
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Framing Frames: Bypassing Wi-Fi Encryption
by Manipulating Transmit Queues

Domien Schepers and Aanjhan Ranganathan, Northeastern University;
Mathy Vanhoef, imec-DistriNet, KU Leuven

https://www.usenix.org/conference/usenixsecurity23/presentation/schepers

Framing Frames: Bypassing Wi-Fi Encryption by Manipulating Transmit Queues

Domien Schepers
Northeastern University

schepers.d@northeastern.edu

Aanjhan Ranganathan
Northeastern University

aanjhan@northeastern.edu

Mathy Vanhoef
imec-DistriNet, KU Leuven

mathy.vanhoef@kuleuven.be

Abstract
Wi-Fi devices routinely queue frames at various layers of
the network stack before transmitting, for instance, when the
receiver is in sleep mode. In this work, we investigate how
Wi-Fi access points manage the security context of queued
frames. By exploiting power-save features, we show how to
trick access points into leaking frames in plaintext, or en-
crypted using the group or an all-zero key. We demonstrate
resulting attacks against several open-source network stacks.
We attribute our findings to the lack of explicit guidance in
managing security contexts of buffered frames in the 802.11
standards. The unprotected nature of the power-save bit in a
frame’s header, which our work reveals to be a fundamental
design flaw, also allows an adversary to force queue frames
intended for a specific client resulting in its disconnection and
trivially executing a denial-of-service attack.

Furthermore, we demonstrate how an attacker can override
and control the security context of frames that are yet to be
queued. This exploits a design flaw in hotspot-like networks
and allows the attacker to force an access points to encrypt yet
to be queued frames using an adversary-chosen key, thereby
bypassing Wi-Fi encryption entirely.

Our attacks have a widespread impact as they affect various
devices and operating systems (Linux, FreeBSD, iOS, and
Android) and because they can be used to hijack TCP connec-
tions or intercept client and web traffic. Overall, we highlight
the need for transparency in handling security context across
the network stack layers and the challenges in doing so.

1 Introduction

In many scenarios, Wi-Fi devices will opt to buffer or queue
packets that arrive from the upper layers before they are trans-
mitted. One of the most common use cases is to conserve
power on devices such as mobile phones and laptops. The first
release of the 802.11 standard already contained power-save
mechanisms that allow clients to enter a doze or sleep power
state to consume low power. When a client enters a sleep state,

the Access Point (AP) buffers eligible frames destined for the
client. The buffered frames are later transmitted to the client
following a specific protocol. Frames might also be queued by
the hardware when the sender is waiting for available medium
access or while waiting for an acknowledgment of a transmit-
ted frame that may require retransmission. Frames are also
buffered at the receiver. For example, frame fragmentation
allows large frames to be broken up into smaller fragments
and transmitted. At the receiver, frames are buffered until all
fragments are received for reassembly.

Although queues by themselves are standard data struc-
tures, managing the security context of the 802.11 frames
queued in Wi-Fi devices is non-trivial. We use the term secu-
rity context as a synonym of what is called a security associa-
tion in the 802.11 standard [23, §12.6.1.1]. A security context
contains all information needed to securely communicate with
a peer, such as the negotiated session keys, the encryption
protocol used, the current packet counters, etc. The security
context is used both for sending and receiving frames. Most
recently, researchers pointed out design flaws in how receivers
processed fragmented frames without any regard for the rele-
vant security context [44]. Specifically, receivers reassembled
fragments that were decrypted using different keys. Since a
decryption key is part of the security context when processing
a fragment, the underlying problem was that receivers were
mixing fragments of different security contexts.

So far, no work has rigorously analyzed how a station man-
ages the security context of queued frames at the transmitter.
The Kr00k attacks showed some devices can be tricked into
sending frames queued in the hardware chip using an all-zero
encryption key [34]. However, they did not systematically
study the security impact related to uninitialized or mishan-
dled security contexts, e.g., in different queues in the network
stack. Our study reveals that the problem is more fundamen-
tal. An adversary can actually force the queueing of frames,
which we show gives an adversary better control over the at-
tack timing, meaning more frames will be buffered and leaked.
Overall, in this work we investigate the (mis)management of
the security context when transmitting queued or buffered

USENIX Association 32nd USENIX Security Symposium 53

Wi-Fi packets over all queues in the network stack, and argue
that the root cause of the discovered flaws is a vague standard.

Specifically, we make the following contributions. First, we
observe the standard lacks explicit guidelines on how security
contexts of buffered frames should be managed. There is no
guidance on handling changing security contexts, e.g., when
a device disconnects or reconnects to the network. Motivated
by this, we investigate open-source network stack implemen-
tations in FreeBSD, Linux, and hardware dongles with open-
source firmware and find most stacks do not securely manage
their transmit queues. We discover vulnerabilities that allow
an adversary to exploit the power-save functionality and place
frames into the transmit queue of the AP. Once in the transmit
queue, we manipulate their security context, which we refer
to as framing the frame, and force the AP to transmit all the
frames in the queue thereby revealing its contents. Our attacks
show that several APs can be tricked to transmit frames in
plaintext or encrypted using the group key or an all-zero key.

Second, we show how an adversary can abuse the power-
save mechanism to cause clients to disconnect and more
broadly execute denial-of-service attacks. Particularly, we
exploit the unprotected power-save bit in the frame header
to falsely inform a client’s power state and trigger the AP’s
power-saving mechanisms for that client, i.e., queue frames
intended for the client resulting in disconnection of the client.
Our attack highlights the need to authenticate the power-save
bit in the header of frames and the challenges in doing so, e.g.,
affecting backward compatibility. We demonstrate our attack
against Linux and popular iOS and Android smartphones. Ad-
ditionally, we demonstrate an attacker can force queueing of
data frames leading to a trivial denial-of-service attack that is
effective against any network configuration including WPA3.

Third, we investigate whether an adversary can influence
or control the security context of frames that the AP has not
yet received. Particularly, we explore whether an attacker can
abuse the fact that the security context of a frame is based
on the sender/destination address. We answer this question
positively by demonstrating how an adversary can change
the security context of the whole transmit queue and trans-
mit the frames under an attacker-controlled security context.
Our evaluations reveal that all tested APs are vulnerable to
our security-context override attacks, i.e., an adversary can
force frames not yet in the queue to be encrypted using an
adversary-controlled security context (e.g., keys) thereby by-
passing encryption at the Wi-Fi layer.

Finally, we elaborate on the practical impact of intercept-
ing frames through several use cases such as hijacking TCP
connections, and intercepting client and web traffic. Through
this work, we highlight the complexity of the network stack
and the need for a defense-in-depth approach where the user-
space, kernel, firmware, and hardware all have to be transpar-
ent in terms of security context management. Since frames
can be queued at various layers in the network stack, each
layer must properly handle changes in the security context.

Client Hardware Kernel Daemon

Access Point

Connection
Power-Save (Sleep=True)

Data

Enqueue
Wake-Up (Sleep=False)

Data
Dequeue

Figure 1: Power-saving mechanisms enable a client station to
enter power-save mode. Until the client wakes up, the access
point will queue all bufferable frames destined for the client.

This complicates the analysis of systems since every layer
must be carefully inspected, which is non-trivial because the
behavior of one layer may influence the security of another.

Coordinated Disclosure We disclosed all identified vulner-
abilities to the affected vendors. An overview and timeline of
the disclosure process is available on our public repository.1

2 Background

In this section, we provide an overview of the power-saving
mechanism and Wi-Fi Management Frame Protection (MFP).

2.1 Wi-Fi Power-Saving Mechanisms
Power-save mechanisms have been part of the IEEE 802.11
standard since its first release in 1997. With the introduction
of the IEEE 802.11e amendment, defining Quality-of-Service
(QoS) enhancements for wireless LAN networks, the standard
adopted more advanced power-save mechanisms [23, §11.2].

2.1.1 Frame Queuing in the Wi-Fi Stack

For this paper, it is important to understand when and where
frames are queued (e.g., where in the network stack). In Fig-
ure 1, we illustrate a typical exchange of power-save messages
between a client station and an access point. At any moment
during the connection, the client station can indicate it will
enter power-save mode. In order to do so, the client can set
the power-bit in the IEEE 802.11 header frame format. When
the access point receives frames to transmit to the client, they
will be buffered in the kernel’s transmit queue until the client
wakes up (e.g., polls for data) or the frame’s lifetime gets ex-
ceeded (i.e., a frame is queued only for a maximum duration).

1https://github.com/domienschepers/wifi-framing

54 32nd USENIX Security Symposium USENIX Association

https://github.com/domienschepers/wifi-framing

How long frames can stay queued is considered beyond the
scope of the standard [23, §11.2.3.10]. At this point in time, all
the queued frames are stored in plaintext [23, Fig. 5-1]. Once
the client indicates it is waking up, the access point’s kernel
can dequeue all the buffered frames, apply any encryption
operations, and transmit them to the client station.

