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Abstract
The paradigm shift of enabling extensive intercommunica-
tion between the Operational Technology (OT) and Informa-
tion Technology (IT) devices allows vulnerabilities typical
to the IT world to propagate to the OT side. Therefore, the
security layer offered in the past by air gapping is removed,
making security patching for OT devices a hard requirement.
Conventional patching involves a device reboot to load the
patched code in the main memory, which does not apply to
OT devices controlling critical processes due to downtime,
necessitating in-memory vulnerability patching. Furthermore,
these control binaries are often compiled by in-house propri-
etary compilers, further hindering the patching process and
placing reliance on OT vendors for rapid vulnerability dis-
covery and patch development. The current state-of-the-art
hotpatching approaches only focus on firmware and/or RTOS.
Therefore, in this work, we develop ICSPatch, a framework to
automate control logic vulnerability localization using Data
Dependence Graphs (DDGs). With the help of DDGs, IC-
SPatch pinpoints the vulnerability in the control application.
As an independent second step, ICSPatch can non-intrusively
hotpatch vulnerabilities in the control application directly in
the main memory of Programmable Logic Controllers while
maintaining reliable continuous operation. To evaluate our
framework, we test ICSPatch on a synthetic dataset of 24
vulnerable control application binaries from diverse critical
infrastructure sectors. Results show that ICSPatch could suc-
cessfully localize all vulnerabilities and generate patches ac-
cordingly. Furthermore, the patch added negligible latency
increase in the execution cycle while maintaining correctness
and protection against the vulnerability.

1 Introduction

Critical infrastructure such as water treatment plants, the elec-
tric grid, chemical manufacturing, and many more rely on
various control systems/components broadly identified as In-
dustrial Control Systems (ICS) for regulating physical pro-
cesses based on industrial logic, necessary for reliable and

uninterrupted operation of deeply interconnected critical in-
frastructure [52]. Traditionally, these ICS devices executed
only the industrial logic, remained confined to the industrial
network, and often used proprietary software. However, with
the advent of Industry 4.0, the industrial internet of things
(IIoT) has gained popularity due to its real-time visibility into
the industrial process for robust, affordable asset monitoring
and rapid diagnostics while requiring minimal human inter-
action for data exchange [5]. There is also a trend of shifting
away from proprietary software and embracing open source
since vendors do not need to reinvent the wheel and develop
SSH or web server implementations from scratch. However,
these advances in industrial computation also transfer vulner-
abilities and attack vectors from the Information Technology
(IT) sector to the industrial domain.

As a result, attacks on critical infrastructure have become
commonplace in the past few years. These attacks often ex-
ploit a vulnerability in the IT infrastructure to reach the Op-
erational Technology (OT) control systems, leading to devas-
tating consequences. One such prominent attack is Stuxnet,
which altered the code of the industrial logic running on
Siemens PLCs [15]. Some other examples include a self-
replicating virus on the computer network of Saudi Aramco,
which shut down 5.7 million barrels of output per day - more
than 5% of the global oil supply [40]. Another widely known
instance is the 2015 Ukraine blackout, which involved an at-
tack on the power grid infrastructure that left approximately
225,000 customers without electricity for several hours [27].
Alternatively, a much more sophisticated attack in December
2016, dubbed Industroyer, with support for four different in-
dustrial communication protocols and denial-of-service (DoS)
attack implementation for Siemens SIPROTEC family of pro-
tection relays, led to another power outage [8]. As a result,
organizations have increased their budgets to reduce the risk
of cyberattacks. In an investigation carried out by SANS on
340 professionals, 42% of the respondents confirmed an in-
crease in the cybersecurity budget for their organization [16].

A typical ICS setup consists of several control loops uti-
lizing sensors, actuators, and a controller to regulate physi-
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cal processes. The control logic developed for managing the
industrial process executes inside a runtime (privileged soft-
ware to manage proper application execution, handling I/O,
debugging, and more) and is compiled from IEC 61131-3
programming languages. Recently, vendors producing PLCs
have started embracing embedded Linux with a real-time
patch [20, 23, 48, 57]. Choosing Linux as the OS in PLCs en-
ables the utilization of open-source libraries such as OpenSSL,
Apache HTTP server, and jQuery, to name a few. A prime
example of this trend is the Codesys platform, currently uti-
lized by at least 80 industrial device vendors and supports
more than 400 devices from a wide variety of manufactur-
ers [20]. Four top PLC vendors, namely Mitsubishi, Schneider
Electric, Bosch Rexroth, and ABB, hold ≈28% of the global
PLC market share [51] and integrate Codesys into their prod-
ucts. Furthermore, the Codesys ecosystem is growing, with
high-profile vendors adopting it in their newer product lines
to reduce maintenance efforts for their increasingly complex
ecosystems [3, 44], and minor vendors are using it as a turn-
key solution to lower the barrier of entry into the market.

Most of the research in the domain focuses on obtaining
guarantees about the functionality of the PLC and discov-
ering vulnerabilities: Formal verification of the PLC soft-
ware [10, 11, 39], security evaluations [17, 33, 50], reverse
engineering [25], and fuzzing [55]. These vulnerabilities can
result from coding errors (incorrect array indexing) or inher-
ent issues in system libraries (missing bound checks), leading
to exploitable vulnerabilities in the control application. Such
vulnerabilities can impact not only the control binary itself but
also the runtime (i.e., its supervisory software), causing unde-
sired process performance or a complete DoS attack requiring
a reboot.

Similar to regular system updates, preventing the exploita-
tion of control application binaries due to vulnerabilities in
their code requires patching. However, it remains unexplored
in the ICS domain, which has unique constraints. For instance,
PLCs regulate critical physical processes and do not allow
for any downtime or intrusive modifications to the control
application that might affect the continued operation of crit-
ical infrastructure, making hotpatching essential. Moreover,
control application binaries are non-executable binaries com-
piled by a proprietary compiler and run on a custom runtime,
such as the Codesys runtime system presented earlier. Such
nuances prevent the applicability of conventional patching
solutions and require a more tailored approach to automated
vulnerability localization and hotpatching without interrupt-
ing the execution of control logic. In literature, patching ICS
devices has predominantly focused only on the firmware,
as evident in HERA, which utilizes hardware-based debug-
ging features in Cortex-M microcontrollers to patch vulnera-
bilities in FreeRTOS [37], and RapidPatch, which employs
eBPF virtual machines to execute standard patches released
by RTOS developers on resource-constrained devices [21].
On the other hand, further related work on this topic overlooks

the patching element and focuses instead on ensuring conti-
nuity of operation, employing hot standby redundant PLCs
for various purposes such as resiliency against cyberattacks,
validating sensor data, process continuity, and improving reli-
ability [24, 30, 31, 60]. Nevertheless, automated vulnerability
hotpatching is a trending topic in other domains like in An-
droid for performing multi-level adaptive patching [7,58], and
in open-source software [13,54], but it remains unexplored in
the ICS domain.

This paper proposes ICSPatch, a novel approach for auto-
mated vulnerability localization and non-intrusive in-memory
hotpatching. The methodology starts with capturing an execu-
tion snapshot of the development/test PLC device, rehosting it
in an angr instance running on a host for discovering and lo-
calizing vulnerabilities using data dependency graphs. Then,
we utilize this information to calculate relevant offsets, cre-
ate a patch for the vulnerability, and non-intrusively patch
them in the main memory of the deployed PLC executing the
control application. To our knowledge, this work is the first
attempt at automated vulnerability localization and hotpatch-
ing of non-executable ICS control binaries. In summary, our
contributions are the following:

• We develop a methodology for automated vulnerability local-
ization for non-executable control application binaries using
custom-built data dependence graphs. Our method does not
need access to the source code or binary instrumentation; it
only needs a copy of the original unmodified control binary
file.

• In parallel, we develop a methodology for control binary
hotpatching that can be performed with only remote root
access to the device and without any hardware support. Our
hotpatching is non-intrusive and decoupled from our auto-
mated vulnerability localization. It can be used if there exists
no other way of patching the vulnerability.

