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Abstract
File System Access (FSA) API enables web applications to
interact with files on the users’ local devices. Even though it
can be used to develop rich web applications, it greatly ex-
tends the attack surface, which can be abused by adversaries
to cause significant harm. In this paper, for the first time in the
literature, we extensively study this new attack vector that can
be used to develop a powerful new ransomware strain over
a browser. Using the FSA API and WebAssembly technol-
ogy, we demonstrate this novel browser-based ransomware
called RØB as a malicious web application that encrypts the
user’s files from the browser. We use RØB to perform impact
analysis with different OSs, local directories, and antivirus so-
lutions as well as to develop mitigation techniques against it.
Our evaluations show that RØB can encrypt the victim’s local
files including cloud-integrated directories, external storage
devices, and network-shared folders regardless of the access
limitations imposed by the API. Moreover, we evaluate and
show how the existing defense solutions fall short against
RØB in terms of their feasibility. We propose three potential
defense solutions to mitigate this new attack vector. These
solutions operate at different levels (i.e., browser-level, file-
system-level, and user-level) and are orthogonal to each other.
Our work strives to raise awareness of the dangers of RØB-
like browser-based ransomware strains and shows that the
emerging API documentation (i.e., the popular FSA) can be
equivocal in terms of reflecting the extent of the threat.

1 Introduction

The developers of web browsers spend significant effort on
enhancing browsers by continuously adding new technologies.
Web application developers take advantage of these technolo-
gies by offering new functionalities that previously could be
performed only by native applications. One such technology
is the File System Access (FSA) API1, which has been devel-

1Please see for a live demo of the FSA API: https://googlechromela
bs.github.io/text-editor/.

oped by the Web Platform Incubator Community Group [59].
It enables web applications to interact with the users’ local
file systems [60]. Although not a web standard at the mo-
ment, the FSA API is embedded in and is fully supported
by the most popular browsers like Chrome and Edge and is
partially supported by Opera and Safari [4], which, combined,
share the 91.29% of the desktop browser market as of May
2023 [7]. The FSA API has been steadily gaining popularity
and is already being used by some popular web applications
such as the online development platform Microsoft Visual
Studio Code (i.e., vscode.dev [11]) and social media platform
Snapchat [9].

Even though the FSA API can be used to develop pow-
erful web applications, it can also be abused by adversaries
to develop a novel ransomware strain as a web application
that encrypts the user’s files from the browser. Such an attack
would effortlessly be performed by an adversary who designs
a seemingly benign web application and uses malicious tactics
(i.e., phishing, malvertisement) to trick the user to grant access
to their sensitive portions of the local file system. Despite the
briefly mentioned risks of ransomware in the FSA API doc-
umentation [61], the deployed countermeasure in its current
form (i.e., hard-coded blocking system-sensitive directories)
is not effective to protect sensitive user files on non-system
directories, subdirectories of the systems-sensitive directories,
or any other directories such as cloud-integrated directories,
external directories or network-shared folders. More impor-
tantly, no prior works investigated the detailed impact analysis
of this new threat vector.

In this work, we implemented a novel browser-based ran-
somware, namely RØB - Ransomware over Browser, that
performs its malicious actions via the emerging web tech-
nologies, the FSA API and WebAssembly (Wasm). Although
the security model of the FSA API suggests restricting ac-
cess to some of the system directories (e.g., file system root,
user’s home, operating system), our experiments reveal that
RØB can still encrypt files in user directories, data partitions,
external storage devices (e.g., flash drives), shared network
volumes, and cloud-integrated directories, making the sug-
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gested defense mechanism by the FSA API developers futile.
Antivirus (AV) software often detects ransomware by mon-

itoring sensitive folders and identifying suspicious behaviors
on the victim’s computer. We performed an extensive analy-
sis with commercial antivirus (AV) solutions such as AVG,
Kaspersky, Avast, Malware Bytes, and TrendMicro. We found
RØB can evade all these AVs. In addition to AVs, many highly
accurate ransomware defense studies exist in the literature
such as detection systems that employ static analysis or dy-
namic analysis features [52]. We examine their effectiveness
against RØB-like ransomware; however, they, unfortunately,
fail to detect RØB due to the distinct features such as not
requiring any installation, running within the browser, and
using Wasm-based encryption libraries. Hence, there is a need
for a new solution that can effectively tackle browser-based
ransomware attacks.

