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Abstract
A significant challenge to training accurate deep learning
models on privacy policies is the cost and difficulty of obtain-
ing a large and comprehensive set of training data. To address
these challenges, we present Calpric, which combines auto-
matic text selection and segmentation, active learning and the
use of crowdsourced annotators to generate a large, balanced
training set for Android privacy policies at low cost. Auto-
mated text selection and segmentation simplifies the labeling
task, enabling untrained annotators from crowdsourcing plat-
forms, like Amazon’s Mechanical Turk, to be competitive
with trained annotators, such as law students, and also re-
duces inter-annotator agreement, which decreases labeling
cost. Having reliable labels for training enables the use of ac-
tive learning, which uses fewer training samples to efficiently
cover the input space, further reducing cost and improving
class and data category balance in the data set.

The combination of these techniques allows Calpric to
produce models that are accurate over a wider range of data
categories, and provide more detailed, fine-grained labels than
previous work. Our crowdsourcing process enables Calpric to
attain reliable labeled data at a cost of roughly $0.92-$1.71 per
labeled text segment. Calpric’s training process also generates
a labeled data set of 16K privacy policy text segments across
9 data categories with balanced assertions and denials.

1 Introduction

Privacy policies are legal documents that disclose how a party
collects, uses, and shares personally identifiable information
(PII). Privacy legislation, such as the California Online Pri-
vacy Protection Act (CalOPPA) and the General Data Pro-
tection Regulation (GDPR), require digital services to use
privacy policies to obtain consent for the collection and use
of PII. In addition to consent, privacy policies also serve as a
mechanism for transparency and accountability to ensure that
digital services comply with privacy legislation [26]. With the
massive growth of privacy policies, there has been significant

Figure 1: A fully labeled privacy policy segment with data cate-
gory (contact information), data action (third party sharing), and its
corresponding action mode (does not share).

interest in building tools to automate the analysis of privacy
policies for compliance [49, 50], as well as to help end users
understand them [19].

However, previous attempts have been limited in inclusive-
ness and granularity1. For example, [49] and [50] are limited
to only the most common categories of private data—contacts,
device identifiers and location—but do not include less com-
mon data categories such as private health, financial and de-
mographic information. Similarly, [19] trains hierarchical
models that classify text segments by various privacy-related
properties, such as the type of data action (i.e. collection,
storage) and the data category (location, health). However,
their models cannot distinguish fine-grained attributes, such
as an explicit denial of a data action from the lack of a disclo-
sure of a data action. In addition, they also cannot guarantee
uniform performance on rare combinations (i.e.“We do not
store your health information”, since explicit denials and stor-
age are both rarer classes). PolicyLint [2] and PoliCheck [3]
use a rules-based ontology to organize information types as a
hierarchy, but also do not explicitly address minority data cat-
egories. These shortcomings exist because 1) the training set
in previous approaches is not sufficiently large to cover less
common cases, and 2) the imbalanced distribution of cases in
privacy policies means that there will be insufficient training
samples to provide good performance at fine-granularity.

In this paper, we address both challenges with a new
training method for privacy policy classifiers, which we call

1We use inclusiveness to denote accurate classification for minority data
categories and fine/coarse to denote the number of possible labels a model
can predict at its output.
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Calpric (Crowdsourcing Active Learning PRIvacy Policy
Classifier). Calpric’s training approach simultaneously gath-
ers data and trains on it, synergistically using crowdsourced
annotators and active learning to produce a larger and distri-
butionally balanced dataset. Calpric overcomes a number of
challenges that arise from crowdsourcing, such as untrained
annotators and unreliable annotations, through a data category-
specific text segmentation algorithm. The construction of
previous data sets, such as OPP-115 and APP-350 [42,49], re-
quired the annotators to both select the relevant text segments
in the privacy policy and label them, a complex annotation
task for crowdsourced workers. Calpric automatically extracts
segments comparable to the ones selected by trained anno-
tators by determining whether a segment is relevant to the
label being sought, identifying the correct segment boundary
and capturing the necessary local context. However, simply
acquiring more training samples would not guarantee that
sufficient samples of rare categories are found. To overcome
distributional imbalance, Calpric uses active learning, which
uses a partially trained model to select unlabeled samples
that are likely to contain information that the model currently
lacks. The use of active learning itself is not without pitfalls—
because active learning strategically selects samples for which
it currently has little information, there tends to be little redun-
dancy in the training samples it selects, and so an incorrect
label provided by an annotator can have a large impact on
model accuracy. Unfortunately, crowdsourced annotators do
not provide correct labels consistently. Calpric’s segmenta-
tion algorithm overcomes this challenge by increasing inter-
annotator agreement and annotation accuracy, thus providing
benefits to both the crowdsourcing and active learning com-
ponents.

Building on these innovations, we use Calpric to build the
Calpric Privacy Policy Corpus (CPPS). Training on CPPS,
Calpric produces models that can provide accuracy over a
greater breadth of data categories and with finer-grained la-
bels than previous work. Calpric achieves an overall classifi-
cation accuracy of 93.0% on the sentence/segment level, and
92.2% on the document level, which exceeds that of prior
models trained on smaller data sets generated by trained an-
notators [19, 42, 49]. Simultaneously, Calpric’s training meth-
ods enable the use of crowdsourced annotators labeled text
segment for $0.92-$1.71 at an annotation quality similar to
previous studies that used used more expensive trained anno-
tators [49, 50]. This enables Calpric to generate a training set
set of 16856 labeled text segments, which is 3× larger than
the largest previous human-annotated data set and contains
significantly more information on minority data categories
and classes.

In summary, this paper makes the following contributions:

1. We present Calpric, which synergistically combines
crowdsourcing and active learning to produce Calpric
Privacy Policy Corpus (CPPS), which contains 16856

labeled text segments extracted from 52K Android pri-
vacy policies covering 9 data categories and 3 data ac-
tions. CPPS is balanced across data categories and ac-
tion modes. As far as we are aware, CPPS is the largest
corpus of privacy policy text segments to date. The Cal-
pric project is openly available https://github.com/
dlgroupuoft/Calpric.

2. While creating CPPS, Calpric trains models that provide
more inclusive and finer-grained classification perfor-
mance on privacy policies. Calpric’s models cover 9
data categories and can differentiate denials (i.e. explicit
denial of a data action) from the absence of disclosure
about a data action.

3. We perform measurements and find that Calpric’s au-
tomated text segmentation increases the number of us-
able labels produced by 65%, enables the use of crowd-
sourced annotators, which reduces labeling costs by 9×,
and results in a model that is more accurate than prior
work, especially on minority data categories and classes.

4. We conduct a study on rare data categories and actions
in 1,800 Android app privacy policies. We find that some
categories are not as rare as previously believed, and that
with the exception of the most popular applications, the
number of explicit denials and use of controllable data
actions increases with application popularity.

2 Challenges

In this section we better characterize the challenges of in-
clusive and fine-grained privacy policy classification and the
availability of training data, which covers data imbalance,
labeling cost, and segmentation challenges.

2.1 Inclusive and Fine-grained Classification
While previous work has demonstrated that it is possible to
train models that achieve high classification accuracy on pri-
vacy policy text, that classification has been limited in in-
clusiveness and granularity. We summarize the limitations
of previous approaches as compared to Calpric in Table 1.
Limitations in breadth mean that model predication accuracy
may suffer for minority (rare) classes, as machine trained
models tend to optimize for accuracy in majority (common)
classes. [49] and [50] only cover 3 common categories and do
not cover rare data categories such as health, financial, demo-
graphic, social media, personal identifier, or survey data. [19]
covers 112 rare categories, but has low accuracy in them due
to the limited access to training data in those categories.

To alleviate some of these issues [19] combines different
data actions when training models to predict certain private

2Polisis covers non-mobile privacy policies, we only train Calpric on
categories that are applicable to mobile privacy policies.
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Granularity of labels Categories
Polisis [19] Relevant / ¬Relevant (2) Common (3) +

Rare (11)
MAPS [49]/ [50] Assertion / Denial (2) Common (3)
PolicyLint [2] Assertion / Denial (2) All3

Calpric Assertion / Denial / Non Men-
tioned / Choice / Ambiguous
(5)

Common (3) +
Rare (6)

Table 1: Comparison of automated privacy policy analysis tools

attributes. For example, a single “information type” attribute
model is trained across all data actions, combining actions
such as 1st party (common) and 3rd party (rare) collection. As
a result, they can only report prediction accuracy overall, and
cannot guarantee accurate prediction for 3rd party collection.