• We create a diverse synthetic dataset of 24 vulnerable control
application binaries from five critical infrastructure sectors
using the top entries of the latest Common Weakness Enu-
meration list.

• We evaluate ICSPatch on: 1) Our synthetic dataset, 2) Other
state-of-the-art datasets [55], 3) A hardware-in-the-loop de-
salination plant model employing a real PLC executing a
vulnerable control binary.

2 Preliminaries

We focus on PLCs that employ Linux as the base operating
system and runtime for executing control logic. For the cur-
rent version of ICSPatch, we target the Codesys Runtime,
a multi-platform execution environment employed for pro-
gramming controllers in IEC 61131-3 compliant program-
ming languages. It operates predominantly on PLCs running
a lightweight version of RT-patched Linux OS and comes
packed in a self-contained ELF binary that spawns threads for
various components. These components include MainTask,
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0xb61902e8 ldr fp, [pc, #0x70]

0xb61902ec ldr r6, [fp]

0xb61902f0 andvs r0, r0, r0

0xb61902f4 mov lr, pc

0xb61902f8 mov pc, r6

0xb62a50b4 0xb6193e88

Address Table

0xb6193e88 push {sl, lr}

0xb6193e8c mov sl, sp

1

2

3

0xb6190360 0xb62a50b4

0xb61902b8 push {sl, lr}

0xb61902bc mov sl, sp

Figure 1: Control application directly modifying the PC to
branch to the next function in Wago PFC100 PLC.

which handles the execution of the control application binary.
The runtime is not a Position Independent Executable (PIE),
so its memory regions are mapped to a fixed location. Ap-
plication binary execution happens in the three stages that
comprise the scan cycle: 1) I/O peripheral inputs sampling. 2)
Execution of the control logic. 3) Writing outputs to the I/O
peripherals. Since MainTask executes the control application
as a thread, they share process memory space. Thus, changes
from the control application can impact the runtime. Codesys
compiler compiles the control logic into a proprietary for-
mat that is then mapped into memory by the runtime. The
runtime also initializes the internal address table that stores
absolute addresses of the various control application, runtime,
and shared library functions.

Figure 1 shows the steps involved in branching to a called
function, 1) The program loads the base address of the address
table using PC-relative addressing into FP (R11), 2) it then
loads the absolute address of the next function in R6. 3) The
LR register is overwritten with the return address, and then the
PC is updated with the value of the R6 register, currently hold-
ing the address of the next function. Traditional approaches
exchange parameters between functions using both registers
and memory locations. However, function parameters are
passed only through memory locations in control application
binaries compiled by the Codesys compiler. Codesys run-
time also utilizes shared functions provided by standard C
libraries (e.g., Libc, Libm), using a wrapper function to move
the parameters from memory to appropriate registers.

Unlike GCC, which employs a Stack Smashing protector,
the proprietary Codesys compiler does not implement such
protections, enabling malicious writing on the stack. This
means that an adversary can control the state of the runtime
(the supervisory software for the control application) by ex-
ploiting vulnerabilities in the control application itself. To
illustrate this, as a motivating example, consider the loader
function for the control application, depicted in Figure 2, that
passes control to PLC_PRG (the equivalent of main in C) if the
byte extracted from the address 0xb62beb82 is zero. By ex-
ploiting vulnerabilities in the control logic, an adversary can
manipulate this byte to skip the execution and output phases
of the scan cycle, essentially replaying the unprocessed previ-
ous written values in the memory-mapped I/O registers.

0xb62beb80 0x01000001

PLC_PRG

0xb6195d68 0xb6195d90

0xb6195d6c 0xb6197290

0xb6195d70 0xb62beb30

SL (R10) = 0xb6195d68

0xb6195d68 0xb6195d90

0xb6195d6c 0xb6197290

0xb6195d70 0xb62beb30
R6 = 0xb62beb30

R4 = 0x0

SL (R10)

0xb6197010 push {sl, lr}

0xb6197014 mov sl, sp

0xb6197018 push {r4, r6}

0xb619701c mov r6, 0

0xb6197020 strb r6, [sl, 0x10]

0xb6197024 mov r6, 1

0xb6197028 ldr r4, [sl, 8]

0xb619702c strb r6, [r4, 0x53]

0xb6197030 ldr r6, [sl, 8]

0xb6197034 ldrb r4, [r6, 0x52]

0xb619704c b 0xb6197080

0xb6197080 pop {r4, r6}

0xb6197084 pop {sl, pc}

0xb619706c mov lr, pc

0xb6197038 cmp r4, 0

0xb619703c beq 0xb6197050

Figure 2: Runtime function executed just before the execution
of the entry point of the control application.

3 Problem Formulation

In this work, we explore the security implications to the PLC
due to vulnerabilities in control applications and the methodol-
ogy to locate and patch them. More specifically, we endeavor
to solve these research problems:
Automating vulnerability localization in the non-

executable ICS binary. ICS devices operate in the field
continuously without being taken offline, which only occurs
during the scheduled maintenance periods, making hotpatch-
ing the only feasible option to patch critical vulnerabilities.
This technique patches directly in the main memory during
the execution of a program, requiring precise knowledge of
the location of the vulnerability. The current state-of-the-art
patching techniques, such as HERA [37] and RapidPatch [21],
assume access to the patched binary or the source code to
identify the precise location of the patch, eliminating the lo-
calization issue. In our scenario, we assume only access to
the binary currently controlling the industrial process, making
localization more challenging.

At the same time, our focus is to patch only the control
application while excluding any of its surrounding logic to
avoid unintended system consequences. Vulnerabilities in the
control application can manifest from runtime imported func-
tions. For instance, a control application utilizing the MemSet
function (to initialize memory for a variable) without imple-
menting proper bound checks will crash the runtime while
implementing a store (str) instruction inside the MemSet

function. So, the application does not crash the runtime but
sends unexpected parameters to the MemSet function that
leads to the crash. However, these shared runtime functions
may also be used by other parts of the code with benign
impact. Therefore, we aim to patch the vulnerability in the

control application rather than the imported functions; thus,
localizing the vulnerability in the control binary is critical.
Software-only remote hotpatching of vulnerable control

applications. In general, hotpatching involves modifying the
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execution flow in the control logic towards the implemented
trampoline function by implementing a hook in the original
assembly code. Codesys does not provide hotpatching func-
tionality. The development environment (IDE) allows forcing
variable value, which writes the variable value in each cycle,
permanently holding the variable at the forced value. How-
ever, any changes to the code recompiles and redownloads
the updated control application binary to the PLC, which is
not desirable during continuous operation. Current state-of-
the-art solutions such as HERA [37] and RapidPatch [21]
patch RTOS compiled like a traditional binary and cannot
directly patch non-executable control applications. Further-
more, HERA utilizes Flash Patch and Breakpoint Unit (FPB)
on Cortex M3/M4 for dynamically patching embedded de-
vices. Such features limit the applicability of these patching
techniques on devices with other microcontrollers and require
hardware support. In our scenario, the PLC cannot be de-
commissioned to add hardware support. Therefore, we aim
to apply the patch by remotely connecting to the PLC with
admin privileges, a realistic and prevalent way to connect to a
PLC in the field.

3.1 Threat Model and Assumptions

We consider a field device, a PLC that regulates a physical
industrial process, connected to the industrial control network
to enable loading, monitoring, and managing the control logic
through a Human Machine Interface (HMI). This PLC also
receives sensor inputs processed by the currently executing
control logic to produce appropriate outputs relayed to the
actuators, allowing the PLC to impact the physical state of
the industrial process based on the implemented logic. An
intelligent adversary can perform man-in-the-middle (MITM)
attacks by intercepting and modifying communication with
the critical device in the following ways to deliver malicious
inputs to the target PLC: 1) Manipulating the sensor inputs
to the PLC by compromising the sensor [56] or by changing
the values in the memory-mapped I/O registers [55]. 2) In-
tercepting and modifying the network packets sent from the
HMI to the currently executing control logic, enabling data
modification in the program while injecting false data to the
HMI [25].

