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Abstract
Phishing is one of the most common forms of social en-

gineering attacks and is regularly used by criminals to com-
promise millions of accounts every year. Numerous solutions
have been proposed to detect or prevent identity thefts, but
phishers have responded by improving their methods and
adopting more sophisticated techniques. One of the most re-
cent advancements is the use of browser fingerprinting. In par-
ticular, fingerprinting techniques can be used as an additional
piece of information that complements the stolen credentials
This is confirmed by the fact that credentials with fingerprint
data are sold for higher prices in underground markets.

To understand the real extent of this phenomenon, we con-
ducted the largest study of the phishing ecosystem in the
topic by analyzing more than 1.7M recent phishing pages
that emerged over the course of 21 months. In our systematic
study, we performed detailed measurements to estimate the
prevalence of fingerprinting techniques in phishing pages.

We found that more than one in four phishing pages adopt
some form of fingerprinting. This seems an ever growing trend
as the percentage of pages using these techniques steadily
increased during the analysis period (last month doubling
what detected in the first month).

1 Introduction

Tracking users’ online activity is a ubiquitous practice with
different goals. At the core of online tracking is the desire
to learn about a user’s habits, preferences, identity, and other
information capable of creating a profile which can then be
used to customize the user experience [61, 65]. This includes
advertising and marketing, but also web site personalization,
analytics services, social media sharing, and others. The effec-
tiveness of online tracking has fueled very lucrative business
models, often leading to situations where trading profiles of
oblivious users—and, therefore, the potential of capturing
their attention—becomes one the primary transaction instru-
ment of the Internet [14, 36].

The intensity and pervasiveness of such online tracking
practices has captured the attention of not only marketers,

engineers, researchers and journalists, but also that of regu-
lators [24, 25]. As a result, efforts are being made to contain
the effects of tracking, and provide users with the ability to
better control their online footprint [11, 13, 27, 66]. The in-
creasing complexity of modern Internet-facing applications,
however, presents endless opportunities for tracking methods
that may be less invasive, (temporarily) more compliant, and
equally effective. Browser fingerprinting is one such tracking
practice, capable of uniquely identifying users with relatively
high accuracy.

Calculating a browser fingerprint (henceforth referred to
simply as a fingerprint) is not a new idea [3, 22, 32, 35]:
for many years websites had access to information exposed
by the browser, such as the browser type and version, IP ad-
dress, plugins, and the list of available fonts. By combining
these elements, websites can generate fingerprints for groups
of users with similar configurations. With the increase in
the number of available APIs [74] and in their sophistica-
tion [16, 33, 34, 35, 46, 63], these groups may be reduced to
a single person, thus identifying users uniquely. This presents
an increased attack surface for those using fingerprints for
privacy-invasive or malicious purposes, but it has also been
used for benign purposes—such as providing additional ele-
ments of (“zero-trust”-style) authentication.

Ironically, the use of fingerprinting as an additional au-
thentication instrument has further increased the value of
capturing (or stealing) users fingerprints for malicious pur-
poses. For example, phishing attacks aim at deceiving users
and stealing credentials that would provide access to mone-
tizable services. Such credentials are sold on the dark web,
for fraudulent use. Complementing a user’s stolen creden-
tials with the corresponding browser fingerprint significantly
increases the value of the stolen assets, as the additional in-
formation can allow to bypass authentication checks. This
is confirmed by the existence of various marketplaces (e.g.,
Richlogs [10] and Genesis [45]) which specialize in selling
user fingerprints. The price of this information can even reach
$200 per user [28]. If we compare it with the average price of
$15 for stolen credentials reported by a recent analysis [55],
we can clearly see the additional cost of fingerprint informa-
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tion – motivated by cases in which fingerprints were used in
order to bypass 2FA and other security measures [15, 75].

The prevalence of fingerprinting, performed by legitimate
websites (for authentication and tracking) resulted in a densely
populated research space. Some researchers have performed
large-scale measurements to understand the scale of the prob-
lem [22, 32, 35, 60, 61, 64], some devised new fingerprinting
techniques to increase the precision of the unique identifiers
created [16, 33, 34, 46, 63], while others have explored new
areas of application such as authentication [8, 20] and auto-
mated detection of crawlers [4, 7, 72].

Only very recently, researchers looked at the adoption of fin-
gerprinting practices on phishing websites [75, 77]. In 2021,
Zhang et al. demonstrated the use of fingerprinting for cloak-
ing purposes—i.e., the ability of phishing sites to conceal their
malicious content when a fingerprint reveals that the visitor is
not a real user—by performing a study on 100K phishing web-
pages [77]. In 2022, Lin et al. showed instead that it would
be possible for the phishers to match the multifactor authen-
tication requirements of particular legitimate websites that
incorporate fingerprinting authentication elements [75]. Moti-
vated by these recent findings and by the discovery of stolen
fingerprints in underground markets [10, 28, 45], we decided
to conduct a large-scale study of the use of fingerprinting in
the phishing ecosystem.

In particular, in this paper we investigate the fingerprint-
ing practices of 1.7M phishing websites that were active be-
tween December 2020 and August 2022. To be able to capture
the run-time behavior of the phishing websites, we actively
queried a large phishing feed and accessed the phishing web-
sites immediately after they appeared in the feed. Our au-
tomated analysis framework instrument 109 fingerprinting
functions, the highest number used to date in this type of
study. Following the definition of the most recent survey on
the topic [35], a browser fingerprint is a set of information
related to a user’s device extracted from a variety of sources,
from the hardware to the operating system to the browser and
its configuration. More concretely, fingerprinting refers to the
process of collecting such information through a web browser,
with the objective of building a fingerprint of a device. In
this work we will focus on scripts that invoke fingerprinting-
related API calls and later harvest the data (e.g., through GET
request). Furthermore, we will focus our analysis on new code
included by the phishing page and not present in the original
target website.

We start by conducting detailed measurements and longitu-
dinal analysis on our data to obtain high-level statistics about
the fingerprinting adoption on phishing websites. While in
our global data 18.7% of the phishing sites perform finger-
printing, when we focus our analysis to phishing websites
that were successful at attracting real users, the percentage
increases to 24%. We then investigate the real-world impact
of the phishing websites that use fingerprinting, incorporating

user telemetry collected from millions of users. We found
that, similar to legitimate websites, phishers often include
third-party scripts, some of which belong to well-known track-
ers. However, it is interesting to note that the most common
trackers observed on phishing websites are different from
the top trackers encountered on legitimate websites. When
we compared the code snippets that include fingerprinting
functions used by phishing sites with the ones employed by
their targets, we discovered that 91% of the phishing sites
include completely new additional scripts. We perform a thor-
ough large-scale comparison of the two and report the most
and least prevalent fingerprinting functions that are used by
phishers, also breaking down statistics for basic and advanced
fingerprinting methods. Our results show that over time there
is a clear increase in the fraction of phishing websites that
adopt advanced fingerprinting techniques compared to previ-
ous studies.

We finalize our study by looking at how the set of finger-
printing functions can be used to cluster phishing sites that
are part of the same campaign or that rely on the same kit. We
also present two case studies, in which a post-mortem manual
analysis of phishing sites that carry the patterns we selected,
revealed very sophisticated phishing campaigns that target
multiple institutions from multiple categories. The attackers
not only perform highly advanced fingerprinting techniques,
but also implement very obfuscated and sophisticated code
for staying under the radar as long as possible.