Insufficient data and biased distribution also lead to coarser-
grained categories, which provide less information to the end
user. Previous machine learning approaches generally cannot
identify phrases with explicit denials (“We do not collect
your device identifier information”) [19, 50]. While [49] and
PolicyLint [2] can identify explicit denials, they do so using
explicit rules to either generate synthetic denial samples, or
check for negative modifiers in a dependency parse tree. In
addition, none can extract indications of choice or opt-out
options (“You may opt-out of this collection”), or ambiguity
(“We may not collect your contact information”). In contrast,
Calpric is able to differentiate between statements that (i)
assert collection; (ii) explicitly deny collection; (iii) provide
an opt-out option; or (iv) are ambiguous.

Calpric’s training approach gathers data at lower cost
through crowdsourcing and produces a dataset with a bal-
anced distribution across target categories via crowdsourcing
and active learning. However, the use of these two approaches
themselves create new challenges, which we detail below.

2.2 Cost and Imbalance in Training Data

We detail the challenges of distributional imbalance in training
data and the cost of acquiring labels for training.

2.2.1 Class Imbalance

OPP-115 [50] and APP-350 [49] are so far the most used
privacy policy data sets for machine learning-based models,
yet they both suffer from data imbalance. That is, the distri-
bution of data categories collected by digital applications is
not uniform, and as a result, privacy policies do not uniformly
cover various categories of data. Imbalance exists across both
data categories and positive/negative classes. For example,
there are many more privacy policy text segments disclosing
the collection of location information than health information.

3Technically PolicyLint and PoliCheck are able to handle all categories,
but they rely on name-entity recognition, which does not take into account
context like our language-model based extraction.

OPP-115 APP-350 CPPS
Contact 8.46% | 1217 22.5% | 1744 48.07% | 2852
Location 2.45% | 449 22.1% | 971 51.29% | 2318
Device 0.57% | 700 14.9% | 2062 50.57% | 2828
Demogra. 1.35% | 408 17.7% | 481 48.44% | 3552
Financial 5.06% | 435 - 51.73% | 2339
Health 2.37% | 211 - 48.60% | 1790
Survey 4.76% | 84 - 45.13% | 421
Personal id 11.3% | 106 - 38.76% | 387
Soc. media 1.35% | 74 - 47.15% | 369
Average 4.19% | 3684 19.3% | 5258 47.75% | 16856

Table 2: The number of labels across data categories and percentage
of denials in previous datasets compared to CPPS4

Similarly, the privacy policy segments are heavily skewed
towards assertions (i.e. a positive label) of data collection
than denials (i.e. a negative label).

To better characterize the challenge, we tabulate both the
number of labeled segments in each category and the percent-
age of denials for the two data sets and CPPS in Table 2. We
can see that data for certain categories is extremely sparse:
OPP-115 contains thousands of labels on contact data but only
44 labels on health data. Consequently, Polisis [19], which
is trained on OPP-115, struggles with a low accuracy in mi-
nority classes such as health. We also see that the data sets
exhibit class imbalance across categories, with only 4.19%
of the samples in the OPP-115 having a denial label. APP-
350 has a slightly better class balance, but this is due to the
addition of synthetic denials, which they accomplished by
manually changing a positive sample into a denial one. For
instance, a positive sample: “Our App collects your location
data” might be converted to “Our App does not collect your
location data”. We note that while this approach mitigates the
class imbalance to some extent, it cannot be used to improve
data category imbalance. Furthermore, there is no assurance
that such synthetic labels are representative of real denials in
the wild. In comparison, after active learning, the CPPS train-
ing set generated by Calpric has almost perfect class balance.
As we can see, Calpric is able to find and label many more
samples in the 6 rarer data categories.

2.2.2 Labeling Cost

Previous data sets, such as the OPP-115 [42] and the APP-
350 [49] data sets, are generated with trained human anno-
tators, usually composed of law students. Even with their
prior legal knowledge, it still takes considerable time to read
through a privacy policy and label the specific text segments
that indicate, for example, whether personal information is
collected and if so, what type of information is collected. For
instance, OPP-115, which contains 115 privacy policies, was
labeled by 10 law students, spending an average of 72 minutes

4Each privacy policy in OPP-115 was annotated by multiple annotators,
thus the number of labels are not equivalent to the number of segments. 0.75
is the middle value of overlap threshold provided by the authors to try to
consolidate multiple labels on similar text segments
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on each privacy policy. The speed, availability and cost of
trained annotators limits the size of the data set. Recognizing
this challenge, we propose a crowdsourcing solution reduces
the cost of labeling by 9×.

One obvious question that arises with the use of crowd-
sourced annotators for privacy policies is whether such un-
trained annotators can sufficiently understand privacy policy
language to produce accurate labels [43]. We note however,
that since privacy policies are the primary method of obtain-
ing consent from individuals for the collection of information,
to obtain meaningful consent, they must be understandable
by a representative target individual from whom the informa-
tion collection would likely happen. For example, Canada’s
privacy legislation, PIPEDA, states that “the consent of an
individual is only valid if it is reasonable to expect that an
individual to whom the organization’s activities are directed
would understand” and the GDPR defines consent as “any
freely given, specific, informed and unambiguous indication
of the data subject’s wishes”—in both cases, the user must
“understand” or be “informed.” While it is true that many
privacy policy documents fall short of this idealized level of
transparency, we argue that the interpretation that an average
person has for a privacy policy intended for them (were they
to actually read the policy) is still relevant, and is what Calpric
tries to predict.

Nevertheless, one cannot simply use crowdsourced annota-
tors and expect to achieve accurate classification, especially in
combination with active learning. First, crowdsourced annota-
tors acquired through platforms such as Amazon’s mTurk
service, generally do best on short, simple tasks, such as
single-sentence translation [1] and sentiment analysis [7]. Fur-
ther, reducing the complexity and length of tasks is beneficial
for crowdsourced annotators [8, 23]. Second, active learning
methods generally assume reliable oracles that always return
correct labels, which is not the case for crowdsourced an-
notators. Previous privacy policy studies presented several
crowdsourced annotators with the entire privacy policy, asked
them each to assign a label, and then attempt to increase label
reliability by only accepting the label if the inter-annotator
agreement is above some threshold [43]. A drawback to this
is that different annotators may select different text segments
to label, and the text segments themselves may not align per-
fectly, decreasing inter-annotator agreement.

Calpric addresses these challenges by extracting relevant
text segments from a privacy policy and presenting these
to the crowdsourced annotators so that all of them label
the same segments. This both decreases the time they must
spend on the task and increases inter-annotator agreement
rate, which both decrease the cost of acquiring labels. Calpric
re-requests labels for text segments that did not achieve an
inter-annotator agreement above an acceptable threshold—
a mechanism called relabeling. However, some segments
may suffer from chronically poor agreement—that is they do
not achieve sufficient agreement even after several attempts.

There can be several reasons for the chronically poor agree-
ment for a segment. First, Calpric may mistakenly extract a
segment that is not relevant to the labeling task. Our crowd-
sourced task also has workers annotate whether a segment
is relevant or not, which is then used as a label to retrain the
model used to classify if a text segment contains relevant in-
formation about a data category. Second, the text segment
may be relevant but inherently ambiguous—that is the text is
not sufficiently clear about whether collection is occurring or
not [32]. For example, in

“if you log-in using a third party social media ac-
count, we may not collect any personal or account
information from that social media provider”

the “may” makes it ambiguous whether information is col-
lected or not, and users have no control over the usage of
private data. In addition, using the ambiguous term “personal
information” without further details makes it impossible to in-
fer which data category the segment refers to and undermines
the purpose and value of privacy policies [32]. To prevent
wasting more crowdsourcer resources on such text segments,
Calpric stops the relabeling attempt after a preset number of it-
erations, and labels such segments as ambiguous and does not
use them for training. While classifying all text segments that
do not achieve an acceptable level of inter-annotator agree-
ment as ambiguous necessarily over-approximates the true set
of ambiguous text segments, we show that Calpric is still able
to achieve high classification accuracy despite the loss of po-
tentially usable text segments due to this over-approximation.

Our current implementation of Calpric uses crowdsourced
annotators from Amazon’s mTurk service to provide labels
used for training. While mTurk captures a large portion of the
mobile app user population, who are the target individuals
of mobile app privacy policies in our data set, we note that
mTurk cannot capture every subgroup of mobile app user. For
example, children are not permitted to use the mTurk service,
so our current Calpric models cannot predict how children
might interpret privacy policies. Nonetheless, this is a lim-
itation of mTurk, not Calpric—we believe that our current
implementation of Calpric can be extended in a straightfor-
ward manner to predict for any subgroup of individuals so
long as annotators from that subgroup can be recruited to
provide labels from which Calpric can learn.