We assume that the adversary is limited to data injec-
tion/modification attacks by manipulating the sensors or the
network traffic. Because if the adversary can modify the con-
trol logic, the patch can be removed/overwritten. Such sce-
narios require orthogonal control logic modification protec-
tion solutions, for instance, using checksums, digital signa-
tures [53], control logic comparison while uploading [46],
and formal verification employing behavior [2, 33, 35, 59],
state [10, 19, 29], specification verification [4, 22, 62].

Since ICSPatch targets hotpatching of control applications
instead of the firmware, we cannot assume the existence of
patches from a trusted source (an assumption by HERA [37]

and RapidPatch [21]). Instead, ICSPatch creates its patches
by populating simple skeleton patches with concrete values.
To identify and locate the vulnerability, ICSPatch assumes
the existence of at least one exploit input, a typical assump-
tion made in literature [47]. For our target Codesys platform
control binaries, we use ICSFuzz [55] to identify a single
exploit input. However, similar to existing approaches in lit-
erature [6, 7, 32], ICSPatch cannot guarantee the correctness
of the generated patch, which should be decided by the pro-
cess engineers on a development PLC. However, it ascertains
the safety of the generated patch similar to RapidPatch [21],
elaborated further in Section 4.3.

4 ICSPatch Methodology

Figure 3 displays the overall workflow involved with patching
control application binaries. The process begins with assum-
ing access to an exploit input that can crash the control ap-
plication executing on the development PLC, an assumption
already made in the literature for automated vulnerability lo-
calization [47]. Specialized tools such as ICSFuzz [55] enable
the fuzzing of control application binaries, providing the ex-
ploit input if available. ICSPatch extracts hexdumps of the run-
time process memory space, the MainTask thread executing
the control application, and any other required shared libraries.
For example, some of the vulnerable control logic in our exper-
iments use shared functions from Libc and Libm. We ensure
that the exploit input is stored in the memory-mapped I/O
registers before extracting the hexdumps. ICSPatch also ex-
tracts other information, such as critical addresses, to enable
rehosting of the control application.

4.1 Overview

As shown in Algorithm 1, having extracted all the relevant in-
formation and memory snapshots from the development PLC,
ICSPatch starts by initiating an angr simulation (an open-
source binary analysis platform combining static and dynamic
analysis techniques [1]). The simulation instance is initial-
ized with the memory hexdumps by INIT_SIM(), which also
sets the PC to the start address of the function executed just
before the beginning of the PLC control process: “PLC_PRG”,
(also shown in Figure 2). After the end address of the simu-
lation is calculated using CALC_END_ADDR(), ICSPatch calls
ENABLE_DETECTION_RULES() to enable memory violation
detection rules based on attack observations. This functional-
ity leverages breakpoint support in the angr execution engine.
Starting at line 7, we step through the simulation performing
concolic execution (concrete input combined with symbolic
execution) of the loaded control application. As ICSPatch ex-
ecutes the control logic in angr, it iteratively builds a custom
Data Dependence Graph (DDG) using ADD_INSTR_NODE(),
ADD_MEM_NODE(), and ADD_EDGE() to add instruction, mem-
ory and transition type nodes, respectively (discussed further
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Figure 3: ICSPatch system design.

Algorithm 1 DDG-based vulnerability localization and patch
generation.

Input: hexdumps

1: // Initialize simulation, get simulation state and instruction program counter
2: sim,state, pc← INIT_SIM(hexdumps)
3: end← CALC_END_ADDR(start,state)
4: // Enable vulnerability detection rules in simulation
5: sim.ENABLE_DETECTION_RULES()
6: ddg← INIT_DDG()
7: while pc ̸= end do

8: // Add instruction node for current instruction, containing its operands
9: ddg.ADD_INSTR_NODE(pc,state.pc.oprnds)

10: if state.op = ‘mem_write’ then

11: // If sim writes to memory, add mem node and connect it to the instr node
12: ddg.ADD_MEM_NODE(state.mem_write_addr)
13: ddg.ADD_EDGE(pc,state.mem_write_addr, ‘stores’)
14: else if state.op = ‘mem_read’ then

15: // If sim reads from memory, add mem node and connect it to instr node
16: ddg.ADD_MEM_NODE(state.mem_read_addr)
17: ddg.ADD_EDGE(state.mem_read_addr, pc, ‘loads’)
18: else if state.op = ‘reg_write’ then

19: // If write to reg, connect instr node to previous reg state (transition node)
20: ddg.ADD_EDGE(PRV_REG_STATE(state.pc.oprnd2), pc, ‘next’)
21: end if

22: // Detect vulnerability using memory violation rules
23: if DETECT_VULNERABILITY(state) then

24: // Locate DDG traversal starting point
25: start_addr← GET_COMPARISON_INSTRUCTION(state.block)
26: // Get code block bounds for DDG traversal
27: block_start,block_end← GET_NEAREST_APP_BLOCK_ADR()
28: // Traverse DDG using DFS algorithm to get patch address
29: sim_p_addr← DFS(ddg,start_addr,block_start,block_end)
30: // Check if patch address is valid
31: if CHECK_RANGE(sim_p_addr,block_start,block_end)is false then

32: FAIL()
33: end if

34: b_addr← GET_BASE_ADDR()
35: // Create patch based on simulation and deployed PLC information
36: patch,hook, liv_p_addr← BUILD_PATCH(state,sim_p_addr,b_addr)
37: // Deploy patch by sending it to the local patch server on the PLC
38: DEPLOY_PATCH(patch,hook, liv_p_addr)
39: EXIT()
40: end if

41: state, pc← sim.SIM_STEP()
42: end while

in Section 4.2). Upon detecting a vulnerability in the current
control application, ICSPatch performs localization by travers-
ing the DDG. Traversal happens in DFS() starting from the
node calculated by GET_COMPARISON_INSTRUCTION() and
is bounded by the addresses of the control application func-
tion block closest to the vulnerability manifestation, as calcu-
lated by GET_NEAREST_APP_BLOCK_AD(). After completing
this step, ICSPatch prompts the user to select the appropri-

ate patching candidate if multiple options are available. In
our dataset, this occurs only for MemUtils.BitCpy as it can
be exploited by manipulating either the size or offset pa-
rameters, having two viable starting nodes for vulnerability
localization. However, ICSPatch provides the user with the
malicious input at the identified memory location, which can
be effortlessly verified with the exploit input to choose the
correct candidate. Once the patching candidate (memory loca-
tion) is selected, ICSPatch calls GET_BASE_ADDR() to gather
important base address information of the runtime from the de-
ployed PLC. Consequently, it invokes BUILD_PATCH() com-
bining the offsets calculated from the angr instance with the
live base address information to build the patch and calcu-
late all appropriate offsets, such as the offset for the memory
location of the patch, the hook, and much more. Finally, in
DEPLOY_PATCH(), ICSPatch communicates the patching in-
formation to the local patch server running on the deployed
PLC, which relays it to the Loadable Kernel Module (LKM)
patcher, patching the control application.

4.2 Step 1: Vulnerability Identification & Lo-

calization

Vulnerability identification. ICSPatch performs vulnerabil-
ity identification in DETECT_VULNERABILITY() by utilizing
the breakpoint functionality in the execution engine of angr.
For executing control logic, the runtime passes execution
to the control application, whose initial cycle sets up data
structures, such as the address table, utilized in consecutive
executions. So, in the case of out-of-bounds write and read for
our target control applications, the impact of the vulnerability
can remain isolated to the control application or even impact
the runtime. ICSPatch handles these two cases of impacts
differently in ENABLE_DETECTION_RULES(). For malicious
reads and writes, ICSPatch reviews all the store and load op-
erations while executing the control application in angr to
verify if any of them write below the highest stack address
of the control application. On the other hand, malicious out-
of-bounds write/read can also have a limited impact on the
control application. For detecting such conditions, ICSPatch
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OOB_WRITE_RULE (ALERT): OOB_WRITE [WRITE_ADDRESS > RUNTIME_STACK and WRITE_ADDRESS < RUNTIME_TEXT] “Vulnerability Detected.”