In addition to the transmit queue within the kernel, frames
can be queued by the hardware. This can be due to the need
to wait for access to the wireless channel or to allow for
retransmissions when the receiver did not acknowledge the
transmitted frame. Depending on the hardware capabilities
(e.g., support for hardware encryption) the queued frames
may be stored in plaintext or encrypted in hardware.

2.1.2 Bufferable Frames

While a client station is in power-save mode, the access point
will buffer its frames, however, not all frames are bufferable.
In order to standardize which frames are bufferable, the IEEE
802.11 standard defined a Bufferable Unit (BU). Bufferable
units are eligible to be queued using a power-saving mecha-
nism, while all others are to be delivered immediately.

Bufferable units include the MAC Service Data Unit
(MSDU), Aggregate MSDU (A-MSDU), and MAC Manage-
ment Protocol Data Unit (MMPDU). Since not all MMPDU
frames are bufferable, the standard defines a number of clas-
sifications [23, §11.2.2]. In one of its classifications, it is
defined that MMPDU Action frames (except for Fine Timing
Measurement frames), disassociation, and deauthentication
are bufferable:

An MMPDU that is carried in one or more Action
(except for Fine Timing Measurement frame and
Fine Timing Measurement Request frame), Disas-
sociation, or Deauthentication frame.

This clearly indicates not all frame types are bufferable,
with notable examples of non-bufferable frame types being
the authentication and association response messages. An im-
portant example of frame types that are eligible to be buffered
according to the standard are Security Association (SA) Query
messages. These messages are used to protect the SA under
Wi-Fi Management Frame Protection (MFP).

2.2 Wi-Fi Management Frame Protection
Wi-Fi Management Frame Protection (MFP) standardized
protection mechanisms for management frames including data
confidentiality, integrity, origin authenticity, and replay pro-
tection. Wi-Fi MFP is defined in the 802.11w amendment and
incorporated in the 2012 version of the 802.11 base standard.
The new protection mechanisms increase the security of ro-
bust management frames, which represent a subset of all man-
agement frames. Notable examples are robust action frames
(e.g., used for spectrum management) and (re)association and

deauthentication frames. With the new defenses, networks are
protected against a variety of known attacks that abuse man-
agement frames, for example, deauthentication attacks which
disconnect clients from the network [40]. The Wi-Fi Alliance
made Wi-Fi MFP mandatory in all its certification programs
since 2020 [16] and Wi-Fi Protected Access 3 (WPA3) [3],
though a backwards-compatible transition mode exist where
stations are capable of Wi-Fi MFP but do not yet require its
usage. As a result of these standardization efforts, researchers
observed a growing adoption of both WPA3 and MFP [39].

When Wi-Fi MFP is used between two capable stations,
selected managements frames, such as association and dis-
association frames, are protected under the current Security
Association (SA). The security association is a set of policies
and cryptographic keys used to protect information within
a connection and is stored by each party in the association.
When a station has an existing security association, then any
association frame will be temporarily rejected by the access
point to prevent denial-of-service attacks. Subsequently, the
access point will initiate the SA Query procedure to determine
whether the client still has an active security association with
the AP [23, §11.13]. In an SA Query procedure, the stations
exchange a protected query request and response. If the pro-
cedure succeeds, the security association is determined to still
be valid and the stations can safely continue using the associ-
ation. Consequently, unprotected association frames can be
safely discarded. If the procedure fails or times out, it indi-
cates there might be a mismatch in the association (e.g., due
to an unplanned reboot of the client station) and therefore the
security association can be torn down (i.e., the client station
can be disconnected from the network).

3 Leaking Frames from the Wi-Fi Queue

In this section, we study how access points behave when the
security context of queued frames changes. We first analyze
the standard and find that it does not explicitly define how to
handle changing security contexts. Based on this, we describe
a general attack strategy that forces an AP to queue frames
in order to subsequently change the security context and leak
the queued frames. We then analyze open-source network
stacks and provide instantiations of our strategy which causes
implementations to leak frames in plaintext, encrypt them
using the group key, or encrypt frames using an all-zero key.

3.1 Motivation: Under-Specified Standard
A Wi-Fi device cannot instantly transmit packets that arrive
from the upper layer, and in practice, frames will be queued
before transmission. For instance, they may be queued by the
hardware while the receiver is in power-save mode, while the
sender is waiting for available air time, or while frames are not
yet acknowledged and therefore may need to be retransmitted.
This raises an important question: how should a sender behave

USENIX Association 32nd USENIX Security Symposium 55

if the security context changes between the time when a frame
was queued and the time where it is actually (re)transmitted?

To answer this question, we inspected the 802.11 standards
and found only indirect guidance on how a transmitter should
manage buffered frames. The standard mentions an aging
function to delete frames which have been buffered for an
excessive amount of time but does not define its precise behav-
ior: “The exact specification of the aging function is beyond
the scope of this standard” [23, §11.2.3.10]. Though there are
service specifications that assure a station should not send
frames in plaintext once encryption is enabled, we did not
find explicit instructions on how to handle changing security
contexts, nor that buffered frames should be removed (or tem-
porarily stored) when a device disconnects or reconnects to
the network. To analyze how devices implement edge cases
in practice, we investigate open-source operating systems and
hardware dongles with open-source drivers and firmware.

3.2 Threat Model
We consider an attacker with the goal of leaking frames from
the access point destined to a victim client station. The at-
tacker can inject and intercept frames and manipulate the
victim client’s security context, e.g., injecting unprotected
management frames such as authentication and association
frames. Furthermore, the attacker can tamper with the power-
save status of the victim client by spoofing frames that use
the power-save bit (e.g., an unprotected null-data frame). Typ-
ically, the attacker does not require knowledge of network
credentials and therefore is an outside threat. However, un-
der certain conditions, leaked frames are protected with the
network group key, in which case network credentials are
required to obtain the respective key.

3.3 General Attack Strategy and Methodology
The high-level strategy behind our transmit queue leak attack
relies on the observation that most Wi-Fi stacks do not ad-
equately dequeue or purge their transmit queues when the
security context changes. As an attacker, we can abuse this
behavior by spoofing certain management frames under the
MAC address of a victim client, thereby cleverly interfering
in the security context and power-save mechanism.

3.3.1 Attack Strategy

Consider a client who is connected to an access point with
power-management support. In Figure 2, we illustrate how
an attacker can trick a vulnerable access point into leaking
frames, destined for the victim client, from its transmit queues.

1. The attacker spoofs an unprotected power-save frame to
trick the access point into believing the victim client is
entering power-save mode. As a result, the access point
queues (i.e., buffers) all frames for the client until the

Client Attacker Kernel Daemon

AP (Vulnerable)

Connection

Power-Save (Sleep=True)

Buffer St
.

1⃝

Auth. / Association Request

Auth. / Association Response

Remove Pairwise Key

St
ag

e
2⃝

Wake-Up

Leak Queued Frames

Dequeue without Key

St
ag

e
3⃝

Figure 2: An attacker can leak the queue of a vulnerable
access point by putting the client in power-save mode (Stage
1). The attacker then tricks the access point into removing
the pairwise key (Stage 2) using authentication or association
messages. Finally, the attacker wakes up the client causing
the access point to send frames without encryption (Stage 3).

client indicates it has left power-save mode. Importantly,
at this stage, all frames are queued in plaintext.

2. The attacker now aims to trick the access point into re-
moving the encryption keys of the victim client (i.e.,
the pairwise encryption key). While it may take cer-
tain creativity to achieve this goal, generally manage-
ment frames such as authentication and (re)association
requests will cause an access point to update its security
context. When successful, the access point no longer has
access to a pairwise encryption key for the victim client.

3. The attacker spoofs an unprotected wake-up frame to
trigger the access point into transmitting all the frames
queued for the client. Since the vulnerable access point
no longer has a pairwise encryption key for the client it
may resort to using no encryption (i.e., plaintext) or fall
back to the group-addressed encryption key.

As a result of the attack, anyone within the communication
range of the vulnerable access point can intercept the leaked
frames in plaintext or encrypted using the group-addressed
encryption key, depending on the respective implementation
of the stack (i.e., user-space daemon, kernel, driver, firmware).

3.3.2 Instantiating the Attack

In order to investigate whether such an attack is feasible in
practice, we audited open-source network stacks. This re-

56 32nd USENIX Security Symposium USENIX Association

vealed various implementation-specific behaviors that must
be taken into account when trying to successfully execute the
attack. For instance, the type of frame used in stage 2 to re-
move the pairwise key depends on the implementation being
targeted. Additionally, the frame can be leaked in plaintext,
may be encrypted using an all-zero key, can have a seemingly
valid encryption header while having plaintext content, may
be erroneously encrypted using WEP, and so on. This results
in various different instantiations of our attack strategy.

