
This paper is included in the Proceedings of the 
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the 
32nd USENIX Security Symposium 

is sponsored by USENIX.

An Input-Agnostic Hierarchical Deep Learning 
Framework for Traffic Fingerprinting

Jian Qu, Xiaobo Ma, and Jianfeng Li, Xi’an Jiaotong University; 
Xiapu Luo, The Hong Kong Polytechnic University; Lei Xue, Sun Yat-sen University; 

Junjie Zhang, Wright State University; Zhenhua Li, Tsinghua University; 
Li Feng, Southwest Jiaotong University; Xiaohong Guan, Xi’an Jiaotong University

https://www.usenix.org/conference/usenixsecurity23/presentation/qu



An Input-Agnostic Hierarchical Deep Learning Framework for
Traffic Fingerprinting

Jian Qu
Xi’an Jiaotong University

Xiaobo Ma∗

Xi’an Jiaotong University
Jianfeng Li

Xi’an Jiaotong University

Xiapu Luo
The Hong Kong Polytechnic University

Lei Xue
Sun Yat-sen University

Junjie Zhang
Wright State University

Zhenhua Li
Tsinghua University

Li Feng
Southwest Jiaotong University

Xiaohong Guan
Xi’an Jiaotong University

Abstract
Deep learning has proven to be promising for traffic finger-
printing that explores features of packet timing and sizes.
Although well-known for automatic feature extraction, it is
faced with a gap between the heterogeneousness of the traffic
(i.e., raw packet timing and sizes) and the homogeneousness
of the required input (i.e., input-specific). To address this
gap, we design an input-agnostic hierarchical deep learning
framework for traffic fingerprinting that can hierarchically
abstract comprehensive heterogeneous traffic features into
homogeneous vectors seamlessly digestible by existing neural
networks for further classification. The extensive evaluation
demonstrates that our framework, with just one paradigm, not
only supports heterogeneous traffic input but also achieves
better or comparable performance compared to state-of-the-
art methods across a wide range of traffic fingerprinting tasks.

1 Introduction

Due to its independence of handcrafted features [1–4], deep
learning has proven to be promising for traffic fingerprinting
that explores features of packet timing and sizes in the past
years [5–7]. As the amount of encrypted network traffic grows,
it offers a fundamental technique facilitating broad security-
domain scenarios, such as website fingerprinting [8, 9], appli-
cation fingerprinting [10, 11], Internet of Things (IoT) device
identification [12–14], and intrusion detection [15].

Although deep learning is promising and well-known for
automatic feature extraction, it has inherent limitations that
keep it from being seamlessly applied to traffic fingerprinting.
Traffic Customization. A significant limitation is the re-
quirement of traffic customization (e.g., traffic tailoring) in
diverse traffic fingerprinting tasks because existing deep learn-
ing methods typically require traffic customization to adapt
to the homogeneous input structure of neural networks (i.e.,
input-specific). Through traffic tailoring, each traffic sample
(i.e., a trace with a label) can be easily aligned and represented
∗Corresponding author (MOE KLINNS Lab)

by one fixed-dimension vector of the same structure. For ex-
ample, previous studies like [16] truncate a traffic trace and
use only a part (e.g., the foremost part) of a traffic trace as the
input of neural networks. The reason for this is that most neu-
ral networks, such as Stacked Autoencoder (SAE) [15] and
Capsule Neural Networks (CapsNet) [17], take vectors with
fixed-dimension and the same structure as input. In contrast,
the sizes of traffic samples generated by different network
activities may vary significantly.

Traffic customization is labor-intensive and ineffective
since it introduces significant human intervention into traffic
samples while bottlenecking deep learning’s expected feature-
learning ability. It also makes deep learning-based traffic
fingerprinting sensitive to specific customization methods be-
cause of the potential loss of features. Although Recurrent
Neural Networks (RNN) may elude traffic tailoring by al-
lowing the input of a variable-length sequence of vectors to
represent a traffic sample [18], it requires the vectors to be of
fixed dimension and the same structure. Consequently, traffic
customization (e.g., fixed-dimension vectorization) remains
to meet the input requirement of essentially homogeneous
fixed-dimension vectors. Moreover, some studies using RNN
models may also use a fixed-length sequence of vectors to
represent a traffic sample [19] because variable-length input
may comprise long input that harms RNN optimization due to
the vanishing gradient problem. The same situation exists in
Long Short-Term Memory (LSTM) networks, as confirmed
by Rimmer et al. in [2].

Hierarchy Unawareness. More importantly, for a given net-
work activity, its traffic features may hierarchically exist in
individual packets, flows (typical sequences of TCP or UDP
packets sharing the same communicating IPs and ports) that
reflect the correlation between packets, and the trace (i.e., a
mixture of flows) involving the correlation between flows.
Nevertheless, existing deep learning methods have no spe-
cialized built-in mechanisms to characterize such a feature
hierarchy (i.e., hierarchy unawareness). As a matter of fact,
traffic fingerprinting tasks with feature hierarchy are common
in the real world, making existing methods lack sufficient
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sophistication in traffic fingerprinting.
For example, when one visits a website, multiple HTTP(S)

connections are established, resulting in multiple variable-
length TCP flows, each consisting of a sequence of variable-
size packets. To adapt to the required input of existing deep
learning methods in this example, a straightforward approach
is to unfold the traffic into a sequence of (homogeneous)
vectors according to the original packet arrivals (i.e., vector-
ization of all packets). However, this approach would fail to
capture the upper-layer correlation between packets. Take
one particular case of correlation “which packets belong to
the same flow” as an instance. Even if one manually labels
the originating flow of each packet in the vector, it is hard, if
not impossible, for existing neural network structures to be
effectively aware of which packets belong to the same flow.

To overcome the limitations above, we design an input-
agnostic hierarchical framework for landing deep learning
onto traffic fingerprinting. The design objectives are twofold.
The first is to support the heterogeneousness traffic input
with reduced task-by-task traffic customization when applying
deep learning in traffic fingerprinting. The second is to design
specialized built-in mechanisms for deep learning to enable
feature hierarchy characterization in traffic fingerprinting.

Fulfilling such two objectives is not easy due to the
heterogeneousness-traffic and homogeneousness-input contra-
diction. The basic idea is to design a cross-layer (i.e., packet-
flow-trace) deep learning framework that supports traffic fea-
ture learning conditioned on heterogeneous input (i.e., raw
packet timing and sizes). The framework, with reduced traf-
fic customization, can hierarchically abstract comprehensive
heterogeneous traffic features into homogeneous vectors seam-
lessly digestible by existing neural networks for further classi-
fication. Such homogeneous vectors involve spatial-temporal
inter-packet correlation of all packets in a flow and inter-flow
correlation of all flows in a trace.

Due to the input-agnostic nature, the proposed framework
reduces the need to perform task-by-task traffic customization
and model design across traffic fingerprinting tasks, thereby
seamlessly lands deep learning onto traffic fingerprinting. Be-
cause of the built-in capability of hierarchically abstracting
heterogeneous features, the framework also accomplishes bet-
ter or comparable performance compared to state-of-the-art
methods across a wide range of traffic fingerprinting tasks.

To our best knowledge, we are the first to enable deep learn-
ing to be input-agnostic and hierarchy-aware in traffic finger-
printing. We release datasets and code at https://github.
com/shashadehuajiang/trace_classifier. Our contri-
butions include the following:

• We design an input-agnostic hierarchical deep learning
framework for traffic fingerprinting. The framework sup-
ports automatic traffic feature learning conditioned on het-
erogeneous input (i.e., raw packet timing and sizes). It
reduces the need to perform task-by-task traffic customiza-
tion and model design across fingerprinting tasks. More-

over, its modular design enables the replaceability of neural
network components for flexible task-specific settings.
• Under the framework, we propose four neural network

structures representative of mainstream categories (i.e.,
chain-structured, tree-structured, attention-structured, and
hybrid) to perform hierarchical bottom-up abstraction of
heterogeneous cross-layer features. The structures can ex-
tract spatial-temporal inter-packet correlation of all packets
in a flow and inter-flow correlation of all flows in a trace.
We also propose techniques to avoid overfitting and analyze
real-world factors (e.g., dataset size and noise) that affect
the performance.
• Using both public and proprietary datasets, we evaluate our

framework in five typical fingerprinting tasks, such as web-
site fingerprinting, intrusion detection, and keyword search-
ing fingerprinting. The results demonstrate our frame-
work’s capacity to handle heterogeneous inputs and better
or comparable performance compared to state-of-the-art
methods ubiquitously across various tasks with just one
paradigm.

2 Background and Problem Description

It has been commonly observed that the vast majority of net-
work traffic is encrypted, and the adoption of network en-
cryption is still rapidly growing [20]. The pervasive use of
encryption necessitates traffic fingerprinting, exploiting the
encrypted traffic’s metadata without decrypting it to infer
the underlying plaintext meanings. Traffic fingerprinting of-
fers a fundamental technique facilitating a broad range of
security-domain scenarios based on the encrypted traffic anal-
ysis, such as website fingerprinting [8, 9], application finger-
printing [10, 11], Internet of Things (IoT) device identifica-
tion [12–14], and intrusion detection [15].