2 Background and Related Work

2.1 Fingerprinting
A browser fingerprint is a unique user identifier that can be
computed by using a combination of hardware and software
information (more information about the computation of fin-
gerprings in Appendix A). It is mainly used by third-party
trackers in order to track users without the need to rely on
traditional cookies. Previous studies [39, 71] analyzed how
fingerprints evolved over time, and showed that certain dynam-
ics could bring inaccuracies that need to be taken into account.
Researchers indicated that there could be many reason behind
these changed, like user actions or environment updates. The
last decade has produced a large corpus of research aimed at
understanding the details of the web tracking phenomenon
by measuring its size and by estimating its impact for the
Internet users [22, 60, 61, 64]. Similar to the attackers-vs-
defenders arms-race that exists in many areas of security,
we are witnessing a complex cat-and-mouse game between
trackers and privacy advocates. In fact, to be able to continue
their tracking activities even when an anti-tracking solution is
present on the user’s browser [11, 13, 27, 66], trackers started
to leverage browsing fingerprinting techniques [3, 32, 35].
A recent work by Iqbal et al. [32] reported that more than
10% of the top 100K popular websites include trackers that

4158    32nd USENIX Security Symposium USENIX Association



employ fingerprinting techniques. While web tracking is typ-
ically deployed to enable targeted advertisement, previous
studies have showed that the high prevalence of web tracking
could pose a serious threat to the users’ privacy [19]. For
instance, trackers could exploit their knowledge of the users
browsing history to learn more about their habits, their politi-
cal preferences, and their religious beliefs. Besides tracking,
browser fingerprinting techniques can also be used as part
of multi-factor authentication and to enhance other aspects
of web security [8, 20]. A recent study by Durey et al. [20]
discovered that first parties regularly collect fingerprints dur-
ing sign-up, sign-in, and payment processes and showed that
fingerprinting can be very powerful in protecting users against
cookie hijacking and account hijacking attacks. On the other
hand, fingerprinting can also be abused by cybercriminals to
uniquely identify crawlers [4, 7, 72].

2.2 Phishing

A phishing attack is a type of social engineering attack in
which the attacker impersonates a trusted party to deceive a
victim to reveal sensitive information, such as account details,
authentication credentials, and financial information. Phishing
attacks are one of the most prevalent cyber attacks that cause
large financial and reputation risks [26]. Phishers target a wide
range of victims – ranging from consumers to professionals,
from mobile to traditional PC users – by leveraging various
means, which include Web pages, emails, mobile applications,
and SMS messages.

In response to the increasing number of phishing attacks, a
large corpus of anti-phishing solutions have been proposed
over the past two decades [17, 37, 41, 59, 69]. These solutions
can be categorized into two main categories: (i) blocklist-
based [29, 47, 48, 50], and (ii) allowlist-based [1, 42]. While
earlier solutions [9, 12, 41] proposed phishing detection based
on the analysis of URLs and domain names, more recent so-
lutions [1, 29, 42, 47, 48, 50] automatically analyze phishing
pages to identify features that are effective at distinguishing
them from legitimate websites.

Regardless of the approach taken, all existing solutions
need to analyze known phishing websites to build their ground
truth datasets. Typically this step involves visiting known
phishing websites in an automated fashion [29, 47, 48, 50],
or analyzing existing phishing kits [30, 49]. To evade being
detected by anti-phishing solutions, sophisticated phishing
attacks incorporate evasive techniques to distinguish the visits
of regular users from automated bots. If the visitor is sus-
pected to be a security crawler, the website replace its mali-
cious content with a benign page [47].

Phishers first started this arms-race by deploying server-
side techniques [31, 38]. However, when security crawlers
adopted techniques to thwart server-side approaches [31]
phishers quickly responded by devising client-side techniques.
These include browser fingerprinting for content manipula-

tion, which was much more effective [4, 77]. CrawlPhish
analyzed a little over 100K phishing websites collected over a
period of 14 months to identify client-side evasion techniques
adopted by phishers [77]. By looking at the JavaScript code,
the authors identified 1,128 different implementations that
might be sourced by different actors. Acharya and Vadrevu
explored the effectiveness of fingerprinting and showed that
the 23 most popular security crawlers could be easily circum-
vented by using fingerprinting techniques [4]. In this work, we
complement this information by analyzing how fingerprints
calculated by phishers are used, based the actions performed
after the data collection (i.e., harvesting data or manipulating
content). This allows us to comprehend how malicious groups
operate with respect to the usage of browser fingerprinting
techniques on their websites.

2.3 Phishing & Fingerprinting
We can divide the use of fingerprinting techniques in two
broad classes. In the first group we put all cases in which the
website extracts information from the browser to customize
the page (e.g., according to the language, the browser, or the
screen resolution) or to redirect users to different targets (e.g.,
to better serve users from different countries). We refer to
this first category as Client-side Content manipulation and
Endpoint Selection (or content manipulation for short). These
techniques can be use for perfectly legitimate purposes, or as
a way to hide their content from certain crawlers.

The second category includes instead the cases in which
the website uses fingerprinting techniques to build a unique
user (or device) identifier (UUID). As discussed above, user
tracking and authentication are the most common uses in
this category for benign websites. In addition, phishing pages
can also compute and steal user identifiers, with the goal of
reusing or re-selling them along with the user credentials to
bypass security checks [10, 28, 45].

In 2022, Lin et al. [75] proposed a technique to identify the
set of fingerprinting functions used for two-factor authentica-
tion by a few legitimate popular websites. They also looked at
the adoption of fingerprinting by around 300K phishing sites.
They concluded the study by stating that phishing attacks
from May 2018 to April 2021 did not collect the accurate
fingerprints required for effective multi-factor authentication
but that, however, this phenomenon could get more prevalent
in the future. In this paper, we perform a finer-grained analy-
sis with a focus on fingerprinting adoption at larger-scale on
phishing sites. We also investigate various types of fingerprint-
ing intentions to understand the root cause of fingerprinting
in the phishing ecosystem.

3 Methodology

At the core of our study lies a comprehensive dataset of phish-
ing websites recently detected by a commercial detection solu-
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tion over a period of 21 months, between December 2020 and
August 2022. The ML-based solution constantly monitors the
Virus Total URL feed [73], PhishTank [54], urlscan.io [70], a
number of other commercial feeds, and all URLs visited by
the customers of the company. When a new phishing web-
site is detected, certain elements are recorded in the database,
including the source and final (after redirections) URL, a
screenshot of the webpage, and the name of the target brand.
The company allowed us to retrieve new entries from their
database every 45 seconds. Newly detected phishing sites
were then immediately crawled by our system to extract the
list of fingerprinting APIs.