In the remainder of this section, we evaluate and discuss
open-source operating systems which support an operating
mode for access points with power-management support and
we evaluate hardware dongles that have open-source firmware.
Specifically, we evaluate FreeBSD 13.0 and 13.1, Linux 5.5.0
to 5.17.6, and hardware dongles with the Atheros AR9271
hardware chipset (ath9k_htc driver). Since operating systems
such as NetBSD do not offer power-management support (i.e.,
when operating as an access point) we did not analyze them.

3.4 Frame Leaks in FreeBSD
To begin our investigation we inspect if our attack is feasible
against access points operating on FreeBSD 13.0 and 13.1.
To fully understand the network stack and its behavior, we
inspect the kernel code as well as vendor-specific drivers. Our
investigation reveals two major issues in the kernel and drivers
that must be taken into account when instantiating our attack:

1. Drivers are often programmed to call upon default
functions in the FreeBSD kernel. For example, the
ieee80211_crypto_get_txkey() function is used to
select the encryption key. Interestingly, this function will
fall back on the group key if no pairwise key is available.
An attacker can exploit this behavior to force the vulner-
able access point into encrypting queued frames using
the group encryption key.

2. Modern devices are often capable of offloading encryp-
tion operations to hardware, including its key selection.
While specific implementations are therefore unavailable
for inspection, we find devices with hardware encryption
may fall back on plaintext or an all-zero encryption key.

We find that if the vendor-specific driver implementation
falls into one of these two categories, an attacker is able to
leak the queue in either plaintext or the group encryption key.

3.4.1 Instantiating the Attack

The resulting attack against FreeBSD access points closely
follows the attack strategy outlined in Section 3.3 and il-
lustrated in Figure 2. Specifically, the attacker has to use a
re-association request to trick the vulnerable access point into
removing the pairwise key of the victim client (Stage 2), but
the adversary needs to be aware that frames can also be leaked

Table 1: Queue leak vulnerabilities within FreeBSD where
Hardware Encryption (HWE) is enforced () or optional (H#).

Ver. Vendor (Driver) Leakage HWE

13.0 Ralink (run) Plaintext
13.1 Ralink (run) WEP with All-Zero Key
13.1 Ralink (rum) CCMP with Group Key
13.1 Realtek (rtwn) CCMP with Group Key H#

using the group key. Note that if the queue is leaked using the
group key, the attacker must have valid network credentials
in order to obtain the respective encryption key.

3.4.2 Evaluation

Whether an access point is vulnerable depends on its driver
implementation and therefore we evaluate a variety of dongles
using hardware by Ralink (run and rum drivers) and Real-
tek (rtwn driver). In Table 1, we present an overview of our
evaluation results. Note that certain drivers do not allow the
configuration of hardware encryption, that is, hardware en-
cryption is enforced (represented with) or optional (H#). For
Ralink (run) we evaluated the ALFA Network AWUS036NH,
Belkin F5D8053 v3, and Linksys WUSB600N v1. For Ralink
(rum) we evaluated the Sitecom WL-172 v1. For Realtek
(rtwn) we evaluated the Edimax EW-7811Un v2, TP-Link
TL-WN722N v3, and TP-Link TL-WN725N v3.8.

We find that Ralink (rum) and Realtek (rtwn) call the vul-
nerable key selection function, and as a result, their queue is
leaked using the network’s group encryption key. However,
Ralink (run) does not call the kernel function. Instead, the
driver offloads both encryption and decryption of data frames
to its hardware and as a result, we are unable to inspect its
source code. However, from observing network traffic we
find the queue transmits frames in plaintext in FreeBSD 13.0,
thereby trivially leaking the frames. Specifically, we find the
encryption flag is set in the frame header, however, the en-
cryption operation is not performed before transmission. Fur-
thermore, against FreeBSD 13.1 we find the hardware falls
back to Wired Equivalent Privacy (WEP) encryption using an
all-zero encryption key, thereby also leaking queued frames.

While we were unable to evaluate additional hardware, we
find drivers such as Atheros (ath driver) indirectly call the
vulnerable key selection function. Therefore, we conjecture
such devices also leak frames using the group encryption key.

3.5 Frame Leaks in Linux and Hardware

Our investigation reveals a number of attack variations against
access points on Linux. For each attack variation, the attacker
successfully leaks frames from the transmit queue in plaintext.

USENIX Association 32nd USENIX Security Symposium 57

3.5.1 Leaks on Encrypted Links without Encryption Key

Earlier Linux kernel implementations did not drop data frames
when the encryption key was no longer available on encrypted
links. Instead, its data frames were transmitted in plaintext.
In a legitimate scenario, this may occur when the station
disconnects while there are still data frames in the transmit
queue of the access point. In order for this attack variant
to be successful, the access point must not be capable of
maintaining full client state (i.e., the hardware driver does not
support this feature). This applies to older Linux kernels (i.e.,
the mac80211 kernel module enables full access point client
state by default since Linux 4.5.0) and may apply to FullMAC
driver implementations (i.e., FullMAC drivers make use of
their own mac80211 module implementation). As a result of
not maintaining full client state, the user-space daemon (e.g.,
hostapd) will not delete the entire state of a client station
(including its transmit queue) upon receiving, for example, an
authentication request. An attacker can leverage this behavior
to delete the pairwise key and leak all frames from the transmit
queue in plaintext.

Attack Instantiation Consider a client connected to an ac-
cess point that does not maintain full client state. Similar to
the attack outline in Figure 2, an attacker can leverage this
behavior to leak frames from the transmit queue in plaintext.
After forcing the access point to buffer frames for the victim
client (Stage 1), the attacker transmits an authentication re-
quest. Since the access point does not maintain full client state,
the pairwise encryption key is now deleted without purging
the transmit queue (Stage 2). Finally, the attacker can send a
wake-up frame to initiate the dequeuing process (Stage 3) and
a vulnerable access point will leak all its frames in plaintext.

Evaluation We evaluated Linux 5.5.0 with the hostapd 2.9,
hostapd 2.10, and IWD 1.28 user space daemons and confirm
the attack is successful. In order to be successful against the
IWD implementation, a re-association request must be sent
(instead of the authentication request) to remove the pairwise
encryption key. From Linux 5.6.0 onward, data frames are
dropped by the kernel if no encryption key is available on
encrypted links, effectively preventing this attack method.

3.5.2 Leaks due to Race Conditions in Hardware

Finally, we identified two attack variations against Linux
when the encryption operations are offloaded to the hardware.
Specifically, we find race conditions in the (re)transmission
mechanisms that may cause frames to be leaked in plaintext.
We evaluated both attacks on Linux 5.8.0 using a TP-Link TL-
WN722N v1.10 dongle with an Atheros AR9271 hardware
chipset. Since the hardware has an open-source driver and
firmware code (ath9k_htc), we can inspect its implementation.

Retransmissions In this attack variation, we find frames
leak in plaintext after a number of retransmission attempts.
Consider a legitimate client which fails to acknowledge the
frame (e.g., due to frame collisions or poor radio channel con-
ditions), then the hardware will retransmit the frame. If these
retransmissions are unsuccessful the hardware will transmit
request-to-send frames, and if a clear-to-send frame is re-
ceived, queued frames are retransmitted once more. Note an
attacker can use commodity hardware to selectively jam [45]
the initial transmission to trigger retransmissions. Now con-
sider an attacker who transmits an authentication request
without sleep-bit to remove the pairwise key and wake up
the client. The initial transmission will use the appropriate
encryption as expected, however, after the request-to-send
procedure, the encryption key has been deleted causing the
final retransmission to be in plaintext.

Race Condition In this attack, the adversary transmits an
authentication request without sleep-bit. We observe a race
condition causing the encryption key to be deleted from hard-
ware, which is removed by writing to memory-mapped reg-
isters, while other state does not appear to get updated. As a
result, all the queued frames are transmitted in plaintext.

3.6 Defenses
The standard defines explicit procedures to follow up on the
receipt of management frames, for example, in [23, §11.3.4.3]
the procedure is given for processing an authentication frame.
However, the standard does not define any behavior for how
an access point should manage its transmit queues when the
security context changes. From our results, it becomes clear
such behavior must be defined. We identify two approaches
that can be used to secure the behavior of transmit queues:

1. Prior to the deletion of the pairwise encryption key,
the transmit queue must be dequeued regardless of the
power-save status of the receiving client station. That
is, the access point makes a final best-effort attempt to
deliver all frames stored in the transmit queue.

2. Prior to the deletion of the pairwise encryption key, the
transmit queue should be purged. That is, the access
point drops all frames stored in the transmit queue.

Then and only then can the pairwise encryption key be
deleted. Note these approaches cover the rekeying procedures
as well, i.e., delete an expired and install a fresh pairwise key.