Regardless of security-domain scenarios, the common ob-
jective of traffic fingerprinting is to classify traffic traces into
meaningful labels. Figure 2 depicts the typical traffic finger-
printing problem where endpoints communicate with servers
and generate encrypted traffic traces. The analyzer sniffs the
traffic traces and performs (typically supervised) classification
to support network management actions.

Take the website fingerprinting scenario as an example.
Suppose in Figure 2 the endpoints access websites via a server
that acts as a proxy. An attacker, who can monitor traffic
between the endpoints and the server, wants to figure out the
specific websites that the endpoints are accessing through the
server. To this end, the attacker will select a list of monitored
websites, use automated scripts to collect traffic traces of
accessing these websites through the same type of proxy, train
a classifier, and deploy it to classify the traffic of the endpoints
from/to the server. Once an endpoint visits a website that falls
into the list of websites, the attacker would identify that visit.

Due to its feature learning capability, deep learning is a
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promising approach for traffic fingerprinting. However, there
is a gap between its required input’s homogeneousness and
the traffic’s heterogeneousness. Figure 3 exemplifies the trace-
flow-packet heterogeneousness of a traffic trace, wherein a
box with an arrow denotes a (width-sized) packet with its
direction. Precisely, the traffic trace results from accessing
a website and consists of a sequence of inbound/outbound
packets of varying sizes. These packets, despite belonging
to the traffic trace of the same network activity (i.e., visiting
a website), actually originate from different flows uniquely
identified by IPs and ports. Each flow is in charge of trans-
mitting different resource files (e.g., a.html, b.jpg, c.mp3),
thereby differing in features, such as the number of packets,
packet sizes/directions, and packet arrival times.

As mentioned earlier, the heterogeneousness-traffic and
homogeneousness-input contradiction leads to the limitations
of traffic customization and hierarchy unawareness, restricting

the competence of existing traffic fingerprinting techniques.
To overcome these limitations, we aim to design an input-
agnostic hierarchical framework for landing deep learning
onto traffic fingerprinting. The input-agnostic objective is to
make our framework receive traffic data in any heterogeneous
formats, and still process that data effectively. The hierar-
chical objective is to design specialized built-in mechanisms
for deep learning to characterize traffic hierarchy to perform
in-depth fingerprinting of high performance.

3 Framework Design

Figure 1 shows the overall design of the input-agnostic hierar-
chical deep learning framework for traffic fingerprinting. The
proposed framework, fed with a trace X , which is a mixture
of multiple flows (e.g., sequences of TCP/UDP packets shar-
ing the same communicating IPs and ports), aims to predict
the probabilities of X belonging to all possible labels.
Intuition. To support the heterogeneous input and perform
final prediction, the framework is designed hierarchically to
work at three layers, i.e., packet, flow, and trace layers, in a
bottom-up manner. This design not only provides the coarse-
to-fine grained cross-layer feature learning mechanism but
also enables the bottom-up gradual feature abstraction of the
lower layer into the upper layer. Moreover, the lowest layer
(i.e., the packet layer) straightforwardly docks all individual
packets into the framework without traffic tailoring (i.e., no
packets added or removed), and the highest layer (i.e., the
trace layer) is seamlessly connected with existing neural net-
works for classification. Compared to directly constructing
a sequence of homogeneous vectors to represent multi-layer
features, our design captures the original shapes of the hetero-
geneous traces and hence eliminates traffic customization.

Our framework consists of four modules: packet vector-
ization, packet-to-flow mapping, flow-to-trace mapping, and
trace-to-label classification. The first two modules work at
the packet and flow layers, respectively, and the last two are
at the trace layer. Next, we detail the design of the modules
in Figure 1.
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3.1 Packet Vectorization (M0)
Packet vectorization is to convert each packet into a packet
vector (PV). It is typically performed straightforwardly using
the metadata of a packet. For example, packet timing and sizes
could be incorporated into the packet vector since they are
the most commonly available information when confronted
with encrypted traffic. After being processed by packet vec-
torization, the sequence of packets of the same flow becomes
the sequence of packet vectors at the packet layer.

As the starting point of original traffic processing, packet
vectorization is typically performed manually using task-
specific metadata of a packet. Packet metadata from infor-
mative fields of packets, such as the flags in the packet header,
could be extracted according to the specific tasks. Note that
packet vectorization is by no means equivalent to feature ex-
traction. In fact, it is much simpler. The reason is that it is just
a formal representation of a packet using as much (potentially
informative) packet metadata as possible in the form of a
vector. In contrast, feature extraction is the process of crafting
distinguishing features for raw traffic traces, including but
not limited to attributes, characteristics, and temporal-spatial
correlation, using domain knowledge and experiences.

In the traffic fingerprinting task under our investigation,
we incorporate packet timing and sizes into the packet
vector since they are the most commonly available in-
formation when confronted with encrypted traffic. Let
p1(t1,s1), p1(t2,s2), . . . , pk(tk,sk) be the sequence of all k
packets belonging to a flow, where pi denotes the ith packet
with a timestamp of ti and a size of si (i = 1,2, . . .). Formally,
a packet pi is represented as a packet vector PVi as follows:

PVi =< si,(ti− t0),(ti− ti−1), i, i/k >, (1)

where (ti− t0) and (ti− ti−1) calculate the time interval be-
tween packets pi and p0, and the time interval between pack-
ets pi and pi−1, respectively. We define t0 = t1 so that the first
packet and its preceding packet have no time interval and i/k
is the relative position of pi in the flow.

3.2 Packet-to-flow Mapping (M1)
To abstract packet-layer information into the flow layer,
packet-to-flow mapping takes the sequence of packet vec-
tors (of a flow) as an input and then transforms the input into
a flow vector at the flow layer. The sequence of packet vectors
could be variable length, while the flow vector is of fixed
length. To boost the mapping performance, we first perform
packet vector sequence compression. Then, we design four
neural network structures to achieve packet-to-flow mapping
based on the compressed packet vector sequences.

3.2.1 Packet Vector Sequence Compression

Because it is computationally expensive for the neural net-
works responsible for packet-to-flow mapping in § 3.2.2 (e.g.,

the chain-structured recurrent neural network) to handle long
sequences of packet vectors, we use Convolutional Neural
Network (CNN) to compress a long sequence of packet vec-
tors into a short sequence of long vectors. We term such long
vectors as Compressed Packet Vectors (CPVs). One benefit
of the compression is the linear reduction in computational
overhead since calculation in packet-to-flow mapping is pro-
portional to the number of packet vectors. In addition, adding
multi-convolution layers could increase the fitting ability of
the neural network model and may reduce training epochs.

The extent to which a long sequence of packet vectors
can be converted into CPVs depends on the multiplication
of all pooling layers’ stride sizes. For example, given a flow
containing 48 packets, if no compression is used, the input
to the neural network structure is a sequence of 48 packet
vectors; on the contrary, if three convolutional layers, each
followed by a pooling layer with stride size 2, are added
before the neural network structure to allow compression,
the input becomes a sequence of six CPVs (i.e., only 1/8 of
48). If the given flow contains less than eight packets, zero
paddings can reshape the flow into one with eight packets. We
want to point out that packet vector sequence compression
lowers computation overhead and also inherits CNN’s ability
to capture local features.

3.2.2 Neural Network Structure Construction

To transform a sequence of packet vectors into a flow vector,
we construct four neural network structures of mainstream
artifact categories, including the chain-structured recurrent
neural network, the tree-structured recurrent neural network
using a balanced binary tree, the scaled dot-product attention-
structured neural network, and the hybrid neural network.
The major differences among the first three structures are their
iterative, parallel, and selective abstraction mechanisms (i.e.,
the order of hierarchically abstracting a sequence of packet
vectors), respectively. The hybrid neural network combines
neural networks with different abstraction mechanisms.
Chain-structured. The chain-structured recurrent neural net-
work processes the input sequentially [21], thereby achiev-
ing the iterative abstraction mechanism. Figure 4(a) shows
an example. In this example, the inputs are a sequence of
CPVs (CPV1, CPV2, CPV3) with an initial state h0, and h3
is the final fixed-length output flow vector. The goal of the
chain-structured recurrent neural network is to capture the
sequential dependency of the packet vectors. There are three
typical neural networks to fulfill such a goal.