3.1 Ethical Considerations
In addition to the phishing dataset, the security company also
provided us with a web categorization dataset that makes it
possible to identify the category of the target brand. Finally, to
assess the actual impact of the collected phishing pages on real
users, we were allowed to query their telemetry information -
collected from Android, iOS, Windows, and macOS operating
systems. Note that this data is collected only from users who
explicitly opted-in to share information for research purposes.
In addition, the user telemetry is completely anonymized and
all artifacts are removed from the data. Since the data does not
include any user identifier we cannot provide the breakdown
for number of users for each device category. We only know
that the data was collected from millions of users worldwide.
The company additionally provided us with statistics about
the volume of encounters per phishing site during the same
period the data was collected. They also included aggregated
information about the country of the encounters, and the type
of device used, to better understand whether particular regions
encounter more sophisticated attacks compared to other re-
gions in the world. We will show general statistics about our
dataset in Section 4.

3.2 Fingerprinting APIs Monitoring
We implemented a custom Chromium-based crawler to ana-
lyze each phishing site. Following existing phishing analysis
approaches [2, 5, 42], our crawler did not perform subsequent
page analysis or interacted with the websites (e.g., by sub-
mitting forms). Due to this limitation, we could have missed
fingerprinting activities performed by phishers only after cer-
tain actions were performed or only present in specific pages
of the website. Therefore, the result shown in this work should
be considered a lower bound.

To ensure we could perform our analysis before the sites
were taken down by the attackers, we launched the crawler as
soon as a new website was reported by the commercial phish-
ing detection solution. As the process of detecting phishing
is out of scope of the paper, we wanted to ensure that we are
analyzing the exact same pages detected by the vendor that

provided us with the data. Thus, our crawler took a screenshot
of the page and visually compared it with the one provided by
the detection system, to ensure the phishing website was still
active and matched the report. We use pHash [53] to create
and compare the perceptual image hashes of the phishing web-
site and the final website reported by the commercial solution
[76]. If the images did not match, we discarded the webpage
for the remainder of the analysis pipeline.

As discussed in Section 2, over the last decade, a large
number of fingerprinting techniques have been proposed. In
order to conduct the most comprehensive fingerprinting study
of the ecosystem, we collected all fingerprinting functions dis-
cussed in academic studies [35] and used by available privacy
solutions (more concretely, DuckDuck Go [66], Mozilla Fire-
fox [27], Apple WebKit [58] and Brave [13]). This resulted in
109 functions, 50 of which fall into the Basic fingerprinting
category, while the rest are Advanced fingerprinting.

We also performed a comparison of our proposed solu-
tion against OpenWPM [52], a web privacy measurement
framework previously used in other studies [23, 32]. In par-
ticular, we analyzed a random sample of 1,000 phishing web-
sites using both techniques. In total, we found 728 websites
calling fingerprint-related APIs. Our crawler was able to de-
tect and log all invocations, while OpenWPM missed calls
in 348 (47.8%) of the websites. The main reason behind
this result lies in the fact that OpenWPM monitors a smaller
set of fingerprinting APIs [51]. In this experiment 48 differ-
ent types of APIs calls were detected, out of which Open-
WPM supported only 36. More concretely, from those not
present in OpenWPM, 5 APIs fall under the basic category
(e.g., screen.availWidth and window.matchMedia), and
7 under advanced (e.g., htmlmediaelement.canPlayType
and webglrenderingcontext.getExtension). Addition-
ally, we instrumented the missing API calls in OpenWPM
and rerun the analysis to test for potential false positives and
negatives. After this update, both our crawler and OpenWPM
were able to detect all the 2092 calls performed on the test
set, showing the reliability of the solution. In the following
section, we will describe how our approach is able to to under-
stand the specific intention behind the calls performed (e.g.,
content manipulation or harvesting the data through requests).

Our crawler is designed to collect information about
each fingerprinting function (e.g., in HTMLCanvasElement
and RTCPeerConnection objects), and to track APIs
that can be used to modify pages dynamically (e.g.,
Element.ReplaceChild, and Node.insertBefore). The
system also tracks the callers of each function (either first-
party or third-party script), by using a custom instrumentation
based on the Chrome debugging protocol (CDP) [18]. By
cross-referencing a state-of-the-art tracker list [21, 44, 60],
known trackers are matched with some of the third-party
scripts identified to call fingerprinting functions. In fact, while
phishers often employ their own custom fingerprinting scripts,
in some cases they leverage third-party tracking solutions.
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Moreover, our crawler monitors the network activity to
gather redirections and all requests and responses performed
by the browser and fingerprinting scripts, together with their
parameters (i.e. main pages and frames). Finally, the system
analyzes cookie creation events (i.e., Document.cookie) and
their associated scripts to identify fingerprints that are stored
as cookies.

3.3 Fingerprinting Intention
Our crawler can automatically associate fingerprinting func-
tions with two intentions: (i) using fingerprints for content ma-
nipulation/redirections, and (ii) storing fingerprints in cookies
or sending fingerprints within parameters of GET and POST
requests. This is achieved by combining code dependency
analysis and timing element factors.

The process starts by comparing the time in which different
parts of the document object model (DOM) are loaded (ei-
ther statically though HTTP/HTML or dynamically by using
JavaScript) with the time in which the browser fingerprinting
API and functions are invoked. Then, our tool inspects the
stack traces of all function calls and events, and associates
each call with its corresponding script. In the simplest case,
the script that perform fingerprinting and the corresponding
intention is the same. For example, when a number of finger-
printing functions are called followed by multiple inclusions
in the DOM or by redirecting the page, we can flag it as
content manipulation. Similarly, if the script calls a set of fin-
gerprinting functions and after it stores data in a cookie or it
makes a request (GET/POST) with parameters, we mark it as
a case of fingerprinting. In more complex scenarios, however,
the scripts responsible for fingerprinting are not the same as
the one implementing the corresponding intention. For such
cases, we employ a methodology to associate the fingerprint-
ing script with its intention script. Our crawler checks the
page hierarchy by using a dynamically generated resource
tree in order to find a connection between the two scripts.
In particular, our analysis looks for parent-child or shared-
parent relationships. In Sections 5 and 7, we will analyze and
discuss both content manipulation and fingerprinting, show-
casing these scenarios and their different types in more detail.

3.4 Target Websites Analysis
In our paper, we do not only aim at measuring the extent of
browser fingerprinting adoption among phishing websites,
but also at shedding light into the main motives of the attack-
ers (i.e., content manipulation or fingerprinting). Therefore,
once the aforementioned intentions are identified on phishing
websites, we look at the target legitimate page to understand
whether the phishers implement the same fingerprinting tech-
niques that exists on the original target page or whether they
collect more information and share it with other parties. To
perform a more accurate comparison, we first need to iden-
tify the exact set of fingerprint functions used by each page
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Figure 1: Percentage of phishing pages using fingerprinting.

targeted by the phishing sites in our dataset. Unfortunately,
the information we obtained for each phishing page included
only the name of the targeted company and not the particular
login page that was impersonated. Therefore, we proceeded
to manually locate the corresponding login pages.

Then, to record the fingerprinting functions invoked dur-
ing a login process, we implemented a browser extension for
Chromium following the same logic explained earlier for the
crawler, but this time inside an extension. This allowed us to
record everything that happened dynamically in the browser.
We then manually accessed the original login pages and pro-
vided dummy data to trigger the login process, while our
extension collected all the fingerprinting functions invoked
until the form submission, together with information about
which party triggered the event: first or the third party (e.g.,
known trackers, unknown third-parties). This full process took
roughly a week of work for two researchers.