Name Action Patch Identifier Definition Message

OOB_READ

OS_CMD_INJ

READ_ADDRESS > RUNTIME_STACK AND READ_ADDRESS < RUNTIME_DATA

WRITE_ADDRESS > RUNTIME_STACK AND WRITE_ADDRESS > RUNTIME_ADDRESS_TABLE

Figure 4: Ruleset format for ICSPatch with an example.

executes the control application with legitimate inputs to cap-
ture the offset of stack writes for each function inside their
corresponding stack frames, later comparing it with the writes
of the control application with exploit input. Since we assume
that the adversary only has access to the input of the control
application, the changes in the memory locations written by
the currently executing control logic are only the result of the
exploit input. However, the absolute write/read addresses can
change; therefore, ICSPatch captures the offset of a memory
location written or read per stack frame for each function.

Finally, OS command injection is a unique case of out-
of-bounds write involving writing to the address table with
the address of the malicious payload, effectively redirecting
execution flow toward the payload. ICSPatch monitors store
operations on the address table while executing the control
application in angr. The address table is initialized once (in
the first scan cycle) and only changes when loading a new
control application or restarting the runtime.

It should be noted that vulnerability identification in IC-
SPatch only recognizes known categories of vulnerabilities in
unknown compiled application binaries because it relies on a
core set of rules for detecting these vulnerabilities (defined
in ENABLE_DETECTION_RULES()). So, expanding the ruleset
enables the detection of more vulnerabilities.
Vulnerability ruleset example. Memory operations on the
control application stack should remain isolated from the
runtime stack so that the runtime can continue operating
uncorrupted. Furthermore, considering Figure 8, the control
application stack is followed by the runtime stack, control
and runtime code, the address table, and the data section.
The control application, during its execution, does not
need to manipulate any of these memory regions, so a
vulnerability ruleset to capture malicious out-of-bounds write
requires checking for memory write operations at an address
greater than the runtime stack address as shown in Figure 4.
Other components of the ICSPatch ruleset include a name,
a message printed upon detecting a particular vulnerability,
and the corresponding action (WARN or ALERT). The patch

identifier specifies the corresponding patch for utilization.
Finally, the rule definition specifies a logical relationship
for vulnerability detection. It can utilize hardcoded values
or special addresses dynamically identified by ICSPatch,
such as WRITE/READ_ADDRESS, RUNTIME_STACK/DATA,
and RUNTIME_ADDRESS_TABLE.
Vulnerability localization. ICSPatch creates a DDG while
executing the control application in angr as shown in Algo-
rithm 1. In some cases, memory violation vulnerabilities in
the control applications result from missing bound checks
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0xb6bd789c subs r2, r2, #8

0xb6bd78a0 stmhs r3!, {r1, ip}

0xb6bd78a4 subshs r2, r2, #8

0xb6bd78a8 stmhs r3!, {r1, ip}

0xb6bd78ac subshs r2, r2, #8

0xb6bd78b0 stmhs r3!, {r1, ip}

0xb6bd78b4 subshs r2, r2, #8

0xb6bd78b8 stmhs r3!, {r1, ip}

0xb6bd78bc bhs #0xb6bd789c

0x83f48c8 push {r4, lr}

0x83f48cc mov r4, r0

0x83f48d0 ldm r0, {r0, r1, r2}

0x83f48d4 bl #0x840d300

0xb61af7f4 str r6, [sp, #4]

0xb61af7f8 ldr r6, [sl, #0x10]

0xb61af7fc str r6, [sp, #8]

0xb61af800 ldr fp, [pc, #0x44]

0xb61b323c ldr r6, [sl, #0x20]

0xb61b3240 str r6, [sp, #8]

0xb61b3244 ldr fp, [pc, #0xf8]

0xb61b3248 ldr r6, [fp]

0xb61b324c andvs r0, r0, r0

0xb61b3250 mov lr, pc

0xb61b3254 mov pc, r6
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Figure 5: Vulnerability localization in ICSPatch using Data
Dependence Graph. The memory node (M), represented in
blue, shows the patching memory location of the malicious
input just before the execution leaves the control application.

in imported functions rather than the original control logic.
ICSPatch detects the exploit location, i.e., the instruction
that triggers vulnerability identification. In the out-of-bounds
write example shown in Figure 5, the stmhs instruction at
0xb6bd78b8 writes into the runtime stack and is therefore
detected (represented in red). However, this location is not
the same as the patch location. Patching at such locations
modifies the shared runtime function, which is also utilizable
at other parts of the program. Moreover, the runtime may also
call some of the available Libc functions instead of imple-
menting its own; patching at this location implies hotpatching
Libc. So, ICSPatch must identify a patching location close to
the boundary between the control application and the runtime,
as illustrated in Figure 5.
DDG structure and methodology. Figure 5 shows three

main categories of DDG nodes, the instruction I , mem-

ory M , and transition nodes T . Control applications utilize
memory locations to pass parameters between functions, thus
requiring store (str) and load (ldr) instructions, represented
by instruction nodes. Store operations write to a memory lo-
cation represented by memory nodes in the DDG. We need
to include these nodes in our DDG to locate the input in
memory that leads to the manifestation of the vulnerability

(represented by M ). Finally, the control logic might modify
the values loaded into the register or move them into a differ-
ent register. Transition nodes represent such operations on the
loaded memory value.

In the example displayed in Figure 5, the stmhs instruction
at 0xb6bd78b8 leads to the violation of the out-of-bounds
write rule. However, such bound checks are implemented
by checking the value of the bound, in this case, stored in
R2, decremented at 0xb6bd789c with subs and verified at
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0xb6bd78bc with bhs. ICSPatch recognizes 0xb6bd789c as
the start node and traverses backward along the path rep-
resented by dashed lines reaching the instruction node at
0xb61b3240. This str instruction stores the bound value at
the memory location represented by M , which is the value
manipulated by an adversary, leading to the manifestation of
the vulnerability: Out-of-bounds write in this case. Using the
DDG and traversing it with its DFS() algorithm, ICSPatch can
successfully localize vulnerabilities for control applications
and select an appropriate patching location.
Why does ICSPatch utilize DDG? Vulnerability localization
can be performed in various ways. For instance, VULNLOC

utilizes statistics for identifying correct patching locations
for 88% of the considered 43 CVEs while considering Top-5
outputs [47]. On the other hand, the machine learning-based
approach DeepVL [26] achieves an accuracy of 96.9% with
low precision of 70.1%, while Devign [61] reaches accuracy
of 80.24%. ICSPatch captures memory snapshots from the de-
velopment PLC, allowing simulated execution of the control
application with concrete values. At the same time, control
binaries typically lack optimization, so data/control flow is
easier to understand/extract with precision compared to reg-
ular optimized binaries. Dynamic analysis techniques with
concrete values of registers explore a single path while provid-
ing high fidelity (accurate intermediate states) and produce no
false positives (every data dependency is valid) [18,36]. Since
ICS devices often control and regulate physical processes in
critical infrastructure, a deterministic approach with no false
positives is preferable over the aforementioned probabilistic
methods with false positives. Therefore, DDGs provide an
accurate answer, if a vulnerability exists; if not, ICSPatch fails
to patch, which is preferred to the alternative of allowing false
positives, i.e., patching at incorrect locations.