First, classical RNNs can learn any long-term dependency
in the input sequence. However, the backpropagation algo-
rithm has the vanishing gradient problem. Second, LSTM and
Gated Recurrent Unit (GRU) partially mitigate the vanish-
ing gradient problem [22], but the problem fundamentally re-
mains. For example, in Figure 4(a), the influence of PV1 on the
gradient is usually less than PV3 when using the backpropa-
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gation algorithm to optimize the parameters. Worse still, their
relative performance competence is controversial. Specifi-
cally, studies like [23] show that the performance of GRU out-
performs LSTM, while others like [24] are the opposite. Third,
BiLSTM, a bi-directional improvement on LSTM [25], works
in both directions, i.e., from CPV1 to CPV3 and from CPV3 to
CPV1 in Figure 4(a), while LSTM only works in one direction,
i.e., from CPV1 to CPV3. The bi-directional improvement can
largely alleviate the gradient vanishing problem because the
average length of the propagation path is halved. Therefore,
we will use BiLSTM to represent the chain-structured recur-
rent neural network, outputting the sum of the bidirectional
hidden states.
Tree-structured. The tree-structured recursive neural net-
work takes leaf nodes (i.e., CPVs) as the input and recursively
uses the child node to calculate the parent node value [26].
Because all packet vectors are processed as leaf nodes simul-
taneously, the tree-structured network can be considered the
parallel abstraction mechanism.

Figure 4(b) exemplifies the tree-structured neural network,
where the sequence of packet vectors (CPV1, CPV2, CPV3)
is the (variable-length) input, and the flow vector h2 is the
(fixed-length) output. We design a tree-structured neural net-
work named Balanced Binary Recursive Neural Network
(BBRNN), as shown in Figure 5. Since the height difference
between the left and right subtrees of a balanced binary tree
is no more than one and both the left and right subtrees are
balanced binary trees, the distance from the root node to any
leaf node is approximate log(N), where N is the length of the
input sequence of packet vectors. This structure can solve the
vanishing gradient problem since the balanced tree makes the
distance between input and output equal to O(log(N)), sig-
nificantly smaller than that of the chain structure (i.e., O(N)).
Attention-structured. Unlike the chain and tree structures
that predefine the order of processing CPVs, the attention
mechanism can selectively extract essential features from
a group of CPVs while ignoring unimportant information.
It augments importance by mimicking human attention and
adding attention weights to a model as trainable parameters.
To use the attention mechanism for traffic fingerprinting, we
fine-tune Vaswani’s scaled dot-product self-attention [27].
The details can be found in Appendix A.1.
Hybrid Structure. The hybrid neural network connects mul-
tiple neural network structures in series or parallel. Neural
networks connected in series are connected along a single
path, and the input of one neural network is the output of
another [28]. Neural networks connected in parallel compute
their outputs separately and then combine them [29].

We instantiate the hybrid neural network by connecting the
chain-structured and attention-structured neural networks in
series for experiments. Specifically, we use BiLSTM and the
attention method in (5) to build the hybrid neural network.
The input (i.e., CPVs) first passes through the chain-structured
neural network, and yi(i = 1,2, . . .) is obtained, as shown in

Figure 4(a). Then, the obtained yi(i = 1,2, . . .) is then used
as the input (i.e., CPVs) of the attention-structured neural
network to calculate the final output.

3.3 Flow-to-trace Mapping (M2)
Having a sequence of flow vectors (of a trace), flow-to-trace
mapping serves to derive the trace vector at the trace layer
since it essentially abstracts flow-layer information into the
trace layer. Again, the sequence of flow vectors could be
variable length, while the trace vector is of fixed length. As
such, the flow-to-trace mapping module and the packet-to-
flow mapping module have similar functions and can use the
same neural network structures in § 3.2.2.

3.4 Trace-to-label Classification (M3)
Finally, a trace that is a mixture of a variable number of flows,
each consisting of a sequence of a variable number of pack-
ets (of variable size), is mapped into a trace vector (of fixed
length). Given a trace vector, the trace-to-label classification
uses multiple linear layers and the softmax function to predict
the probabilities of the trace belonging to different labels. The
nodes within the output layer are associated with the labels.

4 Evaluation

We evaluate our framework in five typical traffic fingerprinting
tasks. Our evaluation aims to answer three research questions:
RQ1. Can our framework be competent in typical fingerprint-
ing tasks compared to state-of-the-art methods that are based
on deep learning or handcrafted features?
RQ2. What benefits can one get from no traffic customization
(RQ2.1) and being hierarchy awareness (RQ2.2)?
RQ3. When our framework is deployed, are there any real-
world factors affecting its fingerprinting performance?

4.1 Datasets and Traffic Fingerprinting Tasks
Five datasets, corresponding to five traffic fingerprinting tasks,
are prepared. Detailed data characteristics are in Appendix
A.3. Below are three public datasets used for user activity
fingerprinting, Internet of Things (IoT) device identification,
and intrusion detection, respectively.
User Activities (UAV). The dataset, published by Labayen
et al. in 2020 [4], contains five different activities (Video,
Bulk, Idle, Web, and Interactive), each lasting for 1 to 3 hours.
Following Labayen’s dataset-splitting method, the traces are
divided according to a time window of 5 seconds.
IoT Device Identification (IDI). The dataset, also known
as the IoT SENTINEL dataset, was released by Miettinen et
al. in 2017 [30]. It has 27 different types of IoT devices, and
each device type has about 20 traces. All traces are generated
during the device setup procedure.
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Intrusion Detection (ISD). The dataset, also known as the
ETF IoT Botnet dataset, released by Jovanovic et al. in 2021
[31], includes both normal and malware traffic. The normal
traffic is recorded on a personal computer for several hours,
and the malware traffic is captured on Raspberry Pi devices.

Two proprietary datasets below are also collected for the
tasks that pose threats to user privacy: Shadowsocks website
fingerprinting and keyword searching fingerprinting,
Shadowsocks Website Fingerprinting (SWF). Shadow-
socks is a Socks5 protocol-based proxy for Internet surfing.
It is popular due to its lightweight positioning, high transmis-
sion rate (no extra bytes needed in all packets for communi-
cation tunnels), and flexibility to define which websites are
accessed through the proxy [32]. The dataset, involving 23
monitored websites and more than 3,300 open-world websites
from Alexa’s top websites, was generated during users access-
ing websites via the Shadowsocks-proxied Chrome browser
from Oct. 26 to Nov. 2, 2020. Each monitored website was
accessed 120 times and resulted in 120 traces. The cache
was cleaned before each access, and no protection like private
browsing or tracking prevention was enabled. Our task is
to identify which website the browser is accessing via the
Shadowsocks proxy.
Keyword Searching (KWS). The dataset was generated
by user searching keywords via the Baidu search app on an
Android simulator from Apr. 13 to Apr. 15, 2021. There are
50 keywords, and each is searched 100 times, resulting in
100 HTTPS-encrypted traces. The cache was kept for each
access, and no protection was enabled.

4.2 Framework Settings

The framework settings consist of training parameters, neural
network structures, CNN compression, and methods for han-
dling overfitting, which should be configured appropriately.

4.2.1 Default Settings

We use the AdamW algorithm to optimize training parameters
and follow the default settings in Pytorch v1.7.1, except for
the learning rate. To stabilize the training process, we use
a warm-up strategy to schedule the learning rate [33]. For
all datasets, we use 10-fold cross-validation for training and
testing and the Macro F1-score to measure the performance
because of its suitability in small and unbalanced samples.

By default, our framework uses CNN compression, a hybrid
neural network structure (i.e., Chain-structured and Attention-
structured in series) for both packet-to-flow mapping and
flow-to-trace mapping modules, and early stop, weight decay,
and batch normalization for handling overfitting. Appendix
A.5 details the parameter settings of neural network structures.

4.2.2 Speeding up Training

Although the model training could finally converge, the con-
vergence speeds may be highly dispersed across datasets,
primarily due to different classification complexities. Figure
6 shows that the training converges at varying speeds for dif-
ferent datasets. Notably, the IDI and KWS datasets converge
significantly slower than others.

We employ batch normalization to speed up training. The
basic idea is to normalize the hidden layers’ inputs by bring-
ing the feature distribution closer to the normal distribution.
Batch normalization, though commonly used in deep neural
networks [34], is hard to implement on neural networks sup-
porting variable-length input. Therefore, we only add batch
normalization to the fully connected layer at the end of the
model. We use layer normalization instead to normalize flow
vectors [35] (detailed in Appendix A.4). Figure 7 shows that
the convergence speed increases by about 2.5 times using
batch normalization on the KWS dataset.
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4.2.3 Neural Network Structures

Structures in the M1 module. We test four neural network
structures in M1. The mean and standard deviation of the
Macro F1-scores of different structures are listed in Table 1.
We note that all structures have no significant differences.
Structures in the M2 module. We test four neural network
structures in M2, and the results are in Table 2. We see that the
tree structure performs poorly compared to others. Although
the attention structure or the chain structure achieves the high-
est Macro F1-scores on different datasets, the hybrid structure
has the highest average Macro F1-score across datasets.
CNN compression. In § 3.2, we introduce CNN compression
to compress packet vectors. To verify the effectiveness, we
conduct experiments with and without CNN compression. As
shown in Figure 3, the Macro F1-score with CNN compres-
sion is similar to that without CNN compression. Consider
that CNN compression can significantly save computing re-
sources (reducing 80% to 90% of the time and roughly 50%
of memory). Constantly enabling CNN compression would
be beneficial.

