
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

TAP: Transparent and Privacy-Preserving
Data Services

Daniel Reijsbergen and Aung Maw, Singapore University of Technology
and Design; Zheng Yang, Southwest University; Tien Tuan Anh Dinh
and Jianying Zhou, Singapore University of Technology and Design

https://www.usenix.org/conference/usenixsecurity23/presentation/reijsbergen

TAP: Transparent and Privacy-Preserving Data Services

Daniël Reijsbergen† Aung Maw† Zheng Yang‡ Tien Tuan Anh Dinh† Jianying Zhou†

†Singapore University of Technology and Design, Singapore, Singapore
‡Southwest University, Chongqing, China

Abstract

Users today expect more security from services that handle
their data. In addition to traditional data privacy and integrity
requirements, they expect transparency, i.e., that the service’s
processing of the data is verifiable by users and trusted audi-
tors. Our goal is to build a multi-user system that provides
data privacy, integrity, and transparency for a large number of
operations, while achieving practical performance.

To this end, we first identify the limitations of existing ap-
proaches that use authenticated data structures. We find that
they fall into two categories: 1) those that hide each user’s
data from other users, but have a limited range of verifiable
operations (e.g., CONIKS, Merkle2, and Proofs of Liabili-
ties), and 2) those that support a wide range of verifiable
operations, but make all data publicly visible (e.g., IntegriDB
and FalconDB). We then present TAP to address the above
limitations. The key component of TAP is a novel tree data
structure that supports efficient result verification, and relies
on independent audits that use zero-knowledge range proofs
to show that the tree is constructed correctly without revealing
user data. TAP supports a broad range of verifiable opera-
tions, including quantiles and sample standard deviations. We
conduct a comprehensive evaluation of TAP, and compare it
against two state-of-the-art baselines, namely IntegriDB and
Merkle2, showing that the system is practical at scale.

∗This research / project is supported by the National Research Foundation,
Singapore, under its National Satellite of Excellence Programme “Design
Science and Technology for Secure Critical Infrastructure” (Award Number:
NSoE_DeST-SCI2019-0009), and by the National Research Foundation, Sin-
gapore, and Ministry of National Development, Singapore under its Cities
of Tomorrow R&D Programme (CoT Award COT-V2-2020-1). Tien Tuan
Anh Dinh is supported by the Singapore University of Technology and De-
sign startup grant, SRG ISTD 2019 144. Zheng Yang is supported by the
Natural Science Foundation of China (Grant No. 61872051). Jianying Zhou
is supported by A*STAR under its RIE2020 Advanced Manufacturing and
Engineering (AME) Industry Alignment Fund - Pre Positioning (IAF-PP)
Award A19D6a0053. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not reflect
the views of National Research Foundation, Singapore, Ministry of National
Development, Singapore, or A*STAR.

< < < < < < < < < <

0 1

00 01 10 11

chronological
prefix tree

sorted sum tree
for prefix 00

sorted sum tree
for prefix 11

Figure 1: TAP’s authenticated data structure.

1 Introduction

Many of today’s applications collect large amounts of user
data and make decisions that have a direct impact on the
user. One example is a utility company that collects power
usage data from users and charges them different rates based
on peak/off-peak periods per region. Another example is a
road pricing system that determines real-time traffic condi-
tions based on the number of cars on the road, and charges
motorists appropriate congestion fees. The third example
is an advertising service that monitors clicks and pays the
publisher for displaying the advertisement based on the click-
through rate. One desirable property of the applications above
is transparency [12, 27], which allows users to verify that the
computation done on their data has been executed correctly.
This property is stronger than simply ensuring data integrity,
as it protects users from malicious or compromised service
providers who ignore data or tamper with the computation.

One approach toward transparent data services is for the
provider to make the raw data available to users. For example,
the provider can use a public bulletin board to store the data.
Users can then perform computations directly on the data, but
they have no data privacy. This is unacceptable in applications
such as dynamic road pricing, as it would allow any user
to track the movements of other users using the raw data.
Alternatively, the service provider could store the data and
return only query results. For example, an advertising service
may have an API that returns the total number of clicks on an
advertisement over a given period. However, this approach

USENIX Association 32nd USENIX Security Symposium 6489

cannot guarantee transparency, which is troublesome when
the provider has a financial incentive to falsify query results.

Our goal is to build a data service system with the follow-
ing properties. First, it supports a wide range of queries that
compute aggregates over the data of many independent users.
Second, it protects data privacy from adversarial users. Third,
it protects data integrity and transparency from an adversarial
provider. Finally, it has a reasonable performance overhead,
and scales well when the number of users increases.

One important primitive for realizing our goal is the Au-
thenticated Data Structure (ADS) [33], which allows users
to detect incorrect results returned by the provider. However,
all ADS proposals in the literature fall into two broad cate-
gories, which both fall short in meeting our requirements. The
first category consists of approaches that guarantee privacy,
but support a limited set of queries. This category includes
transparency logs such as certificate transparency [20] and
its variants such as revocation transparency [21], extended
certificate transparency [31], Trillian [16], CONIKS [25], and
Merkle2 [18]. Transparency logs store data in the form of
key-value tuples and allow for public auditing. However,
transparency logs only support data insertion, removal, and
look-up operations, and thus fail to meet our first require-
ment. Also included in the first category are Proofs of Liabili-
ties (PoLs) [13, 19], which allow users to prove that certain
sums of user values are non-negative without revealing the
underlying values. The second category consists of SQL-
based authenticated databases such as IntegriDB [35] and
FalconDB [28]. These databases allow users to verify the
results of a wide range of SQL queries – i.e., sum, count, av-
erage, min, and max. However, they are either designed for a
single user [35], thus failing our first requirement, or make all
insert queries public [28], thus violating the second require-
ment. Other approaches exist that only support transparent
range queries [12, 27, 29] and hence fail the first requirement.

In this work, we present a Transparent and Privacy-
Preserving ADS named TAP, a data service system that meets
our four design goals. It addresses the limitations of existing
systems with a novel tree data structure, depicted in Figure 1,
that combines the features of existing approaches that are
best suited to our context. The data structure consists of a
chronological prefix tree (as in Merkle2), and each leaf in the
prefix tree is the root of a Merkle sum tree (as in PoLs) that is
sorted (as in IntegriDB). TAP adopts the same system model
as CONIKS and Certificate Transparency, in which individual
users monitor the inclusion of their data, and there exist some
auditors that verify the relevant properties – e.g., ordered and
append-only – of the data structure. The prefix trees enable
efficient monitoring and auditing, similar to the data struc-
tures of CONIKS and Merkle2. Meanwhile, the sorted sum
trees enable fast verification for a wide range of operations,
including sum, count, average, min, max, and sample standard
deviation queries. TAP also supports the quantile query [22]
that allows for the computation of fine-grained statistics, e.g.,

the median or the 5th percentile on sliding windows.
TAP is designed to store data from multiple users, thus

meeting the first requirement. It protects data privacy – the
second requirement – by storing cryptographic commitments
instead of raw data, and by publishing zero-knowledge proofs.
TAP’s Merkle tree structure ensures data integrity and allows
users to verify the correctness of a broad range of queries –
the third requirement – by generating Merkle proofs and zero-
knowledge range proofs for the commitments’ underlying
values. In our setting – i.e., a single data table in which aggre-
gates are computed over sliding windows – TAP has better
performance than previous systems, because it maintains one
single tree, as opposed to the many trees in IntegriDB, and
the tree is smaller than the tree in Merkle2. The computation
and bandwidth overheads of TAP are linear in the size of the
sliding windows, but logarithmic in the size of the entire tree.

To reason about the security of TAP, we require the fol-
lowing: that each user adds one data entry per time slot, that
the set of users (but not their data) at each time slot is known
to a super-auditor (e.g., a regulator or watchdog), and that the
fraction of adversarial users is bounded. We present a detailed
analysis of the properties of TAP in this setting, and find an
explicit tradeoff between transparency and privacy. We focus
on guaranteeing perfect transparency at the cost of revealing
query results, which cannot be trivially linked to user iden-
tities. In Appendix C, we discuss a method that guarantees
(ε,δ)-differential privacy [14]. Our final contribution is a full,
publicly accessible implementation of TAP, and we conduct
a broad range of experiments to evaluate its performance. We
compare TAP against two relevant baselines – Merkle2 and
IntegriDB. The results show that the system has reasonable
overhead, and that it outperforms the baselines in many cases.

Contributions. We make the following contributions:

1. We present a survey of existing ADS approaches, and dis-
cuss their limitations in today’s emerging applications.

2. We present TAP, a multi-user data service whose ADS
combines elements from CONIKS, Merkle2, IntegriDB,
and PoLs to protect data privacy and integrity, while
providing transparency to a wide range of operations.

3. We formally analyze TAP and prove that it only reveals
the results of queries.

4. We present a full implementation of TAP and evaluate
its performance. We compare it against two baselines,
namely IntegriDB and Merkle2, and show that TAP out-
performs the baselines in many cases.

Outline. The remainder of this work is organized as fol-
lows. Section 2 describes the system model, use case exam-
ples, threat model, and our design goals. Section 3 discusses
related systems built on top of ADSs. Section 4 presents TAP.
Section 5 provides security and performance analysis of TAP,
and discusses its current limitations. Section 6 contains the

6490 32nd USENIX Security Symposium USENIX Association

server

user 1 · · ·user 2

queries
responses

queries

(a)

auditor

server

bulletin
board

user 1 · · ·user 2

queries responses,
proofs

queries

digests digests

auditsdigests

(b)

Figure 2: Left: system model with a trusted server. Right:
TAP’s system model with an untrusted server.

detailed performance evaluation and comparison against two
state-of-the-art baselines. We discuss the practical aspects of
TAP in Section 7, and Section 8 concludes the paper.

2 Model & Requirements

In this section, we first discuss the general system and data
models. Next, we present three use cases for transparent data
services and discuss how they fit into our models. Finally, we
present the threat model and system requirements.

2.1 Model Entities
Our system model consists of the following types of entities:

Users. Users send data to the server and issue queries on
the aggregate data through a client. Each user monitors the
data structure by verifying that her data is properly stored
by the server and verifies that query results are computed
correctly. In practice, monitoring can be automated, e.g., the
app on the user’s mobile phone that shows bills or payments
can verify the displayed values by querying the server’s ADS.

Server. The server stores the data provided by the users
in a database, and maintains an ADS on top of the data. It
computes responses to user queries, and generates proofs for
the responses using the ADS.

Auditors. Auditors validate the server’s ADS. In particu-
lar, they verify that it is append-only, i.e., data is never modi-
fied or deleted, and that certain data has been sorted correctly.
We will discuss these checks in more detail in later sections.

Bulletin board. The server periodically publishes the di-
gest of its ADS to an immutable bulletin board, e.g., a public
blockchain. Users and auditors download the latest digests
during monitoring, auditing, and query verification. The only
goal of the bulletin board is to prevent equivocation – i.e., the
server presenting different versions of the ADS to different
entities – and can therefore be replaced by a gossip protocol
that would serve the same purpose.

Figure 2a displays a naïve design which assumes that the
server is fully trusted, hence allowing an unscrupulous oper-
ator to return incorrect query results. Figure 2b displays our
system model, in which the server is untrusted.

2.2 Data Model

We consider a simple relational data model. The schema con-
sists of the following attributes.

Time. Time is modeled as a sequence of epochs, i.e., time
slots such as hours or days, and is represented as an integer.

Value. This attribute contains the privacy-sensitive data.
For simplicity, we assume that they are non-negative integers.