4.3 Step 2: Patch Generation & Deployment

Patch generation. In contrast to state-of-the-art embedded
systems hotpatching solutions that target the RTOS [21, 37],
ICSPatch focuses on a much more exotic target: the indus-
trial control application. So, unlike state-of-the-art, it does not
have an upstream source for official patches. To automate the
process of hotpatching, we restrict our focus to a select cate-
gory of weaknesses. In BUILD_PATCH(), we create skeleton
patches for all selected weaknesses and populate the patches
with live values from the deployed PLC by communicating
with the local patch server running on it. For instance, the
out-of-bounds write/read patch compares the value of the
bound with the highest permissible value to prevent illegiti-
mate write/read to the stack. ICSPatch populates the skeleton
patch with concrete values, which include the higher upper
bound for the size and the live memory address of vulnerable

input on the deployed PLC (shown by M in Figure 5). On
the other hand, the patch for OS command injection requires
the live address of the overwritten location in the address table

and the corresponding live expected value in that location,
which is captured automatically from the deployed PLC.

Patch verification. ICSPatch injects the hotpatch and the
hook in the angr simulation state to rerun the scan cycle of
the control application with the exploit input to check for un-
bounded loops, dangerous instructions (for instance, involving
stack state manipulation), memory modifications outside the
range of the control application stack, and the vulnerability
ruleset. If the scan cycle terminates without triggering any
safety checks, the patch is deemed safe for deployment. To
note, ICSPatch, like other state-of-the-art solutions, cannot
verify the correctness of the patch automatically, so instead,
it checks for its safety [21].

Patch deployment. Patch deployment with ICSPatch requires
two main components operating on the target vulnerable PLC:
1) The local patch server that communicates with the IC-
SPatch server over the network, which upon request from
GET_BASE_ADDR() sends information such as specific base
addresses, and then through DEPLOY_PATCH() receives com-
mands to verify memory location content, and write into the
process memory. The local patch server also preprocesses
the patch-related information received from ICSPatch before
transferring it to the LKM patcher. 2) The LKM patcher is
the main patching component. It executes the commands re-
ceived from the ICSPatch server that are relayed via the local
patch server to verify the content of a memory location or
to write new content. To ensure the safety of operations, the
PLC runtime must not be able to execute during the patching
process. As will be discussed later in the experimental results,
the critical part of patching (i.e., writing the hook) takes a neg-
ligible amount of time (ranging from 0.00022 ms to 0.00046
ms), thus running without interruption. Nevertheless, for ex-
tra caution, we introduce two more safety measures: 1) Just
before the critical code, we adjust the nice process schedul-
ing priority for the runtime by setting it to 19, which ensures
that the runtime will only run when no other system process
with higher priority wishes to execute. 2) Additionally, before
entering the critical section of the patching process, our LKM
temporarily disables kernel preemption and interrupt han-
dling for the local processor using preempt_disable() and
local_irq_disable() respectively [9, 28], and re-enables
them after writing the hook, ensuring an atomic operation.

At the same time, to avoid writing at inappropriate loca-
tions on the deployed PLC, our LKM verifies the memory
content at said locations with the content obtained from the
development PLC. Specifically, the patch and the address of
the patch to be written in the address table expect empty mem-
ory locations, and only the hook that modifies the execution
flow requires an exact memory content match to proceed with
its installation at that specific location. The LKM patcher can
write into the memory space of any process and at locations
as specified by the ICSPatch server. However, patching is
aborted in case of a mismatch in the memory location content
during verification. The two components mentioned above op-
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0xb61b3344 0xb62c00b4

Address Table

1

paddr + 0x2c mov pc, r6

paddr add r11, pc, #0x34

paddr + 0x4 str r14, [r11]

0xb62c00b4 + Offset paddr

Patch

2

0xb61af7c8 push {sl, lr}

0xb61af7cc mov sl, sp

0xb61af7d0 push {r0, r6}

0xb62c00b4 0xb61af7c8

0xb61b3224 sub sp, sp, #0x10

0xb61b3228 ldr r4, [pc, #0x118]

0xb61b322c add r6, sl, r4

0xb61b3230 str r6, [sp]

0xb61b3234 mov r6, #0

0xb61b3238 strb r6, [sp, #4]

0xb61b323c ldr r6, [sl, #0x20]

0xb61b3240 str r6, [sp, #8]

0xb61b3244 ldr fp, [pc, #0xf8]

0xb61b3248 ldr r6, [fp, Offset]

0xb61b324c andvs r0, r0, r0

0xb61b3250 mov lr, pc

0xb61b3254 mov pc, r6
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Figure 6: Steps involved in modifying the control flow for
patching control applications with ICSPatch are shown in
gray.

erate on the deployed PLC and allow non-intrusive patching
of the live control application.

The patches generated by ICSPatch require a change in the
execution flow for patching the vulnerability before return-
ing it to normal flow. As shown in Figure 6, three primary
steps are involved. 1) ICSPatch verifies an empty memory
location between the control application and the address table,
writing the patch at this location (paddr). 2) It then verifies
an empty location in the address table and writes the patch
address while noting its offset. To find an empty location in
the address table, ICSPatch utilizes the base address of the
address table loaded in an ldr instruction which remains un-
altered during patching (for instance, at address 0xb61b3244
in Figure 6) and traverses the address table for 0x7fe mem-
ory locations (highest value of permitted immediate offset for
an ldr instruction) attempting to find an empty location of
32 bits. This process is performed entirely on the rehosted
angr instance of the control application binary, not impacting
the deployed PLC. 3) Finally, it modifies the ldr instruction
at 0xb61b3248, which was initially in this example ldr r6,

[fp], to ldr r6, [fp, Offset] for adding an offset to the
original address into the address table. As a consequence of
this offset, during execution, the R6 register loads the address
of the patch instead of the next function at 0xb61af7c8. The
execution flow changes to the patch, which fixes the bound
value at the automatically detected memory location during
vulnerability localization and passes the control back to the
intended function after restoring the values of the registers em-
ployed in the patch. Figure 6 displays the changes committed
by ICSPatch in gray.

5 ICSPatch Usage Scenario

Figure 7 shows three primary chronological steps involved
with the real-world deployment of ICSPatch. The scenario
assumes remote (SSH) access to the deployment PLC and also
access to a development PLC to perform intrusive operations.
1) Preparation (if needed). If the user does not already have
a copy of the control binary, they need to connect to the de-
ployed PLC and extract it ( 1 ) over the network with a simple

Load LPS, LKM

Receive CI, HD

Receive CL

Load CL

Development PLC User Deployed PLC

Preparation

1

2

3

DDG = 

ICSPatch

(CI, HD)

Localization

4

LPS

LKM
BA = LPS()

Receive BA

5

P = 

ICSPatch

(BA)

Send P

6

LPS(P)

LKM()

Hotpatching

Request CL

Request CI, HD

Request BA

CLCI = fuzz(CL)

HD = 

hdump(R,A,L)

CL: Control Logic CI: Crash Inputs HD: Hexdumps R: Runtime
A: Application L: Libraries DDG: Data Dependency Graph
LPS: Local Patch Server LKM: Loadable Kernel Module

BA: Base Address P: Patch

Figure 7: A chronological overview of using ICSPatch in the
field. All arrows are SSH connections.

SSH connection. Once they have the binary, they load it to a
second, offline PLC (“development PLC”, 2 ), and a fuzzer
is employed (e.g., ICSFuzz [55]) to uncover potential crash
inputs in the control logic. When fuzzing yields a set of crash
inputs, these are recorded, along with hexdumps of the run-
time, control logic application, and memory.
2) Localization. The crash files described before are retrieved
by the user 3 , and ICSPatch is executed, localizing the vul-
nerability using DDGs.
3) Hotpatching. To hotpatch the vulnerability, the local patch
server and LKM are loaded onto the deployed PLC 4 . The
local patch server extracts the runtime base address 5 , which
is provided to ICSPatch to create a patch. Consequently, the
user sends the patch to the deployed PLC 6 , where the local
patch server interfaces with the LKM to patch the control
application in memory.

6 Dataset and Vulnerabilities

Table 1 presents the top 5 software weaknesses for 2021 [34].
We observe that out-of-bounds write, read, improper input
validation, and OS command injection apply to control bina-
ries and can affect PLCs. Cross-site scripting, on the other
hand, is not an applicable threat to the control application and,
therefore, is not considered. Software weaknesses can affect
PLCs since the control binary runs in the runtime context,
inherits its privileges, and shares its memory spaces.