4.2.4 Handling Overfitting

Directly using the framework may lead to the overfitting prob-
lem: good performance on the training set and poor perfor-
mance on the test set. As demonstrated in Figure 12 (Ap-
pendix A.2), the Macro F1-score of the training set keeps ris-
ing without handling overfitting. Finally, it approaches 0.999
with the increased training epochs, whereas the score of the
validation set rises very slowly after about 100 epochs.

We compare six handling overfitting methods under our
framework, among which four methods are off-the-shelf, and
two methods are adapted from existing ones. The four off-the-
shelf methods, including Early Stopping (ES) [36], Weight
Decay (WD) [37], Dropout (DO) [38], and Batch Normaliza-
tion (BN) [39], are detailed in Appendix A.6. Auxiliary Loss
(AL) and Data Enhancement (DE) presented below are the
two methods that we adapt to fit our framework.
Auxiliary Loss (AL). AL prevents overfitting by providing
the model with prior knowledge that helps classification [40].
In our problem, in addition to information on trace training,
we also provide the model with hints regarding flow training.

Trace
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probabilities

flow vector 1

flow vector 2

flow vector 3

flow vector 4
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Attention

Linear
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Softmax

Linear
+

Softmax

Flow
Classification
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Figure 8: The flow-trace auxiliary loss forward paths.

Such hints are helpful because accurately classifying flows is
beneficial for classifying traces. To implement AL, we add
new forward paths to the original framework, as shown by
the dashed lines in Figure 8. After obtaining flow vectors, we
assign a trace label to each of them, indicating from which
trace the flow originates. Each flow in a trace makes a clas-
sification and calculates its loss using the same trace label
to which it belongs. Since the number of flows in a trace is
uncertain, the loss needs to be normalized to ensure gradient
stability. The auxiliary loss for each trace is

Loss=CrossEntropy(P,L)+
1
N

N

∑
i=1

CrossEntropy(P′i ,L), (2)

where N counts flows, P is the predicted trace label, P′i is
the predicted label of flow i, and L is the real trace label. It
consists of trace classification loss (i.e., CrossEntropy(P,L))
and flow classification loss (i.e, CrossEntropy(P′i ,L)).
Data Enhancement (DE). DE increases the size of a dataset
by adding slightly modified dataset copies [41]. Three data
enhancement methods are suitable for traffic fingerprinting:
cropping, dropping, and noising. Cropping randomly cuts a
sub-trace from the original trace, dropping randomly drops
packets with a certain probability, and noising randomly adds
noises to the timing of packets.

Besides being used separately as pure solutions, the han-
dling overfitting methods can be used in combination, leading
to various hybrid solutions. All the methods, except DO,
could be mixed as the hybrid solution denoted as “H”. DO
is excluded because combining DO and BN harms perfor-
mance due to the influence of variance shift [42]. Based on
“H”, we remove the method “*” (i.e., the H-* solution) to test
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Table 1: The mean and standard deviation of Macro F1-scores using different neural network structures in the M1 module.
M1 module UAV [4] SWF KWS IDI [30] ISD [31]
Attention 0.925 (±0.019) 0.995 (±0.004) 0.977 (±0.010) 0.968 (±0.024) 0.990 (±0.010)

Chain 0.922 (±0.029) 0.992 (±0.006) 0.979 (±0.014) 0.954 (±0.033) 0.995 (±0.008)
Tree 0.923 (±0.023) 0.993 (±0.001) 0.976 (±0.010) 0.937 (±0.037) 0.986 (±0.014)

Hybrid 0.920 (±0.025) 0.993 (±0.003) 0.974 (±0.020) 0.940 (±0.040) 0.997 (±0.005)

Table 2: The mean and standard deviation of Macro F1-scores using different neural network structures in the M2 module.
M2 module UAV [4] SWF KWS IDI [30] ISD [31]
Attention 0.912 (±0.031) 0.991 (±0.003) 0.979 (± 0.009) 0.924 (±0.055) 0.992 (±0.008)

Chain 0.920 (±0.027) 0.994 (±0.004) 0.950 (±0.014) 0.963 (±0.030) 0.982 (±0.022)
Tree 0.907 (±0.027) 0.987 (±0.006) 0.806 (±0.039) 0.848 (±0.041) 0.992 (±0.012)

Hybrid 0.920 (±0.025) 0.993 (±0.003) 0.974 (±0.020) 0.940 (±0.040) 0.997 (±0.005)

whether “*” contributes. Table 12 shows that, among all pure
solutions, “BN” performs the best. Overall, hybrid solutions
achieve better and more stable performance than pure ones,
and on average, “H” outperforms other hybrid solutions with
one method removed.

Framework Setting Summary. Speeding up training is es-
sential to achieve fast convergence, and constantly enabling
CNN compression would be beneficial to both performance
and computing resources. For both M1/M2 module design
and overfitting handling, hybrid structures and solutions
should be adopted for stable and high Macro F1-scores.

4.3 Experiment Results

4.3.1 Our Framework vs. State-of-The-Art

To answer RQ1, we conduct fingerprinting tasks using our
framework compared to state-of-the-art (SOTA) methods. For
all the datasets, the SOTA methods are based on handcrafted
features [4, 43–46] (detailed in Appendix A.9). The reason
why deep learning is not one of the SOTA methods is that
neural networks like CNN and RNN, to their best flexibility,
can be fed with a sequence of vectors and cannot handle the
heterogeneous input of such datasets. As shown in Figure 1,
one trace of the KWF dataset may comprise multiple flows,
and each flow has multiple packets.

Table 5 shows the Macro F1-scores across five task-specific
datasets using our framework compared to SOTA methods.
We see that our method achieves the highest Macro F1-scores
for most of the datasets (SWF, KWF, IDI, and ISD), and the
top Macro F1-scores are 0.996, 0.977, 0.940, and 0.984 (in
bold), respectively. The results demonstrate that our frame-
work not only enables deep learning to be applicable for
these datasets (where existing deep learning methods are not)
but also is slightly outperforming (or at least comparable to)
SOTA methods. Although our framework does not achieve
the best performance for the UAV dataset, it remarkably eases
the applicability of deep learning in diverse traffic finger-
printing tasks with just one paradigm, reducing the need to
perform task-by-task traffic customization. More importantly,
it just uses small-sized datasets (not in favor of deep learning)

to reach the Macro F1-scores of SOTA methods. For exam-
ple, the KWS dataset only has 5,000 traces belonging to 50
classes, while our framework could still achieve a high Macro
F1-score.

It is worth noting that our framework just uses packet tim-
ing and sizes to vectorize packets as the input, which by
no means indicates that our framework cannot incorporate
other types of input. Instead, our framework considers the
ubiquitous availability of packet timing and sizes across all
(encrypted) traffic fingerprinting tasks and assumes a diffi-
cult traffic fingerprinting scenario with minimal information.
In practice, one can even use the raw packet information as
the input of our framework. For instance, in the packet vec-
torization process of the IDI dataset, we directly embed the
application layer data of each packet into the packet vector.
For each byte, we map it to a number from 0 to 255. Before
embedding the application layer data, the Macro F1-score is
0.844 and becomes 0.940 after the embedding operation.

Answer to RQ1. Our framework is competent. For the tasks
where SOTA methods rely on handcrafted features and
deep learning cannot be easily applied, our framework can
be directly applicable and accomplish better (or at least
comparable) performance only using small-sized datasets
that are not in favor of deep learning.

4.3.2 Feature Visualization

To see if our framework creates a meaningful representation,
we visualize the datasets using the t-SNE method [47], a
nonlinear dimensionality reduction technique that embeds
high-dimensional features into a low-dimensional space. We
embed the feature vectors of the last layer of our framework
into a 2-dimensional space. As shown in Figure 9, each point
and its color represent a trace vector and a class, respectively.
We see that the points of different classes are scattered, and
those of the same class exhibit cohesion, indicating our frame-
work’s strong feature representation capability. To observe
the information essential for classification, we visualize flow
and packet importance using attention values in Appendix
A.7, revealing that the neural network tends to pay attention
to long flows and the first few packets in a flow.