4 Abusing the Queue for Network Disruptions

In addition to manipulating the security context to leak frames
from the queue, an access point can be tricked into enabling
its power-saving mechanisms for a victim client. That is,

58 32nd USENIX Security Symposium USENIX Association

since the power-bit in the header of a frame is unprotected, an
attacker can trivially enable power-saving mechanisms and
thereby selectively queue frames at the access point. Conse-
quently, client stations are vulnerable to disconnection and
denial-of-service attacks. While frames can be blocked using
other techniques, for example, jamming or a multi-channel
MitM, abusing the queue requires fewer resources. Perform-
ing a multi-channel MitM requires two wireless network
cards, while our attacks only require one. Similarly, jamming
requires more specialized hardware, while our attack can be
performed with any network card that supports frame injec-
tion. An adversary can also combine these jamming tech-
niques to improve the overall success rate of blocking frames.

4.1 Queueing of SA Query Requests
In our first attack abusing the transmit queue, we show how
the SA Query procedure (Section 2.2) can be exploited to dis-
connect a client from the network. Recall the standard defines
which management frames are bufferable and thus allowed
to be queued using a power-saving mechanism [23, §11.2.2]
(Section 2.1.2). SA Query request and response frames are
transmitted as robust (i.e., protected) Action frames [23,
§9.4.1.11]. However, the standard does not explicitly exclude
them from being bufferable (i.e., Action frames are bufferable
with certain exceptions). When a station queues either the
request or response message, it can cause a timeout on the
receiving end since it is a time-sensitive security procedure.
As a consequence the security association must be torn down,
effectively disconnecting the victim client from the network.
Given this behavior, access points are exposed to a novel
queue-based disconnection attack against its clients, even if
the network configuration enforces Wi-Fi MFP (e.g., WPA3).

4.1.1 Attack Outline

To demonstrate how the standard definition can be exploited,
we identified the following attack. Consider a victim client
which is connected to a vulnerable access point, where the
stations have agreed to enforce Wi-Fi MFP protection. In Fig-
ure 3, we demonstrate how an attacker can target a vulnerable
access point to disconnect the victim client in three stages.

1. The attacker spoofs an association request from the vic-
tim client, and sets the sleep-bit in the frame header. This
will mark the victim client as asleep, causing buffereable
frames to be queued at the access point. Since Wi-Fi
MFP is required, the association request is rejected.

2. As part of Wi-Fi MFP protection mechanisms, the access
point initiates the SA Query procedure. It transmits a
number of SA Query requests, which are now queued by
the kernel. As a result, the access point will never receive
a response and therefore the procedure will time out, and
now the daemon will allow new association requests.

Client Attacker Kernel Daemon

AP (Vulnerable)

Connection with Wi-Fi MFP

Association Request (Sleep=True)

Association Response (Rejected) St
.

1⃝

SA Query

Buffer Timeout St
.

2⃝

Association Request (Sleep=True)

Association Response (Accepted)

Remove Pairwise Key St
ag

e
3⃝

Reconnection

Figure 3: An attacker triggers the Security Association (SA)
Query procedure with an association request and marks the
victim client as asleep (Stage 1) causing SA Query requests to
be queued (Stage 2). After timeout, a new association request
will clear the pairwise key, disconnecting the client (Stage 3).

3. The attacker spoofs a second association request, which
is now allowed by the access point. As defined by the
association procedure, the access point now removes the
victim client’s pairwise encryption key.

Note the client silently discards all unsolicited association
responses. Furthermore, following the three stages, the access
point may start a new 4-way handshake procedure. However,
since the client still has its pairwise keys installed, it will re-
spond with encrypted handshake messages. The access point
can not read these messages since it previously removed the
pairwise encryption key. As a result the handshake will fail,
effectively disconnecting the victim client and access point.

4.1.2 Evaluation

We evaluated Linux 5.17.6 with the hostapd 2.10 user space
daemon and confirm the attack is successful, independently of
hardware encryption and thus the hardware used by the access
point. Furthermore, the attack is successful against Apple’s
iOS 15.5 and macOS 12.4 when operating as an access point
(e.g., “Personal Hotspot” on iOS). Note the attack could not be
tested against Android since its hotspot does not yet support
clients which require Wi-Fi MFP protection.

4.1.3 Discussion

The standard specifies SA Query procedures for Sub 1 GHz
(S1G) stations which enter power save mode [23, §11.13].

USENIX Association 32nd USENIX Security Symposium 59

The operation of S1G stations, defined in the IEEE 802.11ah
amendment, enable communication on a longer range with
lower energy consumption [42]. As such, it serves a great pur-
pose for large sensor networks, internet-of-things applications,
and smart cities [24]. According to the SA Query procedures,
the S1G station must wake up within a duration that is not
larger than some predefined maximum timeout interval, other-
wise the security association can be torn down. Interestingly,
the standard does not define behavior for stations operating
on the more commonly-used 2.4 and 5 GHz band. Regardless,
with the defined procedures, stations remain vulnerable to
our attack. Consider a legitimate client which is asleep, an
attacker can simply spoof a wake-up frame to dequeue the
requests. No valid responses will be sent since these will not
be received by the client, resulting in the teardown of the SA.

As such, our attack exposes shortcomings in the standard.
We hypothesise that, in order to prevent such an attack, it is
necessary to (1) authenticate the sleep-bit and polling frames,
preventing that an attacker is capable of manipulating the state
of the queue, and (2) a sleeping client must always poll the
access point within the predefined maximum timeout interval,
ensuring buffered SA Query requests are received in time.
Until then stations remain vulnerable to our SA Query attack.

4.2 Queueing of Wi-Fi FTM Requests
Wi-Fi Fine Timing Measurement (FTM), defined in IEEE
802.11mc and incorporated in IEEE 802.11-2016, is used to
measure the physical distance between two stations. The pro-
tocol makes use of round-trip time-of-flight measurements,
and allows for meter-level ranging accuracy in low-multipath
environments [10, 22, 40]. The IEEE 802.11 standard defines
that Wi-Fi FTM frames are not bufferable, and are to be de-
livered without reference to a power-saving mechanism [23,
§11.2.2] (Section 2.1.2). That is, even though Wi-Fi FTM
frames are constructed as an action frame, they are explic-
itly listed as an exception of bufferable frames. In practice,
the queuing mechanism affects only the Wi-Fi FTM Request
frame, which is transmitted by a station to initiate the distance
measurement session with another capable device. The Wi-Fi
FTM Response frames, which are responsible for measuring
the round-trip time-of-flight, are processed by the firmware.
That is, any critical time-sensitive operation is performed
on the hardware device and therefore not affected by power-
saving mechanisms. Nonetheless, when a request is queued,
the station will not initiate a new distance measurement ses-
sion. This behavior may expose clients to potentially (security-
sensitive) distance measurement disruptions.

Attack Outline Consider the scenario where a client station
is connected to a network and needs to regularly report its
physical distance to an access point in a geo-fencing context
(an example application provided by the Wi-Fi Alliance [4]).
At any point, the attacker can spoof a frame towards the ac-

Client Attacker Kernel Daemon

AP (Vulnerable)

Authentication and Association

Null (Sleep=True)

Client is Sleeping St
.

1⃝

MSG 1/4

Buffer TimeoutTimeout St
.

2⃝

Deauthentication 3⃝

Reconnection

Figure 4: An attacker can spoof messages which set a victim
client to be asleep (Stage 1) causing the first 4-Way Hand-
shake message to be queued (Stage 2). After not receiving the
message the victim client timeouts and disconnects (Stage 3).

cess point indicating the client is entering power-save mode.
Consequently, the measurement session will not be initiated
because its requests are queued by the kernel. This may result
in a timeout on the higher-layer application (e.g., wireless dae-
mon) which in turn could trigger the access point to remove
the victim from the geo-fenced area (i.e., the access point con-
cludes the client is irresponsive and has left the geo-fenced
area), or disconnect the client from the network altogether.

Evaluation We evaluated Linux 5.17.6 with a custom-built
application to initiate distance measurement sessions, and find
the kernel buffers Wi-Fi FTM frames in practice. Since Wi-Fi
FTM applications are most often deployed on Linux-based
systems [41], we conjecture they may all be vulnerable.

4.3 Queueing of 4-Way Handshake Messages
In addition to action frames targeted before, an attacker can
force data frames to be queued. When targeting messages in
the 4-way handshake, that is, during a connection procedure, it
can trivially lead to a queuing-based denial-of-service attack.
Since this attack targets the 4-way handshake, it is effective
against any type of network configuration (e.g., WPA3).

4.3.1 Attack Outline

Consider a victim client which is connecting to a vulnerable
access point. In Figure 4, we demonstrate how an attacker can
target a vulnerable access point to prevent the victim client
from connecting in three stages.

1. After the association procedure, the attacker spoofs a
null-frame, and sets the sleep-bit in the frame header.

60 32nd USENIX Security Symposium USENIX Association

This causes the kernel to mark the victim client as asleep.

2. The vulnerable access point will now queue all buffer-
able frames, including the first 4-way handshake mes-
sage (which is sent as a data frame). This behavior leads
to a handshake timeout at both the access point and vic-
tim client, since the handshake messages are never sent.