We propose three potential defense solutions at different
levels (i.e., browser-level, file-system-level, and user-level).
Our first solution, namely malicious modification identifica-
tion, monitors the FSA API to detect malicious modifications
of RØB-like attacks before they overwrite the victim’s local
files. Our second approach, namely local activity monitoring,
monitors the browser’s local activity (e.g., read and write func-
tion/API calls, file system activities) to detect the potential
patterns of ransomware. Our third solution aims to increase
the (in)security awareness of users via a new UI design for
the FSA’s permission dialog boxes. Unlike the existing dialog
boxes of FSA API, the new dialog boxes we present inform
users about the risks and implications of allowing web appli-
cations that utilize FSA API to interact with local files. These
three proposed approaches are crucial to providing solutions
to mitigate this new attack vector at different levels; however,
neither of them is a panacea on its own due to the distinct
features of this new attack vector. More research effort is
needed to enable web applications to interact with local files
in a secure manner.
Contributions: The contributions of this work are as follows:

• For the first time, we thoroughly analyzed a novel attack
vector for ransomware that has not been explored before.
Particularly, we show how the FSA API can be exploited
to launch ransomware attacks over modern browsers.

• We conducted a comprehensive impact analysis on three
different OSs, 29 distinct directories together with their
subdirectories, five cloud providers, and five antivirus
solutions. Our results demonstrate the limitations of tra-
ditional antivirus solutions and the ineffectiveness of the
access limitation currently deployed in the FSA API.

• We evaluated the effectiveness of state-of-the-art existing
ransomware detection solutions and found that they, un-
fortunately, fall short in detecting RØB-like ransomware
due to its distinct features (e.g., no payload, no crypto
library access).

• We proposed three potential defense solutions to miti-
gate the risks posed by browser-based ransomware: 1)
Malicious Modification Identification, 2) Local Activity
Monitoring, and 3) New UI Design. We implemented
and evaluated the effectiveness of the first two solutions
as well as provided new modified UIs to address the
issues in the old UIs. To support open source and fur-
ther research, we released the source code of the defense
solutions 2.

Responsible Disclosure. The ransomware risk through the
FSA API had been very briefly mentioned in the documenta-
tion [61]. However, we argue that the documentation, in its
current form, significantly downplays the extent of the ran-
somware threat and gives misleading explanations regarding
the efficacy of the countermeasures provided by the API. To
share our findings, improve the security documentation, and
contribute to the production of a working countermeasure
against this threat, we contacted the FSA developers, which
is Google, through several channels. We submitted a security
bug to Chromium outlining the above points in detail. We
also had a video meeting and email exchanges with the devel-
opers of the FSA API who gave us positive feedback strongly
supporting our work and expressed interest in collaboration
to implement the practical defenses we outlined in our pa-
per. They have also agreed to make changes in the security
documentation to better explain the extent of the ransomware
threat based on the findings of our work. In addition, we also
responsibly disclosed the issue to cloud providers (e.g., Ap-
ple, Box) whose products we identified as being at risk and
AV vendors. Apple reviewed the bug report and did not take
responsibility as their product was indirectly impacted by this
issue. We have yet to receive any responses from the other par-
ties at the time of this writing. Further details of the disclosure
process are given in Section A in Appendix.
Ethics. Due to ethical considerations, we did not make the
RØB (i.e., ransomware) implementation publicly available.
And, we performed all the analysis on local servers; so no
human subjects have been involved in this research.
Organization. Section 2 gives the background information.
Section 3 presents the threat model. Section 4 introduces
the system model and impact analysis of RØB. Section 5
investigates the effectiveness of existing ransomware defense
solutions against RØB. Section 6 articulates three defense
approaches we proposed. Section 7 gives the related work
and Section 8 concludes the paper.