ID. This represents the user ID associated with the value.
Type. These are string attributes that capture metadata

about users.
We denote the number of Type attributes by m, and the total

number of attributes in our schema by m′ = m+3. We assume
that there is one data entry per ID per epoch. This assumption
prevents a single adversarial user from arbitrarily skewing
query results, as we will discuss in Section 5. However, a
single entity may control multiple IDs, e.g., a single person
owning multiple cars for congestion pricing.

2.3 Use Case Examples

In the following, we present three illustrative use cases for a
transparent data service. In each case, the users receive bills
or rewards that are dependent on the recorded data, including
(potentially) the data of others. In all cases, the Time attribute
is the smallest time interval in which the billing or reward
rate remains the same. In the following, we discuss the key
features of each use case, including the ID, Value and Type
attributes, the typical scale of the system, and types of queries.

Smart Grids. Our first example is a smart grid that enables
peak/off-peak pricing, i.e., customers are billed at a higher rate
for power usage when system-level demand is high. In this
setting, each ID corresponds to a smart meter’s serial number,
and the Value to the customer’s power usage during the epoch.
Possible Type attributes include the customer’s geographic
location, and the customer’s type (industrial, commercial, or
residential). The service is maintained by the power retailer.
To illustrate the size of a typical smart grid, we consider SP
Group, which is the largest power retailer in Singapore with
1.6 million customers in 2022 [6]. For peak/off-peak pricing,
we record power usage once per hour. For the Type attributes,
we consider the 28 postal code regions of Singapore, and the
3 customer types mentioned above.

In this setting, the main design goal for a transparent data
service is to allow customers to verify their electricity bills.
Each customer’s bill for a given period T can be expressed
as the sum, over each epoch t in T , of the electricity price
in t multiplied by the customer’s power usage in t. The first
advantage of our data service is that it allows customers to
verify their usage and bills. However, a major advantage of
TAP is that it also enables more advanced pricing methods,
such as making the price dependent on the system-level power
usage [30]. The data service allows the users to verify claims
about the system-level through sum queries. Finally, the data

USENIX Association 32nd USENIX Security Symposium 6491

service allows for the computation of aggregate statistics, e.g.,
1) the average and standard deviation of power consumption
of all users within the same region, 2) the maximum and
minimum usage in a region during a given period, and 3) the
top 5% consumption across all residential users.

Congestion Pricing. Our second example is a system in
which vehicles are charged when they cross designated road
sections that are heavily congested during peak periods. To
detect vehicles, gantries with cameras are placed alongside
the designated road sections. Each ID corresponds to a pair of
vehicle and gantry IDs, and the Value to the number of times
the vehicle crossed the gantry during the epoch. Possible
Type attributes include the gantry ID and the type of vehicle,
e.g., car, truck, or motorcycle. As an illustrative example,
we consider the Electronic Road Pricing (ERP) system in
Singapore. As of 2022, the ERP system consists of 77 gantries
of which around 20 are located at the entries and exits of the
highly congested Central Business District (CBD) [2].

As in smart grids, the data service allows users to verify
their bills even for advanced pricing schemes. For example,
the price can be made dependent on the total number of regis-
tered vehicles that have crossed a gantry in an epoch, which
would act as a proxy for the real congestion in the system. An
even more advanced pricing scheme would make the price
of entering the CBD dependent on the sum of vehicle entries
into the CBD minus the sum of vehicle exits.

Digital Advertising. Our final example is a system that
rewards websites who display digital advertisements [8]. In
particular, a website owner receives a reward whenever an
advertisement displayed on the website is clicked.1 In this set-
ting, ID corresponds to a pair of website and ad IDs, and the
Value to the number of times the advertisement was clicked
on via the website (i.e., the click-through rate). Possible Type
attributes include the category and size of the website, or char-
acteristics of the advertisement. The advertisement platform
operates the server, while the website owners and advertisers
monitor their data entries. The biggest online advertisement
platform is Google Ads with millions of registered websites
and advertisers. However, there are also digital ad platforms
such as sixads [5] that serve around 100 000 websites.

The data service allows both the advertisers and the web-
sites to monitor the click-through data provided by the adver-
tising platform. This makes it easier to detect misbehavior,
e.g., the platform underreporting (or overreporting) the num-
ber of clicks to the website owner (or advertiser) for profit.
Finally, it enables more advanced reward schemes, e.g., in
which the total reward paid by any single advertiser is limited.

2.4 Threat Model
We consider two types of threats. The first consists of honest-
but-curious users who follow the protocol but try to learn

1This is a simplified version of online advertising, as advertisers and
publishers are often interested in more detail than just click-through rates.

the privacy-sensitive data of other users. The second is an
adversarial server who tries to falsify query results by tam-
pering with the data and/or query execution. This assumption
captures unscrupulous server owners, insider threats, and ex-
ternal attacks via software vulnerabilities. We do not consider
threats to privacy that stem from collusion between the server
and users, because the server is always free to send raw data
to adversarial users out-of-protocol. However, a limited set
of adversarial users may collude with the server to falsify
query results – this includes fake users created by the server.
We discuss how users disseminate information about server
misbehavior in Section 7.

We assume that all communication between the server and
honest users is done via secure channels. The auditors are
only trusted to validate the server’s structural properties of
the server’s ADS, but not individual data entries. In fact, the
trust assumption for auditors is the same as for users, i.e.,
any user with large computation and network resources can
also act as an auditor. In practice, we also assume that one
“super” auditor (e.g., a regulator) has the ability to verify
user identities, to prevent service providers from creating an
unlimited number of fake users. Finally, we assume that the
public bulletin board – or, alternatively, the gossip protocol
for users – is trusted and able to detect equivocation.

2.5 Requirements
Our goal is to design a system that meets the following require-
ments. Due to space constraints, we only present informal
definitions of the security requirements, and leave the formal
definitions to Section 5 and the appendix.

(R1) Rich operations for multiple users. The system
supports a wide range of operations (or queries) on the aggre-
gate data generated by multiple independent users.

(R2) Data privacy. A user can only learn a limited number
of other users’ values by performing queries.

(R3a) Data integrity. The server cannot change the data
without being detected.

(R3b) Transparency. For each supported query, the server
cannot convince the user to accept incorrect results computed
from incorrect, incomplete, or artificial data.

(R4) Efficiency. The computation, storage, and network
costs at the server and the user’s client are small. Query over-
heads grow sublinearly with the number of users and epochs.

3 Existing Solutions

In this section, we discuss existing approaches that par-
tially meet our requirements. We divide them into three cate-
gories: transparency logs, PoLs, and SQL-based authenticated
databases. Visual representations of various system models,
and several ADS designs whose features are incorporated in
TAP, can be found in Figure 4. We conclude the section by
discussing which requirements are met by these approaches.

6492 32nd USENIX Security Symposium USENIX Association

identity
provider

auditor

user 1 · · · user d

consistency
checks

read/write
queries

responses,
proofs

read/write
queries

(a) CONIKS

data
owner

server

user

raw
data ADS

public key,
digest

read
queries

responses,
proofs

(b) IntegriDB

server 2 server n

server 1

blockchain

user

read/write
queries

responses,
proofs

(c) FalconDB

Figure 3: System models of CONIKS, IntegriDB, and FalconDB.

∅
0 1

00 01 10

h0 h2 h3 h6 h7 h9 h10 h11

hi: hash of identity/public key commitment + other data

user 00’s
namespace

(a) CONIKS

cG

cE cF

cA cB cC cD

c1 c2 c3 c4 c5 c6 c7

v1 v2 v3 v4 v5 v6 v7

cA = c1 + c2 cD = c7

values vi, commitments ci, i = 1, . . . , 7

(b) Proofs-of-Liabilities

v1 v2 v3 v4 v5 v6 v7< < < < < <

k1 k2 k3 k4 k5 k6 k7

keys ki, values vi, i = 1, . . . , 7

m columns ⇒ O(m2) sorted trees

(c) IntegriDB and FalconDB

Figure 4: ADS designs of CONIKS, Proofs-of-Liabilities, IntegriDB, and FalconDB.

3.1 Transparency Logs
Transparency logs are append-only data structures whose
integrity is protected by a Merkle tree. They provide efficient
cryptographic proofs that show, e.g., that an entry is included
in the log, or that one log is a prefix of another log.

Certificate Transparency (CT). CT [20] addresses the
problem of compromised certificate authorities by publishing
the certificates on a transparency log. The system model of CT
consists of some certificate authorities who issue certificates
and insert them into the log, and users who search for specific
certificates in the log. CT relies on a monitor to ensure the
consistency of the log. The core data structure is a Merkle tree
in which the certificates are hashed and stored at the leaves,
and the server signs the root of the tree. CT has been extended
to support efficient verification of certificate revocations [21,
31]. It has also been generalized into an abstraction called a
verifiable log which is implemented as Google’s Trillian [16].

CONIKS. CONIKS [25] extends CT to support transpar-
ent name-to-key bindings. It allows for efficient proofs of
non-inclusion so that users can easily check for unauthorized
name-to-key bindings in their namespaces. CONIKS’ system
model, depicted in Figure 3a for a system with d users, is
similar to that of CT, but users are more active in monitoring
their key bindings. CONIKS uses prefix trees, depicted in
Figure 4a, for efficient non-inclusion proofs. It hides bindings
by storing only their commitments at the leaves. It also hides
the total number of users by adding dummy nodes.

Merkle2. Merkle2 [18] extends CONIKS through a data
structure that enables efficient auditing. The data structure
combines a chronological Merkle tree with prefix trees. The
leaves of the chronological tree only extend to the right
(append-only). Each internal node protects a set of leaves

in the chronological tree, and stores the root of a prefix tree
that has the same set of leaves.

3.2 Proofs of Liabilities (PoLs)

PoLs [13] are designed to prove solvency – i.e., assets be-
ing greater than liabilities – in a setting where users are
fully anonymous and their individual assets and liabilities
are privacy-sensitive. The main data structure in PoLs is a
Merkle sum tree, as depicted in Figure 4b, that stores addi-
tively homomorphic commitments to the values of assets and
liabilities in the leaves. Intermediate nodes store the sums of
the commitments in their children. To show that the sum of
assets and liabilities in the leaves is non-negative, PoLs use
zero-knowledge range proofs. PoLs were generalized in [19]
to use cases beyond proving solvency.

3.3 SQL-Based Authenticated Databases

IntegriDB. The system model of IntegriDB [35] is designed
for outsourced databases. In particular, the user uploads data
and metadata to an untrusted server, depicted in Figure 3b.
The server executes user queries and generates proofs based
on the metadata to show that the results are correct. IntegriDB
supports data insertions, join queries on multiple tables, mul-
tidimensional range queries, and sum, count, average, min,
and max queries. IntegriDB creates a sorted tree for each
column pair, resulting in 1

2 (m
2−m) trees for a table with m

columns, as depicted in Figure 4c. In each internal node of
the tree, IntegriDB stores a polynomial over the values in the
leaves of the internal node’s subtree. The polynomials enable
proofs that sum or range queries have been performed over

USENIX Association 32nd USENIX Security Symposium 6493

the correct set of leaves. Meanwhile, the sorted nature of the
trees allows users to verify min and max queries. Another
SQL-based ADS, vSQL [34], supports generic SQL queries
and has similar performance as IntegriDB.

FalconDB. FalconDB [28] combines IntegriDB with
blockchains. In FalconDB’s system model, depicted in Fig-
ure 3c, a smart contract maintains the ADS and ensures that
it is globally consistent. Queries are performed directly by
the servers, which run IntegriDB, without going through con-
sensus (except for insertions and removals). Users verify the
results by checking that the ADSs at the servers are the same
as in the blockchain.