3. The victim client expects the first 4-way handshake mes-
sage, however never receives any. Consequently, a time-
out will abort the handshake procedure causing the vic-
tim client to send a deauthentication message.

Since the access point is still buffering frames, its deauthen-
tication message is not transmitted to the victim client either.
Consequently, the client will time out and disconnect from the
network. Following the three stages, the stations may restart
the connection procedures if they are configured as such.

4.3.2 Evaluation

We evaluated Linux 5.17.6 with the hostapd 2.10 and IWD
1.28 user space daemons and confirm the attack is successful.
Furthermore, the attack is successful against Apple’s iOS
15.5 and macOS 12.4 when operating as an access point (e.g.,
“Personal Hotspot” on iOS), as well as hotspots on Android
12 and Android 13 beta (i.e., “Wi-Fi hotspot”).

5 Overriding the Victim’s Security Context

In this section, we show how to fully control the security con-
text that an AP uses to protect frames sent toward a victim.
First, the adversary connects to the AP and negotiates a new
security context. Then, the AP is tricked into associating the
now attacker-controlled security context with frames belong-
ing to a victim. As a result, the adversary can decrypt frames
meant for the victim. This attack abuses design flaws in how
a security context is associated with outgoing frames and is
exploitable in hotspot-like networks.

5.1 Threat Model
In this section, the attacker’s goal is to make the AP transmit
frames under a security context controlled by the adversary. In
order for the adversary to create a security context on the AP,
they must be able to successfully connect to the AP. Therefore,
we will target hotspot-like networks where users distrust each
other and for which the adversary possesses valid credentials.
An example of such networks are enterprise Wi-Fi networks
such as eduroam, or Wi-Fi Passpoint networks where users
can, for instance, authenticate using their mobile SIM card [2].
Another example is WPA3’s new SAE-PK networks, which
are hotspots where users can connect using a pre-shared pass-
word, but an adversary cannot use this password to create

Client Attacker AP (Vulnerable)

Connection

Request St
.

1⃝

Connect with the AP

Spoof Client MAC Address

Generate New Key St
ag

e
2⃝

Response

Encrypt Response with New Key

St
.

3⃝

Figure 5: Illustration of the security context overriding attack.

rogue clones of the network [50]. We assume that these net-
works are configured to disallow client-to-client communica-
tion, which prevents one client from intercepting the traffic
of another client by establishing Machine-in-the-Middle posi-
tions using techniques such as ARP poisoning [31].

5.2 Overriding a Client’s Security Context
When an AP transmits a frame, the corresponding security
context is looked up based on the sender’s MAC address and
the frame’s destination. This assures that the correct session
keys are used to send frames to each client and that the group
key is used to protect broadcast and multicast frames. How-
ever, if an attacker can override the security context that the
AP associates to a particular destination MAC address, frames
(not yet) in the transmit queue will be protected using this
attacker-controlled security context.

Attack Description. The adversary can override a security
context that the AP associates with a client by spoofing the
MAC address of the client and then connecting to the AP.
This causes the AP to encrypt traffic towards this client using
session keys that the adversary possesses. In Figure 5, we
illustrate the individual stages behind this attack:

1. We assume the victim is currently connected to the AP
and is about to receive a frame that the adversary wants
to intercept. For instance, the victim may send an HTTP
request without using TLS, and the adversary wants to
intercept the HTTP response. Note that traffic analysis
techniques [29, 35] can be used to detect requests for
which the adversary wants to intercept the response.

2. Before the client receives the response, the adversary
spoofs the victim’s MAC address and connects to the AP
using its own credentials (e.g., its personal credentials
in WPA2 or WPA3 enterprise networks). As a result, the

USENIX Association 32nd USENIX Security Symposium 61

adversary overwrites the security context that the AP
associates with the MAC address of the victim with the
security context controlled by the adversary.

3. The AP now sends frames to the victim’s MAC address
under the security context of the attacker. In other words,
packets intended for the victim, such as HTTP responses,
are now encrypted by keys that the adversary possesses.

Since packets intended for the victim are now encrypted using
keys that the adversary possesses, the adversary can trivially
decrypt them. That is, we can bypass encryption at the Wi-Fi
layer. Note that even if the response is encrypted at a higher
layer using a protocol such as TLS, our attack will still leak
the IP addresses that the victim is connecting to. In Section 6,
we further discuss the impact of intercepting responses in this
manner and we will also demonstrate how this enables an
adversary to subsequently inject data towards a victim.

A precondition of our attack is that the adversary must be
able to connect under the MAC address of the victim, which is
why we target hotspot-like networks. This also implies that the
legitimate client must first be disconnected from the network.
When MFP is not used, this can be accomplished by spoofing
deauthentication frames. In case the victim is using MFP,
prior work has shown that implementation vulnerabilities can
usually still be abused to disconnect clients [40]. Moreover,
in Section 5.3, we show how to perform our attack without
having to first disconnect the victim, meaning the attack can
be performed whether or not MFP is being used.

One practical limitation of the attack is that it might take a
substantial amount of time for the adversary to connect with
the AP in stage 2 of the attack, causing the response to be
missed (Figure 5). For instance, when authenticating using
EAP-based protocols, a remote RADIUS server is typically
used to authenticate the client, and communicating with this
server may incur high delays. If the response that we want
to intercept is sent over TCP this is no issue: the sender will
automatically retransmit it when not acknowledged. However,
for protocols such as UDP, this may be problematic, as the
response may be missed. To overcome this limitation, we will
discuss fast (re)connection techniques in Section 5.3.

Our attack is independent of the authentication and encryp-
tion scheme used, with the main precondition being that the
adversary must possess credentials to connect to the hotspot-
like network. In particular, the attack works against both
WPA2 and WPA3 independent of their precise settings.

Experiments We evaluated our security context overriding
attacks against professional and home APs that support en-
terprise WPA2 or WPA3, i.e., authentication using 802.1X.
We force the victim to send a UDP packet to our server and
our server echoes this packet back. The attack was considered
successful if the adversary was able to intercept the UDP
response. Table 2 lists the devices that we tested, where our
attack was successful against all devices. Especially relevant

Table 2: Overview of APs tested against Security Context
Overriding (SCO) and Fast Reconnect (FR) attacks. Devices
behaved the same when configured using WPA2 or WPA3.

Hardware Software SCO FR

LANCOM LN-1700 10.42.0255
Aruba AP-305/7008 ArubaOS 8.4.0.0
Cisco Catalyst 9130 IOS XE 17.2.1.11 #
Hostapd on Linux Version 2.10

Asus RT-AC51U 3.0.0.4.380_8591 #
D-Link DIR-853 ET853pnp-1.05-b55 1 —
D-Link DIR-853 OpenWRT 22.03

Cisco WAG320N V1.00.08 —
Asus RT-N10 Tomato 1.28 —
1 This software did not support 802.1X or SAE-PK mean-

ing fast reconnect attacks could not be tested. Overriding
attacks were simulated using a pre-shared password.

are professional APs (the first four APs in Table 2) as these
are more commonly used in hotspot-like networks such as
eduroam or Passpoint. We also tested the open-source hostapd
daemon, which is internally used in some professional APs,
when running on top Linux kernel 5.18.1 on Arch Linux.

5.3 Fast (Re)Connection Attack

Our default attack is limited by how fast the adversary can
connect with the AP to override the victim’s security con-
text. However, the 802.11 standard provides several methods
to cache a security association and resume it later without
having to perform a full handshake. The oldest such method
is Pairwise Master Key (PMK) caching. When using PMK
caching, the AP will store the negotiated PMK that resulted
from the 802.1X or SAE-PK authentication. A PMK Identi-
fier (PMKID) is used to refer to this security association.

Attack Description We assume the network consists of at
least two different Basic Service Set Identifiers (BSSIDs). In
other words, we assume that the network is broadcast by at
least two APs, or by a single AP on two or more channels.
Figure 6 illustrates the attack:

1. The adversary first spoofs the MAC address of the victim
and uses their own credentials to connect with AP1 of
the network. AP1 will cache the PMK that has been ne-
gotiated during the (often slow) 802.1X authentication.

2. The victim connects with AP2, which caches the PMK
that the client negotiates during its 802.1X handshake.
Most APs only store one cached PMK for every client
MAC address. It is therefore important that the victim
does not connect to the same AP as the adversary, as

62 32nd USENIX Security Symposium USENIX Association

Client Attacker AP1 AP2

Distribution System

Association

802.1X Authentication

4-Way Handshake

Spoof Client MAC Address

Cache Negotiated PMK Key

St
ag

e
1⃝

Connect and Authenticate

Request

Cache PMK

St
ag

e
2⃝

Association(PMKID)

4-Way Handshake
Response

Load Cached PMK Key
St

ag
e

3⃝

Figure 6: Fast security context overriding attack where the
attacker first creates a cached PMK with AP1. After the victim
connects to AP2 and sends a request, the attacker reconnects
with AP1 using the cached PMK. The two APs can also be
different BSSIDs, on different channels, hosted by a single AP.

otherwise the cached PMK of the adversary will be over-
written. After connecting, the victim will send a request
to a server of which we want to intercept the response.