2.3 Segmentation

As mentioned earlier, extracting text segments is crucial to
Calpric’s ability to provide accurate, broad classification of
privacy policies at a lower annotation cost. While previous
work, such as Polisis, used existing off-the-shelf segmentation
tools [17], Calpric requires text segments for annotation, not
just classification. For accurate annotation by crowdsourced
workers, Calpric must extract text segments that not only se-
mantically coherent to a topic, but relevant to the specific data
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(a) Example with multiple labels on data action and action mode

(b) Example with multiple labels on data category

Figure 2: Privacy Policy segments with multiple labels

category for which an annotation is being sought. As a result,
we build custom data category-specific Segmenters in Calpric.

A Calpric Segmenter first identifies sentences that are rele-
vant to a data category, and then uses standard topic similarity
metrics to contextualize the sentence into a coherent text seg-
ment. Finally, in contrast to previous work, we also evaluate
the safety of using text segment level classification to assign
global labels to a privacy policy (Section 5.1.1). Specifically,
we use our Segmenters to examine how often privacy policies
may have multiple contradictory text segments, and whether
these represent real contradictions where segment-level labels
may not be consistent with a privacy policy-level label.

3 Design Overview

The goal of Calpric is to train a hierarchical multi-label clas-
sification model that extracts the action mode associated with
a data action for a set of data categories from privacy policy
text. Calpric accomplishes by first extracting relevant text
segments from a privacy policy and then labeling those seg-
ments as shown in Figure 1. At the highest level, Calpric
labels text segments into 9 data categories: contact, device
information, location, financial, health, demographic, survey,
personal identifier and social media data. The next level iden-
tifies 3 data actions: 1st party data collection/use, 3rd party
sharing and data storage; and then 5 possible action modes
are labeled for each data action: assert (action is performed),
choice (action is performed but the user may opt-out), de-
nial (denial of the action being performed), not mentioned
(irrelevant to data practice), and ambiguous (identify policy
texts that are poorly described, which aligns with interests of
recent legal studies [26, 32]). Note that a single text segment
may contain information about multiple data categories and
multiple data actions, as shown in Figure 2, making this a
fine-grained multi-label classification task.

3.1 The Calpric Pipeline

Calpric is implemented as a pipeline that processes the in-
put in 3 major stages as illustrated in Figure 3. First, a Data

Preparation stage ingests the raw privacy policies and per-
forms basic pre-processing to prepare them for labeling by
the crowdsourced annotators (5 per segment in our study)
and subsequent training. Second, a Segmenter stage extracts
text segments relevant to each data category from the pro-
cessed privacy policies and simultaneously trains and updates
the Segmenter models with active learning. The final Ac-
tion Model Training also uses active learning to train models
that produce multi-class action mode labels for each data
action/data category combination.

Calpric’s pipeline effectively decomposes the learning task
into two separate models. The Segmenter includes a Cate-
gory Model that selects text segments that are relevant to one
of the data categories. After this, Action Models at the next
stage only have to predict action mode labels for each data
action. This decomposition has two benefits. First, the decom-
position of a single task into two simpler sub-tasks fits the
requirements of crowdsourcing, which requires short, simple
tasks. Second, active learning requires an even distribution of
bootstrap data, ideally in all combinations, which becomes
intractable as the label dimension grows [44]. Decomposing
the labeling task reduces its dimensionality. We now describe
each of the pipeline stages in more detail.

3.2 Data Preparation
The Privacy Policy Scraper downloads metadata of 375K
Android applications from the Play Store and filters down to a
final dataset of 51,781 usable privacy policies in the plain text
format. The processing details are included in Appendix A.

Calpric then prepares a privacy-specific contextualized em-
bedding named PriBERT. Specifically, we perform additional
pretraining on the bert-base-uncased model using the 52K pri-
vacy policies collected by the Privacy Policy Scraper, with a
maximum sequence length of 128 and a batch size of 8. Each
training checkpoint captures the BERT activations from the
last 4 hidden layers of the previous transformer checkpoint.
We also apply a truncation rate of 2% to provide robustness
to non-sentential inputs.

3.3 Segmenter
We create data category-specific specific Segmenters by train-
ing a model that identifies relevant sentences, and then using
standard NLP tools to identify the appropriate segment bound-
aries. We begin by using the NLTK [5] Sentence Tokenizer to
split entire privacy policies individual sentences. Bullet lists
are converted into a sentence heuristically by concatenating
each list item with the text just before the list items.

The individual sentences are passed to a Category Model,
which classifies if the sentence is relevant to a data category.
There are 9 separate Category Models in Calpric, each respon-
sible for one data category Calpric currently supports and
a sentence can be classified as being relevant to more than
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Figure 3: A simplified overview of the active learning system

one data category. Finally, relevant sentences will be contex-
tualized by adding additional sentences into a text segment,
which provides the context necessary for the annotators to
understand and apply the correct label. For example, consider
the text segment:

Personal information is data that can be used to
uniquely identify or contact a single person. When
you visit, download or upgrade our app or our prod-
ucts, we do not use this information explicitly. How-
ever, we may collect personal information to im-
prove our services and deliver a better experience.

All sentences in the segment contribute to its meaning:
without the first sentence, it is not clear that personal infor-
mation refers to contact information, but if the segment were
to only contain the first two sentences, annotators may be
misled to provide a denial label to the segment. At the same
time, including extraneous sentences in the segment increases
the time and effort for annotators, which may increase label-
ing costs. Sentences are contextualized by the Contextualizer
component. We describe the Category Model and Contextu-
ralizer that make up the Segmenter in more detail below.

3.3.1 Category Models

For each data category, Calpric trains a binary Category Model
to identify relevant sentences: it projects each sentence into
a vector representation using the PriBERT embedding men-
tioned in Section 3.2. These vectors are then fed into a set of
binary classification models fine-tuned on top of BERT. We
set the batch size to 32 and the number of epochs to 48. We
use leaky ReLUs [29] and a dropout value [39] of 0.1 to pre-
vent over-fitting while sustaining the weight updates to avoid
vanishing gradient problems in the propagation process. We
apply a softmax activation function to the model output and
use cross entropy loss and ADAM optimizer [22] to update
model weights.

Each Category Model is initialized using a bootstrap train-
ing set of 200 sentences to be labeled. The bootstrap set is
prepared in two steps: first, Calpric randomly selects a number
of privacy policies from the unlabeled pool, and crowdsourced
workers are asked if the target data category is mentioned in

these given documents. While this requires the annotators
to read through the full documents, they do not need to give
detailed annotations. The privacy policies that are annotated
as mentioning a target data category will be tokenized into
sentences, and 200 sentences are randomly selected as the
bootstrap set for each of the 9 Category Models. After this,
active learning is applied to select more sentences for labeling.
It is possible that the bootstrap set does not cover all classes
and the model will fail to converge, but we did not encounter
this situation in all our experiments. If such a situation arises,
it would be necessary to expand the size of the bootstrap set
until all classes are represented.

3.3.2 Contextualizer

The Contextualizer starts with a relevant sentence selected
by the Category Model and iteratively expands it into a text
segment by examining the sentences immediately before and
after to see if either should be added to the current segment.
To do this, the Contextualizer computes the similarity of the
sentences to the current text segment using the Word Mover’s
Distance (WMD) [24] and compares it against a threshold
calculated from the WMD mean and standard deviation of
sentences within the current privacy policy [12]. This process
continues until both the previous and subsequent sentences
are not similar enough to be added to the current text segment.

3.4 Action Models

Action Models are the final stage of the Calpric pipeline.
Similar to Category Models, Action Models are designed with
three fine-tuned BERT-based classifiers, each responsible for
labeling a data action for each data category (9 data categories
with 3 data actions for a total of 27 Action Models). Unlike the
binary Category Models, Action Models are multi-classed, as
shown in Figure 4. Together with the relevancy label obtained
from the Category Model, the input segment is assigned labels
on action modes for each data action. These labels result in a
complete segment-level label. We bootstrap Action Models by
sending segments output from Category Models to mTurkers
to label until there are at least 20 labels for each of the 5 action
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Figure 4: The action classification process to produce a label on the
given contact sample segment

mode options for the 3 data actions, resulting in at least 300
labels per data category.

4 Active Learning and Crowdsourcing

4.1 Crowdsourcing Training Data
It is well-known that crowdsourced workers may have varying
degrees of skill and may not pay full attention when perform-
ing tasks [9], which is especially dangerous for Calpric which
relies on active learning to obtain training labels. To mitigate
these challenges, Calpric follows best practices of qualifying
mTurk workers as annotators, including specific requirements
and qualification tests specific to data category, and designing
a simple question survey to perform the labeling task. De-
tails of this are provided in Appendix B. The use of human
annotators was approved by our institutional review board
(IRB).