3.4 Limitations of Existing Solutions
Transparency logs meet our requirements of multiple user
support, privacy, integrity, and efficiency. However, the range
of supported operations, namely insertion, deletion, inclusion,
and non-inclusion, is too limited to achieve R1. Similarly,
PoLs do not achieve R1 as they only support sum queries, but
not standard deviations, minima/maxima, or quantiles.

IntegriDB and Falcon achieve R3a, R3b, and R4, but can-
not support R1 and R2 simultaneously. IntegriDB’s system
model assumes that a single user generates the ADS correctly
before uploading it to the server. As such, IntegriDB can-
not be easily extended to support multiple independent users.
In particular, the server can maintain separate databases and
ADSs, but users cannot verify operations on the aggregate
data without building the data structures on the entire data by
themselves. The users must therefore know each other’s data,
i.e., the system cannot simultaxneously achieve R1 and R2.
FalconDB supports multiple users, but all data are stored on
the blockchain, thus it does not meet R2.

4 TAP

In this section, we describe TAP, a transparent data service
that overcomes the limitations discussed in Section 3.4. We
start by describing the main building blocks, and then explain
the core ADS and how it supports a rich set of operations.
Finally, we discuss how audits are performed in TAP.

4.1 Preliminaries
We use several cryptographic primitives. We only define them
briefly here due to space constraints, and refer readers to the
literature for their formal and complete definitions.

A hash function H takes as input a value x ∈ {0,1}∗ and
outputs a value in {0,1}lH , where lH is the output length of
the hash function. The function is collision-resistant if the
probability of finding two different inputs that produce the
same hash output is negligible.

A commitment scheme COM consists of two algorithms.
COM.SETUP takes as input a security parameter 1κ and out-

puts the commitment parameters Pc. Let Vc and Rc be the
sets of all possible data and random values, respectively.
COM.COMMIT takes as input the parameters Pc, a value
v ∈ Vc, and a random value r ∈ Rc (which we also call a
seed to avoid confusion with data values), and outputs a com-
mitment c′. COM is called hiding when c′ reveals nothing
about v, and binding when given a commitment of v and r,
it is computationally infeasible to find another v′ and r′ that
produce the same commitment. We use the shorthand no-
tation C(v,r) = COM.COMMIT(Pc,v,r), with Pc set during
initialization. The scheme is additively homomorphic if for
any v0,v1 ∈Vc and r0,r1 ∈ Rc, it holds that

C(v0,r0)+C(v1,r1) =C(v0 + v1,r0 + r1).

A non-interactive zero-knowledge proof system consists of
three algorithms. NIZK.SETUP takes as input a security pa-
rameter 1κ and outputs system parameters Pzk. NIZK.PROVE
takes as input the system parameters Pzk and a statement-
witness pair (s,w) and outputs a proof π. NIZK.VERIFY
takes as input Pzk, a statement s, and a proof π, and out-
puts TRUE or FALSE. The proof system NIZK satisfies zero-
knowledge if the generated proofs reveal nothing about the
witnesses, and simulation-extractability if for any proof gen-
erated by the adversary, there exists an efficient algorithm to
extract the corresponding witnesses with a trap door. In TAP,
we use NIZK over the following relation for the range proofs:

Rzk(vmax) = {(c,vmax),(v,r), |c =C(v,r)∧ v ∈ [0,vmax)}
We can prove statements of the form v ∈ [a,b] by proving
v−b+K ∈ [0,K] and v−a ∈ [0,K] for large K [11].

A Merkle tree is a binary tree in which each node i stores a
hash value hi. The hashes have the following structure. The
leaves contain the hashes of the values stored in the tree.
For the internal nodes it holds that hi = H(hLEFT(i) |hRIGHT(i)),
where | represents concatenation, LEFT(i) and RIGHT(i) re-
spectively return the left and right child of i (if there is no
child, they return 0), and h0 = (0)lH . Similarly, a Merkle sum
tree contains in each leaf i a commitment ci =C(v,r) where v
is the leaf’s value and r its seed, and each internal node i stores
ci = cLEFT(i)+ cRIGHT(i). Inclusion of a leaf node i in a Merkle
tree can be proven through a co-path, i.e., the sibling nodes
on the path between i and the tree’s root. The prover can use
the co-path and the leaf to rebuild the hash (or commitment)
in the root, and compare it to its known value.

A prefix tree is a binary tree in which each leaf corresponds
to a key-value pair (χ,φ) where χ is a bit string of length
lP. Each internal node i stores the key χi of length l′, such
that l′ < lP, and its left and right child nodes have the key
χi|0 and χi|1, respectively. A prefix tree is typically extremely
sparse, and we only need to store the internal nodes that are
on a direct path between a leaf and the root (which has key
/0). A prefix tree can be extended to a Merkle prefix tree by
including a hash of the last prefix bit and value in each leaf,
and the hash of the last bit and child hashes in internal nodes.

6494 32nd USENIX Security Symposium USENIX Association

Time ID Type Value
0 Alice residential 11
0 Bob residential 24
0 Carol residential 13
1 Alice residential 19
1 Bob residential 26
1 Carol residential 27
1 Dave residential 26
1 Erin industrial 36

Table 1: Illustrative data for Figure 5.

4.2 Data Structure

The ADS in TAP combines a single Merkle prefix tree (as in
Figure 4a) with multiple sorted Merkle sum trees (which com-
bine the key features of Figures 4b and 4c). The key of each
leaf i in the prefix tree corresponds to a unique combination
of values of the Time and Type attributes, whereas the value
of i is the root hash of a sorted Merkle sum tree. This Merkle
sum tree is constructed from the Value attributes of the data
whose Time and Type attributes are equal to the prefix tree
leaf’s key. The tree is sorted by the values of its leaves in
ascending order. Each leaf not only stores the raw value v,
but also v2,v3, . . . ,vz for some system-wide integer z. These
values enable the computation of advanced statistics (e.g., the
standard deviation), while having no impact on the ordering
because xk is monotonically non-decreasing for x,k ≥ 0.

The prefix tree is stored in memory, whereas the full table
is stored in a SQL database. We do not keep the Merkle sum
trees in memory except for their root hashes, which are stored
in the prefix tree leaves, because the Merkle sum trees are
easily constructed on-the-fly during queries.

The data structure in TAP is initialized as follows. For
simplicity, we assume that the server takes as input a table
consisting of initial data from multiple users. Given a table
with Time, ID, Type, Value attributes, the server generates
a random seed ri for each row i and stores it as a new at-
tribute Seed. The server then computes the sets of all unique
combinations of values of the Time and Type attributes; we
denote this set by S . For each unique value tuple s ∈ S , we
determine the array Vs = (vs i)i=1,...,|Vs| that contains the Value
attributes of the rows whose Time and Type attributes match
the elements of s. The server sorts Vs in ascending order, i.e.,
vs i ≤ vs i+1 for all i = 1, . . . , |Vs|−1. Let ui be the ID attribute
of the row with corresponding Value vi. For each s ∈ S such
that |Vs|> 0, the server creates a Merkle sum tree where the
ith leaf contains the following values: 1) ci j = C(v j

i ,ri) for
j ≤ z, where vi ∈Vs and ri is the corresponding Seed attribute,
2) li = 1, and 3) hi = H(ci1| . . . |ci z|H(ui,s0)). For the empty
node 0, we choose c0 = C(0,0), l0 = 0, and h0 = H(0). In-
formally, ci j contains the commitment of the ith value (in
ascending order) to the power j, li contains the count, i.e., the
number of leaves in the subtree rooted at the node (which is
always 1 for the leaf nodes), and hi contains the leaf’s hash.

Each internal node i contains the following values:

∅
1

00 10 11

D E F

A B C

i ii iii iv v vi vii viii
c1: 11 13 24 19 26 26 27 36
...

...
...

...
...

...
...

...
...

cz: 11z 13z 24z 19z 26z 26z 27z 36z

lA = 2
cA 1 = ci 1 + cii 1

...
cAz = ci z + cii z

hA : H(hi|hii|cA 1| . . . |cAz|lA)

lD = 3
cD 1 = cA 1 + ciii 1

...
cD z = cAz + ciii z

hD : H(hA|hiii|cD 1| . . . |cD z|lD)

h10 : H(0|hE)

h1 : H(1|h10|h11)

Figure 5: TAP’s ADS after inserting the 8 rows from Table 1.

1) ci j = cLEFT(i) j + cRIGHT(i) j 2) li = lLEFT(i) + lRIGHT(i), and
3) hi = H(hLEFT(i)|hRIGHT(i)|ci1| . . . |ci z|li). The hash in the
root of the sum tree is stored as the value in the prefix tree leaf
whose prefix is the bit concatenation of the Time and Type
values. After initialization, the server sends the initial digest
δ0, which is the hash of the Merkle prefix tree root, to the bul-
letin board. For every value vi that is inserted, the server sends
the random value ri in the corresponding commitment to the
user, which the user can later use to verify the commitment.

For example, Figure 5 depicts the ADS after processing the
rows from Table 1, if ‘residential’ and ‘industrial’ are mapped
to 0 and 1, respectively. Each sum tree leaf node (denoted
by i, . . . ,viii) contains the commitments c1 . . . ,cz of a Value
column entry, and h and l = 1 as discussed previously. The
intermediate sum tree nodes A, . . . ,F contain the values l,
c1 . . . ,cz, and h computed from their child nodes. The prefix
tree nodes /0, . . . ,11 contain hash values, and each prefix tree
leaf corresponds to a unique combination of Time/Type values.
In this case, S = {(0,0),(0,1),(1,0),(1,1)}, but there are no
rows for which Time and Type respectively equal 0 and 1
(‘industrial’) – as such, only three leaves (00, 10, and 11) are
stored in the prefix tree.

4.3 Queries
Insert. As mentioned in Section 2.2, only one new entry
per user ID can be inserted into the tree per epoch. To insert
the entries of epoch t > 0, the server computes St , the set of
unique combinations of values of the Type attributes, right-
concatenated with the epoch t. It then determines the value
sets Vs for each s ∈ St , and constructs the Merkle sum trees
whose leaves are the sorted values in Vs. Next, it inserts for
each s for which |Vs| > 0 a new key-value pair (χs,φs) into
the existing prefix tree, where χs is the the bit string that
represents s, and φs is the root hash of the corresponding
Merkle sum tree. The server sends the digest δt , i.e., the root of
the updated Merkle prefix tree, to the bulletin board. Finally, it
sends to each user i the random value ri. Since the leading bits

USENIX Association 32nd USENIX Security Symposium 6495

in the prefixes correspond to the Time attribute, the prefix tree
is sorted chronologically. As in Merkle2, this allows auditors
to efficiency verify that the tree is append-only.

Look-up. The user can search for the value v tied to her
ID and seed for a given specific Time attribute t. The server
executes the query on the SQL database, and if it finds a result
then it generates a proof π = (v,π1,π2) as follows. First, it
computes a prefix χ using t and the user’s Type attributes.
Next, it constructs the Merkle inclusion proof π1 for the leaf
(χ,φ) in the prefix tree, where φ is the value for key χ. It then
produces another inclusion proof π2 for the value C(v,r) in
the Merkle sum tree whose root is φ. The user then verifies
the proof by requesting the digest δt from the bulletin board,
computing c =C(v,r), and verifying that the inclusion proofs
are correct with respect to c and the digest.