596    32nd USENIX Security Symposium USENIX Association



Table 3: The mean and standard deviation of Macro F1-scores with/without CNN compression.
M1 module UAV [4] SWF KWS IDI [30] ISD [31]

+CNN 0.920 (±0.025) 0.993 (±0.003) 0.974 (±0.020) 0.940 (±0.040) 0.997 (±0.005)
-CNN 0.909 (±0.024) 0.995 (±0.005) 0.972 (±0.012) 0.976 (±0.024) 0.979 (±0.015)

Table 4: Macro F1-scores using different solutions to handle overfitting. H-* removes method * from the hybrid solution.
Solutions UAV [4] SWF KWS IDI [30] ISD [31]

No Handling 0.918 (±0.027) 0.956 (±0.025) 0.204 (±0.275) 0.721 (±0.137) 0.998 (±0.005)

Pure

ES 0.913 (±0.034) 0.953 (±0.024) 0.203 (±0.275) 0.723 (±0.134) 0.995 (±0.010)
WD 0.922 (±0.022) 0.945 (±0.027) 0.391 (±0.391) 0.720 (±0.066) 0.998 (±0.005)
DO 0.922 (±0.024) 0.736 (±0.161) 0.052 (±0.132) 0.277 (±0.105) 0.994 (±0.008)
BN 0.922 (±0.021) 0.994 (±0.003) 0.970 (±0.011) 0.859 (±0.211) 0.992 (±0.011)
AL 0.919 (±0.023) 0.990 (±0.005) 0.869 (±0.010) 0.833 (±0.070) 0.992 (±0.008)
DE 0.921 (±0.022) 0.980 (±0.016) 0.140 (±0.261) 0.789 (±0.071) 0.995 (±0.010)

Hy-

H-ES 0.932 (±0.023) 0.996 (±0.002) 0.820 (±0.076) 0.940 (±0.049) 0.998 (±0.005)

brid

H-WD 0.918 (±0.026) 0.995 (±0.004) 0.974 (±0.007) 0.933 (±0.037) 0.989 (±0.016)
H-BN 0.917 (±0.024) 0.991 (±0.008) 0.872 (±0.033) 0.848 (±0.080) 0.994 (±0.008)
H-AL 0.916 (±0.021) 0.993 (±0.003) 0.970 (±0.015) 0.944 (±0.040) 0.995 (±0.007)
H-DE 0.924 (±0.024) 0.996 (±0.004) 0.973 (±0.005) 0.958 (±0.026) 0.990 (±0.011)

H 0.928 (±0.023) 0.996 (±0.003) 0.977 (±0.009) 0.935 (±0.041) 0.998 (±0.004)

Table 5: Performance comparison with the SOTA methods.
Dataset Our F1-score SOTA method SOTA F1-score
UAV [4] 0.928 (±0.023) K-Means +RF [4] 0.957

SWF 0.996 (±0.003) RF+LCS [43] 0.982
KWF 0.977 (±0.009) PSC+ET [44] 0.974

IDI [30] 0.940 (±0.040) RF [45] 0.91
ISD [31] 0.984 (±0.022) CCR-ELM [46] 0.961

4.3.3 The Benefits of No Traffic Customization (TC)

To answer RQ2.1, we conduct four experiments: (TC-1) tai-
loring flows into fixed flow length and using our (original)
framework; (TC-2) tailoring flows into fixed flow length and
using our framework with the M1 module replaced by 1-
dimensional CNN; (TC-3) no tailoring (i.e., unlimited flow
length), and using our framework with the M1 module re-
placed by 1-dimensional traffic scaling and 1-dimensional
CNN. (TC-4) no tailoring, and using our framework with the
M1 module replaced by 2-dimensional Hilbert curve scaling
and 2-dimensional CNN [48].

When tailoring a flow, we choose a flow length, say n, as
the input size of the neural network. For the flow with a length
exceeding n, we tailor the flow, and only the first n packets
are left. After flow tailoring, the packets are vectorized to
generate packet vectors. For the flow with less than n packets,
we pad zero packet vectors to reach up to n packet vectors.
Tailoring flows into fixed-length enables the M1 module (i.e.,
packet-to-flow mapping) to be replaced by fixed-length in-
put neural networks such as CNN. In the case of no flow
tailoring, M1 could be replaced by traffic scaling methods
capable of mapping variable-length vector sequences into
fixed-length vectors. However, for all the above methods, the
layers above M1, such as M2 (flow-to-trace mapping), are
reserved to enable hierarchy awareness so that the impact of
traffic customization can be measured.

Specifically, TC-1 and TC-2 compare the performance dis-
crepancy between our (original) framework and our frame-
work with M1 replaced by CNN, as the flow length varies. TC-

3 and TC-4 use traffic scaling for converting a variable-length
packet vector sequence into a fixed-length flow vector. To
perform traffic scaling, we employ both 1-dimensional resam-
pling and 2-dimensional Hilbert space-filling curve scaling
[48]. The Hilbert space-filling curve can map 1-dimensional
data into high-dimensional space, maintain good locality, and
transform the sequence of packet vectors of one flow into an
image. All the flows are then scaled to be equal-sized (256
vectors). The scaled vectors will be sent to a 1-dimensional/2-
dimensional CNN for generating the corresponding flow vec-
tor, which will be fed into the flow-to-trace mapping and
trace-to-label modules. Note that TC-3 and TC-4 can also be
conducted after flow tailoring.

Table 6 shows the Macro F1-scores under different traffic
customization methods. For each dataset, we determine its
flow tailoring size by computing flow length quantiles. We
use the 25th (Q25), the 50th (Q50), the 75th (Q75), the 90th
(Q90), and the 95th (Q95) percentile to tailor flows. Below we
present observations and insights into all experiments.
TC-1. As the flow length increases, the Macro F1-scores tend
to increase for most of the datasets but decrease with the grow-
ing variance until the “Unlimited” flow length (i.e., no flow
tailoring) for the SWF dataset. We speculate that the decrease
in performance may be caused by a large amount of invalid
zero padding, which makes the model training unstable.
TC-2. As the flow length increases, the Macro F1-scores
tend to increase for the UAV dataset but are unstable for the
remaining datasets. The same reason may cause unstable per-
formance as in TC-1. In the absence of traffic customization,
TC-2 is no longer applicable. Overall, TC-2 has a lower
performance than TC-1.
TC-3. TC-3 can work with and without traffic customization.
With traffic customization, TC-3 can achieve comparable or
even better performance than TC-1. The results indicate that
when traffic customization is enabled, our framework allows
the replaceability of the M1 module as needed to achieve
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Figure 9: T-SNE visualization using the last layer in our framework. Each color represents one class.

Table 6: Macro F1-scores under different traffic customization
methods TC-1, TC-2, TC-3, and TC-4.

Dataset Flow length Our original Our framework with

(Quantile) framework(TC-1) M1 replaced
(TC-2) (TC-3) (TC-4)

UAV

2 (Q25) 0.732 (±0.124) 0.826 0.804 0.749
4 (Q50) 0.749 (±0.117) 0.819 0.779 0.815
23 (Q75) 0.840 (±0.075) 0.888 0.838 0.835

150 (Q90) 0.903 (±0.024) 0.848 0.886 0.868
2283 (Q95) 0.908 (±0.028) 0.904 0.879 0.850
Unlimited 0.928 (±0.023) N/A 0.917 0.888

SWF

10 (Q25) 0.882 (±0.204) 0.992 0.995 0.995
14 (Q50) 0.858 (±0.200) 0.996 0.996 0.995
25 (Q75) 0.867 (±0.206) 0.993 0.996 0.992
87 (Q90) 0.783 (±0.254) 0.987 0.997 0.994

179 (Q95) 0.778 (±0.257) 0.986 0.991 0.995
Unlimited 0.996 (±0.003) N/A 0.995 0.992

KWS

4 (Q25) 0.839 (±0.055) 0.899 0.909 0.789
6 (Q50) 0.870 (±0.033) 0.834 0.763 0.815
19 (Q75) 0.884 (±0.023) 0.536 0.715 0.931
49 (Q90) 0.903 (±0.050) 0.607 0.805 0.898

167 (Q95) 0.944 (±0.040) 0.570 0.832 0.960
Unlimited 0.977 (±0.009) N/A 0.795 0.937

IDI

2 (Q25) 0.943 (±0.044) 0.965 0.992 0.842
10 (Q50) 0.899 (±0.068) 0.942 0.940 0.810
12 (Q75) 0.851 (±0.180) 0.925 0.839 0.842
21 (Q90) 0.879 (±0.176) 0.940 0.951 0.857
37 (Q95) 0.928 (±0.047) 0.954 0.900 0.857

Unlimited 0.940 (±0.040) N/A 0.964 0.866

ISD

2 (Q25) 0.994 (±0.008) 0.994 0.997 0.994
2 (Q50) 0.992 (±0.010) 0.998 0.995 0.998
4 (Q75) 0.992 (±0.010) 0.997 0.994 0.997
20 (Q90) 0.988 (±0.022) 0.995 0.995 0.995
26 (Q95) 0.994 (±0.008) 0.996 0.994 1.000

Unlimited 0.997 (±0.005) N/A 1.000 0.996

comparable or even better performance.

TC-4. TC-4 can also work with and without traffic customiza-
tion. Compared with TC-3, TC-4 has a similar performance.