After obtaining labels from crowdsourcers, Calpric care-
fully examines them to ensure label reliability. Only labels
with an inter-annotator agreement greater or equal to the Ac-
ceptance Threshold (80%) will be accepted as training sam-
ples. All accepted labels are used in the next training iteration
of the appropriate Category Model or Action Model, while
unaccepted labels are discarded, referring as the Wasted Re-
quests as they still cost money but confer no benefit to the
training of Calpric’s models. Calpric’s Segmenter increases
the agreement rate thus decreasing waste, directly leading to
reduced labeling costs (Section 5.2).

4.2 Active Querying Strategy
As mentioned in Section 3.1, Calpric uses two types of clas-
sifiers, the Category Models and the Action Models, both of
which are trained with active learning. During active learn-
ing, the Category Model selects sentences from the entire
unlabeled pool of privacy policy sentences, while the Action

Model selects text segments from the pool currently labeled
by the Category Model as relevant to the target data category.
As a result, the sentence selected by the Category Model
may not be in the text segment selected by the Action Model.
To consolidate the selections and simultaneously train both
models, Calpric initially prioritizes the Category Model, oth-
erwise the Action Model may select too many irrelevant text
segments for labeling. Thus, we initially allow the Category
Model to pick sentences for labeling until it reaches an F1
threshold of 85%, and then give the Action Model priority in
selecting segments for labeling requests and continue training
on both models.

To select samples to label, Calpric uses pool-based sam-
pling as this method is best suited to settings such as ours
that have a large unlabeled pool [35]. Our implementation
builds on top of the modAL active learning framework, which
is built upon the study of Cardoso et al. [6]. Further details
are presented in Appendix D. We use Uncertainty-based Sam-
pling [25], which selects the samples with the greatest un-
certainty for labeling, and modify it for our situation, which
has a very large pool of unlabeled samples. Specifically, we
compute not only the uncertainty for the samples in our pool,
but also record the history of uncertainty scores. Samples
that achieve a low-level of uncertainty over a period of time
are likely never to be selected since uncertainty scores gener-
ally decrease as the model learns more about the input space.
As a result, we remove these from the pool to save having
to recompute the uncertainty for these on each active learn-
ing iteration, as the cost of computing uncertainty for every
unlabeled sample is significant due to their large number.

Note that the active learning process is designed to be
online, but as a prototype, we still perform manual checks
throughout the process to minimize wasted mTurker funds
in case of program bugs. For most iterations, Calpric only
updates the model with new labels from mTurkers, which
takes <1 min. To prevent catastrophic forgetting, we retrain
all labels after 10 iterations. The main bottleneck is waiting
for mTurkers to accept HITs and provide annotations.

4.3 Relabeling Strategies

Recall that text segments whose inter-annotator agreement
fails to cross the agreement threshold are not accepted for
training and waste labeling resources. Calpric currently dis-
cards these segments, a policy, we call Label and Discard.
Label and Discard protects the trained model from training
on incorrectly labeled samples, which can lead to lower accu-
racy, as shown in our Evaluation in the Acceptance Threshold
section in Appendix C. Calpric aims to add 30 new labels
each active learning iteration before selecting another set of
samples to label. Since, we know all unaccepted labels will
be wasted, we can estimate the number of label requests we
need to make to attain 30 accepted labels. We have measured
the acceptance rate for our survey to be approximately 73%,
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which requires Calpric to request 42 surveys each iteration.
Another option, rather than wasting the unaccepted labels,

is to re-request them to see if the agreement rate for a larger
number of annotators can be acceptable. We call this policy
Incremental Relabeling, which we implemented based on
that of Zhao et al. [47]. Incremental Relabeling trades off
the possibility of recovering some of the wasted labeling
resources for the risk of wasting even more resources. We put
a cap of 3 on the number of times any text segment can be
requested for labeling for a total of up to 15 annotations and
keep the agreement threshold at 80% (i.e 4/5, 8/10 or 12/15).
We evaluate these two policies in the Relabeling section in
Appendix C.

5 Evaluation and Measurements

We begin by evaluating the accuracy of Calpric’s Category
Models (9) and Action Models (27) against a test set of seg-
ments whose labels have been provided by law students. We
then evaluate the accuracy of the Segmenter against segments
that were labeled by those trained annotators, as well as the
Segmenter’s contribution to reducing annotation cost. We also
evaluate Calpric’s use of active learning to reduce annotation
costs and mitigate data imbalance. Finally, we compare the
cost of Calpric’s use of crowdsourced annotators versus the
cost of using trained annotators. Measurements of Calpric’s
sensitivity to the acceptance threshold, relabeling strategy and
size of the unlabeled pool are given in Appendix C.

5.1 Accuracy of Category and Action Models
We measure the absolute accuracy of Calpric’s predictions
against the law student-labeled test set. We then show the
benefits of training on the CPPS dataset by comparing Cal-
pric’s Category and Action Models against a baseline classi-
fier trained on OPP-115 and APP-350.

5.1.1 Absolute Accuracy

As APP-350 and OPP-115 do not have labels for “choice” or
“ambiguous” we set aside 30 labeled segments per data action
in each data category for a total of 810 test segments. We then
train Calpric without the test segments and tabulate Calpric’s
accuracy in Table 3. To save space, we show the accuracy of
each action mode, averaged across all three data actions in
each data category, as well as an overall accuracy for each
data category.

The evaluation shows that Calpric can achieve good accu-
racy across both common and rare data categories, as well
as good accuracy in all the fine-grained action model labels.
Specifically, it achieves an average f1 of 0.86 and an overall
accuracy of 0.90, with the highest f1 in Assert (0.92) and Not
Mentioned (0.91), and the lowest in Ambiguous (0.78). We
suspect this is because Assert statements are usually described

data category denial assert choice amb. NM avg. f1
contact 0.80 0.93 0.83 0.78 0.94 0.86
location 0.79 0.85 0.77 0.67 0.94 0.80
device 0.89 0.92 0.83 0.82 0.96 0.88
demographic 0.81 0.88 0.86 0.80 0.86 0.84
financial 0.88 0.96 0.80 0.82 0.86 0.86
health 0.94 0.95 0.82 0.89 0.96 0.91
survey 0.82 0.90 0.80 0.78 0.91 0.84
personal id 1.00 1.00 0.97 0.82 0.97 0.95
social media 0.81 0.90 0.93 0.67 0.81 0.82
average 0.86 0.92 0.85 0.78 0.91 0.86

Table 3: F1 score on the CPPS test set. We show the f1 for each of
the denials, assertions, choice, ambiguous (amb.) and not-mentioned
(NM) labels, as well as the average f1 value.

clearly as per the legal requirements, while Not Mentioned
labels are very different from labels of the remaining 4 action
modes which all have some contextualized relationship with
the target data category. Therefore intuitively it is easier for
Calpric to correctly predict on Not Mentioned labels. On the
other hand, its accuracy in predicting Ambiguous labels is
slightly lower, as there are many factors leading to ambigu-
ity in privacy policies, e.g. long sentences, terms being too
general, confusing wordings, incomplete information, and so
on. However, we believe that an F1 score of 0.78 is still very
promising, given the fact of the potential noise within the
ambiguous labels.

5.1.2 Benefits of CPPS

As explained in Section 2.1, previous tools classify at a coarser
granularity than Calpric, so we cannot directly compare the
accuracy of labels produced by Calpric against theirs. As
previously shown in Table 1, previous tools label privacy pol-
icy text segments into two classes, while Calpric provides
5. However, all previous tools were trained exclusively on
the APP-350 and OPP-115 data sets, while Calpric is trained
on the larger and balanced CPPS dataset that was produced
by Calpric’s training approach. It is therefore unfair to com-
pare Calpric against existing tools. Instead, we train baseline
models with identical architectures as those of Calpric’s on
data from APP-350 and OPP-115. We randomly select some
segments from the the APP-350 and OPP-115 as the test set
and tabulate the F1 result in Table 4. Calpric outperforms the
baseline models on fine-grained classification tasks as well as
the overall average across all data categories.