If no data entry is found, then the server generates the
following non-existence proof: π = (π′,N∗,(h′i)i∈N∗) First,
it computes a prefix χ as above, and constructs the Merkle
inclusion proof π′ for the leaf (χ,φ) in the prefix tree, where φ

again is the value in the leaf with prefix χ. Let N∗ be the set of
leaves in the Merkle sum tree whose root is φ. For each node
i∈N∗, the server also computes h′i =H(ui|t). The user’s client
verifies the proof by checking the prefix tree inclusion proof,
and checking for all leaves i ∈ N∗ that hi = H(ci1| . . . |ci z|h′i).
Finally, it rebuilds the sum tree root from the leaves and
checks that it matches φ.

Range cover. Range queries are a subroutine of aggregate
queries. Since TAP does not reveal individual data entries to
unauthorized users, the server returns the set of prefix nodes
that cover all entries in the specified range. In particular, the
query contains S∗ = (tmin,smin

1 , . . . ,smin
m , tmax,smax

1 , . . . ,smax
m)

where tmin corresponds to the smallest value of the Time at-
tribute in the range, tmax to the largest value, and smin

1 ,smin
2 , . . .

and smax
1 ,smax

2 , . . . correspond to the Type attributes. The
server returns a set containing each prefix node i for which
it holds that the subtree rooted at i contains the data entries
whose Time and Type attributes overlap with S∗.

To produce a proof, the server calls the function
ExtendRangeProof as described in Algorithm 1 in Ap-
pendix A with the root of the prefix tree, /0, and S∗ as input
arguments. This function recursively calls itself on the node’s
children. Given a set N′, the client requests the digest δt from
the bulletin board and verifies the following properties: N′ is
properly formed (i.e., all hashes follow from the child hashes),
the root node included in N′ has a hash that equals δt , and
these nodes completely cover S∗.

Sum/Count/Average/Standard Deviation. A user can
query the sum and count of the values over a given range
S∗ defined as above. The server executes the query and gener-
ates the following proof:

π = (N′,L′,r∗,v∗1, . . . ,v
∗
z ,(h

′
i,ci1, . . . ,ci z, li)i∈L′).

In particular, it first computes the range cover proof N′ by
calling ExtendRangeProof from Algorithm 1 on the prefix

∅
1

00 10 11

D E F

A B C

i ii ii iv v vi vii viii

11 13 24 19 26 26 27 36

range cover proof,
reveal r∗, v∗1 = 182, v∗2 = 4604
reveal l∗ = lD + lE + lF = 8,

reveal cD 1 + cE 1 + cF 1 = C(182, r∗),
reveal cD 2 + cE 2 + cF 2 = C(4604, r∗)

Figure 6: Example of a sum query in the ADS of Figure 5.

tree root. It then computes the sums v∗1, . . . ,v
∗
z and the total

seed r∗ of the covered data entries. Let L′ be the set of leaves
of the prefix tree in N′. The server then determines for each
i ∈ L′ the child hash h′i = hLEFT(i)|hRIGHT(i), the commitments
ci1, . . . ,ci z, and the leaf count li.

Given π, the user’s client first initializes c∗j = C(0,0) for
j = 1, . . . ,z, and l∗ = 0. Next, it verifies the range cover proof
N′, then checks for every node i ∈ L′ whether it holds that

φ(i) = H(h′i|ci1| . . . |ci z|li),

i.e., whether φ(i), the value stored in prefix tree leaf i, is con-
structed as expected from the child hash, commitment, and
leaf counts. If so, it updates c∗j to c∗j + cn j for all j = 1, . . . ,z
and l∗ to l∗+ li. Finally, it checks that c∗j =C(v∗j ,r

∗) for all
j = 1, . . . ,z. If so, the user can compute statistics such as the
sum v∗1, count l∗, and average v∗1/l∗. It also enables the com-
putation of more complex query results such as the sample
standard deviation, i.e.,

√
(v∗2− (v∗1)2/l∗)/(l∗−1).

Figure 6 visualizes the response to a sum query over all
values in Figure 5. The server first reveals the range proof,
which is the entire prefix tree as the sum query covers the
entire dataset. Next, the server reveals l∗ = 8, v∗1 = 182, and
v∗2 = 4604, which are verified by the client. This allows the
client to compute, e.g., the average (22.75) and the sample
standard deviation (≈8.137).

Min/Max. A user can request the min value over a range
S∗ at epoch t, after which the server returns a proof

π = (N′,L′,v∗, i∗,(ci1, . . . ,ci z,h′i,π
′
i,π
∗
i)i∈L′).

Here, N′ is the proof of the range query, L′ the set of prefix
leaf nodes in N′, v∗ the minimum value in the range, and i∗

the index of a prefix tree leaf whose sum tree contains v∗. For
each node i∈ L′, ci1, . . . ,ci z are the commitments of the value
in the leftmost leaf in the sum tree of prefix tree leaf i – since
the nodes are sorted, the leftmost leaf must have the smallest
value in the sum tree. The hash h′i equals the hash H(u|t),
such that u and t are the user ID and time in the leftmost leaf.
Each inclusion proof π′i, i ∈ L′, asserts that the sum tree leaf
with hash H(ci1| . . . |ci z|h′i) is included in the sum tree whose
root is stored in prefix tree leaf i. The zero-knowledge range

6496 32nd USENIX Security Symposium USENIX Association

proofs (π∗i)i∈L′ are as follows: if i = i∗, then the underlying
value in the leftmost leaf must equal v∗, so π∗i asserts that
ci1’s underlying value is in the range [v∗,v∗+1).2 Otherwise,
π∗i asserts that this value is in the range [v∗,∞).

Given π, the user’s client first checks whether the range
cover proof N′ is correct. It then verifies for all i∈ L′ that π′i is
a valid inclusion proof for the leaf with hash H(ci1| . . . |ci z|h′i),
and that this leaf is indeed the leftmost leaf in the path. Next,
it verifies the range proofs. By treating i∗ as a separate case,
we guarantee that at least one sum tree contains the value v∗

in the leftmost leaf. If all checks succeed, the user accepts v∗

as the min value. The above is straightforwardly generalized
to max queries by proving that the value in the rightmost sum
tree leaves is at most equal to the maximum value v∗.

Quantile. A user can request a quantile by specifying
a range S∗ and a parameter q ∈ [0,1] that indicates which
quantile to compute. A value x is a q-quantile of a set V with
n entries if there are at least nq entries in V whose value is at
most x and at least n(1−q) entries whose value is at least x.
The server executes the query and returns the proof

π = (N′,L′,v∗,(π′LEFT i,π
∗
LEFT i,π

′
RIGHT i,π

∗
RIGHT i)i∈L′).

Here, N′ is the proof of the range query, L′ the set of leaf nodes
in N′, and v∗ the result of the query. For each i ∈ L′, the server
determines LEFTMOST(i,v∗), which is the leftmost leaf in the
sum tree corresponding to i whose value is at least v∗, if such a
leaf exists. It computes the inclusion proof π′LEFT i for this leaf,
and a zero-knowledge proof π∗LEFT i asserting that its underly-
ing value is at least v∗. Next, it determines RIGHTMOST(i,v∗),
which is the rightmost leaf in i’s sum tree whose value is at
most v∗, if such a leaf exists. It then computes the inclusion
proof π′LEFT i for this leaf, and a zero-knowledge proof π∗LEFT i
asserting that its underlying value is at most v∗.

Given π, the user first checks that the range cover proof
N′ is correct. It then iterates over the nodes i ∈ L′, where
L′ is the set of leaf nodes in N′, and verifies their inclusion
and range proofs. The co-path of the Merkle tree inclusion
proof includes the leaf count li′ for each node i′ on the co-path;
therefore, the user knows for each node on the co-path whether
its leaves are to the right of LEFTMOST(i,v∗). Let LLEFT(i) be
the number of leaves to the right of node LEFTMOST(i,v∗)
in the sum tree. Let LRIGHT(i) be the number of leaves to the
left of RIGHTMOST(i,v∗) in the sum tree. The user verifies
that ∑i∈N′ LLEFT(i)≥ nq and ∑i∈N′ LRIGHT(i)≥ n(1−q), and
accepts the result v∗ if the verification is successful.

Figure 7 visualizes the response to a query for the median
(i.e., the 1

2 -quantile) over all values in Figure 5. In this case,
the server can choose any value in the interval [24,26] as a
valid median, e.g., v∗ = 26. The server first shows that the
rightmost leaf in the subtree for prefix ‘00’, and the third leaf
for prefix ‘10’, have v≤26. The client uses the l-values in the
inclusion proofs to determine that there are at least 4 nodes to

2Alternatively, the server can reveal the random value associated with v∗.

∅
1

00 10 11

D E F

A B C

i ii ii iv v vi vii viii

11 13 24 19 26 26 27 36

range cover proof

inclusion,
zk-range ≤ 26

inclusion,
zk-range ≥ 26

inclusion,
zk-range ≤ 26

inclusion,
zk-range ≥ 26

Figure 7: Example of a quantile query in the ADS of Figure 5.

the left of these nodes, which means that at least 6 leaves have
v≤26. Finally, the server shows that the second leaf for prefix
‘10’ and the leaf for prefix ‘11’ have v ≥26. As there are 2
leaves to the right of the former leaf, there are at least 4 leaves
with v≥26, which proves that v∗ = 26 is a valid median.

4.4 Auditing
The auditor requests the server to generate proofs that show
that the tree is append-only and that the sum trees are sorted
by the leaf values. For the proof that the tree at epoch t is
constructed from the tree at epoch t ′ < t in an append-only
manner, the server includes each prefix tree leaf i whose Time
attribute s′i has t ′ < s′i ≤ t. Furthermore, it sends a set of inter-
nal nodes from the tree at t ′ such that the root of the tree at
t can be rebuilt from the hashes in these nodes. (This is ana-
logous to the procedure in Section V.A of [18].) The auditor
then requests the digests δt ′ and δt from the bulletin board
and checks that it can rebuild the two trees using the new
leaves and the old internal nodes. To prove that the leaves
in a sum tree with values v1, . . . ,vn∗ are sorted, the server
does the following. For each i = 1, . . . ,n∗−1, it generates a
zero-knowledge range proof that vi+1−vi ≥ 0 (this is possible
because NIZK’s underlying commitment scheme is additively
homomorphic), and sends the proofs to the auditor.

5 Analysis

In this section, we discuss how TAP meets the requirements
presented in Section 2.5. The server handles data from mul-
tiple users and supports a broad range of queries – i.e., all
single-table queries supported by the baseline approaches, and
additionally quantile queries. In order words, TAP satisfies
requirement R1. In the following, we discuss TAP against
requirements R2, R3a, R3b, and R4 in more detail. Due to
space limitations, the formal security definitions can be found
in the appendix, which we mention in the text when needed.

5.1 Security (R2, R3a, and R3b)
Privacy. We discuss the impact on privacy of each of the
supported operations separately.

USENIX Association 32nd USENIX Security Symposium 6497

Look-up: an inclusion proof reveals a single value in a
sum tree, but only if the user already knew that this value was
included. A non-inclusion proof reveals a set of commitments.

Audit: reveals the prefix tree and the commitments in the
sum trees, neither of which are privacy-sensitive.

Sum/count/average: reveals the sums over the values in
the sum trees that correspond to the prefix leaf nodes in the
requested range, but no individual values.

Min/max: reveals one unique value, namely the mini-
mum/maximum value across the requested range, and the
sum tree that contains this value.

Quantiles: reveals a value that may correspond to a sin-
gle unique value in a tree, depending on the values in the
requested range and the choice of the server (e.g., if the re-
quested range contains the values (1,2,3,4), then any value in
the interval [2,3] is a median, but if it contains (1,2,2,3) then
2 is the unique median which is therefore revealed). However,
it does not reveal which tree(s) (if any) contain this value.