We also find that just using the initial two packets of a flow
can achieve a high Macro F1-score, e.g., up to 0.992 for the
IDI dataset (attributed to flow correlation of the M2 module
since individual flows are incompetent in identifying traces).
After observing the original packets, we observe that in the
IDI dataset, the first two packets in a flow may contain the
plaintext of the device type identification information (the IDI
dataset uses TCP payloads for training). Consequently, the
importance of the first two packets is highlighted after tailor-
ing, thus improving performance. This observation implies
that enabling flow tailoring could be a choice for some tasks.

Answer to RQ2.1. Our framework minimizes tricky traffic
customization and retains the flexibility for high-accuracy
demanding tasks to achieve the best overall performance
with heterogeneous input. Moreover, when input customiza-
tion is enabled, it could still work and allows the replace-
ability of the M1/M2 module as needed in specific tasks to
achieve comparable or even better performance.

4.3.4 The Benefits of Hierarchy Awareness (HA)

To answer RQ2.2, we conduct two categories of experiments:
(HA-1) trace-layer classification, i.e., treating a trace consist-
ing of multiple flows as a whole, without (HA-1.1) or with
(HA-1.2) distinguishing between flows, and classifying the
trace into different trace labels; (HA-2) flow-layer classifi-
cation, i.e., treating each flow of a trace as a sample, and
classifying it into different trace labels.

Since existing deep learning methods cannot perform fin-
gerprinting across multiple layers, HA-1 and HA-2 perform
fingerprinting at the trace and flow layers. Particularly, HA-1
comprises HA-1.1 and HA-1.1, where the former does not
distinguish between flows, and the latter distinguishes by em-
bedding flow IDs and trace labels in packet vectors (i.e., a
naive approach of hierarchy awareness). Below, we detail
observations and insights into the experiments.
HA-1. The first row of Table 7 shows the Macro F1-scores of
HA-1.1. HA-1.1 achieves much poorer performance than our
original framework, indicating the importance of distinguish-
ing between flows in traffic fingerprinting. The second row
of Table 7 shows the Macro F1-scores of HA-1.2. HA-1.2
significantly outperforms HA-1.1, implying that embedding
a priori traffic hierarchy helps greatly. However, its perfor-
mance is still (much) lower than that of our original frame-
work. Therefore, HA-1.2, as a naive approach, can realize
hierarchy awareness to some extent, but a gap exists (i.e.,
roughly 0.02∼0.05 lower Macro F1-scores).
HA-2. The third row of Table 7 shows Macro F1-scores of
HA-2. We observe that HA-2 achieves poor performance. The
Macro F1-score ranges between 0.2 and 0.8 across datasets.
In particular, the lowest Macro F1-score is achieved on the
KWS dataset. The reason is that the traces in this dataset are
generated by accessing the same search engine, and flows in
different traces are similar. The poor performance of HA-2
verifies that individual flows are incompetent in identifying
traces, and flow correlation is vital.
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Table 7: Macro F1-scores when confronted with hierarchy unawareness methods HA-1.1, HA-1.2, and HA-2.
Method UAV [4] SWF KWS IDI [30] ISD [31]
HA-1.1 0.835 (± 0.024) 0.964 (± 0.012) 0.388 (± 0.365) 0.816 (± 0.072) 0.811 (± 0.057)
HA-1.2 0.906 (± 0.022) 0.966 (± 0.013) 0.927 (± 0.021) 0.840 (± 0.112) 0.914 (± 0.063)
HA-2 0.556 (± 0.025) 0.800 (± 0.022) 0.204 (± 0.012) 0.749 (± 0.018) 0.872 (± 0.029)
Ours 0.928 (± 0.023) 0.996 (± 0.003) 0.977 (± 0.009) 0.940 (±0.040) 0.997 (±0.005)

Answer to RQ2.2. Without hierarchy awareness, the perfor-
mance degradation of deep learning is significant in tasks
where traffic hierarchy exists. Experiments using individual
flows to identify traces achieve poor performance, indicat-
ing the importance of hierarchy awareness.

4.4 Sensitivity to Real-world Factors
Real-world factors, such as dataset size and background noise,
may also affect fingerprinting performance.

4.4.1 Dataset Size

Analyzing the impact of dataset size, especially training sam-
ple number per class, helps to understand the relationship be-
tween dataset size and fingerprinting performance. To demon-
strate such a relationship, we select the KWS dataset (the
largest number of samples among all balanced datasets and
thus easy to tune the training sample number per class) and
conduct experiments under different training sample numbers.

We increase the training sample number per class from 2
to 90 and conduct experiments. Figure 10 shows the Macro
F1-scores over the training sample number per class. We see
that the Macro F1-score increases as the number grows. Our
framework eventually approaches a high Macro F1-score of
0.977. Because such performance is achieved with just a small
number of samples per class (i.e., 90) based on deep learn-
ing, we conclude that there is much room for performance
improvement as more training samples are available.
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Figure 10: Macro F1-score over training sample number.

4.4.2 Background Noise

Each sample in the dataset may not only contain the pure traf-
fic trace corresponding to a class label but also may be mixed
with background traffic noises irrelevant to the class label.
To demonstrate the impact of background noises, we collect
traffic of 3,300 irrelevant websites as background noises, in

addition to the traffic of 23 target websites in the SWF dataset
(different traces share the same client and server IPs and server
port, and hard to be filtered out using heuristic rules). Each
irrelevant website has one traffic trace. Then, we randomly
add background noises to training samples. Specifically, we
choose a random number n falling within [0,2] and randomly
select n irrelevant websites. The traces of the selected n web-
sites will be randomly added to training samples.

Table 8: Macro F1-scores with background noises.
Condition Our framework PSC+ET [44]

+ Background Noise 0.943 (± 0.015) 0.880
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Figure 11: The Cumulative Distribution Function (CDF) of
the attention values of TW (target websites) flows and NW
(noise websites) flows.

Table 8 presents the Macro F1-score accomplished by our
framework using the trace with background noises. We also
use the same trace to evaluate another existing method that
relies on handcrafted features. The results demonstrate that
our framework outperforms this existing method due to a
higher Macro F1-score (i.e., 0.943 vs. 0.880), indicating our
framework’s robustness against background noises.

Our framework can automatically filter out noises because
it is expected to set the attention value of noisy flows close to
0. To verify this expectation, we perform a test. Specifically,
we divide the flows into two categories. One is the flows
belonging to the 23 target websites (TW), and the other is the
flows belonging to the noisy websites (NW). We traverse
all the traces in the training set and calculate the attention
distribution, i.e., the output of the softmax function, as shown
in Figure 11. The x-axis uses a log scale for clarity. It can be
seen that the attention values in NW are lower than that in
TW, which verifies our expectations.
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Answer to RQ3. Real-world factors like dataset size and
background noise would affect the fingerprinting perfor-
mance. Although our framework can achieve high perfor-
mance with a small dataset size, increasing the training
sample number is the key to improving performance. Mean-
while, our framework can filter out background noises by
assigning low attention values to noisy flows.

5 Discussion

Deep learning would become indispensable in many traffic
fingerprinting tasks because the encrypted traffic grows in
volume and hides human-observable features for stealthiness,
thereby making it too complicated for an expert to handcraft
features using traditional machine learning methods. The
experiment of framework settings is actually to search hyper-
parameters over intermediate dimensions, which differs from
the choice of input dimension search (i.e., feature design).
Specifically, the search over input dimensions is experience-
driven, i.e., depending on the expert’s understanding of the
task. Expert knowledge has a huge impact on performance
stability. In contrast, the hyperparameter search is data-driven
and independent of the expert’s experiences [49].

Like all the other deep learning models, our framework
has a bunch of parameters to be configured and fine-tuned.
However, all major configurations, like learning rate and neu-
ral network depth, can be conducted automatically through
hyperparameter search. In addition, as a deep learning-based
solution, our framework will also inevitably bring additional
computation overhead. In our experience, compared with stan-
dard classifiers such as random forests, neural networks usu-
ally require hundreds of times more training time. According
to different configurations, the training time of our framework
on a single GPU varies from several hours to several days.
For handling overfitting methods during training, the addi-
tional computational time of ES, WD, DO, and BN is almost
negligible (less than 3%). According to our experiments, the
AL and DE methods require approximately 55% and 78%
extra time. Compared with the task-by-task labor cost of man-
ually crafting features, handling different tasks with just one
paradigm at the cost of additional training time is acceptable.

As to the neural network structure design, a major crite-
rion is their capability to convert an input sequence into a
fixed-length vector. This capability is essential in support of
heterogeneous input. Other neural networks with this capabil-
ity are also applicable to our framework. However, to our best
knowledge, there are few such neural networks except those
we use. A transformer can be considered a special case of the
attention mechanism. We do not use a transformer because it
cannot directly convert variable-length input to a fixed-length
vector. Another reason is that the original transformer is com-
putationally expensive when there are many packets in one
flow because the time complexity of its encoder is O(n2),

where n is the input sequence length. Moreover, we do not
compare our framework with other deep learning methods,
such as [2], because the various fingerprinting problems un-
der our investigation fundamentally differ from the problem
faced by [2], and the models in [2] are not suitable for datasets
where one trace contains multiple flows.