4 The General Picture

During the 21 months of data collection, our system analyzed
1,709,810 active phishing sites. Of these, 18.7% (319,922)
invoked at least one fingerprinting function on our list. Among
those, 82.2% call three or more different functions. This find-
ing shows that fingerprinting is a much more prevalent be-
havior on phishing websites than on legitimate websites. In
fact, according to a very recent study [32], only 10% of the
top 100K websites include fingerprinting scripts.

Recent studies found a higher percentage of phishing sites
that perform fingerprinting. However, they used different (and
much smaller) datasets which might not have included the
long tail of less popular sites [40]. In fact, if we restrict our
analysis to the most popular phishing pages – computed ac-
cording to the number of victims in the telemetry – we observe
a different distribution. For instance, the percentage of those
using fingerprinting APIs increases to 44.5% if we consider
the top 50K phishing pages. These results are in line with
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what was previously reported in other studies [75]. We will
present a deeper analysis on the real-world impact of these
results later in this section.

In Figure 1, we plot the percentage of phishing websites
that perform fingerprinting across the length of our study,
grouped on a monthly basis. Over the past two years, we ob-
serve a dramatic increase on the number of phishing sites that
adopt browser fingerprinting techniques, from around 12% at
the beginning of our study to over 26.6% on the last months.
This emphasizes the ever-growing interest of both phishers
and legitimate websites in using fingerprinting functions.

Following the methodology described in Section 3, we are
able to distinguish between two reasons for the usage of finger-
prints functions: 104,279 (32.6%) of the phishing websites
use it for content manipulation, and 101,030 (31.6%) creates
fingerprints and shares them through POST/GET requests or
stored in cookies. Finally, 114,613 (35.8%) use fingerprinting
for both intentions.

Summary: The fraction of phishing websites that use fin-
gerprinting has more than doubled over the past two years.
Today, one in four phishing sites invokes fingerprinting
APIs, with more than 80% combining over 3 functions.

4.1 Real-World Impact

As previously mentioned, we leveraged telemetry data to mea-
sure the number of users who encountered the phishing web-
sites in our dataset. In total, 307,883 (22.2%) of the phishing
websites were accessed by at least one user. Note that, due to
privacy reasons, user telemetry did not contain unique user
identifiers, but only the country of the user. Therefore, we can-
not provide statistics about the number of users who encoun-
tered phishing attacks. Out of the phishing pages accessed
by the users in our telemetry, 24% perform fingerprinting. If
we combine this information with the fact that 18.7% of the
phishing pages in our dataset invoked fingerprinting APIs, we

Table 1: Actors with fingerprinting intention.

Actors # of Phishing Sites

FirstParty 115831
Tracker (New) 73882
ThirdParty (New) 28321
Tracker (Original) 22934
ThirdParty (Original) 16826

conclude that pages that perform fingerprinting are also more
successful at attracting victims.

The telemetry also contained the type of device used to
access the phishing sites. This additional information allowed
us to categorize the phishing websites into three categories:
those that targeted only mobile users, those that targeted only
PCs, and those visited by both. In particular, we found that
5,894 (8%) of the phishing websites were encountered only
in mobile phones. The vast majority (60.8%) of the phishing
sites were visited instead only by PC users. Finally, 31.2%
of phishing websites had victims using both mobile and PC
platforms. Figure 2 shows the distribution in the number of fin-
gerprinting functions for the three aforementioned categories
(mean values are 5.9, 8.2 and 6.3 respectively for mobile, PC,
and mixed). Again, these results could support the hypothesis
that phishers who deploy more sophisticated phishing sites
and adopt browser fingerprinting techniques are also more
successful in attracting their victims, or vice versa. More con-
cretely, desktop users are fingerprinted with more functions
than mobile ones (2.4 more functions on average).

Finally, we divide phishing pages in two categories:1

country-specific phishers and international phishers. As the
name suggests, the country-specific phishers (73.9% of phish-
ing websites) target users from only one specific country
while the international ones (26.1%) target users from mul-
tiple countries. We observe a higher percentage of finger-
printers in the international category (36.6%) than in the
country-specific category (22.1%). Similar to what happens
with phishers targeting mixed platforms, those that attract
wider range of victim seen to implement fingerprinting func-
tions more frequently.

Summary: Phishing websites that are more successful at
attracting users, that target more devices, or whose victims
span more countries, tend also to be the ones that use
fingerprinting functions the most.

5 Additional Fingerprinting on Phishing Sites

Our system keeps track of the parties who initiate the scripts
that call fingerprinting functions. The actors who are involved

1 Because the collection of country information in the shared telemetry
started after we begun our study, we can provide results for only 77.6%
(238,958) of the phishing websites.
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Figure 3: Most common trackers fingerprinting on websites.

might be the first-party, third-party trackers, or other third-
parties. We will now focus on cases where phishers create
fingerprints and share them through POST/GET requests or
store them in cookies. In Table 1, we provide the breakdown
for the actors on the phishing pages, cross-checking their
existence on the target page as well (note that a given website
can include multiple actors). On 53.7% of the phishing pages,
fingerprinting content is sent directly by the first-party, i.e.,
by the phisher herself.

Interestingly, 77.8% of the websites which use third par-
ties for fingerprinting do not copy them from the legitimate
website they impersonate (in other words, the original site did
not include that same third-party script). This indicates that
the phishers collect additional information that might not nec-
essarily be only for matching the authentication credentials
of the user. 74.2% third-parties sharing data in phishing sites
are known to be trackers. Overall, 91.4% (197,177) of the
phishing websites send the output of the fingerprints by using
new code (from first parties or additional third parties) that
does not exist on the target page.

Figure 3 shows the top trackers identified performing
fingerprinting-based tracking in phishing sites and their tar-
gets. While the top trackers observed on legitimate web-
sites [19, 60] are present in both cases, we also observe less
popular entries.For example, Histats, Kampyle, and 51LA,
(just to name a few) are not among the common trackers
observed in legitimate websites, due to their low prevalence.
This shows that phishers tend to use different trackers than
legitimate pages.

By performing the same analysis on content manipulation
cases, we found very similar patterns. On 66.8% of the phish-
ing pages, this behavior is performed by scripts from the site
itself (i.e., first party). In a similar manner, 73.5% of the third
parties are newly included, and were not present in the target
site the phishing page is mimicking. Of all phishing web-
sites that perform content manipulation calling fingerprinting
functions, 89.6% (196,010) use code that is directly included
by the phishing page itself or third parties not present in the
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Figure 4: CDF, functions per website (by resource type).

original targeted website.

Summary: Over 90% of the phishing websites that send
or store fingerprints, compute them from newly included
code (not present in their target site).

5.1 Fingerprinting Functions

We now look at the fingerprinting functions that are used by
the phishing sites in our dataset. We will focus on new finger-
printing code, as this is directly performed by the phishers,
and not simply inherited from the original website (e.g., due
to cut-and-paste) when developing the phishing page. Overall,
we find 75 distinct fingerprinting functions in the code of
phishing sites, 43 of which are basic and 32 advanced.

In total, our system identified 890,795 fingerprinting func-
tion calls throughout the data collection period. 65.9% of
them were triggered by first-party scripts. 24.1% of the calls
were instead performed by known tracking domains that did
not exist on the impersonated original webpages. The remain-
ing 10% of the functions were called by other third-parties
included by the phisher.