2 Background

2.1 The File System Access API

Overview. The Web Platform Incubator Community
Group [59] created the File System Access (FSA) API to

2https://github.com/cslfiu/RoB_Ransomware_over_Modern_Web_Browsers
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enable the development of powerful web applications that
interact with files that are located in users’ local file sys-
tems [60]. For instance, developers can build online document
editors, business tools, and integrated development environ-
ments (IDE) that can directly interact with a user’s local file
system from the browser without any installation. Although
not a web standard now, the FSA API is embedded in and
fully supported by the most popular browsers like Chrome
and Edge and is partially supported by Opera and Safari as of
now [8]. Moreover, it is available for all browser engine teams
such as Gecko of Mozilla to implement this new feature.
Internals. The FSA API has a single-entry point, named
chooseFileSystemEntries(). This entry point opens a
picker dialog allowing a user to select multiple files or
directories. After the selection, the browser asks for the
user’s permission to read the contents of the files or
directories via opening a read permission dialog. De-
pending on whether the user selects a file or a direc-
tory, the API returns either a FileSystemFileHandle
or FileSystemDirectoryHandle. These handles provide
methods to interact with the files or directories. When a
web application calls the createWritable() method on
a FileSystemFileHandle to modify a file, the browser
prompts the write permission dialog for the user. Subsequent
calls to createWritable() for the same file within the same
session do not prompt the user for permissions again. Simi-
larly, if the user grants both read and write permissions for a
directory, the returned FileSystemDirectoryHandle gives
access to all files and subdirectories within it. Analogous to
the file handle, any modifications on the files in the same
directory within the same session do not require repeated
permission prompts.
Security Model. The security model of the FSA API con-
siders a few attacks including the possibility of attacks that
encrypt files (i.e., ransomware), malware storing, and execu-
tion [24]. There are two main strategies adopted by the API
to tackle these attacks. First, it utilizes a permission model
which requires web applications to obtain access from users
via permission dialogues. This permission model is simple;
there is one permission dialog for read access and another
one for write access. However, the effectiveness of this model
is limited as adversaries can hide their real intents and use
social engineering to get a user’s explicit permission [6, 28].
Second, the FSA API utilizes an access limitation strategy
by blocking web applications’ access to the critical parts of
the file system such as the root directory as well as the user’s
home, operating system (OS), and browser profile directories.
However, this strategy also falls short in preventing the at-
tack we present in this work as the sub-directories of these
restricted directories and any directory that are not explicitly
blocked by this approach (e.g., cloud directory) can still be en-
crypted. We analyze the effectiveness of this approach further
in Section 4.3.
Other Browsers’ Positions and Concerns. Browsers such

as Mozilla and Brave [19, 48] did not integrate this API into
their browsers due to some concerns. Particularly, Mozilla
tagged this API as harmful [48] because they do not think
"...meaningful end-user consent is possible to obtain..." [48]
and Brave considers this API as "non-standard privacy-
risking" [19]. Additionally, Safari’s WebKit recently partially
implemented the FSA API in its engine [4]. However, they
restricted the capabilities of FSA API by allowing only ac-
cess to the Origin Private File System, which is mapped to a
database outside of the user’s OS. Our findings in this paper
align with the concerns of other major browsers.

3 Threat Model

In our threat model, we consider a scenario where an attacker
creates a malicious web application or hijacks an existing one,
gaining access to the user’s local file system via the FSA API.
The attacker then uses phishing and malvertisement to lure
victims to the web application and trick them into granting
read and write access via seemingly benign web applications.
Then, the adversary can use any encryption algorithm on the
victims’ files and overwrite the local files. For the encryp-
tion, the adversary can use an encryption library of Wasm
or JavaScript or can implement the encryption algorithms by
themselves. Lastly, the adversary can use various extortion
methods (e.g., Bitcoin) that have been used by the classical
ransomware families to obtain payment. It is worth noting
that in this threat model, the FSA API works as intended, but
only is abused by the attacker to get access to the user’s local
files and overwrite them.
Attack Practicality. As described above, the user needs to
navigate to the malicious site and grant read/write access for
browser-based ransomware to be effective. This threat model
can be considered practical for several reasons. First, social-
engineering techniques like phishing is still one of the top
cybercrime used by the attacks in the wild [28] affecting major
enterprises and end-users [57]. Second, the threat model of a
user accessing a malicious URL [23] and a tricked user grant-
ing permission [12] have been used by other state-of-the-art
studies in the literature. With the advancements in browsers
and the trend of moving applications to the web, attackers
may come up with more compelling strategies to success-
fully lure users into using their ransomware. Additionally, the
average layman user can find the browser more trustworthy
and grant read/write requests on file systems more inconsider-
ately than downloading, installing, and executing unknown
software [58]. More importantly, the current UI lacks any
indicator to warn users of potential ransomware attacks, in-
creasing the likelihood of users falling for this type of attack.
Last but not least, while traditional ransomware must bypass
many built-in checkpoints (e.g., email attachment scanners,
download scanners, local antivirus programs) throughout the
attack, RØB-like ransomware can reach the victim directly
without bypassing these steps, which would also increase the
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Figure 1: System model of RØB ransomware.
practicality of the threat model used in this paper.

