4 9976 1962

199 8 12477 4348

F9 8 12486 2224

C9 7 12488 1778

191 8 12495 4086

1C7 7 17980 5356

1CD 5 17981 5560

1E9 8 17981 6288

184 6 18025 3824

1C3 8 24986 5114

P1 14538

P1 17090
P1 15398

19D 8 25005 4610

1F5 8 25014 6958

1A1 7 25016 4852

334 2 29977 7530

1E1 5 30113 5764

1F3 2 33278 6696

2F9 5 47939 7384

348 4 47954 7714

34A 4 47956 7898

2C3 6 50025 7180

17D 8 98891 3340

17F 8 98920 3602

1F1 8 99694 6550

134 4 99841 2874

12A 8 99842 2690

P2 49676

3C9 8 99848 8422

P2 43786

3C1 8 99938 8160

P2 32002

3E9 8 99988 8946

3D1 8 100052 8684

3F1 8 233192 9208

3FB 2 249738 10586

3F9 8 249805 10440

4D1 8 499492 11372

4C1 8 499713 10848

4C9 8 499872 11110

4E1 8 997963 11634

773 7 998184 14562

500 4 998189 12284

771 7 998237 14078

4E9 5 998391 11838

138 5 998424 3078

514 8 998942 12546

52A 8 999229 13836

4F1 8 999307 12100

772 7 999347 14320

77F 8 999751 14824

120 5 4992122 2428

seed, session key, and PRF , we generate a number of length

SeqLength. This number, per ID, will act as the ID’s first IBN

sequence (Seqid).

Sequence Usage. With every transmission, the agent extracts

log2 |PSpangroup| bits from Seqid . The value of the bits act as

the scheduled IBN value for the next message. For example,

if a message belongs to a priority group whose PSpangroup =
[32,63], then |PSpangroup|= 32, whose log2 is 5. If we extract

the 5 bits, pointed at by indexid , and find their value = 15,

then IBNsc = 32+15= 47 bits. Once transmission is initiated

at bit 47, we increment indexid .

Sequence Extension. To keep a running sequence, we rec-

ommend using a fast PRF . As shown in Fig. 20, the agent

and officer start with a session key and a different seed per ID.

Table 9: Scalability evaluation dataset.

ID Type
T

(ms)

D

(ms)

R

(ms)
G

Safety

Ratio
ID Type

T

(ms)

D

(ms)