3. To intercept the response of the server, the adversary
uses the cached PMK to reconnect to AP1. This is ac-
complished by including the PMKID in the association
request. Because the cached PMK is (still) available
on AP1, 802.1X authentication can be skipped, and the
4-way handshake can immediately be performed to ne-
gotiate session keys. Once connected, the response will
be sent by AP1 to the adversary.

Notice that the victim transmitted the request through AP2,
but the response was sent by AP1 to the adversary. This is
possible because both APs are connected to the same distri-
bution system, i.e., to the same back-end network. In general,
the AP with which the client last authenticated will be the AP
that transmits the response to the client.

In this variant of the attack, it is not required to disconnect
the victim from the network. The distribution system will
forward all traffic to the latest AP with which the client’s
MAC address was last authenticated. As a result, the attack
works even when the victim remains connected to another AP,
meaning the usage of MFP has no impact on the attack.

Experiments We tested the attack against three professional
APs and hostapd (see Table 2). The open-source hostapd AP
was configured to broadcast two BSSIDs using two wireless
network cards. The LANCOM and Cisco Catalyst consist of
one physical device that can broadcast multiple BSSIDs on
different channels. The Aruba setup consists of an Aruba 7008
Mobility Controller that was managing two physically sepa-
rate Aruba AP-305 access points. The attack failed against the
Cisco device because the cached PMK was shared between
both BSSIDs, meaning the victim overwrites the cached PMK
of the adversary. The attack was successful against the LAN-
COM, Aruba, and Hostapd setup.

We also tested home routers against our attack. The older
WAG320N and RT-N10 are not affected because they can
broadcast only one BSSID on a single channel. The default
firmware of the DIR-853 did not support 802.1X authenti-
cation and did not support SAE-PK. As a result, we could
only test the RT-AC5U, and the DIR-853 when flashed with
OpenWRT. On OpenWRT, we enabled RSN preauthentica-
tion to simulate a hotspot that was optimized to efficiently
handle roaming clients. We observed that the RT-AC5U did
not support PMK caching, causing the fast reconnect attack
to fail. However, the attack was successful against OpenWRT.

We evaluated the connection time by performing 100 fast
reconnections in the 5 GHz band with our LANCOM and
Aruba APs. With LANCOM the average reconnect time was
19.65 ms with a standard deviation of 3.72 and a minimum
of 12.36 ms. This can be optimized by speeding up the cre-
ation of message 2 of the 4-way handshake, as this took on
average 5.73 ms. With Aruba, the average connect time was
24.51 ms with a standard deviation of 5.27 and a minimum of
12.76 ms. As reference, the average latency for transatlantic
connections is 70.78 ms, and for connections within Europe
this is 13.30 ms [49]. Since an adversary can usually repeat
the attack until it is fast enough, this indicates most responses
sent over the Internet can be intercepted on time.

5.4 Defenses

To mitigate attacks against hotspot-like networks, an AP can
temporarily prevent clients from connecting if they are using
a MAC address that was recently connected to the AP. This
prevents an adversary from spoofing a MAC address and inter-
cepting pending or queued frames towards a victim. When it
can be guaranteed that the user behind a MAC address has not
changed, the client can be allowed to immediately reconnect.
Note that this check must be done over all APs that are part
of the same distribution system.

To securely recognize recently-connected users, an AP can
store a mapping between a client’s MAC address and their
cached security associations (e.g., their cached PMK). A client
is allowed to immediately (re)connect under a recently-used
MAC address by proving that they posses their cached security
association, e.g., by connecting use the correct cached PMK.

USENIX Association 32nd USENIX Security Symposium 63

Another method to securely recognize recently-connected
users is based on the EAP identity they used during 802.1X
authentication. An AP can securely learn the EAP identity
from the RADIUS server that authenticated the client [37],
and can keep a mapping of recently connected MAC addresses
and their corresponding EAP identity. When a client connects,
the AP checks whether its MAC address was recently used. If
it is not, or if it is and the client is using the same EAP identity
as before, the client can connect as normal. However, if the
same MAC address is used under a different EAP identity, the
client is forced to wait a predefined amount of time before
being able to successfully connect.

The above defenses assume that, after a certain delay, no
more pending packets will arrive for the victim. To prevent
leaks beyond this delay, clients can use end-to-end encryption,
such as TLS, with the services they communicate with.

6 Discussion on Impact and Lessons Learned

In this section, we discuss the practical impact of our attacks,
lessons learned and summarize the fundamental changes
needed in the standard to improve security.

6.1 Practical Impact
To demonstrate the practical impact of our attacks, we discuss
possible consequences of intercepting frames towards a client.

6.1.1 Hijacking TCP Connections

In the security context overriding attack (Section 5), the ad-
versary will receive frames that are part of TCP connections
that the victim previously initiated. The adversary can ac-
knowledge these incoming TCP packets in order to receive
all pending data that the server is trying to send to the client.
Moreover, these leaked TCP packets reveal the sequence num-
bers being used, which can be exploited to hijack the TCP
connection and inject data to either the client or server. An ad-
versary can use their own Internet-connected server to inject
data into this TCP connection by injecting off-path TCP pack-
ets with a spoofed sender IP address [13, 27]. This can, for
instance, be abused to send malicious JavaScript code to the
victim in plaintext HTTP connections with as goal to exploit
vulnerabilities in the client’s browser.

To spoof TCP responses toward the client after learning
the TCP sequence numbers, the client must reconnect to the
AP and must do so before it closes the TCP connection. To
assure this, the adversary can send a deauthentication frame
to the client with a disconnection reason “class 2 frame from
non-authenticated station” after performing the attack. Exper-
iments indicated that this causes Linux, Windows, and iOS
to reconnect to the AP in less than half a second. Android
reconnected in less than 3.5 seconds, which is fast enough to
subsequently inject data into active TCP connections.

6.1.2 Intercepting Client Traffic

An adversary can use the identified vulnerabilities to learn the
port and transaction identifier that a client is using in DNS
requests, which in turn can be abused to spoof DNS responses
and intercept most traffic sent by the victim. To perform this
attack, the adversary uses our discovered vulnerabilities to
intercept a real DNS response towards the victim. If the victim
is using encrypted DNS, the adversary can try to block these
connections to induce the victim into falling back to plaintext
DNS over UDP. Packets can be blocked using methods from
Section 4 or by using a multi-channel MitM position [43, 45].

Once the adversary intercepted the DNS response, the ran-
dom client port and transaction identifier can be extracted.
With this information, the adversary can send spoofed DNS
responses from their own server on the Internet toward the
victim. Note that packet-in-packet routing protocols can be
exploited to easily spoof the source IP address of this DNS
response [27]. Against Linux, Windows, and iOS, the random
port and transaction identifier remain valid for at least 6 sec-
onds, which is long enough for the victim to reconnect to the
AP and for the attacker to spoof the DNS response. When
testing Android using a Pixel 4 XL the random port and trans-
action identifier remain valid for 5 seconds. All combined,
this provides sufficient time for the adversary to induce the
victim to reconnect and inject the spoofed DNS response.

6.1.3 Intercepting Web Traffic

Using our attacks we can intercept any packet that is sent
towards a client. This enables various attacks, with a notable
use-case of intercepting web traffic. For instance, if the vic-
tim visits plaintext HTTP websites, the attacker can steal the
victim’s cookies. Although the adoption of HTTPS keeps
growing [18], roughly 10% of website visits still occur over
plaintext connections.2 An attacker can also intercept traffic
to local intranet websites, which may more often use plaintext
HTTP. When the victim uses higher-layer encryption proto-
cols such as TLS, the adversary still learns the IP addresses
that a victim connects to. We conjecture this can be combined
with new traffic analysis techniques, e.g., variations of [29],
to learn the website and webpage that a victim is visiting.

6.2 Lessons Learned

We believe the root cause of the identified issues is that the
standard is not sufficiently explicit in handling security con-
text changes. In Table 3, we provide an overview of our at-
tacks and their properties: whether we leak or block frames,
whether it requires abusing the sleep-bit, and whether the at-
tacker is an insider or outsider. Most notably, an adversary can
leak a victim’s frames by manipulating the security context of

2See https://transparencyreport.google.com/https/overview
for weekly statistics on HTTPS adaption as measured by Google.

64 32nd USENIX Security Symposium USENIX Association

https://transparencyreport.google.com/https/overview

Table 3: Properties of our attacks. The columns represent
whether the targeted frame is already enqueued or still in-
coming, the goal of the attack, whether the attack relies on
spoofing the sleep-bit, the type of attacker, and the last column
contains the sections describing the corresponding attack(s).