4 RØB - Ransomware over Browser

In this section, we give the details regarding the design, im-
plementation, and impact evaluation of our proof-of-concept
ransomware implementation RØB.

4.1 System Model

Overview. Figure 1 shows the system model of the RØB that
includes five modules: Backend, Web User Interface (UI), File
System Access, Encryption and, Extortion.
Backend Module. This module receives HTTP requests from
clients (victims), it creates a public-private key pair and a
unique ID for each victim. Keys and victim IDs are stored
in its database. Afterward, it sends an HTTP response to the
victim, which includes the other components of RØB, client
ID, and the generated encryption keys for the client. The keys
stored by the Backend module for each client are shared with
the ones who make payments for the recovery of their files.
Web User Interface Module. This module includes the con-
tents regarding the look of the website that aims to trick vic-
tims to enable RØB to access their local file system. The
attacker can design the Web UI component differently de-
pending on the malicious scenario. For example, this module
can be designed by the adversary as a media (e.g., picture,
video) editor.
File System Access Module. This module contains the nec-
essary logic to interact with the victim’s files from the web
application using the FSA API. RØB works in a read-encrypt-
overwrite loop for every file in the selected directory of the
user.
Encryption Module. This module includes the func-
tions/modules to encrypt the victim’s files. RØB performs
hybrid encryption on the victim files to make recovery at-
tempts impossible for users. In our implementation, this mod-
ule first generates a symmetric key and encrypts the victim’s
files with AES-256. After the encryption of all of the files, it
encrypts the AES key with RSA-2048 using the public key
that is generated by the Backend module.
Extortion Module. This module redirects the user to the ran-
som note link that informs the victim about the ransomware
attack and gives details regarding the ransom payment method.

RØB can employ Bitcoin as the payment method. In our im-
plementation, this module redirects the victim to another web
page that displays the victim ID assigned by the Backend
module for the victim as well as the ransomware note and the
associated payment details.

Algorithm 1: Algorithm of RØB.
1 dirHandle = window.showDirectoryPicker();
2 for entry ∈ dirHandle.values() do
3 file = entry.getFile();
4 encryptedContent = encrypt(file);
5 writable = file.createWritable();
6 writable.write(encryptedContent);
7 writable.close();
8 end

4.2 Implementation of RØB
File System Access Module Implementation. This module
uses the FSA API to access and modify the victim’s files as
outlined in Algorithm 1. In Line 1, showDirectoryPicker()
function is invoked which opens a directory select di-
alogue for the user. When the user selects a direc-
tory and grants the read permission, the API returns a
FileSystemDirectoryHandle that contains the methods
needed to interact with the files of the user. The state-
ments in Lines 2-8 iterate through files in the directory se-
lected by the user. getFile() method called in Line 3 re-
turns a FileSystemEntry object of a file and forwards it to
encrypt(), which returns the encrypted file contents. After,
createWritable() in Line 5 obtains a writable stream to a
file and asks for the user’s permission to modify the file. Once
the user has granted write permission, the write() method
overwrites the file. Subsequent calls to createWritable()
on the same file handle within the same session do not require
additional user permission. Therefore, RØB can continue per-
forming its malicious actions without prompting the users as
long as the session continues.
Encryption Module Implementation. This module first
generates a symmetric key and encrypts the victim’s files
with the AES-256 algorithm. It uses AES-GCM mode as
it provides balanced performance and confidentiality. After
the encryption of all of the files, it encrypts the AES key
with RSA-2048 using the public key that is generated by the
Backend module when the victim initially made a request
to the malicious web application. To prevent key exposure,
the module overwrites the portion of the memory where the
key is stored with random values by leveraging an additional
function named clear_memory. We implemented the Encryp-
tion module using the Enigma library which utilizes a Wasm-
compiled version of OpenSSL to increase the performance [2].
We performed an investigation on the encryption speed of
RØB with varying file sizes. Our results show that the encryp-
tion speed of RØB is 0.62 MB/s for a 1MB file, 3.85 MB/s for
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a 10MB file, and 33.2 MB/s for a 100MB file with Chrome 89
installed on a computer with 2,7 GHz Dual-Core Intel Core i5
processor and 8 GB of RAM. Although the loading process of
the Wasm binaries to the browser presents a small overhead,
the results show that the encryption speed of RØB scales with
the size of the data.