TAP queries can leak other values in two cases: the sum if
the number of values in a sum tree is very low, and the quantile
query if a user is allowed to perform an unlimited number of
queries. This follows from the following two theorems, which
are proved in Appendix B.

Theorem 1. If a sum tree has n leaves and f values are known
by a coalition of users, then the remaining n− f values can be
decrypted if and only if n− f < 2, regardless of many queries
are executed.

Theorem 2. If a sum tree has n leaves and at most f arbitrary
quantile queries can be performed, then at most f values can
be decrypted.

The privacy properties are proven in Appendix B through a
formally defined game, GamePrivTAP,A , in which the adversary A
wins if she is able to distinguish the user behind the revealed
values. Given Theorem 1 and 2, privacy can be achieved in
practice if the server refuses to respond to sum queries over
trees that have a limited number of leaves, and by restricting
the range of values q over which q-quantiles can be performed.
Since the server can efficiently prove claims about the number
of leaves in the sum trees (which is the same as proving the
result of a count query), the server cannot refuse to respond to
valid queries without being detected. In this case, the sum and
quantile queries reveal at best a limited number of values. The
other query types either reveal one (min/max) or zero (count)
values per query, so in this case a limited number of values are
returned by default. Note that the querying language in TAP
does not allow users to query sums of subsets within a single
sum tree, so a sum query reveals nothing about a sum tree
except the sum over all of its values. Finally, a prohibitively
large number of look-up queries would be necessary to reveal
a value that is unknown to the user, as the user would have to
guess both the value and the random seed correctly.

In Appendix C, we discuss strategies to achieve stronger
privacy at the expense of transparency by adding noise to

noise type transparency privacy

no noise / return
true result

query result is always
provably accurate

limited number of
values are revealed

add bounded
random noise

query result is accurate
within some margin

(ε,δ)-differential
privacy, δ > 0

add unbounded
random noise

results can be
arbitrarily distorted

provable ε-differential
privacy

Table 2: Overview of the impact of adding noise to measure-
ments on integrity and privacy.

query results. If this noise has a protocol-wide bound b, then
the server can efficiently prove that the claimed result is no
further than b away from the true value using zero-knowledge
range proofs for all types of queries. If the noise is unbounded,
then we can prove ε-differential privacy [15, 32]. However,
unbounded noise allows a malicious server to arbitrarily dis-
tort results, which violates transparency (the threat model for
differential privacy assumes that the server is honest). On the
contrary, if the noise is bounded then the mechanism may
satisfy the notion of (ε,δ)-differential privacy. A summary
can be found in Table 2.

Integrity. Honest users monitor the inclusion of their data
in each epoch by issuing look-up queries for their own entries
and verifying the inclusion proofs. Therefore, if the server
tries to add incorrect data for an honest user in an epoch, then
it will be detected. Furthermore, the server cannot modify
data from previous epochs, as this will cause the extension
proof to fail during an audit. In Appendix B, this is formalized
using the game GameTransTAP,A , in which the adversary wins if
she able to convince the user to accept a modified value, and
which is used to prove both integrity and transparency.

Transparency. For each type of query supported by TAP,
the user can verify that the result is correct. For look-up
queries, the user is provided with inclusion and non-inclusion
proofs. For sum queries, the user is given inclusion and com-
pleteness proofs of the relevant nodes in the prefix tree, with
which it can verify the sum by exploiting the additively ho-
momorphic property of commitments in TAP. For min, max,
and quantile proofs, the user is given zero-knowledge range
proofs that assert that the committed value is greater than all,
none, or a specified number of the total nodes in the specified
range. As the cryptographic primitives are secure, the server
cannot convince users to accept incorrect results.

For adversarial or fake users who collude with the server,
the server is free to add arbitrary data. As such, sum, average,
min, and max queries can be arbitrarily distorted: for example,
if the true sum is v and the server wants to increase this to
v′ > v, then the server can select a single adversarial user i
whose true value is vi and increase it to v′−v+vi. However, to
distort a q-quantile query over a range with n values, a server
would require collusion with at least max(q,1−q)n users. As
such, quantile queries are inherently more robust than sum,
min, and max queries. To mitigate the impact of adversarial

6498 32nd USENIX Security Symposium USENIX Association

users on sum queries, the server can make the decision to
bound all individual values by an individual bound γ > 0.
This may be of interest in use cases where extremely high
values are unlikely – e.g., the smart grid or congestion pricing
use cases of Section 2.3. In such, cases, the degree to which
sum query results can be distorted is also limited: if f out of
n users are adversarial, then the maximum possible distortion
is f γ. Auditors can check that all individual measurements
are below γ through zero-knowledge range proofs. A similar
approach was recently proposed in [30].

5.2 Performance (R4)

Table 3 compares the asymptotic costs of queries in TAP to
related systems. Here, n denotes the number of data rows, m
the number of Type attributes (i.e., columns), d the number
of users, and t the number of epochs (i.e., n = O(td)). For
queries that compute an aggregate over a range, w denotes the
number of epochs in the range.

Storage. For storage costs, we consider both the size of
the ADS and the underlying dataset, which has size O(mn).
TAP stores only the prefix tree, which has O(n) nodes, in
memory and generates sum trees on-the-fly. The storage costs
for TAP are smaller than those in the other systems except
for CT. CONIKS regenerates the entire tree after each epoch,
so the storage cost of the ADS is O(tn) [18]. Merkle2 uses a
bigger tree than TAP because the internal nodes of Merkle2’s
chronological tree store prefix trees. IntegriDB and FalconDB
create a sorted tree for every combination of columns, leading
to a total storage cost of O(m2n).

Insertion. Insertion is performed once per epoch with up
to d entries. The server needs to insert O(d) new leaves into
the prefix tree and a commitment tree has to be built for each
prefix tree leaf. Since the cost of inserting a new entry into
the prefix tree is O(logn), the total cost is O(d logn). TAP
has a higher insert cost than CT, CONIKS, and for reasonable
values of n also than Merkle2. However, TAP performs better
than IntegriDB and FalconDB because they need to perform
one insert for each of the m2 trees in their ADS.

Inclusion proof. To prove that a data entry exists in the
tree, the server has to generate an inclusion proof for a prefix
tree leaf, generate the corresponding sum tree, and generate
an inclusion proof of the data value in the sum tree. The cost
of the first and third steps is logn, and the worst-case cost of
the second step is O(d). Thus, the total cost is O(d + logn).
CT, CONIKS, Merkle2 are faster at generating the proof be-
cause they do not have to rebuild subtrees. In other words,
TAP can improve at this cost by keeping all the sum trees in
memory, at the cost of storage. However, we prioritize storage
reduction by generating the sum trees on-the-fly, as look-ups
are normally only performed once per user per epoch.

Non-inclusion proof. Non-inclusion proofs are similar to
inclusion proofs, except that all leaves in the sum tree are in-
cluded, of which there are d in the worst case. The asymptotic

cost is therefore O(d + logn). TAP performs better than CT,
IntegriDB, and FalconDB for this proof. However, it performs
worse than CONIKS and Merkle2. This is to be expected
as non-inclusion proofs are heavily optimized in these two
systems because it is one of their main use cases.

Auditing. To audit a single epoch, the auditor has to verify
the append-only proof and range proofs for the sum trees. The
former costs O(d log(n)), and the latter costs O(d). There-
fore, the total cost is O(d log(n)). Only CT and Merkle2 have
built-in support for audits. In CONIKS, the tree is rebuilt in
each epoch, which makes auditing difficult. IntegriDB and
FalconDB also do not support audits beyond checking all
entries in the m2 trees. Asymptotically, TAP is as efficient
as CT and Merkle2 – however, it requires verifying O(d)
zero-knowledge range proofs, which are considerably more
expensive to verify than Merkle tree inclusion proofs.

Sum. To generate the proof for the sum query, the server
first computes the range cover proof N′. The worst-case num-
ber of prefix tree leaves in N′ is wd, as there are at most d
leaves per epoch, and there are w epochs. For each leaf node
in the range, its log(n) parents are included in N′, Therefore,
the cost of generating the proof is O(wd logn).

In IntegriDB and FalconDB, operations are performed on
m+ 1 trees, one for each of the Type attributes and one for
the Time attribute. In each tree, the sum is calculated from the
polynomials stored in the internal nodes that form the minimal
covering set of the leaves in the range. There are O(log(wd))
of such internal nodes in total. The total cost is therefore at
least O(m log(wd)), although the results in Section 6 suggest
that the processing costs at the server also depend on n, which
is why the entries for the sum in IntegriDB and FalconDB are
marked with an asterisk in Table 3.

Min/Max. The cost of min or max queries is similar to that
of sum queries since they are based on the same range cover
proof, except that for each sum tree the server also needs to
generate a range proof and an inclusion proof. The asymptotic
cost is still O(wd logn). For IntegriDB and FalconDB, the cost
is the same as for the sum, i.e., O(m log(wd)).

Quantile. This query requires at most two range and in-
clusion proofs per sum tree and a range cover proof – its
asymptotic cost is therefore also O(wd logn), and no other
baselines support this type of query.

6 Evaluation

In this section, we evaluate the practical performance of TAP.
We first describe our implementation of TAP, then discuss our
experimental setup, and finally present the empirical results.
We conduct four types of experiments: microbenchmarks
on a single machine, end-to-end experiments with the user
and server on different machines, a performance comparison
against two related baselines, and a scalability experiment that
explores the limits of TAP. The final three sets of experiments
were run on Amazon Web Services (AWS) EC2.

USENIX Association 32nd USENIX Security Symposium 6499

asymptotic processing costs
insert d rows inclusion non-inclusion auditing

storage in epoch 1 row 1 row 1 epoch SUM MIN/MAX quantiles

CT O(mn) O(d logn) O(logn) O(n) O(d logn) — — —

CONIKS O(mn+ tn) O(logn) O(logn) O(logn) — — — —

Merkle2 O(nm+n logn) O(d log2 n) O(log2 n) O(log2 n) O(logn) — — —

IntegriDB O(m2n) O(dm2 logn) O(m2 logn) O(m2n) — O(m log(wd))∗ O(m log(wd))∗ —

FalconDB O(m2n) O(dm2 logn) O(m2 logn) O(m2n) — O(m log(wd))∗ O(m log(wd))∗ —

TAP O(mn) O(d logn) O(d + logn) O(d + logn) O(d + logn) O(wd logn) O(wd logn) O(wd logn)

Table 3: Asymptotic costs of TAP versus other systems – here, n is the number of data entries, m the number of columns, d
the number of users, t the number of epochs, and w the number of epochs in the queried range. The asterisks (*) indicate that
although the number of tree nodes returned for the proofs of sum, min, and max queries in IntegriDB is sub-linear in d, this is
not necessarily the case for the size of the data stored in those nodes.

operation time cost (ms) storage cost (B)

NIZK.SETUP 11.450 22190
NIZK.PROVE 134.780 74413
NIZK.VERIFY 70.040 —

generate commitment 0.144 162
sum two commitments 0.010 165

Table 4: Time and storage cost of cryptographic operations.