R

(ms)
G

Safety

Ratio

1 A 10 10 7.3 0 0.73 33 P 250 250 96 2 0.384

2 P 10 10 7.3 0 0.73 34 P 250 250 96 2 0.384

3 P 10 10 7.3 0 0.73 35 P 250 250 96 2 0.384

4 P 10 10 7.3 0 0.73 36 P 250 250 96 2 0.384

5 P 10 10 7.3 0 0.73 37 P 500 500 96 2 0.192

6 A 25 25 7.3 0 0.292 38 P 500 500 96 2 0.192

7 P 25 25 7.3 0 0.292 39 P 500 500 96 2 0.192

8 P 25 25 7.3 0 0.292 3A P 500 500 96 2 0.192

9 P 25 25 7.3 0 0.292 3B P 500 500 96 2 0.192

A P 25 25 7.3 0 0.292 3C P 500 500 96 2 0.192

B P 25 25 7.3 0 0.292 3D P 500 500 96 2 0.192

C P 25 25 7.3 0 0.292 3E P 500 500 96 2 0.192

D P 25 25 7.3 0 0.292 3F P 500 500 96 2 0.192

E P 25 25 7.3 0 0.292 40 P 500 500 96 2 0.192

F A 50 50 37.11 1 0.7422 41 P 500 500 96 2 0.192

10 P 50 50 37.11 1 0.7422 42 P 500 500 96 2 0.192

11 P 50 50 37.11 1 0.7422 43 P 500 500 96 2 0.192

12 P 50 50 37.11 1 0.7422 44 P 500 500 96 2 0.192

13 P 50 50 37.11 1 0.7422 45 P 500 500 96 2 0.192

14 P 50 50 37.11 1 0.7422 46 P 500 500 96 2 0.192

15 P 50 50 37.11 1 0.7422 47 P 500 500 96 2 0.192

16 P 50 50 37.11 1 0.7422 48 P 500 500 96 2 0.192

17 P 50 50 37.11 1 0.7422 49 P 500 500 96 2 0.192

18 P 100 100 37.11 1 0.3711 4A P 500 500 96 2 0.192

19 P 100 100 37.11 1 0.3711 4B P 500 500 96 2 0.192

1A P 100 100 37.11 1 0.3711 4C P 500 500 96 2 0.192

1B P 100 100 37.11 1 0.3711 4D P 500 500 96 2 0.192

1C P 100 100 37.11 1 0.3711 4E P 500 500 96 2 0.192

1D P 100 100 37.11 1 0.3711 4F P 500 500 96 2 0.192

1E P 100 100 37.11 1 0.3711 50 P 500 500 96 2 0.192

1F P 100 100 37.11 1 0.3711 51 P 500 500 96 2 0.192

20 P 100 100 37.11 1 0.3711 52 P 500 500 96 2 0.192

21 P 100 100 37.11 1 0.3711 53 P 500 500 96 2 0.192

22 P 100 100 37.11 1 0.3711 54 P 500 500 96 2 0.192

23 P 100 100 37.11 1 0.3711 55 P 500 500 96 2 0.192

24 P 100 100 37.11 1 0.3711 56 P 500 500 96 2 0.192

25 P 100 100 37.11 1 0.3711 57 P 500 500 96 2 0.192

26 P 100 100 37.11 1 0.3711 58 P 500 500 96 2 0.192

27 P 100 100 37.11 1 0.3711 59 P 1000 1000 96 2 0.096

28 P 100 100 37.11 1 0.3711 5A P 1000 1000 96 2 0.096

29 P 100 100 37.11 1 0.3711 5B P 1000 1000 96 2 0.096

2A P 100 100 37.11 1 0.3711 5C P 1000 1000 96 2 0.096

2B P 100 100 37.11 1 0.3711 5D P 1000 1000 96 2 0.096

2C P 100 100 37.11 1 0.3711 5E P 1000 1000 96 2 0.096

2D P 100 100 37.11 1 0.3711 5F P 1000 1000 96 2 0.096

2E P 100 100 37.11 1 0.3711 60 P 1000 1000 96 2 0.096

2F P 100 100 37.11 1 0.3711 61 P 1000 1000 96 2 0.096

30 P 100 100 37.11 1 0.3711 62 P 1000 1000 96 2 0.096

31 P 100 100 37.11 1 0.3711 63 P 1000 1000 96 2 0.096

32 P 100 100 37.11 1 0.3711 64 P 1000 1000 96 2 0.096

Using the PRF , they generate an initial sequence of length

SeqLength for each ID and start drawing bits from it with

every transmission. A circular buffer holding two sequences

(a current one and a future one) should be kept to avoid inter-

ruptions. Once a sequence is consumed, a new one should be

extended to replace it. We also recommend using a counter

of length SeqLength, to be incremented and XORed with

the session key with every extension for augmented secu-

rity. SeqLength needs to be small enough for a limited-space

ECU to be able to store it. For a typical configuration of

SeqLength = 128b and |IBNSpan| = 64b, a message draws

6b, an extension happens every 128/6≈ 21 messages.

Sequence Exchange Frequency. Without counters, se-

quences could be extended until the result of one extension

operation repeats or equals the initial seed. If that happens,

all the following sequences will also repeat. For a 128b se-

quence, the probability of an extension generating such a

number is very low (1/2128 with every extension). Further,

with a counter, both the output and the counter values need to

be the same as a previous combination for sequences to start

repeating. The probability of that is even lower (1/2256).

USENIX Association 32nd USENIX Security Symposium 6909

EOF ISR
• Start Timer T
• If transmit:

• Clear buffer
• Update index

• If there is a pending message:
• Wait until T=IBNsc
• Initiate transmission.

• Else:
• n=1
• Set timer interrupt at T= n * |IBNSpan|

Main ECU Program Body

Buffer New Messages
Extend Sequences

Normal ECU Functions

Timer ISR
• If there is a pending message:

• Wait until T=T+IBNsc
• Initiate transmission.

• Else:
• n++
• Set timer interrupt at T=n * |IBNSpan|

SOF ISR
• Clear Timer T
• Disable Timer Interrupt

Figure 19: Agent components (dashed) within an ECU.

For an agent with 16 IDs, if we do not want two IDs to have

the same counter values for stricter security, we can divide

the counter values into exclusive ranges for each ID and only

extend the sequence until the counter reaches the end of its

range (2128/16 extensions). Assuming an extension covers 21

messages, then for a fast transmitting ID, with a 10 ms period,

we could perform sequence extensions for 21∗10∗2128/16 =
4.46∗1039 ms, before a counter repeats. Alternatively, agents

could perform an exchange once at the beginning of operation.