4.3 Attack Surface Investigation
In this subsection, we perform experiments to study the im-
pact of RØB on victim files and directories.
Evaluation Setup. We performed our first analysis on a com-
puter (Test-PC:1) running Windows 10 Pro with a 2,6 GHz
Intel Core i7 processor and 16 GB of available RAM. We also
employed computers powered by Linux (Test-PC:2 - Ubuntu
20.04 LTS with a 2,6 GHz Intel Core i7 processor and 16GB
of RAM), and macOS (Test-PC:3 - macOS Big Sur 11.0.1
with a 2,7 GHz Dual-Core Intel Core i5 processor and 8 GB of
RAM) for our evaluations. This enabled us to understand the
type of directories affected in multiple platforms used by a di-
verse set of users. Moreover, the analysis with network-shared
folders required two Windows computers to share a folder
over the network. Therefore, in addition to the Test-PC:1,
we employed a second Windows-based computer (Test-PC:4)
with the same specs of Test-PC:1.
Types of Directories Affected. In this analysis, we investi-
gate and identify the affected directories in various operating
systems (e.g., Windows, Linux, and macOS) that RØB can
encrypt. We analyze the access limitation of the FSA API on a
set of directories such as local directories, cloud-integrated di-
rectories, external storage devices, and network shared folders
and determine if RØB can access and encrypt full directory
contents or only contents of subdirectories.
• Local Directories. To determine the directories that are af-
fected by RØB, we created test folders that include 50 files
with different file types (docx, xlsx, pdf, txt, jpeg)
on test computers Test-PC:1, Test-PC:2, and Test-PC:3. Sub-
sequently, we placed the test directories in different parts of
the file systems (in total 21 different directories on 3 OSs) of
the test computers. On each test computer, we ran RØB as
a web application using a Node.js server, browsed the RØB
web application, and tried to select the directory under test
that has our folder with the files.

As explained earlier, the security model of the FSA API
prevents the web application from accessing specific directo-
ries. We tested those directories (i.e., the root directory of the
file system, user’s home, OS, and browser profile directories)
on Test-PC:1 and verified that the FSA API does not allow a
user to select those directories. This implies that the security
model of the FSA API prevents RØB from accessing these
directories. Nevertheless, we continued our tests by placing
our test directories in other parts of the local file system to
choose such directories via RØB. We realized that RØB can
access and encrypt the full contents (including subdirectories)

Table 1: List of local directories in different operating sys-
tems that RØB affects. FDA: Full Directory Access. SDA:
Subdirectory Access. Ë indicates that RØB has FDA/SDA
and encrypts files in that directory. é indicates that access
is denied by the API and RØB cannot encrypt files in that
directory.

Windows Linux macOS
Directory FDA SDA FDA SDA FDA SDA
Documents é Ë é Ë é Ë
Desktop é Ë é Ë é Ë
Pictures Ë Ë Ë Ë Ë Ë
Videos Ë Ë Ë Ë Ë Ë
Music Ë Ë Ë Ë Ë Ë
Downloads é Ë é Ë é Ë
Data Partition é Ë Ë Ë Ë Ë

of the Windows directories of Pictures, Videos, and Music.
In addition, we found out that although the security model of
the FSA API does not allow a user to choose the Documents,
Desktop, Downloads, and the data partition directories (e.g.,
D:/), there is no access limitation dictated by the API on their
subdirectories.