6.1 Implementation & Set-Up
We have fully implemented TAP in Go, and made the
source code available at https://github.com/tap-group/
transparent-data-service. We base our prefix tree
implementation on Merkle2. For commitments and zero-
knowledge range proofs, we use the zkrp library from Morais
et al. [1, 26]. This library uses Bulletproofs [10] for zero-
knowledge range proofs and Pedersen commitment with the
secp256k1 elliptic curve [9] for additively homomorphic
commitments. We use Go’s MySQL module for the database
backend. We use the latest versions of the reference imple-
mentations of IntegriDB and Merkle2 as of June 2022 [3, 4].
We use Merkle2 as a baseline for look-up queries and au-
dits, and IntegriDB – despite having a different system model
and support for a broader range of SQL queries – for aggre-
gate queries, as it is the most efficient approach with publicly
available code that we are aware of. Although vSQL [34]
reported comparable performance on a more general class of
SQL queries than IntegriDB, we have not included vSQL as a
baseline because its implementation is not publicly available.

The microbenchmarks were run on a MacBook Pro laptop
with a 2.4 GHz Quad-Core Intel Core i5 processor and 16
GB of RAM, with iOS 11.6. For the end-to-end experiments,
we ran the server on a t2.xlarge instance and the user on a
t2.micro instance. For the comparison against IntegriDB and
Merkle2, we run all three systems on t2.xlarge instances. The
scalability experiments were run on a 16-core m5.4xlarge
instance. For some scalability experiments, we took the av-
erage over multiple runs to reduce the impact of random

noise. To aid reproducibility, we have made an AWS virtual
machine image that is set up for the scalability experiments
publicly available with identifier ami-0935fdbddc542254e.
The costs of various cryptographic operations in our system,
when executed on the laptop, are shown in Table 4.

6.2 Microbenchmarks
We first evaluate the bandwidth costs of the different queries
on a single machine. For this experiment, we consider d = 100
users who each insert a new value per epoch. We have two
Type columns: region and is_industrial. Each user is randomly
assigned to one of 10 regions, and 20% of the users have
is_industrial set to 1 and the others have it set to 0.

Figure 8a compares the proof sizes of different queries, in-
cluding audits. We observe several groups. The look-ups have
the smallest proofs, as they only consist of two Merkle tree
co-paths. They are followed by the sum, count, and average,
whose proofs include all of the prefix tree leaves in the range
query. Next are the min and max, which add range proofs for
each sum tree. For quantile queries, we observe some differ-
ence between the median and the 5th percentile – the former
has a larger proof size. The reason is that for each subtree,
the query requires only a single inclusion and range proof if
all of the sum tree’s values are either greater or smaller than
the quantile, and two inclusion and range proofs otherwise.
The former scenario is more likely for the 5th percentile. The
proof for audits is the largest, as it contains O(d) range proofs.
Even in this case, the size remains modest at 10MB per epoch.

6.3 End-to-End Performance
We measure end-to-end latencies of different user queries
in a setting with n = 1000 and m = 5. Figure 8b shows the
detailed breakdown. In particular, we divide the total time
into five components: 1) Prefix tree proof generation: the time
for generating the prefix tree inclusion proof for look-ups,
and the range cover proof for the other queries. 2) Prefix tree

6500 32nd USENIX Security Symposium USENIX Association

https://github.com/tap-group/transparent-data-service
https://github.com/tap-group/transparent-data-service
https://aws.amazon.com/console/

(a)

1 10 100
0.001

0.01

0.1

1

10

epoch

p
ro
of

si
ze

(M
B
)

audit
median
5th perc.

max
min
count
avg
sum

lookup

(b)

lo
ok

-u
p

su
m

m
in

qu
an

til
e

10−4

10−2

100

102

ti
m

e
(s

)

prefix tree proof
generation

prefix tree proof
verification

sum tree proof
generation

sum tree proof
verification

other

Figure 8: (a) Proof sizes of different query types, (b) Time
breakdown for different query types.

proof verification: the time for verifying the prefix tree proofs.
3) Sum tree proof generation: the time for generating the
sum tree inclusion proof for look-ups, the hashes needed to
verify the commitments for sum queries, and the sum tree
inclusion proof and range proofs for other queries. 4) Sum
tree proof verification: the time for verifying the sum tree
proofs. 5) Other: network delay and any other costs.

We observe that network delay is a significant factor in the
end-to-end latency. As expected, this cost is proportional to
the proof sizes. The remaining cost is dominated by the cost
of rebuilding the sum trees. For sum queries, the range cover
proofs have a large impact, but their costs are still an order of
magnitude smaller than the sum tree proofs. The costs related
to the sum tree proofs are especially large for min/max and
quantile queries because they are dominated by the cost of
generating and verifying zero-knowledge proofs. The end-to-
end latencies for sum, min and quantile queries are 1s, 23s
and 60s respectively, which we believe to be reasonable for
low-end virtual machines (t2.xlarge and t2.micro).

6.4 Comparison Against Baselines

To provide empirical evidence for the asymptotic cost differ-
ences shown in Table 3, we compare TAP against IntegriDB
and Merkle2 on different queries and with different data sizes.
Figure 9a shows the storage costs for the three systems. Since
TAP does not store the Merkle commitment trees but gener-
ates them on-the-fly during queries, it has the lowest storage
cost. IntegriDB has the worst cost, as it needs to store at least

25 copies of a tree with the same number of leaves as Merkle2.
In Figure 9b, we have displayed the audit costs of TAP

versus Merkle2. We omit IntegriDB from this graph as it does
not support audits by default. It can be seen that the audits are
orders of magnitude more expensive in TAP as in Merkle2,
which is due to the fact that an auditor in TAP has to evaluate
dozens of zero-knowledge range proofs per epoch. However,
we note that it takes only 60s to audit an epoch with 100 new
entries on a low-end machine (t2.xlarge).

Figure 9c displays the costs of inserting 100 data entries in
an epoch. Merkle2 is faster than TAP, as the former does not
need to generate sum trees on-the-fly. However, IntegriDB
has the worst performance, because the new data needs to be
inserted into at least 25 trees. The results for look-up queries,
shown in Figure 9d, are similar to insertion queries, although
the look-up costs for IntegriDB increase faster than the others.
The IntegriDB reference implementation crashed when we
performed queries on tables with more than 2000 rows.

Figure 9e compares the cost of a sum query on the first 10
epochs for both TAP and IntegriDB. Although the proof size
in IntegriDB depends only on the minimal covering sets of the
values that contribute to the sum, we observe that its overall
cost appears linear in the number of rows. We observe the
same for min queries, as shown in Figure 9f. By extrapolating
the line in Figure 9f beyond the point where the IntegriDB
implementation crashed, we surmise that IntegriDB would be
worse than TAP before the table size reaches 10 000 rows.

6.5 Scalability

In this section, we investigate the performance of TAP for
realistic numbers of user IDs on a medium-end AWS machine
(m5.4xlarge). Figure 10a shows the cost of building TAP’s
data structure for different numbers of IDs and sum trees. We
observe a negligible difference between trees with 10 or 100
subtrees, but a noticeable difference between 100 and 1000
subtrees. In particular, building the tree takes roughly 50%
more time for 1000 subtrees than for 100 subtrees: the reason
is that the construction of each subtree relies on a SQL select
query to obtain the leaf values (i.e., Vs), which becomes a
bottleneck when the number of subtrees is large.

In Figure 10b, we display the cost of a full audit as a func-
tion of the number of user IDs. We observe that for large
numbers of IDs, the audit cost resembles a linear function of
the number of IDs. For around 15000 IDs, a full audit takes
420 seconds, regardless of the number of subtrees.

Figure 10c displays the cost of a quantile query over the en-
tire dataset. We see that the cost gradually becomes dependent
only on the number of subtrees, as the main workload consists
of creating zk-range proofs for each subtree. In Figure 10d,
we display the cost of querying a fixed range consisting of
10 subtrees. The cost of the query is independent of the total
number of subtrees, and only has a logarithmic dependence
on the number of IDs, which is invisible at realistic scales.

USENIX Association 32nd USENIX Security Symposium 6501

100 1,000 10,000
1B

1kB

1MB

1GB

epoch

st
or
ag
e
co
st

TAP

Merkle2

IntegriDB

(a) Server storage cost.

100 1,000 10,000

10−4

0.01

1

100

104

106

rows

ru
n
ti
m
e
(s
)

TAP

Merkle2

(b) Audit cost.

100 1,000 10,000

0.01

1

100

104

106

rows

ru
n
ti
m
e
(s
)

TAP

Merkle2

IntegriDB

(c) Insert query.

100 1,000 10,000

10−4

0.01

1

100

104

106

rows

ru
n
ti
m
e
(s
)

TAP

Merkle2

IntegriDB

(d) Look-up query.

5k 10k 15k
0

2

4

6

8

10

rows

ru
n
ti
m
e
(s
)

TAP
IntegriDB

(e) Sum query.

5k 10k 15k
0

20

40

rows

ru
n
ti
m
e
(s
)

TAP
IntegriDB

(f) Min/Max query.

Figure 9: Comparison between TAP, Merkle2, and IntegriDB in terms of storage, audit, and query costs.

102 103 104 105 106 107
0.01

1

100

104

IDs

ru
n
ti
m
e
(s
)

10 sum trees
100 sum trees
1000 sum trees

(a) Tree construction.

102 103 104 105
0.01

1

100

104

IDs

ru
n
ti
m
e
(s
)

10 sum trees
100 sum trees
1000 sum trees

(b) Audit.

102 103 104 105 106 107

1

100

104

IDs

ru
n
ti
m
e
(s
)

10 sum trees
100 sum trees
1000 sum trees

(c) Quantile (full).

102 103 104 105 106 107

0.1

1

IDs

ru
n
ti
m
e
(s
)

10 sum trees
100 sum trees
1000 sum trees

(d) Quantile (part).

Figure 10: Performance of TAP for large numbers of user IDs.

7 Discussion & Limitations

Scaling Limitations. From Figure 10a, we observe that it
takes around 285 seconds to generate TAP’s data structure
for ≈1.8 million IDs and 100 subtrees. This is a reasonable
overhead for the smart grid use case based on SP Group, which
has around 1.6 million user IDs and 84 subtrees: if one tree has
to be generated per hour, then even on an $1/hour m5.4xlarge
machine this only takes roughly 8% of the available time. For
the congestion pricing and digital advertising use cases, TAP
would not be able to support a system where every possible
vehicle/website participates. However, for 250 000 vehicles
and 20 gantries, or for 500 websites and 10 000 advertisers,
the total number of user IDs would be 5 million, which a
m5.4xlarge machine could process in 700 seconds.

With the same machine, an auditor can audit slightly over
100 user IDs per second. As such, the upper bound for fea-
sibility for a full audit would be 360 000 IDs for a system
with 1-hour epochs. However, a randomized audit, in which
a randomly chosen subset is audited, can be used for large
systems to ensure that repeated misbehavior by the server is
detected with high probability. Furthermore, targeted audits
can be performed in cases where the operator profited from
suspicious query results.

Reporting Misbehavior. The transparency property of
TAP ensures that if the server misbehaves in a verifiable
way (e.g., signing a demonstrably false query result), then
this can be detected and disseminated through gossip or the
bulletin board. Cases in which the server misbehaves by fal-
sifying user data are harder to detect and prove. In this case,
we envisage that the user would appeal to a regulator or con-

sumer watchdog. We assume that the server has a reputation
to protect, which would be tarnished by frequent complaints.

Incentives. TAP expects each user to independently and
continuously verify her data and act as a whistleblower in the
case of falsified data. As such, users in TAP must have an
incentive to monitor measurements. In the use cases of Sec-
tion 2.3, the users have a direct financial incentive to monitor
their data because their bills or payments are directly impacted.
From the perspective of the operator, transparency increases
users’ trust in the system and may help avoid frivolous law-
suits by being able to easily prove honest behavior.