5.2 Segmenter

In previous tools, text segments used for training were ex-
tracted by human annotators while Calpric’s training approach
automatically extracts text segments. We thus measure how
closely Calpric’s segments extracted by Calpric’s Segmenter
cover the same segments extracted by human annotators. To
show that the Segmenter increases inter-annotator agreement,
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contact device location demogr. financial health survey pers. id soc. media average
Category Calpric 0.94 0.90 0.89 0.97 0.94 0.89 0.87 0.78 0.82 0.89

baseline 0.90 0.79 0.85 0.78 0.92 0.43 0.80 0.63 0.75 0.76
Action Calpric 0.97 0.91 0.92 0.90 0.89 0.98 0.96 0.84 0.89 0.92

baseline 0.91 0.68 0.62 0.65 0.63 0.54 0.60 0.57 0.57 0.64

Table 4: F1 comparison between Calpric Category and Action models vs baseline model

we compare the level of agreement with and without auto-
mated text segmentation. Finally, we investigate the frequency
and impact of conflicting text segments in privacy policies.

5.2.1 Segment Coverage

To examine the ability to capture useful segments from pri-
vacy policies, we compare the outputs of Calpric’s Segmenter
against the text segments extracted by human annotators in
APP-350. We measure the number of labeled sentences in
APP-350 in the relevant data categories that are covered by
(i.e. appear entirely in) some segment extracted by our Seg-
menter. We run our Segmenter on all the original privacy
policies provided by APP-350 and find that 97% of the sen-
tences in APP-350 are covered by our Segmenter. We exam-
ine the uncovered sentences and find that the vast majority
are either ambiguous or irrelevant sentences. For example,
in APP-350, the following segment is labeled as collecting
contact information:

“Anonymous Data AI Factory may collect and use
anonymous data, via Google Analytics. We cannot
identify you from this data. Such data is pooled
to give us general statistics on our audience and
usage of our apps.”

but is not labeled as collecting contact information by our
Segmenter.

5.2.2 Increasing Inter-annotator Agreement

We now evaluate the benefit of having annotators label text
segments instead of existing approaches such as full-text or
paragraph-level labeling. We randomly select 3 privacy poli-
cies from APP-350 and conduct an experiment where mTurk
annotators are asked to either label the full document, para-
graphs produced by existing preprocessors, or text segments
extracted by Calpric. For full document labeling (FDL), we
present the full document to annotators and ask them to label
20 sentences that denote any of the data actions and action
modes on any of the relevant data categories. For paragraph
labeling (PL), we present paragraphs for annotators to select
and label. We generate paragraphs using a modified version
of the PolicyLint preprocessing script. We exclude outlier
paragraphs falling out of the middle two quartiles (i.e. 25-
75%) of the distribution in terms of length, as they might be
excessively long or so short as to contain no useful informa-
tion. For segment labeling (SL), we have annotators label 20
segments per privacy policy using the Calpric’s survey. To

align with our labeling scheme (i.e. includes more classes),
which differs from the original APP-350, selected samples are
reviewed and re-labeled by law students. We calculate label
accuracy (Acc.) by measuring the percentages of raw labels
that are correctly labeled by mTurkers. A label is considered
accurate if and only if it covers one of the labeled sentences
in APP-350 and the labels in data category, data action and
action mode all match.

The results are tabulated in Table 5. We found that SL
produces the most efficient results: annotators needed roughly
4 times and 2 times as long to produce the same number of
labels using FDL and PL, respectively. That is, 21 minutes
for SL, 46.5 minutes for PL, and 90 minutes for FDL (per
policy). As a result, to maintain the same hourly pay rate,
FDL and PL require 4× and 2× the payment to obtain the
same amount of labels as using SL. We find that SL gives
the highest accuracy. Closer inspection of FDL shows that
some annotators incorrectly label segments such as “We do
not track your location unless we have your opt-in consent.”
as “No” instead of “Choice”, as they truncated the phrase after
“location”, thus missing the later part that makes it “Choice”.
SL also outperforms PL by 15%. We found that this was
mainly because text critical to understanding a data action
may span a paragraph break.

We also observe that the agreement rate (AR) for FDL
is significantly lower, as annotators often disagree on text
boundaries for their labels. This result aligns with what previ-
ous scholars observed [42], even when labels are created by
trained annotators. On the other hand, ARs for PL and SL are
similar, with PL being slightly higher (1.3%).

We compute the raw cost per label by dividing the total
payments by the number of unique labeled segments, the
effective cost after discarding unaccepted segments, and the
time taken to produce each raw label. FDL is both more
expensive (4× for raw labels, and 5.2× for accepted labels),
and requires 4.3× as much time to produce raw labels than
SL. Qualitatively, we also found that because annotators are
free to select the text they wish to label, they tended to select
easier segments that could be found by simply searching the
text for keywords (i.e. “demographic” or “contact”) instead of
carefully reading the complete privacy policy. As a result, this
may exacerbate class imbalance and lead to poorer coverage
of the privacy policy text. PL has a better performance than
FDL, yet is still 2.2× more expensive than SL.
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Acc. AR c_raw c_accept t_raw
FDL 55% 6.7% $0.5 $4.55 4.5 mins
PL 63.33% 73% $0.28 $1.88 2.32 mins
SL 78.33% 71.67% $0.125 $0.87 1.05 mins

Table 5: Comparison between Full-Document Labeling (FDL), Para-
graph Labeling (PL), and Segment Labeling (SL) using crowdsourc-
ing: label accuracy(Acc.), agreement rate (AR), the average cost per
raw label (c_raw), average cost per accepted label (c_accept), and
the average time took to produce one raw label (t_raw).

5.2.3 Intra-document conflicts

One potential risk of segment-level labeling is that it becomes
unclear how to consolidate contradictory labels if more than
one relevant segment for a data category and data action ap-
pear in the same privacy policy. We examined 115 privacy
policies and find that 12% have contradictory labels for a data
category and data action. Of these, 8% have conflicts that take
the form of a denial that they collect a certain type of data,
followed by a statement that they will share that data if legally
required to do so. We also compare contradictions found by
Calpric with PolicyLint [2], on OPP-115. PolicyLint finds
20 of the privacy policies have contradictions, 8 of which
are also found by Calpric. Of the 12 not found by Calpric,
PolicyLint considers 5 contradictions only because it lacks
a “Choice” label, 2 are due to PolicyLint and Calpric having
different subsumptive relationships (i.e. PolicyLint considers
demographic information as a type of personal information
while Calpric considers them separate classes), 2 because of
differences in the annotation scheme and 3 due to differences
in the data categories covered. Calpric also finds 6 contradic-
tions that PolicyLint does not find. We manually verified that
they are real contradictions and were missed by PolicyLint
as it is unable to differentiate between choices and explicit
denials.

5.3 Active Learning

The following evaluations demonstrate how active learning
enables Calpric to 1) achieve lower labeling costs by reducing
the number of labeled training samples, and 2) improve class
balance to achieve higher accuracy.

5.3.1 Labeling Savings

We evaluate the reduction in the amount of labeled training
data that active learning provides to Calpric. To do this, we set
up an experiment that evaluates how many training samples
are required to achieve a certain Category Model accuracy
across all 6 data categories. We prepare a set of balanced
test and training sets for each data category by using sam-
ples from APP-350 (and OPP-115 if APP-350 does not label
such categories). Text segments that are labeled as in a data
category are assertions, and segments not in the category are

n_nonAl n_Al Al_save m_start m_end
contact 1596 942 40.98% 4.92% 49.68%
location 840 632 24.76% 7.04% 50.00%
device 998 610 38.88% 4.20% 46.07%
health 732 529 27.73% 5.56% 42.53%
finanical 982 793 19.25% 6.80% 49.94%
demogra. 1428 1149 19.54% 7.55% 58.40%
average 1096 776 28.52% 6.03% 49.44%

Table 6: Comparison between active vs. non-active Category Mod-
els: n is the number of training labels required to achieve F1=0.85;
A higher AL_save indicates a larger improvement in the learning
progress; m is the percentage of samples in a minority class, recorded
at the bootstrap (m_start) stage and the completion of training
(m_end).

denials. We simulate a non-active training procedure by ran-
domly selecting samples from this pool and compare this to
a training procedure that uses active learning to select sam-
ples. We record the number of training samples required to
achieve an F1 score of 0.85 in the non-active learning and
active learning cases in the n_nonAL and n_AL columns re-
spectively, and the percentage of samples saved in the active
learning case in the AL_save column in Table 6. We did not
include survey, personal identifier or social media because
the non-AL model is not able to find enough training samples
to achieve the required accuracy. For the other categories,
we observe that the average savings in the number of sam-
ples required is 28.52%. The savings are higher in categories
where more samples are required in the non-active learning
case, suggesting that there are many similar samples that the
random selection in the non-active learning case selects over
and over again. However, this trend is weaker in financial
and demographic categories. Upon further investigation, we
observe that these two categories exhibited longer samples
with more complex features. As an example, device-related
sentences such as

“Our app may access your unique device identifier
to tailor ads.”

are usually simple and concise, whereas a demographic-
related sentence like

“App A provides us with access to certain informa-
tion about such User as is stored in the User’s App
A account, namely, the User’s public profile (i.e.,
User’s name, profile picture, email address, gender
and other public information) and his/her list of
friends and/or any other information which is de-
tailed and displayed to the User in the notice which
appears during the log in process.”

is not. This complexity means that a good number of samples
are required to achieve higher accuracy regardless of how
the samples are selected, which makes the advantages of ac-
tive learning in these cases, though still significant, somewhat
lower than in the cases with simpler samples. The contact and
device categories exhibit the greatest savings. We believe this
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is a result of those categories having a heavy-tailed distribu-
tion, the tails of which active learning is much better able to
target than random selection.