To evaluate the ability of ICSPatch to localize and patch
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Table 1: Top 5 Common Weakness Enumeration (CWEs)
software weaknesses for 2021 as reported by MITRE [34].

Rank CWE Description

1 CWE-787 Out-of-bounds write
2 CWE-79 Cross-site scripting
3 CWE-125 Out-of-bounds read
4 CWE-20 Improper input validation
5 CWE-78 OS command injection

Table 2: A diverse synthetic control application dataset for
testing ICSPatch.
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IEC 61131-3 code
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CWE-787/CWE-125: Out-of-Bounds Write/Read CWE-78: OS Command Injection
CWE-20: Improper Input Validation

vulnerabilities, we created a synthetic dataset of control ap-
plication binaries from five critical infrastructure sectors, in-
cluding aircraft flight control, anaerobic digestion reactor,
smart grid, chemical, and desalination plants, with a total of
24 vulnerable binaries. Table 2 provides a summary of the
synthetic dataset, including the shared library, the imported
functions utilized for each example control application, and
the corresponding critical infrastructure.
CWE-787 Out-of-bounds write. An adversary can manip-
ulate the size of the destination array by setting it to a size
smaller than that of the source array in functions such as
SysMemSet, SysMemMove, MemCpy and BitCpy, overwriting
memory locations on the stack. These overwritten memory
locations can be confined to the stack of the control applica-
tion or can also cross over to the stack region of the runtime
functions, crashing the MainTask. As a result, the control
application or the runtime might crash (will not execute) due
to overwritten variables or return addresses, as shown in Fig-
ure 8.
CWE-125 Out-of-bounds read. These vulnerabilities can
manifest in functions missing bound checks when reading
from a larger destination array compared to the source, en-
abling an adversary to read from any of the selected memory
regions, including the stack, the code and data sections of
the runtime, and the control application as shown in Figure 8.
Out-of-bounds read samples do not lead to runtime or control
application crashes.
CWE-78 OS command injection. In these examples, an ad-
versary modifies the execution flow to execute the injected
payload or point to the beginning of a ROP chain. The ex-
amples achieve this by using an array and a malicious index
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Figure 8: Typical operation and the manifestation of out-of-
bounds write, read, and OS command injection vulnerabilities
in PLCs. Here, the control code represents the currently exe-
cuting control application.

manipulated by the adversary to modify the address of the
following function in the address table to redirect the control
flow to the malicious code rather than the expected function,
as shown in Figure 8.
CWE-20 Improper input validation. An input to the con-
trol application can be from the connected sensors or other
industrial communication protocols such as Open Industry
Standard Unified Architecture (OPC UA). An adversary can
manipulate inputs sent via the network during transit, requir-
ing validation checks in the control application. Abstractly,
all the other presented weaknesses could result from improper
input validation, and we have already explored them indi-
vidually. Therefore, for our dataset, we enrich it with more
out-of-bounds write weaknesses.

7 Performance Evaluation

To evaluate the performance of ICSPatch, we test it against
the 24 control applications presented in Section 6. We use
two PLCs with different computational capabilities: A Wago
PFC100 with a single-core Cortex A8 processor operating at
600 MHz and a Wago PFC200 operating at 1 GHz.
Vulnerability localization accuracy. To test the accuracy of
ICSPatch, we utilize our synthetic application binary dataset
with 24 binaries and the 20 vulnerable binaries from the ICS-
Fuzz dataset [55]. We loaded these control applications on
Wago PFC 100 and successfully detected all the vulnerabil-
ities in the 44 vulnerable binaries (100% localization accu-
racy). However, it should be noted that ICSPatch detects vul-
nerabilities based on specific violation rules, and any function
that does not follow this pattern might go undetected. The
ICSFuzz dataset consisted primarily of out-of-bounds write
vulnerability manifesting due to various imported functions
and, in some examples, incorrect index to an array, enabling
successful detection.
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Table 3: ICSPatch execution timings and overheads for the 24 vulnerable binaries.

Critical

Infrastructure

Vulnera-

-bility

Time (ms) Mean Execution Time (µs) Achieved

Scan Cycle

(µs)

Memory

(Bytes)Vulnerability

Localization

Patch

Generation

Patch

Verification

(s)

Patch

Deployment Pre-patch Post-patch Difference

Total
Critical

(µs)

Aircraft

Flight

Control

CWE-20 3.06 178.57 7.71 252.13 0.22 20.09 21.06 0.97 69.59 64
CWE-787 6.72 166.39 67.18 332.73 0.3 18.05 20.04 1.99 77.2 64
CWE-787 4.42 143.68 33.43 232.2 0.26 25.4 27.19 1.8 74.94 64
CWE-125 4.85 178.59 28.93 252.24 0.46 21.6 21.78 0.17 74.54 64
CWE-78 1.54 203.03 9 230.17 0.3 16.61 20.5 3.89 72.87 56

Anaerobic

Reactor

CWE-20 5.05 134.98 10 234.42 0.31 20.04 21.04 0.99 134.46 64
CWE-787 3.78 126.87 2.86 232.07 0.35 17.02 17.07 0.05 71.46 64
CWE-787 4.82 130.18 7.17 246.06 0.24 19.99 20.24 0.25 147.74 64
CWE-787 4.44 124.95 2.16 223.7 0.22 21.32 21.37 0.05 74.49 64
CWE-125 5.91 125.24 4.62 234.49 0.23 16.89 18.94 2.04 77.3 64
CWE-125 4.96 221.38 169.1 236.26 0.28 23.98 28.08 4.09 152.96 64
CWE-78 1.44 171.11 6.16 298.04 0.3 15.10 19.3 4.19 71.7 56

Chemical

Plant

CWE-20 5 126 1.85 254.16 0.3 14.82 17.45 2.63 67.75 64
CWE-787 3.76 183.18 424.23 236.42 0.31 36.62 54.03 17.4 148.54 64
CWE-125 6.61 170.95 17.83 253.94 0.23 21.37 25.8 4.42 71.41 64
CWE-78 1.64 127.89 20.26 252.72 0.26 24.09 26.64 2.54 72.38 56

Desalination

Plant

CWE-20 5.44 134.94 7.4 244 0.24 18.6348 19.88 1.25 75.82 64
CWE-787 4.81 127.11 3.32 238.35 0.23 15.717 18.07 2.35 75.79 64
CWE-125 4.94 139.36 11.25 241.02 0.25 19.3252 19.99 0.66 73.08 64
CWE-78 1.52 133.81 5.5 230.13 0.26 17.483 20.52 3.04 80.5 56

Smart

Grid

CWE-20 3.95 133.9 3 264.83 0.27 15.1286 17.15 2.02 65.71 64
CWE-787 3.64 134.14 9.2 247.91 0.22 26.0833 27.02 0.94 83.69 64
CWE-125 5.73 126.27 4.6 227.34 0.23 20.0931 22.98 2.89 97.48 64
CWE-78 1.46 222.22 6.6 232.86 0.34 25.2406 27.31 2.07 77.12 56

CWE-20: Improper Input Validation CWE-787: Out-of-Bounds Write CWE-125: Out-of-Bounds Read CWE-78: OS Command Injection

Table 4: Detailed breakdown of ICSPatch used on the Aircraft Flight Control CWE-20 vulnerable binary.