Trust Model. In practice, a TAP user would not just rely
on the operator for inserting data, but also for developing
the app/client that verifies query proofs. In this setting, a
malicious server could both falsify data and deliberately insert
bugs into the client to falsely convince users of the validity
of the proofs. It is therefore vital that TAP users who require
additional security have the ability to write their own code for
proof verifications.

User Identities. TAP is impractical in settings where users
are fully anonymous because such a setting would allow the
server to create an unlimited number of fake users. However,
we assume that a regulator would be able to detect the exis-
tence of (large numbers of) fake users, especially if they have
a major impact on query results (e.g., a fake website that
consistently achieves the highest click-through rate).

8 Conclusions

We have presented TAP, a multi-user data service that pro-
vides data privacy, integrity, and transparency for user queries.

6502 32nd USENIX Security Symposium USENIX Association

The ADS in TAP combines a chronological prefix tree with
sorted sum trees whose roots are stored in the prefix tree
leaves. This data structure allows TAP to support a wide
range of queries that are useful for emerging data services,
with good performance at scale.

For future work, we plan to make the privacy costs to users
explicit – i.e., if an aggregate is taken that includes a sum
tree with very few leaves, then this reveals more information
than if the sum trees each have many leaves. This way, we
can assign to each user a privacy budget [7]. Another interest-
ing direction for future work is to add support for additional
queries to TAP, e.g., Spearman rank correlation between a
recent set of measurements and another set of aggregates.

References

[1] Bulletproofs implementation. https://github.com/
ing-bank/zkrp.

[2] ERP gantries. https://www.sgcarmart.com/news/
carpark_index.php?LOC=all&TYP=erp.

[3] IntegriDB implementation. https://github.com/
integridb/Code.

[4] Merkle2 implementation. https://github.com/
ucbrise/MerkleSquare.

[5] Sixads. https://sixads.net/.

[6] SP Group. https://www.spgroup.com.sg/about-us/
corporate-profile.

[7] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In ACM CCS, pages 308–318,
2016.

[8] M. A. Bashir, S. Arshad, W. Robertson, and C. Wilson.
Tracing information flows between ad exchanges using
retargeted ads. In USENIX Security, pages 481–496,
2016.

[9] D. Brown. Standards for efficient cryptography 2 (SEC
2). Technical report, Certicom, 2010.

[10] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE S&P, pages 315–334,
2018.

[11] J. Camenisch, R. Chaabouni, and a. shelat. Efficient
protocols for set membership and range proofs. In ASIA-
CRYPT. Springer, 2008.

[12] H. Chen, X. Ma, W. Hsu, N. Li, and Q. Wang. Access
control friendly query verification for outsourced data
publishing. In ESORICS, pages 177–191, 2008.

[13] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and
D. Boneh. Provisions: Privacy-preserving proofs of
solvency for Bitcoin exchanges. In ACM CCS, pages
720–731, 2015.

[14] C. Dwork. Differential privacy: A survey of results. In
TAMC, pages 1–19. Springer, 2008.

[15] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cali-
brating noise to sensitivity in private data analysis. In
TCC. Springer, 2006.

[16] A. Eijdenberg, B. Laurie, and A. Cutter. Verifiable data
structures. Google Research, Tech. Rep, 2015.

[17] N. Holohan, S. Antonatos, S. Braghin, and
P. Mac Aonghusa. The bounded Laplace mecha-
nism in differential privacy. Journal of Privacy and
Confidentiality, 10(1), 2020.

[18] Y. Hu, K. Hooshmand, H. Kalidhindi, S. J. Yang, and
R. A. Popa. Merkle2: A low-latency transparency log
system. In IEEE S&P, pages 285–303, 2021.

[19] Y. Ji and K. Chalkias. Generalized proof of liabilities.
Cryptology ePrint Archive, 2021.

[20] B. Laurie. Certificate transparency. Communications of
the ACM, 57(10):40–46, 2014.

[21] B. Laurie and E. Kasper. Revocation transparency.
Google Research, 2012.

[22] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated index structures for aggregation queries.
ACM TISSEC, 13(4):1–35, 2010.

[23] F. Liu. Generalized Gaussian mechanism for differential
privacy. IEEE Transactions on Knowledge and Data
Engineering, 31(4):747–756, 2018.

[24] F. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In ACM
SIGMOD, pages 19–30, 2009.

[25] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten,
and M. J. Freedman. CONIKS: Bringing key trans-
parency to end users. In USENIX Security, pages 383–
398, 2015.

[26] E. Morais, T. Koens, C. van Wijk, and A. Koren. A
survey on zero knowledge range proofs and applications.
SN Applied Sciences, 1(8):946, 2019.

[27] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Ver-
ifying completeness of relational query results in data
publishing. In ACM SIGMOD, pages 407–418, 2005.

USENIX Association 32nd USENIX Security Symposium 6503

https://github.com/ing-bank/zkrp
https://github.com/ing-bank/zkrp
https://www.sgcarmart.com/news/carpark_index.php?LOC=all&TYP=erp
https://www.sgcarmart.com/news/carpark_index.php?LOC=all&TYP=erp
https://github.com/integridb/Code
https://github.com/integridb/Code
https://github.com/ucbrise/MerkleSquare
https://github.com/ucbrise/MerkleSquare
https://sixads.net/
https://www.spgroup.com.sg/about-us/corporate-profile
https://www.spgroup.com.sg/about-us/corporate-profile

[28] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song. Fal-
conDB: Blockchain-based collaborative database. In
ACM SIGMOD, pages 637–652, 2020.

[29] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly
encrypted database system. Proceedings of the VLDB
endowment, 12:1664–1678, 2019.

[30] D. Reijsbergen, Z. Yang, A. Maw, T. T. A. Dinh, and
J. Zhou. Transparent electricity pricing with privacy. In
ESORICS, pages 439–460, 2021.

[31] M. D. Ryan. Enhanced certificate transparency and
end-to-end encrypted mail. In NDSS, pages 1–14, 2014.

[32] E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song.
Privacy-preserving aggregation of time-series data. In
NDSS, pages 1–17, 2011.

[33] R. Tamassia. Authenticated data structures. In European
Symposium on Algorithms, pages 2–5. Springer, 2003.

[34] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and
C. Papamanthou. vSQL: Verifying arbitrary SQL
queries over dynamic outsourced databases. In IEEE
S&P, pages 863–880, 2017.

[35] Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB:
Verifiable SQL for outsourced databases. In ACM CCS,
pages 1480–1491, 2015.

[36] Úlfar Erlingsson, V. Pihur, and A. Korolova. Rappor:
Randomized aggregatable privacy-preserving ordinal
response. In ACM CCS, pages 1054–1067, 2014.

A Pseudocode

This contains contains the pseudocode for three algorithms
discussed in Section 4. Algorithm 1 determines a set of in-
ternal nodes in the prefix tree that covers the sum tree roots
in the specified range, and is described under ‘Range Cover’.
The range cover set acts as a proof of completeness for the
given range, i.e., it demonstrates that no entries were incor-
rectly omitted or added by the server. It relies on another func-
tion, RangeOverlap(S∗, i), which for a given interval node i
in the prefix corresponds to a bit prefix that overlaps with
the set S∗. (See also the function DoesPrefixOverlapRange in
trees/prefix_tree.go in the GitHub repository.)

Algorithm 2 corresponds to the code that the server ex-
ecutes in response to a sum query, and is described under
‘Sum/Count/Average/Standard Deviation’ in Section 4.3. Al-
gorithm 3 corresponds to the code that the server executes in
response to a min query, and in described under ‘Min/Max’
in Section 4.3. The algorithm for quantiles is conceptually
similar, and creates at most 2 range proofs for every sum tree.

Algorithm 1: Range proof (ExtendRangeProof)
Input: node i, node set N, range S∗

Output: node set N′

1 if RangeOverlap(S∗, i) then
2 N′ = N∪n
3 L = LEFT(i)
4 R = RIGHT(i)
5 if L 6= 0 then
6 N′ = N′ ∪ExtendRangeProof(L,N,S∗)
7 if R 6= 0 then
8 N′ = N′ ∪ExtendRangeProof(R,N,S∗)
9 return N′

10 else
11 return /0

Algorithm 2: Sum/Count query (Server)
Input: range S∗

Output: proof π

1 R← PrefixTree.GetRoot()
2 N′← ExtendRangeProof(R, /0,S∗)
3 L′← GetLeaves(N′)
4 v← SQL.SumQuery(S∗)
5 for j ∈ {1, . . . ,z} do
6 v∗j ← v j

7 r∗← 0
8 for i ∈ L′ do
9 r∗← r∗+GetTotalSeed(i)

10 h′i← GetRootChildrenHash(i)
11 ci1, . . . ,ci z← GetRootCommitments(i)
12 li← GetRootNumLeaves(i)

13 return (N′,L′,r∗,v∗1, . . . ,v
∗
z ,(h

′
i,ci1, . . . ,ci z, li)i∈L′)

B Security Model

Let κ denote the security parameter, and /0 the empty string.
When X is a set, x $← X denotes the action of sampling an
element uniformly at random from X .

Syntax. We define a transparent and privacy-preserving
data services (TAP) scheme using the following algorithms:

(Ptap,ks,∆0)← Initialize(1κ): run by the server. It takes as
input the security parameter κ, and outputs system parameters
Ptap, a secret key ks ∈ SK tap, and a mutable public verification
state ∆0 ∈V T tap of the TAP instance, where SK tap is a secret
key space and V T tap is the space for public verification state.

ri t ← EpochSecretGen(Ptap,ks, i, t): run by the server. It
takes as input the system parameters Ptap, the secret key ks,
and the epoch t, and outputs epoch secrets ri t ∈ SS tap for user
i, where SS tap is an epoch secret space.

(∆t ,Ri t ,πi t) ← Query(Ptap,ks, i, t,QType,∆t−1,Mi t):
run by server. It takes as input the system param-
eters Ptap, secret key ks, a query type QType ∈
{insert, lookup,sum,count,average,min-max,quantile}
from a user i for epoch t, the public verification state ∆t−1,
and a query message Mi t ∈Mtap, and outputs a query result
Ri t ∈ Rtap and the corresponding proof πi t ∈ P F tap, and

6504 32nd USENIX Security Symposium USENIX Association

Algorithm 3: Min query (Server)
Input: range S∗, large integer K
Output: proof π

1 R← PrefixTree.GetRoot()
2 N′← ExtendRangeProof(R, /0,S∗)
3 L′← GetLeaves(N′)
4 v∗← SQL.MinQuery(S∗)
5 Pzk ← NIZK.SETUP(1κ)
6 i∗←−1
7 for i ∈ L′ do
8 j∗← GetLeftmostLeaf(i)
9 v← GetValue(i∗)

10 ci1, . . . ,ci z← GetLeafCommitments(j∗)
11 h′i← GetLeafUserTimeHash(j∗)
12 π′i← GenerateInclusionProof(j∗, i)
13 if i∗ =−1 and v = v∗ then
14 π∗i ← NIZK.PROVE(Pzk,v, [v∗,v∗+1))
15 i∗← i
16 else
17 π∗i ← NIZK.PROVE(Pzk,v, [v∗,K])

18 return (N′,L′,v∗, i∗,(ci1, . . . ,ci z,h′i,π
′
i,π
∗
i)i∈L′)

an updated public verification state ∆t (if QType = insert),
where P F tap is a proof space Mtap is the query message
space, and Rtap is a query result space.
{0,1} ← Verify(Ptap,ri t ,QType,∆t ,Ri t ,πi t): run by a

user i. It takes as input the system parameters Ptap, epoch
secret ri t , a query type QType, the public verification state ∆t ,
and a query result Ri t obtained from server for epoch t, and
the corresponding proof πi t , and outputs True (1) or False (0).
{0,1} ← EpochCheck(Ptap,∆t): run by auditor. It takes

as input the system parameters Ptap and the public verification
state ∆t for epoch t, and outputs True (1) if the verification
state ∆t is valid, and False (0) otherwise.