5.3.2 Class Balance

To verify that Calpric mitigates class imbalance, we measured
class balance as a percentage of samples in a minority class,
recorded at the bootstrap phase and at the end of model train-
ing, respectively. Table 6 also shows the starting (m_start) and
ending (m_end) percentages of minority samples in all data
categories. We see that in all categories, the minority class
initially starts of low, but eventually approaches close to mak-
ing up half of the training set (50%) used to train the model.
We also observe an inverse correlation between the increase
in minority percentage and the AL saving percentage. This is
intuitively reasonable because boosting from a lower minority
percentage to a higher minority percentage naturally requires
more training samples. We performed a similar evaluation on
Action Models, and found similar results in the improvement
of class balance. In these cases, the increases in the minor
classes were 29.6% in the health, 19.4% in the financial, and
24.0% in the demographic categories.

We also compare Calpric with standard upsampling meth-
ods to mitigate to class imbalance, such as duplicating or
synthesizing minority samples [21]. To do this, we randomly
select 800 labeled text segments and sort them by whether
they are in a minority or majority class. We then duplicate,
synthesize or select minority labels with active learning until
the training sets are balanced, train our models and compare
accuracy. To duplicate samples, we randomly select samples
from the minority set and repeat them in the final training set.
To synthesize minority samples we randomly select majority
samples and negate them using the method described in [4],
implemented with Stanza5. Finally, we use active learning
to select enough additional minority samples to balance the
training set. We then train a fine-tuned BERT model with a
batch size of 32 for 48 epoches and evaluate the resulting
model on a test set with a naturally occurring distribution of
majority and minority samples. We repeat the experiment 5
times and tabulate the loss, accuracy, F1 values for major-
ity and minority test sets, weighted F1, and balanced F1 for
the 3 data set balancing methods, as well as training with no
balancing method in Table 7. As we can see, Calpric with
active learning achieves better results except for loss. Using
no balancing method (None) achieves the lowest loss, but as
expected, suffers from low accuracy in the minority class, as
it has simply optimized for the majority class.

5.4 mTurkers Vs. Law students
While trained annotators, such as law students, might cost
more than crowdsourced annotators, such as mTurk workers,

5https://stanfordnlp.github.io/stanza/

Balance alt. acc. F1 (maj/min) wgt. F1 bal. F1
None 0.79 0.88, 0.08 0.69 0.44
Duplication 0.78 0.87, 0.29 0.73 0.58
Negation 0.79 0.88, 0.32 0.75 0.62
Calpric 0.80 0.89, 0.56 0.81 0.73

Table 7: Performance comparison against other alternatives, includ-
ing the non-AL baseline method (Random), upsampling with Dupli-
cation and Negation. Metrics include accuracy, F1 for majority and
minority class, weighted F1, and balance F1.

AR avg_agree Acc. cost
Law students 0.83 0.91 0.99 $8.20
mTurkers 0.81 0.88 0.98 $0.92

Table 8: Comparison between labels created by mTurkers vs. law
students: acceptance rate (AR), average agreement rate for all ques-
tions among all annotators (avg_agree), label accuracy (Acc.), and
the average cost to produce one accepted label (cost).

they might also be more effective at generating usable labels.
To investigate this, we evaluate how law students compare
to mTurkers at performing the surveys used in Calpric label
requests. We prepare 600 surveys from segments that are
randomly selected from OPP-115 and evenly distributed for
each data category (we use OPP-115 instead of APP-350 be-
cause APP-350 does not cover as many data categories). We
assign the task to 10 mTurkers and 10 law students, which
is similar to the annotation setup of OPP-115 [42]. We pay
the law students $31/hr6 and use an acceptance threshold of
8/10. We tabulate the results in Table 8, which shows that
the acceptance rate of the law students is slightly higher but
still quite similar to that of the mTurkers (83% vs 81%). Sim-
ilarly the average inter-annotator agreement rate is slightly
higher for the law students but still essentially the same. As a
result, law students and mTurkers produce almost the same
number of accepted labels per label request, resulting in a
cost per accepted label disparity of roughly 9× in favor of
the mTurkers. To evaluate accuracy, we treat the labels in the
OPP-115 set as the correct labels and compute the accuracy
of accepted labels for the two types of annotators. We find
that the both mTurkers and law students have almost perfect
labeling accuracy (98% vs 99%).

6 Android App Privacy Policy Analysis

With Calpric’s capabilities, we study Android App privacy
policies by posing three questions as described below. We
limit our study to the top 5 app categories (education, business,
entertainment, music & audio, tools and lifestyle) as tracked
by AppBrain7, and add 3 minority app categories: lifestyle,

6We initially advertised a pay rate of $20/hr but increased it after we were
only able to recruit 3 law students over a 4 week period. A quick search on
the Internet confirmed that $31/hr is not unreasonable for law student interns.

7https://www.appbrain.com/stats/
android-market-app-categories
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shopping and health & fitness. We selected these minority
categories as we believe they are more likely to use some
of the minority data categories included in Calpric currently,
such as social media, financial and health.

Q1: Is there a correlation between explicit denials and app
popularity? We use the number of downloads and app rating
as indicators for popularity and tabulate the average num-
ber of explicit denials per application in Tables 9 and 10
(in Appendix E). When considering rating, we remove apps
with fewer than 500 reviews and 50K downloads as some
apps with few users can have very high ratings. Regardless
of whether we infer popularity by rating or downloads, we
see that generally apps that are more popular have more de-
nials. However, this trend does not hold for the most popular
apps. Upon closer inspection, we find that apps in the most
popular category are generally well-known apps supported
by large companies and organizations, and as such support
a wide range of functionality, resulting in more handling of
private information. For instance, Facebook, a representative
example of such an app, contains social media functionality,
and has functions associated with personal and demographic
information. As such, they cannot have explicit denials of
collecting and using this information.

Q2: Which data actions have more of the rare explicit de-
nial and choice labels? We tabulate the frequency of asser-
tions, denials and choice labels by data action in Table 11.
From this, we can see that overall, assertions are the most
frequent, followed by explicit denials, and lastly choice labels.
This is reasonable as the primary function of privacy policies
is to disclose how they handle private user data. We also find
that sharing has the highest number of denial and controllable
statements, suggesting that app developers may feel that users
are most concerned about this data action. Sharing is often
associated with non-critical functionality, such as advertising,
analytics or social media, and thus can be excluded more or
made controllable by the user to make a potentially useful app
more privacy protective. Curiously, there are more denials of
storing data than assertions of it, suggesting that storage may
be often implied as opposed to explicitly stated.

Q3: Are rarer data categories uniformly distributed among
app categories? How does the distribution of rare data cate-
gories compare against previous data sets? We tabulate the
normalized frequency of data category disclosures for each
app category in Table 12 in Appendix E. In summary, com-
mon data categories (contact, device, location) are used more
or less uniformly across all app categories. However, the dis-
tribution of rare data categories is less even. For example,
health data is disproportionately used by health & fitness
apps, and shopping apps are more likely to use financial data.
As a result, we conclude that rarer data categories are more
specialized and tend to be used only by specialized apps.

Second, we find that data categories that did not receive as

much attention as they were perceived to be rare, are actually
not so rare. We see that the use of social media data, financial
data and demographic data is fairly common. We believe
that lack of attention to these other categories may have been
partially caused by some of the early privacy policy datasets
being drawn from web pages instead of mobile apps (such as
OPP-115), which resulted in under-representation and poor
accuracy for those data categories [19].