6 Limitations

Tailored approaches. The tailored approaches may achieve
better results in a few cases, such as in the IDI dataset. For
example, when tailoring the flows in § 4.3.3, using the initial
two packets for the IDI dataset can achieve a high Macro
F1-score up to 0.992, while using all packets may result in a
Macro F1-score of 0.964, which is slightly lower. This can be
attributed to the fact that the initial few packets of a flow may
be much more important than the rest, making most pack-
ets noisy to our framework. Specifically, in the IDI dataset,
the payload of the initial two packets of a flow may contain
plaintext of the device types. However, plaintext features will
become less available due to the growing volume of encrypted
traffic [50]. Note that, in our experiments, tailoring flows gen-
erally leads to performance degradation for encrypted traffic
datasets where a packet vector only includes timestamps and
packet sizes (i.e., UAV, KWS, and ISD).

Besides tailoring flows, the training pipeline or the individ-
ual modules may need to be tailored to adapt to specific tasks.
For one thing, for those tasks where each trace contains only
one flow, the flow-to-trace module can be removed from the
training pipeline. For another, for those tasks where additional
packet information, such as payload and metadata in packet
headers (e.g., TCP flags, window size, and options [12]), can
be exploited, the packet vectorization module can have ex-
tended packet vectors beyond timing and sizes.
Inapplicable scenarios. The framework assumes a packet-
flow-trace hierarchical traffic structure following the TCP/IP
model. Therefore, it may not apply to traffic without this prop-
erty, such as Zigbee and Bluetooth. If the traffic follows the
TCP/IP model, but the hierarchy disappears, the framework
still works with diminished advantages. For example, multi-
ple logical flows are transmitted over a single flow in TCP or
UDP multiplexing (e.g., QUIC, SSH, Tor, and IPsec). In this
example, our framework can still be used as an input-agnostic
approach since it can handle variable-length flow input, but
the flow-to-trace module no longer contributes. As more con-
current logical flows are multiplexed over a single flow [51],
the framework tends to be less effective due to the mutual
interference between concurrently multiplexed flows.

In addition, the framework may be less effective for small
datasets due to deep learning’s data-hungry nature, which is a
general challenge. For example, the experiment on the UAV
dataset in Table 5 has demonstrated that manually engineered
features may outperform the framework for small datasets.
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Susceptibility to perturbations. The framework’s perfor-
mance degrades when traffic data is perturbed to deviate from
the characteristics of the data on which the framework is
trained. For example, packets may be lost, or dummy packets
may be added to achieve the deviation [52]. We evaluate the
susceptibility of the framework to five types of perturbations,
namely, packet loss, flow loss, packet padding, dummy pack-
ets, and dummy flows, on the WFP dataset. The definitions
and the experimental results are in Appendix A.8.

As shown in Figure 15, when we increase the perturbed
rate (i.e., the rate of randomly performing loss, padding, and
dummy perturbations) from 0.1 to 0.5, the Macro F1-scores of
our framework without retraining (i.e., testing data deviates
from training data) drop under all perturbation types. The
Macro F1-scores under packet loss and dummy packets drop
the most drastically, and those under packet padding decrease
the slowest. When the perturbed rate reaches 0.3, the Macro
F1-scores of the above perturbations drop to 0.17, 0.70, 0.91,
0.25, and 0.81, respectively. This observation shows that per-
turbations like packet loss and dummy packets change traffic
characteristics significantly and thus lead to drastically de-
creased performance, while perturbations like packet padding
change traffic characteristics and hurt performance the least. It
also indicates that randomly losing or adding packets changes
traffic characteristics more significantly than just randomly
changing packets that already exist (i.e., packet padding). In
terms of flow perturbations, randomly losing flows affects
traffic characteristics more than randomly adding flows.

Nevertheless, the performance degradation due to pertur-
bations can be mitigated by training the framework with per-
turbed traffic data. Training the classifiers with perturbed (or
defended) data is a commonly adopted paradigm in the lit-
erature [3, 53]. This paradigm is based on the availability
of perturbed data to the attacker. After retraining the frame-
work with 90% perturbed data and testing on the remaining
10%, the Macro F1-scores under the above perturbations in-
crease to 0.96, 0.90, 0.98, 0.97, and 0.97 when the perturbed
rate is 0.3, respectively. We see that the Macro F1-scores
are substantially improved under all perturbations, decreasing
slowly as the perturbed rate increases. The results imply that
the framework, given the availability of perturbed data, ex-
hibits robustness against random perturbations. In particular,
dummy packets and flows lead to a relatively slighter decrease
in Macro F1-scores than packet loss and flow loss. This is
because the framework’s attention mechanism can filter out
randomly added (rather than lost) packets and flows.

7 Related Work

Feature-based traffic fingerprinting. Leveraging machine
learning to classify network traffic has become popular since
about 2005. The pioneering work manually crafted features
and designed classifiers, such as support vector machines and
random forests [44,54,55]. The classifier’s performance relies

on the quality of crafted features, and extensive efforts have
been made to craft distinguishing features [54].

For example, Hayes et al. proposed a system for website
fingerprinting on Tor using random forests to extract finger-
prints in 2016 [55]. The system has a complex feature set,
including packet number statistics, packet ordering statistics,
transmission time statistics, etc. Yan et al. consider the sce-
nario of keyword searching fingerprinting by crafting a feature
set. [44]. They analyzed factors affecting fingerprinting perfor-
mance, including client platforms, search engines, feature sets,
etc. Ma et al. designed a context-aware system that can finger-
print access to websites using the Shadowsocks proxy [43].
Labayen et al. built a model for classifying user activities
using both supervised and unsupervised learning [4].

Despite the effectiveness, crafting features are both time
and domain dependent. Manually-crafted features may be in-
validated as the data evolves, while they work well in their re-
spective domains, but may perform poorly in other domains.

Deep learning-based traffic fingerprinting. Deep learning
has gained growing popularity due to its capability of au-
tomatic feature extraction [1–4, 56, 57]. Salient deep learn-
ing models suitable for traffic fingerprinting include CNN
[1,3,10,16], RNN [2,10,58], SAE [2,16], CapsNet [56], tree
structural RNN [59], attention mechanism [58], and so forth.

Many studies have applied deep learning in traffic finger-
printing tasks. For example, Rimmer et al. proposed a website
fingerprinting attack over Tor by comparing SDAE, CNN,
and LSTM [2]. Liu et al. tested the attention-based bidirec-
tional gated recurrent unit (BiGRU) neural network to iden-
tify web services using HTTPS accurately [58]. Cui et al.
applied CapsNet in traffic classification and obtained bet-
ter performance than SAE and CNN [56]. Existing deep
learning-based methods, however, do not consider multiple
flow correlation [2,56,58]. Studies like [60] performed traffic
classification considering multiple flow correlation. Never-
theless, these studies rely on manually crafting flow features,
thereby not taking full advantage of deep learning. Lu et al.
used a graph neural network to classify encrypted traffic [61],
but graph creation still requires human involvement.

8 Conclusion

To seamlessly land deep learning onto traffic fingerprinting,
we take the first step to designing an input-agnostic hierar-
chical deep learning framework aware of feature hierarchy.
Furthermore, we proposed techniques to handle overfitting
and analyzed real-world factors that affect performance. Our
framework successfully applies in various fingerprinting tasks
where state-of-the-art methods rely on handcrafted features
and deep learning is not easily applicable. It achieves better
(or at least comparable) performance with just one paradigm.
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A Appendix

A.1 Attention Mechanism in Our Framework
Figure 4(c) shows the principle of the attention mechanism,
which has three types of inputs: query, key, and value. Query
and key are used to calculate attention weights. Then, a
weighted sum of the values, i.e., the attention value, is de-
rived:

Attention(Query,Key,Value) =
Lx

∑
i=1

ai ∗Valuei, (3)

where Lx is the number of values, and ai is the similarity
between the query (i.e., Query) and the ith key (i.e., Keyi).

ai = Similarity(Query,Keyi). (4)

To use the attention mechanism for traffic fingerprinting,
we fine-tune Vaswani’s scaled dot-product self-attention [27]:

Attention = Softmax(QKT
√

dk
)V,

Q =W Q,

K = XW K ,

V = XWV .

(5)

X is a matrix containing CPVs. Assuming there are 10 CPVs
after compression, and the dimension of each vector is 100,
then X is a matrix of size 10× 100. W Q, W K , and WV are
three parameter matrices with fixed sizes for training. Q, K,
and V correspond to Query, Key, and Value in (3). The scal-
ing factor dk stabilizes the gradient and equals the length
of K. The difference between Vaswani’s self-attention and
our method is that the size of Q in our method is a constant.
This significantly reduces the computational complexity from
O(n2) to O(n), where n is the number of rows of X .

A.2 Without handling overfitting
Figure 12 shows a case without handling overfitting.