To summarize, our evaluation showed that RØB can ar-
bitrarily encrypt the full contents of Pictures, Videos, and
Music, and the subdirectories of Documents, Desktop, Down-
loads, and data partition directories on a Windows computer.
Considering the other test computers (i.e., Test-PC:2 and Test-
PC:3 running Linux and macOS respectively), our evaluation
showed that the FSA API has very similar access limitations
for web applications (hence for RØB) on computers powered
by these operating systems. Table 1 provides a summary of
our findings. Once RØB can have full directory access or sub-
directory access, it encrypts all of the files inside. Although
we see similar full and subdirectory access patterns of RØB
for most of the local directories of Windows, Linux, and ma-
cOS, we see an interesting pattern for data partitions. While
the FSA API prevents RØB from fully accessing the data
partition and allows only subdirectories to be accessed for
Windows, it allows full access to data partition and subdirec-
tories in both Linux and macOS platforms.
• Cloud-Integrated Directories. To analyze the effects of RØB
on the files that are stored in cloud-integrated directories, we
first created dummy accounts on popular cloud platforms such
as Google Drive, DropBox, Box, iCloud, and Microsoft One
Drive. These platforms have desktop applications that allow
users to work on the files locally and sync them to the cloud
using file system integration. We downloaded their desktop
applications to Test-PC:1 to enable that feature and create
their integrated directories. Subsequently, we placed 50 files
with different file types in each cloud-integrated directories
on Test-PC:1 and chose these directories as the target while
running RØB.

Our experiments show that when RØB accessed these di-
rectories, it successfully encrypted the files in those cloud-
integrated directories. After that, the sync engine of the cloud
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provider reflected the modifications to the cloud storage and
the changes made to the files in the cloud became persistent.
We summarized our findings in Table 2.

We note that even though these platforms have their built-in
ransomware detection mechanisms, none of the cloud plat-
forms were able to detect RØB during or after the attack. On
the other hand, as a ransomware protection method, some
cloud platforms use versioning techniques [10]. If the files
that are stored in the cloud are attacked by ransomware, the
cloud user can retrieve the earlier (unencrypted, original) ver-
sion of the files. However, this feature is not standard among
all of the cloud providers and every cloud vendor has its
own versioning scheme. While cloud providers such as Drop-
box keep track of versions of files for basic, plus, and family
users for 30 days and professional and business users for 180
days [3], OneDrive of Microsoft keeps 25 versions of the
stored files [50]. Differently, Google Drive can keep versions
of files for 30 days or the first 100 versions of them [10].
Box has different solutions with various versioning features.
Specifically, while Box Individual keeps only one version of a
file, Personal Pro and Business Starter solutions keep 10 and
25 file versions, respectively. On the other hand, iCloud does
not utilize the versioning feature. We further investigated the
versioning scheme of the cloud providers and realized that
Dropbox, Google Drive, and Microsoft OneDrive can store
more than 100 versions of the files and RØB cannot have a
permanent effect on the files stored by them. In addition, Box
Individual and Apple iCloud do not have a versioning scheme
and we verified that the files encrypted by RØB cannot be
recovered by such solutions.

We conclude that if victims are using iCloud or Box Individ-
ual, RØB can cause them to lose their significant files unless
a ransom is paid. RØB-like ransomware attacks can create
significant damage to iCloud users. In addition, although the
versioning strategy employed by Dropbox, Google Drive, and
One Drive seems to be resilient against RØB, it should not
be considered as a silver bullet. This is due to the fact that
the backup files in the version history do not always reflect
the most recent state of a file. If RØB is launched before a
backup is done, then critical changes on user files can still be
lost.
• External Storage Devices. To test the impact of RØB on
external disks, we placed a test directory that included 50
files with different file types in a test external disk (e.g., West-
ern Digital 4TB) and a test flash drive (e.g., Toshiba 16GB)
connected to Test-PC:1. After, we ran RØB and chose the
directory in each external storage device as the target.

Our experiments showed that RØB is able to encrypt all
of the files located in the selected directories in each exter-
nal storage device. As external storage devices are used by
ordinary users and enterprise users to backup important data,
RØB can have detrimental effects on the files stored in such
devices. Unfortunately, such devices are outside the scope of
the security model of the FSA API which leaves them prone

Table 2: Cloud providers, their versioning schemes, and the
impact of RØB where Ë signifies that files are not recoverable
after the encryption of RØB and é signifies that files are
recoverable after the encryption of RØB due to versioning
feature of the cloud provider. However, if RØB is launched
before a backup is done, then critical changes on user files can
still be lost for cloud providers with versioning (i.e., Google
Drive, Dropbox, and Microsoft OneDrive).

Cloud Provider Versioning
Scheme

Affected
by
RØB?