C Security and Performance Analysis

C.1 Agent’s Overhead Analysis

Memory. To function properly, agents require a minimum

amount of memory as follows: (1) Lpreshared bits for the pre-

shared key. (2) Lsession b for the session key. (3) Lcounter *

Nids−agent b for the counter value of every ID transmitted by

the agent. (4) Lsequence * Nids−agent ∗ 2 bits to hold the IBN

sequence for each of the IDs transmitted by the agent. Note

that we store two sequences for each ID (Appendix B.2). (5)
Lindex * Nids−agent bits for the index of the next IBN within

each sequence for each ID. Assuming Lpreshared = Lsession =
Lcounter = Lsequence, the minimum amount of memory required

is: (2∗Lsequence)+((3∗Lsequence)+Lindex)∗Nids−agent bits.

Sequence Extension Processing Overhead. An agent per-

forms a sequence extension operation every time a sequence

for a specific message ID runs out. This means that a se-

quence extension operation for a specific ID happens every

Lseq/ log2(|PSpan|) outgoing messages. This number should

be multiplied by the average period of message transmission

for all IDs in the ECU (Pav) to calculate the average time

between extensions (Pext). We use (dext) to refer to the time

needed to perform the extension operation itself. We recom-

Seed

Agent
Session Key

Counter

Sequence

Counter ++

Sequence

Counter ++

128b

PRF
Counter ++

OFFICER
Session Key

Counter

Counter ++

Seed

128b

PRF

Seed

128b

PRF

Seed

128b

PRF

Figure 20: Extending a 128b sequence.

mend picking a fast PRF to perform the extension and min-

imize the overhead ratio Oext = dext/Pext . In our evaluation

(Sec. 8), we achieved Oext ≈ 1.91% on the agent’s side.

C.2 Officer’s Overhead Analysis

Memory. The minimum amount of memory required by the

officer is as follows: (1) Lpreshared ∗Nagents b for the preshared

keys of all agents. (2) Lsession ∗Nagents b for the session keys

of all agents. (3) Lcounter * Nids−system b for the counter value

of every ID in the system. (4) Lsequence * Nids−system ∗2 b for

every IBN sequence in the system. (5) Lindex * Nids−system bits

for the index of the next IBN within every sequence in the

system. Assuming Lpreshared = Lsession = Lcounter = Lsequence,

the minimum amount of required memory is: (2∗Lsequence ∗
Nagents) +((3∗Lsequence)+Lindex) ∗Nids−system bits.

Sequence Extension Processing Overhead. The officer

performs a sequence extension operation whenever a se-

quence for a specific message ID runs out, meaning, a se-

quence extension operation for a specific ID happens ev-

ery Lseq/ log2(|PSpan|) observed messages. In our evaluation

(Sec. 8), we achieved Oext ≤ 0.018% on the officer’s side.

C.3 Measuring dskew

dskew is related to the clock skews of every ECU, the clock

skews of their CAN controllers, the ISR of each agent, its

timer settings, and age. To measure dskew of the system, sev-

eral methods could be used. In our system, we measured it

empirically. We ran the Span Scan False Positive Test, in

which we connect a traffic source, sending a reference mes-

sage every 6 ms. Next, we connect the first test ECU and set

it up to send a message after every reference message with an

ascending IBN between 0 b and 3000 b. This means that the

test ECU sends the first message with an IBN = 0 b and the

second with IBN = 1b and so on until it reaches 3000 b, then

it rolls over to 0b again. Meanwhile, the officer monitors the

IBN of each message and verifies their order. Once a message

has an unexpected IBN, it is flagged as a false positive. We

repeated the scan for 5 min for each ECU. For each ECU, we

marked the smallest IBN value after which inaccuracies start

to occur as dskew(ECU). For all ECUs, the smallest dskew was

1189 b, and the largest dskew was 1460 b. We select dskew(sys)

as the smallest dskew = 1189 b for all ECUs.

6910 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Related Work
	Threat Model
	ZbCAN
	Architecture and Operation Overview
	IBN Implementation Details
	Operation Implementation Details
	Disabling Transmitter (Instant Bus-Off)

	Performance Analysis
	Worst-Case Response Time Analysis
	Priority Grouping
	 Discretizing IBN Challenges
	 Overhead Analysis

	Security Analysis
	Off Sequence Attack
	Injection and Detection Window
	Error Handling Attacks
	Flooding Attacks
	Choosing |PSpan|

	Evaluation
	False Positive Test
	ZbCAN Security Evaluation on a Testbed
	Performance with Real Vehicle Data
	ZbCAN Scalability Evaluation
	ZbCAN on a Real Vehicle

	Benchmark Comparison
	Discussion
	Limitations
	Conclusions
	Evaluation Details
	System Design
	Agent Components
	Sequence Exchange and Extension

	Security and Performance Analysis
	Agent's Overhead Analysis
	Officer's Overhead Analysis
	Measuring dskew