Given (Ptap,ks,∆0) := Initialize(1κ), any user
i’s epoch secret ri t , any valid query message
Mi t ∈ Mtap for a time epoch t, and (∆t ,Ri t ,πi t) :=
Query(Ptap,ks, i, t,QType,∆t−1,Mi t), we say that a TAP
scheme is correct if Verify(Ptap,ri t ,QType,∆t ,Ri t ,πi t) = 1
and EpochCheck(Ptap,∆t) = 1.

Security Properties. Here, we define three properties of
TAP: integrity, transparency, and privacy (to achieve the re-
quirements R2, R3a, and R3b). In Table 5, we formulate these
properties via two games GameTransTAP,A and GamePrivTAP,A run-
ning between a challenger and an adversary A , respectively.
We model both integrity and transparency of TAP in one game
GameTransTAP,A for simplicity, since they share most of the proce-
dures and winning conditions in the game.

In both games, the adversary is allowed to ask an oracle
query OMQ(i, t,QType,Mi t) to query any message Mi t of her
own choice for any query type QType. Via this query, the
adversary can either insert a malicious message into the data
structure and also learn values based on compromised epoch
secrets. Meanwhile, the epoch secrets can be compromised
based on the oracle query OMQ(i, t,QType,Mi t). In addition,

A may ask the oracle query OIH(i, t) which is used to insert
honest messages into the target TAP instance. By doing so, A
will try to break the transparency properties for some honest
inserted messages. We model those security properties in a
multiparty setting (to cover the requirement R1) because A
can ask those queries with an arbitrary user identity.

In GameTransTAP,A , the goal of A is to generate a malicious
message and the corresponding query results for an honest
user i∗ and epoch t∗ (i.e., (i∗, t∗,Q̃Type∗, ∆̃t∗ , R̃t∗ , π̃t∗ ,M̃i∗ t∗))
that are not generated by the challenger during the game but
can pass the verification of either the honest user i∗ or the au-
ditor. To model privacy, the game GamePrivTAP,A is defined based
on indistinguishability. Since the Min/Max and the quantile
queries would leak the concrete value of some user (without
knowing its identity), we model the privacy by letting the ad-
versary distinguish the owner of a malicious value (chosen by
the adversary) from two honest parties for all kinds of queries.
This approach can also cover the privacy of the (unleaked)
value of a specific user as well. After all, if the adversary can
know the value of a given honest user then she must be able to
break the privacy formulated by GamePrivTAP,A (i.e., distinguish
the owner of the value). This leads to the following definition.

Definition 1. A transparent and privacy-preserving
data services scheme TAP is secure if the advan-
tages AdvTransTAP,A(κ) = Pr[GameTransTAP,A(κ) = 1] and
AdvPrivTAP,A(κ) =

∣∣Pr[GamePrivTAP,A(κ) = 1]−1/2
∣∣ of any

PPT adversaries A in the corresponding games are negligible.

Given GamePrivTAP,A , the proof that TAP as discussed in Sec-
tion 4 satisfies the properties of integrity, transparency, and
integrity is similar to the proofs of Theorems 1–4 in [30].
Informally, Theorem 1 can be proven using the property that
an adversary cannot distinguish commitments from random
values, and that a hidden value can be obtained from the
(known) sum and the coalition’s f known values only if
n− f = 1. Theorem 2 follows from the knowledge that a
quantile query reveals at most one value per query.

C Differential Privacy

In Section 4, we have presented TAP, a data service archi-
tecture in which the server returns accurate responses to user
queries at the cost of revealing a limited number of user val-
ues. However, a stronger notion of privacy may be required
in some contexts. For example, if the Value attribute corre-
sponds to power usage, and a single residence is known to
be the biggest power consumer in its neighborhood with high
probability, then an adversarial user can learn this residence’s
exact power usage through a max query on this neighborhood.
Differential privacy [15, 32] provides a stronger notion of
privacy for a data service. In differential privacy, data is ob-
fuscated through the addition of random noise. We focus on

USENIX Association 32nd USENIX Security Symposium 6505

GameTransTAP,A (κ) GamePrivTAP,A (κ,PT)

QL := /0; QL := /0; CL := /0

(Ptap,ks,∆0)← Initialize(1κ) (Ptap,ks,∆0) := Initialize(1κ)

(i∗, t∗,Q̃Type∗, ∆̃t∗ , R̃t∗ , π̃t∗ ,M̃i∗ t∗)← AOMQ(·,·,·,·),OIH(·,·)(Ptap,ks) (state, i∗, j∗, t∗,M∗0,M
∗
1)← AOMQ(·,·,·,·),OIH(·,·),ORV(·,·)(Ptap)

ri t ← EpochSecretGen(Ptap,ks, i∗, t∗) , s.t. t∗−1 is the latest epoch, and all query messages have the same size,

Return
(
(i∗, t∗,Q̃Type∗, ∆̃t∗ , R̃t∗ , π̃t∗ ,M̃i∗ t∗) /∈ (QL∪HL)

)
b $←{0,1}

∧ ((i∗, t∗) ∈HL) ∧
(
EpochCheck(Ptap, ∆̃t∗)

)
If b = 0, then Mi∗ t∗ := M∗0 and M j∗ t∗+1 := M∗1

∧
(
Verify(Ptap,ri∗ t∗ ,QType∗,∆t∗ , R̃i∗ t∗ , π̃i∗ t∗

)
Else Mi∗ t∗ := M∗1 and M j∗ t∗+1 := M∗0
(∆t∗ ,Ri∗ t∗ ,πi∗ t∗)←Query(Ptap,ks, i∗, t∗, insert,∆t∗−1,Mi∗ t∗)

OMQ(i, t,QType,Mi t): (∆t∗+1,R j∗ t∗+1,π j∗ t∗+1)←Query(Ptap,ks, j∗, t∗, insert,∆t∗ ,M j∗ t∗+1)

(∆t ,Ri t ,πi t)←Query(Ptap,ks, i, t,QType,∆t−1,Mi t) b′← AOMQ(·,·,·,·),OIH(·,·),ORV(·,·)(Ptap,state,∆t∗ ,∆t∗+1)
(i, t,QType,∆t ,Ri t ,πi t ,Mi t)→QL Return (b = b′) ∧ ((i∗, t∗) /∈ CL) ∧ (j∗, t∗+1) /∈ CL
Return ∆t ,Ri t ,πi t

ORV(i, t):
OIH(i, t): ri t ← EpochSecretGen(Ptap,ks, i, t)

Mi t
$←Mtap (i, t,ri t)→ CL

(∆t ,Ri t ,πi t)←Query(Ptap,ks, i, t, insert,∆t−1,Mi t) Return ri t
(i, t, insert,∆t ,Ri t ,πi t ,Mi t)→HL
Return ∆t ,Ri t ,πi t

Table 5: Security games of TAP.

an approach in which the server adds noise to query results
before returning them to the user [24]. An alternative design
would be for the users to add random noise to their data ac-
cording to a fixed probability distribution, which would allow
servers to compute aggregates without learning the data of
individual users [36]. However, the latter approach would pre-
vent the server from obtaining data that may be necessary for,
e.g., billing, so we focus on the former.

Improving privacy through the addition of noise necessar-
ily reduces transparency: the noise values must be hidden (or
else the obfuscated data can be reconstructed), so it is im-
possible to verify if they were generated in accordance with
the agreed probability distributions. As such, we focus on a
weaker notion of transparency, namely that a malicious server
is unable to arbitrarily distort query results by manipulating
the noise generation process. As is common in the differential
privacy literature, we focus on making the magnitude of the
noise dependent on the sensitivity, i.e., the maximum possible
impact on a query result by removing a single user’s value.
We can then utilize zero-knowledge range proofs to prove
that the noise is within some range defined by the sensitivity.

Let D be the dataset, i.e., the set of values covered by the
query’s range. Let R∗(D) be the query’s true result, and R(D)
the result that is returned by the server. Let R be the result
space, so that R(D),R∗(D)∈R . In our setting, R is the space
on which our commitments and zero-knowledge range proofs
are defined. Let D be the set of pairs of datasets such that
for any (D,D′) ∈D a unique value d ∈ D exists such that
D/{d}=D′, or d ∈D′ such that D′/{d}=D – i.e., those pairs
that differ in exactly one value. In this setting, the protocol
satisfies (ε,δ)-differential privacy if, for all (D,D′) ∈D and
all S⊂ R ,

P(R(D) ∈ S)≤ eε ·P(R(D′) ∈ S)+δ

If δ = 0, then the protocol satisfies “pure” ε-differential pri-
vacy, whereas if δ > 0 it satisfies“approximate” differen-
tial privacy. Let the sensitivity of the query result R be de-
fined as ∆ = max(D,D′)∈D |R∗(D)−R∗(D′)|. A general result
for R = R [15] states that returning a result R such that
R(D) = R∗(D)+Z, where Z is a Laplace-distributed random
variable with scale parameter σ, guarantees ε′-differential
privacy with ε′ = ∆/σ. In particular, σ = ∆ guarantees ε-
differential privacy.

A challenge in our context is that the Laplace distribution
has positive density on the entire interval [−∞,∞]. This is
acceptable in cases where the threat model assumes that the
server is always honest. However, in our case it would allow
a malicious server to add arbitrarily large noise to the true
result, and therefore convince the user to accept any value
desired by the malicious server. To limit the scope for server
misbehavior, noise should instead be drawn from a bounded
interval. Prior results in this area for truncated Gaussian [23]
and Laplace [17] noise indicate that although ε-differential pri-
vacy cannot be achieved in this case, (ε,δ)-differential privacy
is possible. As such, we focus in the following on a generic ap-
proach for noise on the bounded interval {−b,−b+1, . . . ,b}
for a constant b. In particular, let g : [0,b] → [0,∞) and
G(z) = ∑

z
x=0 g(x) such that g(0)+ 2G(b− 1) = 1. We then

define the noise Z = R(D)−R∗(D) as a random variable on
{−b,−b+1, . . . ,b} with the cumulative distribution function

P(Z ≤ z) =
{

G(z+b) if z ∈ [−b,0],
1−G(b− z+1) if z ∈ [0,b].

We can then prove that for Z defined in this way, (ε,δ)-
differential privacy is achieved with δ = G(∆− 1). Due to
space limitations, we leave the proof, and the use of zero-
knowledge range proofs to show that |Z| ≤ b, as future work.

6506 32nd USENIX Security Symposium USENIX Association

	Introduction
	Model & Requirements
	Model Entities
	Data Model
	Use Case Examples
	Threat Model
	Requirements

	Existing Solutions
	Transparency Logs
	Proofs of Liabilities (PoLs)
	SQL-Based Authenticated Databases
	Limitations of Existing Solutions

	TAP
	Preliminaries
	Data Structure
	Queries
	Auditing

	Analysis
	Security (R2, R3a, and R3b)
	Performance (R4)

	Evaluation
	Implementation & Set-Up
	Microbenchmarks
	End-to-End Performance
	Comparison Against Baselines
	Scalability

	Discussion & Limitations
	Conclusions
	Pseudocode
	Security Model
	Differential Privacy