Frame Location Goal Sleep Attacker Section(s)

Enqueued Leak Outsider 3.3, 3.4
Enqueued Leak Mixed 3.5.1
Enqueued Leak # Outsider 3.5.2
Enqueued Block Outsider 4.1, 4.2, 4.3
Incoming Leak # Insider 5.2, 5.3

(en)queued frames. While upper-layer security mechanisms
such as TLS and HTTPS can limit the risks caused by leaking
Wi-Fi frames, our attacks would, for example, leak the IP ad-
dresses a client is communicating with, which can reveal sen-
sitive or personal information. For instance, an IP address can
often reveal the website that a victim is visiting [32]. Further-
more, we consider it important to include queues and security
context updates in formal models of WPA2. For instance, a
recent security proof of WPA2 models transmission queues
where the transmission key may get updated before a frame is
dequeued and transmitted [14]. However, they did not model
the removal of the transmission key during a disconnection,
meaning their model would not discover our attacks.

7 Related Work

A variety of implementation and design flaws were identified
in the 802.11 standard. The works that come closest to ours
are the FragAttacks [44] and the Kr00k vulnerabilities [34].
FragAttacks demonstrated three fundamental design flaws in-
volving frame fragmentation and aggregation features, as well
as various implementation flaws. Specifically, they showed
how receivers i) can be tricked into processing the encrypted
transported data (lack of authentication of the is aggregated
flag), ii) reassemble fragments that were decrypted using dif-
ferent keys, and iii) are not required to delete fragments from
the receive queue once a client disconnects leading to the
possibility to inject forged packets. All these vulnerabilities
are caused by flaws in how received frames are processed. In
contrast, this paper focuses on vulnerabilities related to frame
transmission. The Kr00k vulnerabilities allowed an attacker
to decrypt data frames by forcing a devices hardware chip to
encrypt frames with an all-zero encryption key. The vulnera-
bilities were based on the key reinstallation attacks [46, 47]
that demonstrated the ability of an attacker to trick a victim
into reinstalling an already-in-use key by exploiting the 4-
way handshake messages. In this paper, we leverage the entire
network stack and use power-save mechanisms to force multi-
ple data frames into both the software and hardware transmit

queue. These frames are then leaked in plaintext or under the
group or an all-zero encryption key. Researchers have also
demonstrated downgrade and denial-of-service attacks in the
Dragonfly handshake of WPA3 [15, 48]. These flaws allowed
an attacker to recover the password of the wireless network
even if configured with WPA3. Furthermore, researchers ana-
lyzed the security of enterprise networks and identified several
weaknesses [9, 36], for example, widespread security issues
due to evil twin attacks [6] and poor configurations [5, 21].

Denial-of-service attacks against Wi-Fi networks are ubiq-
uitous [8, 19, 26], have existed since the first version of the
4-way handshake [20,30], and even affect WPA3 [12,28]. Fur-
thermore, denial-of-service attacks may target channel switch-
ing mechanisms [25] or jam the physical-layer [7, 11, 33].
Even though Wi-Fi Management Frame Protection (MFP)
protects against forged deauthentications, numerous attacks
remained present in practice [40]. In this paper, we presented
novel queue-based disconnection attacks targeting Security
Association (SA) Query requests and 4-way handshake mes-
sages. Unlike [1, 17], our attack does not require an attacker
to jam the wireless channel to cause a SA Query procedure
timeout. In addition to denial-of-service attacks disrupting the
connection, our attacks can cause disruptions in time-sensitive
operations such as Wi-Fi Fine Timing Measurement (FTM).
Our queue-based disruption attacks, targeting measurement
requests, extend the FTM vulnerabilities identified in [38,41].

8 Conclusion

In this work we provided a rigorous analysis of how the se-
curity context is managed when Wi-Fi devices buffer frames
across various layers of their network stack before transmis-
sion. Primarily, we discovered that modern operating systems
and devices fail to manage the security context of their trans-
mit queues in a secure manner thereby allowing an adversary
to intercept frames. Furthermore, we showed how an adver-
sary can abuse transmit queues to execute denial-of-service
attacks such as forcing a client to disconnect even when they
use management frame protection. We then explored the fea-
sibility for an attacker to manipulate and control the security
context of yet to be queued frames resulting in an adver-
sary forcing vulnerable access points to encrypt frames using
adversary-controlled secrets leading to a complete by-pass
of higher-layer encryption. Altogether our work highlights
the need for the standard to consider queuing mechanisms
under a changing security context. Finally, we published our
proof-of-concept code to the broader research community
after completion of the responsible disclosure process.

Acknowledgments

This research is partially funded by the Research Fund KU
Leuven and the Flemish Research Programme Cybersecurity.

USENIX Association 32nd USENIX Security Symposium 65

References

[1] Md Sohail Ahmad and Shashank Tadakamadla. Short
paper: security evaluation of IEEE 802.11 w specifica-
tion. In Proceedings of the fourth ACM conference on
Wireless network security, pages 53–58, 2011.

[2] Wi-Fi Alliance. Passpoint Specification Ver. 3.2, 2020.

[3] Wi-Fi Alliance. Security | wi-fi alliance. https://www.
wi-fi.org/discover-wi-fi/security, 2022 (Ac-
cessed 07 June 2022).

[4] Wi-Fi Alliance. Wi-Fi aware | Wi-Fi alliance. https://
www.wi-fi.org/discover-wi-fi/wi-fi-aware,
2022 (Accessed 07 June 2022).

[5] Alberto Bartoli, Eric Medvet, Andrea De Lorenzo, and
Fabiano Tarlao. (in)secure configuration practices of
WPA2 enterprise supplicants. In WiSec, 2018.

[6] Alberto Bartoli, Eric Medvet, and Filippo Onesti. Evil
twins and WPA2 enterprise: A coming security disaster?
Computers & Security, 74:1–11, 2018.

[7] John Bellardo and Stefan Savage. 802.11 Denial-of-
Service attacks: Real vulnerabilities and practical solu-
tions. In 12th USENIX Security Symposium (USENIX
Security 03), 2003.

[8] Kemal Bicakci and Bulent Tavli. Denial-of-service at-
tacks and countermeasures in ieee 802.11 wireless net-
works. Computer Standards & Interfaces, 31(5):931–
941, 2009.

[9] Sebastian Brenza, Andre Pawlowski, and Christina Pöp-
per. A practical investigation of identity theft vulnera-
bilities in eduroam. In WiSec, 2015.

[10] Markus Bullmann, Toni Fetzer, Frank Ebner, Markus
Ebner, Frank Deinzer, and Marcin Grzegorzek. Com-
parison of 2.4 GHz WiFi FTM-and RSSI-based indoor
positioning methods in realistic scenarios. Sensors,
20(16):4515, 2020.

[11] Aldo Cassola, William K Robertson, Engin Kirda, and
Guevara Noubir. A practical, targeted, and stealthy at-
tack against WPA enterprise authentication. In NDSS,
2013.

[12] Efstratios Chatzoglou, Georgios Kambourakis, and Con-
stantinos Kolias. How is your wi-fi connection today?
dos attacks on wpa3-sae. Journal of Information Secu-
rity and Applications, 64:103058, 2022.

[13] Weiteng Chen and Zhiyun Qian. Off-Path TCP exploit:
How wireless routers can jeopardize your secrets. In
27th USENIX Security Symposium (USENIX Security
18), pages 1581–1598, 2018.

[14] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A
formal analysis of IEEE 802.11’s WPA2: Countering
the kracks caused by cracking the counters. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1–17. USENIX Association, August 2020.

[15] Daniel de Almeida Braga, Pierre-Alain Fouque, and Mo-
hamed Sabt. Dragonblood is still leaking: Practical
cache-based side-channel in the wild. In Annual Com-
puter Security Applications Conference, pages 291–303,
2020.

[16] Philipp Ebbecke. Protected management frames
enhance Wi-Fi network security. https://www.wi-
fi.org/beacon/philipp-ebbecke/protected-
management-frames-enhance-wi-fi-network-
security, 2020 (Accessed 07 June 2022).

[17] Martin Eian. Fragility of the robust security network:
802.11 denial of service. In International Conference
on Applied Cryptography and Network Security, pages
400–416. Springer, 2009.

[18] Adrienne Porter Felt, Richard Barnes, April King, Chris
Palmer, Chris Bentzel, and Parisa Tabriz. Measuring
HTTPS adoption on the web. In 26th USENIX security
symposium (USENIX security 17), pages 1323–1338,
2017.

[19] Stephen Glass and Vallipuram Muthukkumarasamy. A
study of the TKIP cryptographic DoS attack. In 2007
15th IEEE International Conference on Networks, pages
59–65. IEEE, 2007.

[20] Changhua He and John C Mitchell. Analysis of the
802.11 i 4-way handshake. In Proceedings of the
3rd ACM Workshop on Wireless Security, pages 43–50,
2004.