Figure 4 shows the distribution of the number of fingerprint-
ing functions invoked by the phishing websites. The graph
also breaks down the number of functions called by first-party,
tracker and third-party scripts. The average number of finger-
printing functions we observed in phishing pages is 6.3, 5.4
and 5.7 respectively. 10.2% of these phishing websites use
advanced fingerprinting functions. There is a clear increase
in the fraction of phishing websites that adopt advanced fin-
gerprinting techniques compared to the previous study which
analyzed phishing sites from 2018 (7%) [75]. Note that here
we report statistics about scripts that are not in the target web-
sites. If we include all cases, the number goes up to 24.6%.

In Tables 2 and 3, we list the basic and complex fingerprint-
ing functions most frequently used by phishers. 78.2% of the
phishing websites collect the UserAgent, 22.5% (44,445) the

USENIX Association 32nd USENIX Security Symposium    4163



Table 2: Top Basic Fingerprinting Functions

Fingerprinting Function Websites

navigator.userAgent 154205
screen.width 44445
screen.height 44072
navigator.appVersion 40528
date.getTimezoneOffset 40076
navigator.plugins 30864
screen.colorDepth 28894
navigator.appName 28120
navigator.language 27010
window.devicePixelRatio 25917
navigator.cookieEnabled 21427
navigator.javaEnabled 20780
navigator.platform 20521
navigator.vendor 17591
navigator.product 16067

screen width and 20.5% (40,528) accessed the appVersion.
These are among the most common basic fingerprinting tech-
niques. If we consider more advanced forms of fingerprinting,
such as using the canvas and webGL APIs (6% and 2% re-
spectively), and compare it with previous studies [75], we
observe a similar percentage for canvas, but we observe a
large increase in the usage of webGL fingerprinting (which
was previously reported as less than 1%). Among the tech-
niques that are less popular in our data, we can observe a long
tail of phishing sites that adopt advanced techniques such as
audio fingerprinting and font fingerprinting.

Summary: Out of the nearly 900k fingerprinting call we
analyzed, the vast majority originated from first party
scripts or newly included trackers. Phishers use a broad
range of APIs, both basic (e.g., almost 80% retrieve the
user agent) and advanced (e.g., 6% use canvas).

5.2 Target Brand Analysis

The phishing websites in our dataset impersonate the lo-
gin pages of 500 websites from 27 categories and 64 coun-
tries. Table 4 lists the categories that are targeted the most
by phishing websites that include additional fingerprint-
ing code. In the last column, we report the number of
phishing sites that called more than 3 distinct fingerprint-
ing functions. On average, 73% of the sites in these cate-
gories incorporated at least 3 fingerprinting functions, which
shows an alignment with unique identifiers generation activ-
ities [57]. Financial Services, Social Networking and
TechnologyInternet are the most targeted categories with
between half and three-quarters of them adopting complex
fingerprinting. Around 90% of the phishers call multiple func-
tions to create fingerprints when targeting companies from
Games and Online Chats, but less when targeting Shopping

Table 3: Top Advanced Fingerprinting Functions

Fingerprinting Function Websites

document.createElement("canvas") 12014
htmlcanvaselement.toDataURL 7943
webglrenderingcontext.getParameter 3642
webglrenderingcontext.getExtension 3189
intl.datetimeformat.resolvedOptions 2252
htmlmediaelement.canPlayType 943
element.getClientRects 678
RTCPeerConnection 520
audiobuffer.getChannelData 511
OfflineAudioContext 506
canvasrenderingcontext2d.measureText 480
animation.currentTime 467
Notification.permission 269
rtcpeerconnectioniceevent.candidate 258
console.memory 238

and Government/Legal websites, as their legitimate coun-
terparts include less too.

Table 5 presents the country-based breakdown of the tar-
gets. The most complicated fingerprints are created for compa-
nies in countries that do not get targeted as much. For instance,
all phishing sites targeting websites in Hungary incorporate
fingerprinting functions. Finally, in Table 6, we list the top
10 impersonated websites. As it can be seen, the phishing
websites that target more popular websites put more effort
to create richer fingerprints, as on average 81.6% of them
use more than 3 functions. Again, since some targets (such
as USPS) invokes less fingerprinting APIs on their website,
their phishing counterparts also include less fingerprinting
functions.

Summary: On average, over 80% of highly targeted
brands, categories or countries, implement more than 3
fingerprinting functions, as their benign counterparts do.

6 Comparing Phishing with Their Targets

In the previous section, we have shown that fingerprinting
is a prevalent phenomenon on phishing sites and the num-
ber of phishing websites that fingerprint their victims has
been increasing over the last couple of years. We also found
that various phishing websites perform different levels of
fingerprinting: while the majority mainly rely on basic finger-
printing functions, a significant fraction in our dataset (i.e.,
24.6%) adopt more sophisticated techniques such as canvas
fingerprinting, webGL fingerprinting and audio fingerprinting
– considered the most advanced techniques leveraged today
by trackers [35].

Malicious actors are already selling stolen fingerprints on
the dark web [45]. However, there is no way to know for sure
whether this is the case also for the ones we detected in our
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Table 4: The top categories targeted by phishers

Target # Phishing Sites >= 3 FPs Pct (%)

Financial Services 50932 32783 64.4
Social Networking 39773 28846 72.5
Technology/Internet 32322 21654 67.0
Government/Legal 11879 6342 53.4
Shopping 8966 3754 41.9
Online Chats 7546 6775 89.8
Business/Economy 5824 5150 88.4
Office Apps 2817 2467 87.6
Search Engines 2575 1840 71.5
Gaming 1220 1130 92.6

Table 5: The top countries targeted by phishers

Target # Phishing Sites >= 3 FPs Pct (%)

Unites States 118595 80870 68.2
France 14780 7342 49.7
Japan 10357 7361 71.1
United Kingdom 4707 3563 75.7
Netherlands 4282 3464 80.9
Germany 1950 1407 72.2
Canada 1768 1371 77.5
Colombia 1200 662 55.2
Australia 1110 763 68.7
Hungary 943 941 99.8

study. In fact, for obvious ethical reasons, we avoided pur-
chasing and searching for our data on the black market. What
we did instead was to compare the most frequent basic and ad-
vanced fingerprint API calls collected by phishing sites in our
dataset to those used by crimeware browsers. These browsers
are designed to bypass anti-fraud system (e.g., by modifying
fingerprints to match those of the victim) and are becoming
very popular among cybercriminals [6, 68]. A recent study
analyzed the Linken Sphere anti-detection browser and listed
the set of fingerprints it supports [56]. Undoubtedly, basic fin-
gerprints are included in the list, such as plugins and general
JavaScript Windows Navigator properties or screen emulation.
These are also the most popular basic fingerprints used by
the phishing pages under analysis (Table 2). If we compare
advanced fingerpints we also find a strong correlation, with
support for Canvas, Audio, WebGL, ClientRects, Fonts, and
WebRTC, all of which are present in Table 3. This shows that
the information collected by phishing sites can be used by
crimeware browser to better impersonate their victims.

In the previous section, we found that 91% phishing sites
include new scripts with fingerprinting activity that is not
observed on the original impersonated websites. Here, we
perform deeper investigation on this phenomenon and provide
more detailed comparison results between the phishing sites
and their targets.