Phases Preparation Vulnerability Localization Patch Generation Patch Deployment

Steps
Hexdump
Extraction

Load
Hexdumps

Control App
Execution

DDG
Traversal

Locate Live
Addresses

Hook
Creation

Patch
Creation

Patch
Verification

MV MW MV MW MV MW
Address Table Patch Hook

Device
Development

PLC
ICSPatch (angr)

Deployed
PLC

ICSPatch Deployed PLC

Time (s) 733.11 52.02 4.73 0.003 0.06 0.09 0.03 7.71 0.016 0.033 0.054 0.055 0.05 0.043

MV: Memory Verification MW: Memory Write

ICSPatch execution timings. Table 3 shows that ICSPatch
can successfully localize vulnerabilities in the control appli-
cation in under a minute for most cases, except for the out-of-
bounds write example for the Chemical Plant infrastructure,
mainly due to the execution time of the control application in
angr (310.4 s) because of a large number of loops in the con-
trol logic. At the same time, patch generation with ICSPatch
ranges from ≈124 ms to ≈222 ms, while patch deployment
ranges from ≈223 ms to ≈332 ms. This timing includes ev-
erything, such as empty memory location verification, writing
the patch in memory, verifying the hook location, and the
hook writing time. The last step, specifically the LKM part
involving hook injection, is the critical step (since it modifies
the control flow of the ICS binary) and appears in Table 3
as the “Critical” column. As evident in the Critical column,
LKM hook writing time is extremely fast, in the order of µs,
significantly reducing the probability of the runtime execut-
ing while hook writing takes place. Nevertheless, ICSPatch
takes additional precautions for ensuring atomic hook writing
operation as outlined in Section 4.3. Table 4 takes one of
the binaries (CWE-20 for Aircraft Flight Control) and further
breaks down the timings. The time for writing the patch hook

in memory, as shown in Table 4, includes the ICSPatch com-
munication with the user system, the local patch server time,
and the LKM time. Table 3 presents only the critical LKM
time, which is a subset of the total time.

ICSPatch overhead. Table 3 also shows the latency incurred
by the control application execution as a result of the patch in
µs. The increase in the execution time is negligible (0.05-17.4
µs) compared to typical scan cycles of critical infrastructures,
which range from a few milliseconds to a few seconds (ex-
act scan cycle values are process and setup specific), further
illustrated in the case study in Section 8. Patching increases
latency by only a few µs; however, the out-of-bounds write ex-
ample for the chemical plant is an exception with an increase
of≈17.4 µs. This increase is independent of the patch and is a
consequence of the structure of the control application. Unlike
other examples, an exploit input, in this case, triggers the exe-
cution of additional for loops for larger array initialization.
The patch only fixes the input to the MemUtils.MemCpy that
results in the out-of-bounds write. Initializing a larger array
due to an exploit input is a legitimate operation as it does
not overwrite any memory location, leading to an increase in
time.
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With regards to the extra memory needed for the patch,
presented in Table 3, there are three crucial parts to the patches
generated by ICSPatch: The main patch, the address of the
patch written in an empty location inside the address table, and
the hook. The patch address is 32 bits for our target platforms,
and the hook size depends on the target compilation mode
for the runtime. In our experiments, the hook for our Wago
PFC100 (ARM) is 32 bits, as it consists of modifying an ldr
instruction with an immediate operand. The main patch for
out-of-bounds write and read vulnerabilities is based on 13
assembly code lines and the 32 bit bound limit. Combined
with the patch address and the hook, this results in a 64-byte
patch. On the other hand, the skeleton patch for resolving OS
command injection vulnerability does not include a bound
limit and also does not require us to load the base address to
branch to the patch location, thus saving an additional 4 bytes
by the omission of an ldr instruction, making the total patch
size 56 bytes.

Non-intrusiveness. ICSPatch utilizes an LKM-based patcher
for writing the patch at appropriate memory locations. Insert-
ing the hook (modified ldr instruction) is the most critical
part of the patching process, resulting in a modified execution
flow toward the patch. Since PLCs often execute straightfor-
ward dedicated process logic, they lack heavy computation
power. For instance, Wago PFC100 and PFC200 (Genera-
tion 2) utilize single-core Cortex-A8 processors. To execute
multiple processes, such processors utilize time slicing. As
discussed earlier, the LKM patcher inserts the patch when the
runtime process is switched out and sleeping. To further en-
sure that patching commences safely in an atomic fashion, the
runtime process priority is adjusted, and our LKM temporarily
disables kernel preemption and interrupt handling.

We write a bash script for Wago PFC100 and PFC200
to measure the execution and sleeping time for the runtime.
We measure running/sleeping times in an interval of 1 hour
(3600 seconds). We observe that, on average, for a basic out-
of-the-box installation, the runtime process utilizes ≈492 s
(≈13.66%) and ≈404 s (≈11.23%) of total CPU time for
Wago PFC100 and PFC200, respectively, while executing the
control application binary for regulating the steam flow into
the brine heater for thermal desalination plants, explained
further in Section 8. While the codesyscontrol process still
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Figure 11: Experimental setup for patching out-of-bound
write vulnerability in an MSF desalination plant HIL.

occupies the majority of the CPU time when compared to any
other processes, as shown in Figure 10, the majority of the
time is spent in the kernel Idle handler, ≈2966 s (≈82.41%)
and ≈3092 s (≈85.6%) for Wago PFC100 and PFC200 re-
spectively, as shown in Figure 9. This affirms that the LKM
patcher can utilize this idle time on these single-core PLC de-
vices to non-intrusively patch the currently executing control
application binaries.

8 Case Study: Hotpatching Out-of-bounds

Write Vulnerability in a Desalination Plant

Hardware-in-the-loop setup. For testing the applicability
of ICSPatch on PLCs deployed in the field, monitoring and
regulating physical processes in critical infrastructure, we per-
form a Hardware-in-the-Loop (HIL) experiment. The experi-
ment setup is shown in Figure 11, consisting of a MATLAB
Simulink model for a Multi-Stage Flash desalination plant
validated against the Khubar II plant in Saudi Arabia and
utilized for HIL experiments in literature [12, 41–43]. The
model controls the steam flow into the heating section based
on the initial brine temperature (TB0) and the distillate output
(WD). It runs on a host connected to NI USB 6002, a data
acquisition (DAQ) device providing multiple digital and ana-
log I/Os, which converts the digital inputs from the Simulink
model to analog outputs and then feeds them to the Wago
PFC100 PLC. The PLC sends the output of the control logic
as analog values back to the DAQ device, which converts it to
digital values that the Simulink model reads. We extract TB0
and WD from the Simulink model and send them to the PLC.
ICSPatch server is connected via SSH to the PLC.
Out-of-bounds write. The control logic executing on Wago
PFC100 and regulating the critical physical process utilizes
MemUtils.MemCpy, an imported function for copying mem-
ory contents into temporary variables in a function. An ad-
versary can maliciously modify the bound value to trigger an
out-of-bounds write on critical runtime variables on the stack,
resulting in a crash. In our example, as shown in Figure 12, an
adversary triggers an out-of-bounds write attack at the 100th

cycle of the model by maliciously modifying the TB0 size
and overwriting critical sections of the runtime stack.
Patching. ICSPatch extracts memory segments from the de-
velopment PLC loaded with the exploit input, rehosts them in
angr, and performs concolic execution to detect vulnerabil-
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ities. Once it detects the vulnerability, it localizes it, selects
a patch location, connects with the deployment PLC, and
patches it on the deployment PLC by adding a bound check
to the size of the TB0 parameter, which is the root cause of
the vulnerability in the control logic.

Figure 12 shows the consequences of unpatched control
logic regulating the MSF process (shown in red) with an out-
of-bounds write vulnerability. The output Wd flow rate de-
creases significantly due to the attack beginning on the 100th

operational cycle of the simulation. The adversary crashes
the runtime by triggering an out-of-bounds write vulnerabil-
ity. However, a patched instance of the control application is
protected against the attack, and the control logic functions
as expected without any output changes.