Google Drive 30 days or 100 ver-
sions

é

Microsoft OneDrive 25 versions é
Dropbox 30 days (personal),

180 days (business)
é

Apple iCloud No versioning Ë
Box Individual No versioning Ë

to RØB-like ransomware attacks.
• Network Shared Folders. To test the effect of RØB on net-
work shared folders, we created a test directory that included
50 files with different file types in our test computer Test-PC:1
and we shared it over the network with Test-PC:4. After that,
we run RØB on Test-PC:4 and selected the test directory that
is shared over the network as a target.

We observed that RØB is able to encrypt the files that
reside in the shared folder which shows that running RØB
in one computer can affect the folders/files that are shared
by multiple computers over the network. Shared folders are
frequently used by both individuals and enterprises and if
sensitive/important files are stored in the shared folder, the
effects of RØB on these folders can be very serious.

4.4 Desktop vs. Browser-based Ransomware

In this section, we discuss the fundamental differences be-
tween browser-based ransomware and desktop ransomware.

Initial User Access. Desktop ransomware typically spreads
via phishing, advertisements, or emails, which are used to
trigger downloading the malicious payload. In comparison,
browser-based ransomware, such as RØB, is a malicious web
application that needs to attract its victims to its domain in
some way. Similar methods such as phishing, malvertise-
ments, or emails (as a link but not as an attachment) can
be used by RoB to distribute the link and to gain initial user
access. To attract more users, it can also be designed as a
benign-looking web application (e.g., a free media editor).
Infection and Execution. For desktop ransomware to be ef-
fective, the user (victim) must download (i.e., infect) and
execute the binary on its system. Unlike desktop ransomware,
RØB is fileless, i.e., no download or execution is required.
However, after luring victims to its domain, browser-based
ransomware still needs to trick its victims into granting read
and write access. In this manner, browser-based ransomware
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has the advantage of executing its actions via browsers, which
are used by millions of users and perceived as trustworthy
while desktop ransomware requires users to download and
execute unknown binaries.
Encryption. RØB uses Wasm to encrypt the victim files. As
it employs all of the encryption logic in the Wasm, unlike
desktop ransomware, it does not utilize the platform’s encryp-
tion libraries or OS system calls. Hence, it can hide its file
encryption process from the defense solutions that monitor
the system calls made to the platform’s encryption APIs.
Extortion. Desktop ransomware delivers ransom payment in-
formation to the victim via leaving a ransom note on the desk-
top, changing the desktop background, or using lock screens.
However, RØB cannot employ those techniques and has to
find other ways. Particularly, RØB can: A) redirect the victim
to the extortion page upon finishing encryption, B) add ran-
som note files to the parent folders of the encrypted files, C)
change the names of encrypted files and add ransom note to
file names by adhering to maximum path length constraints of
platforms. If Option A is employed, then the ransom note may
never reach the victim if the victim closes the page before
the encryption is completed. Options B and C are better ones,
ensuring that the ransom note will be reachable to the victim
even if the page is closed. However, those options may give
clues to defense solutions in detecting RØB as discussed in
Section 6.

5 Effectiveness of Current Defenses

In this section, we investigate the effectiveness of existing
ransomware defense solutions against RØB.

5.1 Antivirus Solutions
In this section, we tested the effectiveness of the full ver-
sions of five different antivirus solutions, namely Malware
Bytes, AVG Antivirus, Kaspersky, Trend Micro, and Avast
against RØB. We chose these antivirus solutions because they
explicitly promise ransomware defense via malicious behav-
ior monitoring for users. To perform our experiments, we
downloaded and installed each antivirus solution to our test
computer Test-PC:1, put test directories with 10, 50, and 100
files with various file types, and checked if they can detect
RØB when it is instructed to run on the test folder.
• Malware Bytes. Malware Bytes Premium [43] promises
to protect users’ documents and financial files against ran-
somware. We installed Malware Bytes Premium and selected
the test directory when running RØB. We verified that Mal-
ware Bytes Premium could not detect RØB. Moreover, we
also tried the browser extension of Malware Bytes, namely
Browser Guard [42] which blocks malicious web pages and
web applications that include ransomware. We performed an-
other test while Malware Bytes’s Browser Guard extension is
activated and it could not detect RØB.
• AVG Antivirus. We installed the full version of the AVG
Internet Security [16], which promises ransomware protec-