7 Limitations and Threats to Validity

Because Calpric relies on crowdsourced labels, it cannot ac-
count for policy jargon having inconsistent meanings across
annotators. For example, sharing has specific meanings in
CCPA8, which may differ across jurisdictions and that crowd-
sourced annotators may not be aware of. We note that our
evaluations against OPP-115 and APP-115 do not take into
account changes in laws that have taken place between the
time those datasets were collected and the time we developed
Calpric. As Calpric is trained on segment texts, it does not
take into consideration definitions appearing in policy head-
ers. Similarly, it cannot take into account text that is not in
the privacy policy, such as consent requests in the application
itself. While Calpric currently only works on Android privacy
policies, we believe the same approach can be used on poli-
cies from other sources, such as websites and IoT devices.
Finally, Calpric does not have a hierarchy of data categories
like PolicyLint/PoliCheck [2, 3] does, causing some contra-
dictory labels (i.e. collection of phone number and denial of
collecting emails, which are both contact information). We
believe Calpric can support hierarchical categories and leave
this for future work.

8 Related Work

Privacy Policy Analysis: In contrast to previous studies, we
present a system that automatically collects diverse training
samples before labeling and support precise information ex-
traction and summarization on a broad range of categories.
Most existing automated systems analyze privacy policies in
a coarse granularity, focusing on one-level categorical taxon-
omy. Watanabe et al. [41] used keyword-based search model
to identify non-compliance between mobile apps and their
privacy policies. Costante et al. [9] presented a solution to
automatically assess the completeness of a policy using more
complex algorithms such as Linear Support Vector Machines
(LSVM). Wilson et al. [42] created OPP-115, a data set of 115
website privacy policies labeled by legal experts. Frederick et
al. [27] presented a performance comparison among Logistic
Regression (LR), Support Vector Machine (SVM), and Convo-
lutional Neural Network (CNN) models trained on OPP-115,
focusing on the categorical levels only. Zimmeck et al. [50]

8https://oag.ca.gov/privacy/ccpa
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developed a document-level compliance checking tool that
focuses on 9 privacy requirements, covering 3 data categories,
2 data actions and 2 notices. Recent works began to explore
sentence or segment-level classification in privacy policies.
Harkous et al. [19] developed a multi-label classifier using a
CNN to label policies using the OPP-115 taxonomy, which
covers both the top-level categories and the second-level at-
tributes. However, they suffer from low accuracy for minority
classes such as health due to lack of training samples. On the
other hand, Zimmeck et al. [49] created a labeled mobile app-
specific privacy policy corpus, APP-350, and trained SVM
classifiers to analyze privacy requirements. To compensate
the rarity of denial annotation labels, they created synthetic
data by manually changing assertions into denials. In contrast,
we overcome class imbalance by mining a large unlabeled
dataset for potential denial samples and getting them labeled
with active learning.

Wilson et al. [43] investigated and confirmed the viability
of extracting labels from privacy policies through crowdsourc-
ing. While they focus solely on crowdsourcing methodolo-
gies, we extend our work to the classification of privacy policy.
Despite crowdsourcing being a cheaper option, on average,
they reported a cost of $60 to label each privacy policy. Our
system is able to further reduce the average cost of $13.5.
Zimmeck et al. [48] also explored crowdsourcing, but did not
train their ML models on these labels. They did, however,
bring up an important issue of privacy policies collected via
crowdsourcing: the low inter-annotator agreement among la-
bels. In both prior works, workers are given an entire privacy
policy. To create a label, they first need to read through the
document, select and highlight a segment of texts among all
texts, and then do detailed annotation based on the specific
taxonomy. Because workers may select texts differently based
on their own interpretations, it is difficult to measure the inter-
annotator agreement and filter out labels with low confidence.
To overcome this issue and further reduce the labeling cost,
we simplify the crowdsourcing tasks by designing a novel seg-
mentation algorithm and survey-based tasks. PolicyLint [2]
and PoliCheck [3] use an ontology to organize information
types as a hierarchy and identify conflicts caused by coarse-
grained labels, similar to what we discussed in Section 5.2.3.
However, instead of supervised deep learning, they employ
statistical name-entity recognition.
Active Learning: In general, there are three active learning
scenarios: membership querying synthesis, stream-based, and
pool-based selective sampling. Pool-based selective sampling
has been the most well-studied scenario, especially for text
classification [40] and information extraction [36]. The major
advantage of this method is that it evaluates and ranks the
entire set of unlabeled training points before selecting the next
one to label [35]. We select pool-based sampling because
it is applicable to Calpric’s scenario as we have the entire
unlabeled training set up front and it is the most effective and
widely used sampling mode for text classification.

To our knowledge, Calpric is the first deep active learning
classifier for privacy policies. There are related studies using
similar learning approaches in areas such as image analysis
and classification [16, 45]. Zhang et al. [46] implemented ac-
tive learning strategies on top of CNNs for sentiment analysis,
whereas Shen et al. [38] investigated uncertainty-based active
learning heuristic for sequence tagging on a newly proposed
CNN-CNN-LSTM architecture. We are also the first paper
that explores active learning on multi-label BERT models [11].
Although there are recent papers studying active learning on
the, they focus solely on single-label problems [15,18], where
each data is restricted to have one label.
Unreliable Oracles: Most existing solutions on unreliable
oracles in active learning require a confidence score for the or-
acle and also assume there exist at least some reliable oracles
to use (though perhaps at a higher cost) [13]. In other words,
the assumption is still impractical especially in the setup
where annotation tasks are complex and time-consuming. A
more recent study realizes the fact that the noise in human
oracles may be non-uniformly distributed, yet the solution
still relies on the confidence level [14]. In privacy policy clas-
sification, when using crowdsourced labels, it is difficult to
derive an accurate estimation of the confidence score. There
are also studies on crowdsourcer reliability and crowdsourced
label quality [14, 28, 33]. However, they either do not involve
machine learning or do not apply to an active querying setup.

9 Conclusion

In this work, we simultaneously address both problems of
cost and data imbalance through a combination of automatic
text selection and segmentation, crowdsourcing and active
learning. In analyzing the properties of our solution, Calpric,
we find all three components are essential to its success. Auto-
matic text selection and segmentation are crucial to be able to
reliably use crowdsourced annotators, as shown by our com-
parison of automatically segmented labeling tasks with other
alternatives used by previous work (Section 5.2.2). Enabling
the use of crowdsourced annotators gives a 9× saving in cost
over trained annotators such as law students (Section 5.4). Fi-
nally, having cheaper, reliable on-demand annotators enables
the use of active learning, which further contributes to de-
creasing the cost by selecting a more optimal set of segments
for labeling to achieve greater accuracy and improved balance
across data categories and action modes.
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A Privacy Policy Scraper

Calpric requires a small set of labeled privacy policy samples
to bootstrap the active learning process and a large set of
unlabeled privacy policy samples as the potential training set.
The Scraper downloads metadata of 375K Android applica-
tions from the Play Store, eliminates broken links by checking
the HTTP return status, and filters out non-legal documents
with keyword checking heuristics [19, 20]. It then detects and
excludes non-English documents using Langdetect [30]. Fi-
nally, it discards duplicates and trivially short privacy policies.
Building on top of the Dragnet model [31], the Scraper sani-
tizes HTML policies by removing irrelevant elements such as
HTML tags, advertisement, and UI features (e.g., navigation
bar). For now, Calpric considers privacy policies in HTML
format only, though we could have easily extended the prepro-
cessing to handle less common formats such as PDF or raw
text. The process results in a total of 51,781 usable privacy
policies in plain text format.

B MTurker Selection and Survey

MTurker Selection: Calpric selects mTurkers as survey par-
ticipants based on requirements and tests. All participants
should have an approval rate > 90 and the number of HITs
approved > 500 while being an English speaker and an An-
droid mobile user. The qualification test determines whether
an mTurker has the capability to label privacy policies, in
which mTurkers read through detailed annotation instructions
and answer qualification questions. Calpric also ensures no
worker answers the same question repeatedly by recording
and checking their worker IDs before assigning HITs.
MTurk Survey: Calpric sends HITs9 as batches of multi-
question surveys to Amazon mTurk. Each survey queries a
worker for labels on data category relevance and action modes
for each data action for a single text segment. The format of
the survey has gone through several iterations of revision to
enhance clarity. The version with the highest inter-annotator
agreement among 5 mTurk annotators was eventually selected.
To control labeling cost, we perform some calibration to iden-
tify the optimal payment for completing a HIT. We prepare
sample HITs based on labeled text segments from the APP-
350 and OPP-115 datasets to evaluate how worker wages
affect the inter-annotator agreement rate and accuracy of the
labels. We observe a significantly low agreement rate (31.9%)
for hourly payments below $110, while the agreement rate
fails to increase significantly for payments higher than $5.2
per hour (76.0% for $5.2 vs. 77.0% for $13). Similarly, the
accuracy did not increase for payments above this threshold
either. Based on this, each HIT consists of roughly 40 sur-
veys and the payment varied $0.16−0.25 per survey. We also

9A Human Intelligence Task is the term that the Amazon mTurk uses to
describe a task.