A.3 Dataset Characteristics
Table 9 details dataset characteristics, including the number
of classes, dataset sizes (i.e., number of traces), etc.
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Figure 12: The Macro F1-scores of training/validation sets
over epochs on the UAV dataset without handling overfitting.

A.4 Batch Normalization in Our Framework
The formal expression of batch normalization [34] is:

µB←
1
m

m

∑
i=1

xi, σ
2
B←

1
m

m

∑
i=1

(xi−µB)
2,

x̂i←
xi−µB√

σ2
B + ε

, yi← γx̂i +β.
(6)

It first calculates the mean and variance of input variable xi,
i ∈ [1,m], where m represents the number of input variables.
Then, it normalizes xi to x̂i by subtracting the mean and di-
viding by the variance. Finally, it re-centers and re-scales x̂i
using learnable parameters γ and β, which enable the model to
determine whether to use normalization. Unfortunately, batch
normalization is hard for neural networks supporting variable-
length input. Therefore, we only add batch normalization to
the fully connected layer at the end of the model and use layer
normalization instead to normalize flow vectors [35].

A.5 Module Parameter Settings
We set parameters for each module of our framework. The
packet vectorization module is performed straightforwardly
and has no parameters for setting. The parameters of the
packet-to-flow mapping, flow-to-trace mapping, and trace-to-
label classification modules are detailed in Table 10.
Packet-to-flow Mapping. This module is set up with five
neural networks. The first one indexed by 0 is a classical
convolutional neural network responsible for packet vector
sequence compression. It has three convolutional layers, each
followed by a max-pooling function. The remaining four
ones correspond to the attention-based, chain-structured, tree-
structured, and hybrid neural networks, indexed by 1 , 2 ,

3 , and 4 , respectively, for different ways to perform
packet-to-flow mapping and extract flow vectors.

Specifically, 1 contains one attention and two convo-
lutional layers. The two convolutional layers compress the
attention output. 2 uses a three-layer BiLSTM neural net-
work and adds the bidirectional hidden vectors of the third
layer as the output. 3 uses three linear layers as a node
merging function of BBRNN and outputs the root node value
as the flow vector. 4 contains a BiLSTM layer, an attention
layer, and two convolutional layers.
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Table 9: The characteristics of the five datasets in our experiments.
Dataset Classes Traces Flow number of one trace Flow length

Average Minimum Maximum Std. Deviation Average Minimum Maximum Std. Deviation
UAV 4 3,705 5.02 0 266 16.57 554.13 1 50,332 2984.48
SWF 24 6,088 43.51 1 891 69.81 66.66 1 57,261 443.49
KWS 50 5,000 31.30 6 68 8.29 36.39 1 8,378 180.74
IDI 27 550 27.34 1 215 44.58 12.20 1 297 25.75
ISD 2 4402 10.47 0 578 22.7 166.42 1 2,252,416 12,831.47

Table 10: Parameter settings of neural networks of different modules in our framework.
Module ID Function Neural Networks Network Layers Output Size

M1&M2

Conv1d(in_channels=3,out_channels=10,kernel=5) n×10
Packet Maxpool1d(kernel=3, stride=3,padding=1) ≈ int(n/3)×10
Vector

0 CNN
Conv1d(in_c=10,out_c=50,kernel=5) ≈ int(n/3)×50

Sequence Maxpool1d(kernel=3, stride=3,padding=1) ≈ int(n/9)×50
Compression Conv1d(in_channels=50,out_channels=100,kernel=5) ≈ int(n/9)×100

Maxpool1d(kernel=3, stride=3,padding=1) ≈ int(n/27)×100

1 Attention
Eqn. (5): size(Q) = 50×100 50×100

Conv1d(in_channels=50,out_channels=10,kernel=1) 10×100
Conv1d(in_channels=10,out_channels=1,kernel=1) 100

Packet-to-flow 2 BiLSTM BiLSTM(input_size=100,hidden_size=100,num_layers=3) 100Mapping (Chain-structured)
or

3 BBRNN
Linear(in=200,out=175) 175

Flow-to-trace (Tree-structured) Linear(in=175,out=150) 150
Mapping Linear(in=150,out=100) 100

BiLSTM(input_size=100,hidden_size=100,num_layers=1) Len(flows)×100

4 BiLSTM +
Eqn. (5): size(Q) = 50×100 50×100

Attention Conv1d(in_channels=50,out_channels=50,kernel=1) 50×100
Conv1d(in_channels=50,out_channels=10,kernel=1) 10×100

M3 5 Fully Connection

Linear(in=1000,out=100) 100
Trace-to-label Linear(in=100,out=50) 50
Classification Linear(in=50,out=50) 50

Linear(in=50,out=class number) class number

Flow-to-trace Mapping. This module shares the same neural
network structures with packet-to-flow mapping.
Trace-to-label Classification. This module uses a fully con-
nected neural network indexed by 5 . It has four linear layers
with the leaky relu activation function. The last linear layer
does not use an activation function but a softmax function to
perform classification.

A.6 Handling Overfitting Methods
Early Stopping (ES). This is a simple yet effective way to
prevent overfitting. The basic idea is to establish a validation
set, and perform testing based on the validation set to select a
suitable epoch to stop training when overfitting occurs [36].
Our stopping criterion is to keep the model with the highest
F1 score in the validation set.
Weight Decay (WD). It aims to reduce model complexity by
forcing weights to be small and thus reduce overfitting. Re-
searches show that the neural networks with smaller weights
are observed to generalize better. Specifically, we will use
Pytorch’s AdamW algorithm to implement this method [37].
Dropout (DO). It randomly drops neuron units from the
neural network during training [38]. This forces the network
to learn robust features in random subsets of neurons. If the

network makes a prediction, it should not be too sensitive to
some specific cues. Even if a specific cue is lost, DO can learn
the common features from other cues.

Batch Normalization (BN). It can not only accelerate the
training speed but also achieve better generalization [39]. The
rationale is that it acts as a regularizer to some extent because
the output of one sample is limited by other samples in the
mini-batch. It is formally shown in Appendix A.4.

A.7 Visualization of Importance

Figure 13 and Figure 14 visualize flow importance and packet
importance using the attention values, respectively. To obtain
the pure attention output, we only use the attention neural net-
work in flow-to-trace mapping and packet-to-flow mapping.

A.8 Susceptibility to Perturbations

Table 11 details each type of perturbation. Figure 15 shows
the Macro F1-scores under these perturbations.
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Figure 13: Scatter plots showing the relationship between the flow length and its importance. The importance value is equal to
the flow attention values before the softmax function. Each point represents a flow. The darker the place, the more points.
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Figure 14: Scatter plots showing the relationship between the packet position and its importance. The importance value is equal
to the packet attention values before the softmax function. Each point represents a packet.
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Figure 15: Macro F1-scores over perturbed rate under different perturbations on the WFP dataset. “Without Retraining” indicates
susceptibility to perturbations, while “With Retraining” implies susceptibility can be mitigated if retrained with perturbed data.

Table 11: The description of different types of perturbations.
Perturbation Description
Packet Loss randomly dropping packets with a perturbed rate.
Flow Loss randomly dropping flows with a perturbed rate.

Packet randomly choosing packets with a perturbed rate
Padding and padding their packet sizes to the same.

Dummy randomly choosing packets with a perturbed rate

Packets and adding dummy packets after them. The dummy packets
are copies randomly chosen from the dataset.

Dummy randomly choosing flows with a perturbed rate

Flows and adding dummy flows after them. The dummy flows
are copies randomly chosen from the dataset.

A.9 Methods in [4, 43–46]

K-Means+RF [4]. Labayen et al. built a three-layer system
that combines unsupervised learning and supervised learn-
ing for classifying user activities by manually crafting fea-
tures. The first two layers use K-Means for unsupervised trace
clustering, while the last layer uses Random Forest (RF) for
classification.
RF+LCS [43]. Ma et al. designed a website fingerprinting
method especially for proxy software like Shadowsocks. They

hierarchically extracted features from traces, used RF to clas-
sify each flow, and then used the Longest Common Subse-
quence (LCS) algorithm to correlate flows.
PSC+ET [44]. Yan et al. tested five feature sets using Extra-
Trees (ET) [62]. We use one of the best feature sets, Packet
Size Count (PSC), to make comparisons. PSC counts the
frequency of packet size, which has proven to be one of the
most informative features for keyword fingerprinting.
RF [45]. Hamad et al. used handcrafted features and different
machine learning algorithms. They extracted behavioral and
flow-based features from the header and payload of (Ether-
net, IP, TCP, and UDP). Random Forest (RF) has the best
performance among all the algorithms.
CCR-ELM [46]. Hasan et al. proposed an IoT botnet de-
tection method by combining the state transition matrix and
Class-specific Cost Regulation Extreme Learning Machine
(CCR-ELM). First, the method extracts features and builds
a state transition matrix, and each flow has a state transition
matrix. Next, CCR-ELM is used to make a classification.
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