[21] Man Hong Hue, Joyanta Debnath, Kin Man Leung, Li Li,
Mohsen Minaei, M Hammad Mazhar, Kailiang Xian, En-
dadul Hoque, Omar Chowdhury, and Sze Yiu Chau. All
your credentials are belong to us: On insecure wpa2-
enterprise configurations. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1100–1117, 2021.

[22] Mohamed Ibrahim, Hansi Liu, Minitha Jawahar, Viet
Nguyen, Marco Gruteser, Richard Howard, Bo Yu, and
Fan Bai. Verification: Accuracy evaluation of wifi fine
time measurements on an open platform. In Proceedings
of the 24th Annual International Conference on Mobile
Computing and Networking, pages 417–427, 2018.

[23] IEEE Std 802.11. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specification, 2020.

66 32nd USENIX Security Symposium USENIX Association

https://www.wi-fi.org/discover-wi-fi/security
https://www.wi-fi.org/discover-wi-fi/security
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware
https://www.wi-fi.org/beacon/philipp-ebbecke/protected-management-frames-enhance-wi-fi-network-security
https://www.wi-fi.org/beacon/philipp-ebbecke/protected-management-frames-enhance-wi-fi-network-security
https://www.wi-fi.org/beacon/philipp-ebbecke/protected-management-frames-enhance-wi-fi-network-security
https://www.wi-fi.org/beacon/philipp-ebbecke/protected-management-frames-enhance-wi-fi-network-security

[24] Evgeny Khorov, Andrey Lyakhov, Alexander Krotov,
and Andrey Guschin. A survey on IEEE 802.11 ah: An
enabling networking technology for smart cities. Com-
puter communications, 58:53–69, 2015.

[25] Bastian Könings, Florian Schaub, Frank Kargl, and Ste-
fan Dietzel. Channel switch and quiet attack: New dos
attacks exploiting the 802.11 standard. In 2009 IEEE
34th Conference on Local Computer Networks, pages
14–21. IEEE, 2009.

[26] Sokjoon Lee and Byung Ho Chung. Denial of service
attack against IEEE 802.11 WLAN fast initial link setup
technology. International Journal of Computer Science
and Electronics Engineering (IJCSEE), 3(4):335–337,
2015.

[27] Yannay Livneh. Spoofing IP with IPIP. In PoC || GTFO,
volume 0x02, 2022.

[28] Karim Lounis and Mohammad Zulkernine. Bad-token:
denial of service attacks on WPA3. In Proceedings of
the 12th International Conference on Security of Infor-
mation and Networks, pages 1–8, 2019.

[29] Brad Miller, Ling Huang, Anthony D Joseph, and J Doug
Tygar. I know why you went to the clinic: Risks and
realization of HTTPS traffic analysis. In International
Symposium on Privacy Enhancing Technologies Sympo-
sium, pages 143–163. Springer, 2014.

[30] CHJC Mitchell and Changhua He. Security analysis
and improvements for ieee 802.11 i. In The 12th Annual
Network and Distributed System Security Symposium
(NDSS’05) Stanford University, Stanford, pages 90–110.
Citeseer, 2005.

[31] Alberto Ornaghi and Marco Valleri. Man in the middle
attacks. In Blackhat Conference Europe, volume 1045,
2003.

[32] Simran Patil and Nikita Borisov. What can you learn
from an ip? In Proceedings of the Applied Networking
Research Workshop, pages 45–51, 2019.

[33] Konstantinos Pelechrinis, Marios Iliofotou, and
Srikanth V Krishnamurthy. Denial of service attacks
in wireless networks: The case of jammers. IEEE
Communications surveys & tutorials, 13(2):245–257,
2010.

[34] ESET Experimental Research and Detection Team.
Kr00k: A serious vulnerability deep inside wi-fi en-
cryption. https://www.eset.com/int/kr00k/, 2020
(Accessed 07 June 2022).

[35] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom
Van Goethem, and Wouter Joosen. Automated web-
site fingerprinting through deep learning. arXiv preprint
arXiv:1708.06376, 2017.

[36] Pieter Robyns, Bram Bonné, Peter Quax, and Wim Lam-
otte. Short paper: exploiting WPA2-enterprise vendor
implementation weaknesses through challenge response
oracles. In Proceedings of the 2014 ACM conference
on Security and privacy in wireless & mobile networks,
pages 189–194, 2014.

[37] Allan Rubens, Carl Rigney, Steve Willens, and
William A. Simpson. Remote Authentication Dial In
User Service (RADIUS). RFC 2865, June 2000.

[38] Domien Schepers and Aanjhan Ranganathan. Privacy-
preserving positioning in Wi-Fi fine timing measure-
ment. Proceedings on Privacy Enhancing Technologies,
2022(2):325–343, 2022.

[39] Domien Schepers, Aanjhan Ranganathan, and Mathy
Vanhoef. Let numbers tell the tale: measuring secu-
rity trends in Wi-Fi networks and best practices. In
Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages
100–105, 2021.

[40] Domien Schepers, Aanjhan Ranganathan, and Mathy
Vanhoef. On the robustness of Wi-Fi deauthentication
countermeasures. In Proceedings of the 15th ACM Con-
ference on Security and Privacy in Wireless and Mobile
Networks, WiSec ’22, page 245–256, New York, NY,
USA, 2022. Association for Computing Machinery.

[41] Domien Schepers, Mridula Singh, and Aanjhan Ran-
ganathan. Here, there, and everywhere: Security analy-
sis of Wi-Fi fine timing measurement. In Proceedings
of the 14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’21, page 78–89,
New York, NY, USA, 2021. Association for Computing
Machinery.

[42] Weiping Sun, Munhwan Choi, and Sunghyun Choi.
IEEE 802.11 ah: A long range 802.11 WLAN at sub
1 GHz. Journal of ICT standardization, 1(1):83–108,
2013.

[43] Manesh Thankappan, Helena Rifà-Pous, and Carles Gar-
rigues. Multi-channel man-in-the-middle attacks against
protected Wi-Fi networks: A state of the art review.
arXiv preprint arXiv:2203.00579, 2022.

[44] Mathy Vanhoef. Fragment and forge: Breaking Wi-Fi
through frame aggregation and fragmentation. In 30th
USENIX Security Symposium (USENIX Security 21),
pages 161–178, 2021.

USENIX Association 32nd USENIX Security Symposium 67

https://www.eset.com/int/kr00k/

[45] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi
attacks using commodity hardware. In Proceedings of
the 30th Annual Computer Security Applications Con-
ference, pages 256–265, 2014.

[46] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in WPA2. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1313–1328, 2017.

[47] Mathy Vanhoef and Frank Piessens. Release the kraken:
new KRACKs in the 802.11 standard. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 299–314, 2018.

[48] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyz-
ing the dragonfly handshake of WPA3 and EAP-pwd.
In 2020 IEEE Symposium on Security and Privacy (SP),
pages 517–533. IEEE, 2020.

[49] Verizon. IP latency statistics. https://
web.archive.org/web/20220514091144/https://
www.verizon.com/business/terms/latency/,
2022 (Accessed 07 June 2022).

[50] Wi-Fi Alliance. WPA3 specification version
3.0. https://www.wi-fi.org/file/wpa3-
specification, 2020 (Accessed 07 June 2022).

68 32nd USENIX Security Symposium USENIX Association

https://web.archive.org/web/20220514091144/https://www.verizon.com/business/terms/latency/
https://web.archive.org/web/20220514091144/https://www.verizon.com/business/terms/latency/
https://web.archive.org/web/20220514091144/https://www.verizon.com/business/terms/latency/
https://www.wi-fi.org/file/wpa3-specification
https://www.wi-fi.org/file/wpa3-specification

	Introduction
	Background
	Wi-Fi Power-Saving Mechanisms
	Frame Queuing in the Wi-Fi Stack
	Bufferable Frames

	Wi-Fi Management Frame Protection

	Leaking Frames from the Wi-Fi Queue
	Motivation: Under-Specified Standard
	Threat Model
	General Attack Strategy and Methodology
	Attack Strategy
	Instantiating the Attack

	Frame Leaks in FreeBSD
	Instantiating the Attack
	Evaluation

	Frame Leaks in Linux and Hardware
	Leaks on Encrypted Links without Encryption Key
	Leaks due to Race Conditions in Hardware

	Defenses

	Abusing the Queue for Network Disruptions
	Queueing of SA Query Requests
	Attack Outline
	Evaluation
	Discussion

	Queueing of Wi-Fi FTM Requests
	Queueing of 4-Way Handshake Messages
	Attack Outline
	Evaluation

	Overriding the Victim's Security Context
	Threat Model
	Overriding a Client's Security Context
	Fast (Re)Connection Attack
	Defenses

	Discussion on Impact and Lessons Learned
	Practical Impact
	Hijacking TCP Connections
	Intercepting Client Traffic
	Intercepting Web Traffic

	Lessons Learned

	Related Work
	Conclusion