10All amounts are in USD.
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50K 10K-50K 1K-10K 1K
collect/use 0.21 0.38 0.34 0.31
share 0.21 0.31 0.38 0.28
store 0.08 0.19 0.15 0.24
overall average 0.50 0.89 0.87 0.83

Table 9: Average # of explicit denials per privacy policy by # of
downloads

4.5 (4.0, 4.5] (3.0, 4.0] 3.0 None
collect/use 0.26 0.35 0.33 0.33 0.40
share 0.32 0.40 0.39 0.24 0.32
store 0.14 0.24 0.04 0.10 0.19
overall average 0.72 0.99 0.76 0.67 0.91

Table 10: Average # of explicit denials per privacy policy by rating

embed an honesty checker in each survey for mTurkers to
indicate whether they paid close attention and answer ques-
tions with their best effort. MTurkers receive full payments
regardless of what they answer but Calpric discards all labels
with “No” and re-publishes the same samples to be labeled
by other qualified mTurkers. Manual inspection shows that
63% of these are indeed incorrect, while the remaining false
positives may still be random guesses that fall into the correct
categories by chance. The conclusion aligns with the previous
study [33].

C Sensitivity study

Acceptance Threshold (AT): Calpric uses an AT of 4/5,
which the inter-annotator agreement rate has to meet or ex-
ceed for the labels from the annotators to be accepted. We
investigate the effect different ATs have on the acceptance
rate and accuracy of the resulting model. We have the active
learning select 1600 segments to be labeled, and have each of
them labeled by 5 crowdsourced annotators for a total of 8000
labels. We then apply 3 different ATs: 3/5, 4/5 and 5/5 and
compute the number of accepted labels, average accept rate
and resulting accuracy of the trained model. Figure 5-a shows
the number of accepted labels by AT. As expected, the lower
the threshold, the larger the number of accepted labels, though
we do observe that the variability in the number of accepted
labels does increase with AT. Similarly, Figure 5-b shows that
the average acceptance rate also decreases inversely with AT.
However, we observe an interesting trend in the accuracy of
the trained model, which peaks slightly at the 4/5 AT. We

assert denial choice
collect/use 5.06 0.90 0.63
share 1.41 1.07 0.89
store 0.33 0.49 0.13
overall freq. 6.80 2.46 1.65

Table 11: Average # of labels per privacy policy by data actions and
action modes

(a) (b)

Figure 5: (a) an example result of Accepted labels vs. Labeling
Requests at different Acceptance Thresholds (AT) (data category:
contact); (b) average Acceptance Rate (AR) and F1 performance for
different ATs

surmise that the 3/5 threshold likely has lower accuracy due
to a higher rate of incorrect labels due to the more permissive
AT, while the 5/5 AT has too few training points to enable the
model to generalize. Interestingly, combined with our results
from Section 5.1, it shows that despite discarding some num-
ber of samples that don’t meet the acceptance rate, Calpric
is still able to find enough representative samples to achieve
higher classification accuracy than previous works that use
all samples from trained annotators.
Relabeling: We evaluate the trade-off between Label & Dis-
card and Incremental Relabeling, as described in Section 4.3.
We introduce a measure, the Relabeling Success Rate (RSR),
which we define as the fraction of wasted labels that are recov-
ered as accepted after relabeling. We take 100 wasted labeling
requests and republish them on mTurk to compute the RSR.
Out of the 100 relabeled segments, only 2 passed the AT after
N = 2 and only 1 passed the AT after N = 3, resulting in an
overall RSR of 3% for 3 relabeling attempts. This result heav-
ily suggests that Incremental Relabeling is not an effective
use of labeling resources.

This result is consistent with our earlier measurements,
which suggest that the labels produced by an agreement rate
of 4/5 across 5 mTurkers are reliable, as they also largely
agree with labels produced by trained annotators. It is not
necessary, and does not help, to gather labels from a larger
set of mTurkers. Indeed, further investigation suggests that
the wasted labeling requests may be on text segments that are
inherently ambiguous. We also observe that the segments that
end up wasting labeling resources tend to be longer and more
complex, which contributes to a higher possibility of multiple
interpretations. Specifically, we find that the average length
of accepted segments is 380.4 characters while that of wasted
segments is 439.2, a difference of roughly 15%. One of the
wasted text segments is:

“Health Plan may also partner with your Group
Health Plan, if you obtain benefits through such a
Plan, in which the Group Health Plan is responsible
for some of the information being provided through
the Health Plan site.”
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data category
app category

education entertainment music & audio tools shopping health & fitness business average

contact 0.93 0.92 0.77 0.63 1.00 1.00 0.57 0.82
device 0.26 0.59 0.32 0.55 0.23 0.82 0.37 0.42
location 0.16 0.30 0.30 0.52 0.85 0.47 0.12 0.38
demographic 0.69 0.14 0.13 0.05 0.52 0.73 0.05 0.31
health 0.03 0.02 0.00 0.03 0.00 1.13 0.22 0.18
financial 0.31 0.65 0.65 0.18 0.93 0.32 0.08 0.40
survey 0.08 0.02 0.02 0.02 0.02 0.05 0.03 0.03
personal identifier 0.13 0.08 0.02 0.00 0.08 0.03 0.02 0.05
social media 0.54 0.79 0.70 0.17 0.67 0.32 0.23 0.45

Table 12: Average number of text segments per app for each data category by Android app category

Both the grammar and meaning of this sentence are very
ambiguous. We find it notable that roughly 27% of segments
selected by Calpric fall into this ambiguous category and
believe investigating this is interesting future work.

Unlabeled pool: We study how the size of an unlabeled train-
ing pool affects the training process. We experiment with Cal-
pric using two different pool sizes: one that contains the entire
pool of all 3311K segments from 52K privacy policies and
another that contains only 12K randomly selected segments.
Here we focus on contact, device and location data categories
for the collect/use data action, which results in approximately
4K segments for each category. Otherwise, the two models
share the exact same structure and hyperparameters. We train
each model with an early stop when the number of training
samples equals to 2000. We repeat each experiment five times
and calculate the average accuracy. We observe a lower accu-
racy for all models trained using a smaller unlabeled pool: an
average F1 of 86.7% for models using the full-size unlabeled
pool versus an average F1 of 90.2% for models using the 12K
unlabeled pool. Recall that the majority class is the assertion
class (i.e. we are collecting) and the minority class is the de-
nial class (i.e. we do not collect). We found that the accuracy
difference is mostly in the minority class, where the model
with the smaller unlabeled pool is more likely to misclassify
true minorities as false majorities. Figure 6 compares the
percentage of minority samples of the device data category
as samples for the training set are selected. In both the full
and 12K small pool, we initially observe a fast increase in
minority samples as the active learning selects the minority
samples for labeling. However, for the smaller pool, the mi-
nority percentage soon starts to decrease as active learning
exhausts all the minority samples in the pool and is forced to
select those in the majority class. As a result, the model does
not generalize as well for the minority class, resulting in lower
accuracy. For the large pool, the makeup remains balanced at
approximately half in both classes. This is also confirmed by
the final minority percentage as shown in Table 6. All ending
percentages of models trained with the full-size unlabeled
pool converge to approximately 50%, achieving a balance
between the majority and minority classes.

Figure 6: Comparison between Contact Category Models trained
on different sizes of the unlabeled training pool. The red dotted line
shows the balance line of 50% minority sample percentage

D Active Learning Querying Strategies

Basic Uncertainty selects the least certain instance from
the unlabeled set and requests for it to be labeled [10]. The
confidence probability is calculated using:

max
y∈Y

[1−P(y ∈ Y |x)] (1)

Margin Sampling selects instances where the difference be-
tween the first most likely and second most likely classes
are the smallest, minimizing the classification error [34]. En-
tropy Sampling chooses samples with the largest entropy
in class probabilities, minimizing the log loss [37]. For bi-
nary classification, both are reduced to the basic uncertainty
strategy. The three methods will query instances with a class
posterior closest to 0.5, the most ambiguous segments [35].
We confirmed this conclusion using our CPPS dataset.

E Android App Analysis

Table 9, Table 10 and Table 12 show the frequency of explicit
denials by number of downloads, app rating, and app category,
respectively. Table 11 summarizes the number of labels by
data actions and action modes.
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