Table 6: The top brands targeted by phishers

Target # Phishing Sites >= 3 FPs Pct (%)

Facebook 29462 21051 71.5
USPS 10728 5711 53.2
Instagram 10180 7702 75.7
Microsoft 9587 7730 80.6
Discord 7018 6425 91.6
Wells Fargo 3495 2954 84.5
SMBC 3448 2985 86.6
Orange 2761 2703 97.9
DHL 2750 2417 87.9
Citibank 2557 2209 86.4

Unfortunately, it is not possible to tell whether phishers use
these identifiers for authentication [10, 28, 45], or for tracking
purposes. A possible way to indirectly answer this question
is to look at what the target websites do. For instance, Lin et
al. [75] proposed a manual methodology to study the original
websites and separate their fingerprinting APIs in the two
categories. The authors created valid accounts on 16 victim
websites and then iteratively removed one by one each of the
fingerprinting functions – each time verifying whether the
authentication was still working. If they received an alert, this
proved that the information was used for authentication. If
not, they concluded it might be simply used for tracking. Even
if this methodology is very accurate, it can only be applied to
the victim website and not to the phishing page. Moreover, it
requires valid accounts (which are extremely difficult to get
in case of financial institutions or government organizations)
and therefore it cannot be scaled to analyze thousands of login
pages, as the case here presented.

While we cannot be certain that all functions found on
the legitimate website are used for authentication, it is still
interesting to compare this set of functions with the ones
adopted by their corresponding phishing sites. To make the
comparison more meaningful, we remove the targets that use
only a handful of functions. Following the approach followed
in Section 4, we adopt the threshold of over 3 fingerpints
and only focus on these targets for the rest of our analysis.
After filtering, 368 target websites remained, impersonated
by 218,611 different phishing pages.

At first, one might expect phishers to simply copy the ex-
act same fingerprinting functionality used by their targets.
However, this would be a poor and very time-consuming strat-
egy. Instead, we believe a better strategy would be to deploy
generic fingerprinting code snippets (or to provide them as
part of phishing kits), which could be easily reused for dif-
ferent targets. These templates could invoke a superset of the
fingerprinting functions used by legitimate websites – such
that attackers can later reuse this information for authentica-
tion without having to tediously reverse engineer each target
website individually. This seems to be the case for several
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Table 7: The Top 15 functions in target but not in its phishing
version (advanced fingerprinting marked with *).

FP Function Websites

rtcpeerconnectioniceevent.candidate* 72093
document.createElement("canvas")* 41063
canvasrenderingcontext2d.measureText* 37485
deviceorientationevent.gamma* 35047
canvasrenderingcontext2d.getImageData* 34022
webglrenderingcontext.getSupportedExtensions* 32526
navigator.doNotTrack 28431
htmlcanvaselement.toDataURL* 27852
navigator.product 25703
navigator.cookieEnabled 24672
navigator.maxTouchPoints 23752
navigator.mediaDevices 22683
window.matchMedia 22164
navigator.mimeTypes 21975
htmlmediaelement.canPlayType* 21504

black market tools, which are used for multiple sites and sup-
port multiple fingerprinting information [10, 28, 45].

According to our analysis, 20% (43,581) of the phishing
websites include all fingerprinting functions of the imperson-
ated webpage. From the targets’ perspective, 29.1% of the
login pages are targeted by at least one phishing page that
can match all its fingerprinting functions. Even though we
observe an increase in this trend, still a great fraction of the
phishing sites are not able to match the fingerprinting func-
tions used by their corresponding targets. Table 7 lists the top
fingerprint functions used by the targets but not by their cor-
responding phishing pages. As it can be seen, a considerable
number of advanced fingerprinting functions are not imple-
mented by the phishers (marked with an asterisk in the table).
One example being the fingerprint based on WebRTC and
the extraction of the internal IP, which 72,093 phishing pages
did not include even if it was present in the target website.
These results support our intuition about the optimal strategy
from the phisher’s perspective as they indicate that a small
fraction of the phishing sites put the effort to reverseengineer
the targets to match their fingerprinting choices.

In further support to our initial claim about the optimal
fingerprinting strategy of the phishers, we found that 65.1%
(142,384) of the phishing websites call additional fingerprint-
ing functions that do not exist in their targets at all. On aver-
age, the numbers of additional functions included is 5.7. In
general, 48.9% of them were invoked by first-party scripts,
30.9% of the times the script belonged to a known trackers,
and only 20.2% from third parties. Table 8 lists the most
common basic and advanced fingerprinting functions called
by the phishing websites but not by their targets. Notably,
36,200 of the phishing websites include additional canvas
fingerprint functions, for example. This phenomenon can be
directly related to the fact that many more target website are

Table 8: The Top 15 basic and advanced FP functions in
phishing websites that do not exist in their targets.

FP Function Websites

screen.width 61301
screen.height 51109
navigator.language 49382
navigator.appVersion 46373
navigator.platform 45179
date.getTimezoneOffset 43622
navigator.appName 41486
screen.colorDepth 40298
navigator.javaEnabled 31987
navigator.plugins 30155
screen.availWidth 26378
screen.availHeight 25347
navigator.vendor 23900
navigator.cookieEnabled 23753
navigator.mimeTypes 19819
...
document.createElement("canvas") 36200
htmlmediaelement.canPlayType 13311
htmlcanvaselement.toDataURL 13174
webglrenderingcontext.getParameter 9297
webglrenderingcontext.getExtension 5887
document.createEvent("TouchEvent") 5299
webglrenderingcontext.getContextAttributes 4630
intl.datetimeformat.resolvedOptions 3577
canvasrenderingcontext2d.isPointInPath 3532
webglrenderingcontext.getSupportedExtensions 3525
webglrenderingcontext.getShaderPrecisionFormat 3427
element.getClientRects 1632
OfflineAudioContext 1361
RTCPeerConnection 1070
canvasrenderingcontext2d.getImageData 980

starting to include advanced fingerprinting functions such as
canvas fingerprinting in their flows [32].

Summary: Nearly 30% of the targets have at least one
phishing page that matches their fingerprinting functions,
and 65% of the phishers invoke additional functions.

7 Who are the Heavy Fingerprinters?

One of the findings of our study is that some phishing pages
employ a large number of fingerprinting functions, up to 31
different ones. Since the likelihood of using the exact same
set is small, this information can be used to cluster phishing
pages together, and potentially attribute them to the same
phisher or phishing kit [30].

In an attempt to make accurate attribution, we experimen-
tally evaluated different thresholds and decided to adopt 10
different functions (twice the amount used by the average
benign websites [57]) as the threshold for identifying unique
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Figure 5: Number of websites in clusters, per month.

signatures that could be attributed to the same entity. Addi-
tionally, we require at least one of these functions to belong to
the advanced category and we remove cases in which all func-
tions are invoked by third-party scripts. In our dataset, 6.5%
(17,178) of the phishing websites satisfy these requirements.
Figure 5 presents the temporal evolution of these websites,
showing a steady increase during all months of our analysis.
This indicates that not only the general number of phishing
pages incremented during the analysis period, but that this
is also the case for those that can be clustered by using their
fingerprinting functionalities.