9 Scalability Discussion

Localizing and patching more vulnerabilities. We include
eight different memory-related functions in our dataset and
successfully patch the vulnerable control binaries using IC-
SPatch. The patches for these memory-related functions im-
plement a bound check and are therefore applicable to all
the relevant examples with minor modifications to the live
memory addresses of the deployed PLC. In most cases, ex-
tending ICSPatch to support other functions requires adding
the appropriate node to the DDG for automated vulnerability
localization.
Hotpatch deployment. ICSPatch requires a kernel-level com-
ponent (LKM, in our case, or a dedicated patch driver) for
patching the control applications running on Linux operating
systems. However, PLCs may run bare-metal firmware. In
that case, ICSPatch also provides a JTAG-based patcher out-
of-the-box to support such devices, which we have success-
fully tested on a BeagleBone Black (BBB). Similarly, HERA
implements a low-priority task, and RapidPatch assumes a
traditional OTA transfer tunnel for its patch deployment.
Targeting more devices. We extend ICSPatch to work with
Codesys runtime running on BBB. The main differences ap-
pear in the methodology used for branching between func-
tions. The Codesys variant for Wago PFC100 saves the R14
and explicitly modifies PC (Figure 1), whereas, on BBB a blx
(branch with link exchange) instruction is used for branching
to the next function. Due to the discrepancies in branching,

Table 5: Firmware base and runtime support of popular ICS
vendors.

Vendor Firmware Base Supports Codesys

ABB Linux Yes
Beckhoff FreeBSD Yes

Bosch Rexroth Linux Yes
Mitsubishi N/A Yes

Rockwell Automation VxWorks No
Schneider Electric VxWorks Yes

Siemens OpenBSD No
WAGO Linux Yes

the patch requires minor modifications to accommodate the
use of different registers and branching mechanisms. Further-
more, the runtime variant operating across devices might also
vary in the mode of its compilation. For instance, the runtime
for BBB is compiled in Thumb mode, whereas it is ARM for
Wago PFC100. Therefore a branch to the following function
on BBB expects the code to be in Thumb, whereas it has to
be in ARM on PFC100, requiring the patches to be compiled
accordingly.

ICSPatch can be extended to support other vendors, in-
cluding Siemens, Rockwell, Mitsubishi, and Schneider, who
collectively share approximately 75% of the PLC market
[51]. While older PLCs primarily used monolithic proprietary
firmware containing only in-house developed components,
this is no longer the case, as shown in Table 5. Instead, the ICS
market has transitioned to a model that utilizes commodity
operating systems and third-party components, enabling the
deployment of tools like ICSPatch. For instance, our analysis
of other PLC firmware reveals that the Siemens SIMATIC
S7 line utilizes OpenBSD while Rockwell Automation and
Schneider Electric use the VxWorks kernel. Looking closer,
we noticed that the firmware bundles had numerous propri-
etary and third-party open-source components. Such compo-
nents included JavaScript libraries like jQuery, utilities like
OpenSSL, ICS-specific software like the Codesys runtime
and Unified Automation’s OPC UA SDK, and even more be-
spoke dependencies like the Dinkumware C++ framework,
IBM Rational Rhapsody, and the Electronic Arts standard tem-
plate library. Beyond the underlying OS and platform support,
ICSPatch also depends on the disassembly of the control bi-
nary during the parsing phase. Manufacturers like Mitsubishi,
Beckhoff, and Schneider Electric can be easily supported
since their PLC ecosystems integrate the Codesys runtime.
PLCs from other vendors like Siemens can be supported us-
ing the corresponding tools in their respective ecosystems,
like the JEB S7 PLC Block Decompiler [49] or the Rizin
framework [38].

10 Limitations

Codesys specific implementation. As mentioned, ICSPatch
has three main components: Vulnerability identification, lo-
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calization, and hotpatching. Vulnerability localization based
on DDG does not assume Codesys-specific compilation and
can work with other platforms. Likewise, modifications to the
angr rules can also identify vulnerabilities in control applica-
tions compiled for other platforms. However, the patches are
designed with the Codesys compiler as a target. Therefore,
some effort is required to create appropriate skeleton patches
to extend applicability to other platforms.
Patching multiple vulnerabilities. A control application may
have multiple vulnerabilities; for instance, the same malicious
input (bound) utilized by two or more SysMem.SysMemSet
functions for initializing memory. However, in its current
version, ICSPatch only patches the first instance of the vul-
nerability.
Requiring user input for patching. While, for the most
part, ICSPatch is automated to identify, locate, and deploy the
patch, it cannot automatically suggest an appropriate bound
check for memory-related vulnerabilities (for out-of-bounds
read/write), thus requiring user input during patch generation.
Nevertheless, patching OS command injection vulnerabilities
is entirely automated as it involves fixing the address table.
Patching on multicore devices. ICS devices, for the most
part, do not employ powerful multicore processors as they
execute simple and definite logic. The non-intrusiveness of
ICSPatch relies on the single core execution of all processes.
A more elaborate mechanism for ensuring non-intrusiveness
would be required in multicore cases.

11 Related Work

Automated vulnerability identification and localization.

Machine Learning can be used for vulnerability localization;
for instance, Rebecca et al. utilize deep feature representation
learning on lexed source code [45]. Devign employs graph-
level classification with a graph neural network-based model
to extract valuable features learned from rich node represen-
tations [61]. On the other hand, for binaries, Runhao et al.
propose a gradient-guided vulnerability localization method:
DeepVL, utilizing execution traces to filter vulnerable basic
blocks [26]. Finally, Shiqi et al. utilize statistical localization
technique to discover the root cause of the bug, given just one
exploit input [47].
Hotpatching in Android. Yue et al. put forth KARMA, a
system that produces patches written in high-level memory-
safe language applicable at multiple levels in the kernel to
enable malicious input filtering [7]. VULMET utilizes weak-
est precondition reasoning to modify official patches into
semantically correct hotpatches [58]. Yue et al. propose LIB-
BANDAID for automatically generating updates for third-
party libraries [14]. Finally, bowknots for kernel bugs nul-
lify the side effects of currently executing syscalls triggering
bugs [54].
Hardware-based hotpatching. Traditional hotpatching em-
ploys trampolines; however, approaches such as InstaGuard

use basic debugging primitives supported by ARM CPUs to
enable a rule-driven hotpatching mechanism without inject-
ing any code [6]. HERA, supported on ARM Cortex-M3/M4
devices, utilizes its Flash Patch and Breakpoint (FPB) unit to
redirect the vulnerable code to the patch [37]. On the other
hand, a recently proposed technique, RapidPatch, facilitates a
dynamic code replacement technique utilizing eBPF virtual
machines for executing patches on an embedded device with
resource constraints [21].
Comparison to state-of-the-art. HERA and RapidPatch are
the current state-of-the-art hotpatching solutions for RTOSes
employed for embedded devices, thus, the closest to our work.
HERA utilizes FPB in Cortex-M3/M4, and RapidPatch em-
ploys eBPF virtual machines. However, these solutions cannot
directly be employed for PLC control binaries because:

• Control applications compiled into nonstandard file format
run in the context of a proprietary piece of software, the
runtime. So, hotpatching requires understanding control ap-
plication internals while handling runtime abstractions.

• Vulnerabilities manifest in the imported functions, and due to
their shared nature, they require patching within the bound-
aries of the control application, necessitating localization.

• Unlike the assumption made by the current state-of-the-art
techniques, ICSPatch does not have access to any upstream
patch source for creating the hotpatch.

• HERA utilizes hardware-specific debugging features for redi-
recting execution flow to the patch (Cortex-M3/M4), limiting
its applicability. For instance, Wago PFC100 and PFC200
employ Cortex A8, lacking the FPB debug unit.

• RapidPatch utilizes ePBF virtual machines, which cannot
directly be applied for control applications as they execute
inside the runtime with the proprietary file format.

12 Conclusion

This work proposes ICSPatch, a tool for automated vulnera-
bility identification by detecting violations to security speci-
fications, localization by traversing a DDG, and hotpatching
using an LKM-based patcher. We implement ICSPatch for
the Codesys platform, deployed on over 400 known ICS de-
vices from 80 industrial device vendors. We successfully
patch out-of-bounds write/read, OS command injection, and
invalid input validation vulnerabilities spread across a dataset
of 24 synthetic control application binaries while only incur-
ring negligible execution and memory overheads. We also
demonstrate ICSPatch patching a live PLC controlling a HIL
simulation of an industrial process.
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