To increase the precision of the signatures we generate,
we look not only at the functions called, but also incorporate
the information about the callee. If the callee is a third
party, we include the domain name in our data struc-
ture (e.g., [canvasrenderingcontext2d.measureText,
domain.com]). If on the other hand, it is the first party, we
mark it as first. We then compute a cryptographic hash
of the list of ordered function and callee pairs to generate
the signatures. In total, we obtain 603 unique signatures
present in more than one phishing page, out of which 32
are observed in phishing sites that impersonate more than
one target brand. By analyzing the top fingerprinting APIs
invoked in these cluster, we found a very similar trend to the
one described in Section 5, with just some small changes
in the order. For example, navigator.javaEnabled and
Notification.permission are more common among
clustered pages than in the general phishing dataset.

7.1 Understanding Clusters
One important point for phishing websites is data harvesting.
The analysis of this process through the different clusters al-
lows us to better understand how these campaigns work. In
particular, we observed that scripts first retrieve the informa-
tion and compute the corresponding fingerprints, and then
immediately (milliseconds after, depending on the victim ma-
chine) send back the obtained data. As previously indicated,

Table 9: Top more prevalent signatures.

MD5 Signature FPs Targets Categories

19c0e2aec1..298838d452a4 31 15 7
4c81f54a77..6d9cabd3945d 27 8 3
52260cff2c..8b9a98697069 12 7 3
169a53d833..d71bd65b2199 11 3 1
ce1708c9ee..3645ab2240f8 16 3 2

attacker can perform this action using either GET/POST re-
quests or cookies. 81.3% (490) of the clusters harvest this
information by including it inside a request. A closer look
at those requests reveal that 72.7% of the cases are associ-
ated with parameters in GET requests, and the remaining
27.3% include them in the body of POST requests. Moreover,
18.7% of the clusters store the information in cookies that are
attached to subsequent page requests.

We also investigated the destination of those requests. Our
results show that all clusters send information to their own
domains (i.e., first party). Furthermore, 36.7% (221) of the
clusters also sent fingerprinting data to third parties. In this
case, we found that all those third party domain were classi-
fied as trackers according to the lists indicated in Section 3,
with Google being the most prominent one. These behaviors
indicate that attackers do not use certain domains as hubs
to collect data from different websites even if present in the
same cluster, and that they mainly really on first-party data
harvesting approaches.

Table 9 presents the signatures we observe most frequently
in our phishing data, along with the number of fingerprinting
functions they use, the number of different targets they im-
personate, and the number of website categories these target
belong to. The results show that phishers indeed seem to reuse
fingerprint code when they create phishing pages for multiple
of their targets and they do that across multiple targets, in
some cases up to 15 from 7 different categories. In the next
section, we will present two case studies where we manually
check the source code of the phishing pages and provide more
details about the campaigns.

In Tables 10 and 11 we report the categories and companies
most commonly targeted by the groups we identified. It is
interesting to see that the order of the categories is quite
different compared to the general category statistics provided
in the previous section. For example, the Technology/Internet
category surpasses the Social Networking category which
was the second most prevalent. The table also lists the most
targeted companies by the campaigns. The distribution is quite
diverse and includes a big tech company, a crypto exchange
service, a service provider, a bank, and a social network.
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Table 10: Top target categories in multi-target signatures.

Target Signatures

Financial Services 15
Technology/Internet 13
Social Networking 4
Search Engines 3
Business/Economy 2

Table 11: Top targets in multi-target signatures.

Target Signatures

Microsoft 7
Paxful 7
Orange 3
Wells Fargo 3
Facebook 3

7.2 Case Studies
To obtain a deeper understanding about the fingerprinting
practices of the phishers and how they reuse the fingerprint-
ing functionalities on different targets, we perform a deeper
investigation through two case studies. We chose the signa-
ture that targets the most number of targets (the first signature
in Table 9) and the runner-up signature in the same table for
our manual investigation.

During the crawling phase, we collected all information
related to each phishing websites – including source code,
HTTP headers, all scripts that were created and executed (even
if they were deleted afterwards), all fingerprinting analysis
results, and the page screenshot. This allowed us perform
a post-mortem manual analysis for a random sample of ten
phishing websites belonging to the two mentioned signatures.

Signature 1 (19c0e2aec1..298838d452a4)
All of the phishing websites included in this cam-
paign call exactly the same 31 fingerprinting functions,
and all calls are made by the first party (the web-
site itself). Our tool classified 88% of the fingerprint-
ing calls for content manipulation purposes. 44% of
them used advanced methods, such as webGL finger-
printing (e.g., webglrenderingcontext.getShaderPreci-
sionFormat), canvas fingerprinting, and audioFingerprint-
ing. Among the basic fingerprinting functions used by
these pages, some are used to obtain detailed information
about the device, such as navigator.mediaDevices and
navigator.maxTouchPoints and are not very common in
other phishing websites.

Some of the impersonated pages made exactly the same
calls, indicating that very likely attackers included these func-
tions to match the target webpages. Due to the high sophistica-
tion of the presented case study, we speculate that the attackers
may be saving the information used for content manipulation

also for fingerprinting.
This campaign target 15 companies (such as Apple, Steam,

M&T Bank, Citizens Bank, Discord, Instagram, Avito, or
CoinBase) in 7 different categories (Technology/Internet,
Games, Financial Services, Chat, Social Networking, Cryp-
toCurrency, and Shopping). This operation started in July
2021 and continued to create new phishing pages until the end
of our data collection period. The attackers launched phishing
attacks to target a specific company every month, and succes-
sive attacks were never overlapping as the attacker always
waited to finish a campaign before starting a new one. For ex-
ample, the Discord campaign ran only from mid-September to
mid-October 2021. We also looked at the domains used by the
phishers and found several cases of state-of-the-art techniques
such as typosquating (e.g., website and websiet), hyphenation
(e.g., website and web-site) or letter replacements (e.g., web-
site and weblte), all adopted to lure the victims not only by
impersonating the target webpage visually but also by creating
look-alike domains.

The JavaScript in the phishing websites is heavily obfus-
cated. Even so, we managed to reverse-engineer their code and
identify the fingerprinting activities detected by our crawler.
The 10 pages we manually reversed had almost exactly the
same source code, proving that they were created by the same
attacker group. We were able to confirm that the majority
of the functions (30 out of 34) are indeed used for content
manipulation (cloaking more specifically). The usage of such
a sophisticated fingerprint only for ensuring the access to the
webpage was only done by real users, shows the effort put by
the attackers for making their attacks as stealthy as possible.
When the user accesses the website a message in English is
shown to inform the user will be redirected shortly. The users’
whose browser language is configured to “ru-RU” are shown
the Russian version of the same text. It is interesting that in
all targets (except those that target Avito, a Russian website
that offers anything from general goods, to jobs, car or even
real estate), we observe this same language behavior.

Taking into account the profile of the impersonated web-
sites, it seems that the attacker targeted individuals that are
1) younger (e.g., Discord and Instagram), 2) Russian (e.g,
Avito and “ru-RU”), 3) interested in technology (e.g., Apple,
CoinBase), 4) living in US (e.g., M&T Bank and Citizens
Bank). Moreover, the attackers implemented very advanced
fingerprinting techniques and registered expensive domains
using state-of-the-art domain look-alike methods, hinting that
the phishers are well funded and knowledgeable.

Signature 2 (4c81f54a77..6d9cabd3945d)
For our second case study, we look at the runner-up signature
that also includes a large number of fingerprinting functions:
27. Unlike the previous campaign, in this case not all fin-
gerprinting calls are performed by first-party code. Precisely,
23.68% of the functions are called by the phishing websites,
and all are used for fingerprinting. Of these, 3 are canvas fin-
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gerprint functions. The remaining calls are instead invoked
by known trackers, such as Kliken.

This campaign targeted 3 categories: Social Networking,
Technology/Internet and Search Engines, and companies such
as Twitter, Orange, British Telecom, AOL, and Yahoo. We ob-
served pages belonging to this prolific campaign for the whole
analysis period of 21 months. Unlike the previous attackers,
campaigns against different targets were often overlapping.
For example, a British Telecom campaign lasted for more
than 2 months, in the middle of which the phishers also run
a one-week campaign against Yahoo. Also, for these attacks,
attackers do not purchase domains that could increase their
effectiveness. They used instead the free version of website
creator services and their sub-domains to host the phishing
websites. As a result, many of these pages were created at
zero cost, with no financial overhead.

We also checked the code of the phishing websites and
identified the adoption of heavy obfuscation techniques as
well. We reverse-engineered the pages to confirm they were
created by the same attacker (group). As we mentioned earlier,
the majority of the fingerprint is sourced by trackers. When
we looked at how web pages are created using the website
creation service, we saw that the webpage encouraged the
usage of tracking to perform analytics about the website.

The canvas fingerprinting that was made by the first party
exhibits instead an interesting behavior. While in general
more basic fingerprinting functions are used by this group,
the canvas fingerprinting is done multiple times with different
combinations to increase the precision of the created identifier.
In conclusion, given the lower sophistication and the multiple
overlapping campaigns against different targets, this could be
the result of a group of phishers using the same phishing kit.

8 Discussion and Conclusion

While phishing and browser fingerprinting are two research
areas that, independently, have been the focus of a large body
of research over the years, there is very little knowledge about
how intricate interconnections between the two subjects are.
In this paper we try to shed some light on current browsing
fingerprinting practices adopted by phishing pages. Are they
a common practice? How are they implemented? Do we see
an increase on fingerprinting adoption? Which API functions
are primarily used and for what purpose? Can we identify
fingerprinting patterns that are shared between phishing web-
sites? Can these patterns be useful for identify distinct groups
or campaigns?

The main finding of our paper is that fingerprinting is a
very common phenomenon in the phishing ecosystem, and the
adoption rates are constantly increasing (x2 increase during
the 21 months of our analysis). Today, 26.6% of the phishing
pages use browser fingerprinting functions, a percentage that
increases consistently among the most successful (in terms
of number of victims) phishing campaigns. We also observe

a different adoption depending on the specific targets, cate-
gories, countries, or even device types. For instance, phishing
pages aiming at both PC and mobile devices tend to include
more fingerprinting functions, granting attackers the ability
to obtain a wider range of data.

These techniques are either implemented by the phish-
ers themselves (i.e., first party scripts) or loaded from ex-
ternal sources. Sometimes the code is hosted as an attacker-
controlled external service, and other times it is implemented
by using well known web trackers. More concretely, over 90%
of the script following a fingerprinting intention, are newly
included code not present in the target. In fact, the choice
depends on the objective of collected data: phishers often go
beyond using basic approaches, and are starting to implement
advanced methods (24.6%) such as webGL, canvas or audio
fingerprinting, to refine the information needed for operations.

Next, we detail our analysis by attempting to automatically
identify the reasons behind the fingerprinting performed by
the phishers. It is important to point out that it is impossible
to provide a definitive answer, as that would require knowing
the exact actions taken by the attackers on the server-side. In
fact, the exact same fingerprint can be used for authentica-
tion bypass or for general tracking, or for both purposes at
the same time. Through our systematic analysis, however, we
were able to make an assessment and provide possible expla-
nations. For instance, we verified whether the victim website’s
use fingerprinting functions, and compare them to the one
extracted from the corresponding phishing pages. However,
due to the existing limitations to identify whether a website
incorporates fingerprinting as a multi-factor authentication
scheme [75] and to find the exact sequence of fingerprinting
functions used for it, we cannot be certain that the target web-
sites incorporate fingerprint for authentication and therefore
whether phishing websites match them intentionally to steal
the credentials. Instead, we perform comparisons between the
fingerprinting functions called by the target websites and the
phishing websites that impersonate them, and find that 29.1%
of the target sites have at least one phishing page that matches
all the fingerprinting functions. Therefore, if the targets used
multi-factor authentication, the phishers could generate the
correct authentication credentials for logins.

Lastly, in order to investigate the possible existence of dis-
tinct groups behind advanced phishing campaigns, we com-
puted a signature based on the list of fingerprinting functions
used by each site. We were able to extract 32 unique signa-
tures impersonating more than one target brand, matching up
to 15 targets from 7 different categories. Through a manual
analysis of some such cases, we discovered clusters that sug-
gest specific attacker groups with distinct modes of operations.
In summary, we performed the largest, most comprehensive
study of browser fingerprinting on phishing websites, allow-
ing us to expose many important insights that were previously
difficult or impossible to understand.
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Appendix

A. Fingerprint Computation
Early solutions [22] computed a browser fingerprint by incor-
porating features extracted from the HTTP headers, Javascript,
and the list of installed plugins. For instance, a fingerprint
can include information from the User-Agent, Content
encoding, and Content language headers, the list of plug-
ins [62, 67], and other browser configurations such as whether
cookies are enabled, the timezone, the screen resolution and
color depth, and the list of available fonts. Today, approaches

based on this information are commonly referred as “ba-
sic fingerprinting” [35], to distinguish them from more ad-
vanced forms of fingerprinting that were proposed later by
researchers [16, 33, 34, 46, 63]. For instance, canvas finger-
printing leverages the browser Canvas API, which provides
methods and objects to draw and create graphics on a canvas
drawing surface. Differences in the underlying graphic card,
operating system, fonts, sub pixel hinting, and version of the
browser make the canvas of each user unique, and therefore
a great candidate for fingerprinting [46]. Mowery et. al. [43]
explored instead the use of the WebGL API for fingerprinting
as they discovered that differences in the processing pipeline
could lead to different WebGL profiles. This motivated fu-
ture work to heavily utilize WebGL to identify unique de-
vices [16, 34]. The Web Audio API was also found to leave
unique traces that could be used for fingerprinting [23]. Fi-
nally, other methods are able to very accurately distinguish
machines, by detecting hardware imperfections, such as those
in the internal quartz crystal clocks used in modern comput-
ers [33, 63].

In summary, in this paper we consider basic fingerprinting
information those that are obtainable from general browser
objects (such as screen, navigator, Document, window, and
date) and advance fingerprinting anything else.

Browser fingerprinting is now such an important threat to
the Internet user’s privacy that the World Wide Web Con-
sortium (W3C) decided to test each new API for its finger-
printability before it is publicly made available [74]. In our
work, we implemented techniques to identify the adoption of
all state-of-the-art fingerprinting functions available to date
(more than 100) and measure their prevalence on the phishing
website ecosystem.
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