tion. AVG Internet Security monitors sensitive folders such as
Documents, Pictures, etc., and allows a user to add a folder to
the sensitive folders list for monitoring. We added the path of
the test directory to the sensitive folders list. Following that,
we ran RØB and chose the test directory as the target. AVG
Internet Security was not able to detect RØB.
• Kaspersky. We installed the full version of Kaspersky
Total Security [5]. Kaspersky Total Security has an anti-
ransomware tool that monitors the personal computer for
ransomware-like behavior in real time. Nevertheless, we ran
RØB and could successfully encrypt the files within the test
folder. Kaspersky Total Security was not able to detect RØB
in any of the test cases.
• Trend Micro. We installed the full version of Trend Micro
Antivirus+ Security [56], which promises to utilize prevent
various threats such as ransomware and online attacks via
its Advanced AI Learning utility. We performed three tests
with 10, 50, and 100 files in the test folder. We confirmed that
Trend Micro Antivirus+ Security was not able to detect RØB
in any of our test experiments.
• Avast. We installed the full version of Avast One Essen-
tial [15], which promises to provide ransomware protection
via monitoring important folders. We added the path of the
folder among the important files/folders to be monitored. We
verified that Avast One Essential was not able to detect RØB
in any of our test cases.

5.2 State-of-the-art Ransomware Defense
The ransomware defense approaches for PCs can be grouped
into three categories: 1) Static analysis-based detection meth-
ods, 2) Dynamic analysis-based detection methods, and 3)
Key extraction-based recovery solutions.
Static Analysis-based Solutions. Many researchers pro-
posed static analysis-based solutions [45, 64] that utilize
structural features such as strings and opcodes to detect ran-
somware. Although those solutions can detect well-known
ransomware strains, they are vulnerable to common evasion at-
tempts such as obfuscation [17,53]. In the concept of browser-
based ransomware attacks, the adversaries are free to use any
tool available and employ obfuscation techniques to evade all
types of static analysis-based tools. Therefore, such solutions
are not suitable for browser-based ransomware attacks.
Dynamic Analysis-based Solutions. The dynamic analysis-
based solutions use behavioral features such as network ac-
tivity, API/system calls, I/O access patterns, and file system
activity to detect ransomware [52]. First, RØB does not need
frequent C&C server communication. In fact, only one HTTP
request made to the Backend module of RØB is sufficient for
it to be sent in an HTTP response packet and perform its ma-
licious actions. In addition, RØB’s communication is based
on HTTP over TCP which is used by almost every benign
website and web application. Therefore, the solutions that use
network traffic features [21, 22, 47] would struggle to detect
RØB. Second, unlike conventional ransomware, RØB can per-
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form malicious actions without being installed on the system.
Therefore, it can evade the registry-based solutions [35, 37].
Due to the high computation cost of the malware analysis
environments [51], the ransomware analysis environments
such as [25, 38] (albeit was very useful) has become impracti-
cal against RØB-like attacks as it is not practical to analyze
every website before the visit of a user in such analysis envi-
ronments. Additionally, ransomware defense solutions such
as [25,39,54] utilize the features retrieved from the file system
activities such as folder listing, files written, read, renamed,
and deleted. These defense solutions have been designed
by monitoring the file system activities performed by the
process of the ransomware executable. Nevertheless, the file
system activities of RØB are different from the traditional
ransomware defense solution (see Section 6 for a detailed ex-
planation). So, these solutions will not be effective to detect
RØB. Furthermore, defense solutions such as [39,54] include
the browser as a benign web application, so that they will
introduce a false positive in detecting RØB with their current
implementation.

Moreover, RØB uses browsers to perform its malicious
actions. Running on the browser without being installed on a
system can create additional challenges for API/system call
monitoring solutions [13, 40, 44, 65]. Considering RØB, such
solutions face two difficulties: 1) In RØB, the adversary is free
to embed his own encryption code to the Encryption module
which will not use the crypto APIs of the OS. 2) RØB runs
in the browser (a benign program) and monitoring the sys-
tem calls made by the browser will introduce an overhead, as
each website visit creates many browser processes and users
can have multiple tabs open. Therefore, monitoring API/sys-
tem calls of browser processes would incur high overhead.
Additionally, monitoring the system calls can considerably
slow down the process [63] which can impact the browsing
experience. For these reasons, API/system calls monitoring
solutions will not be practical and effective in detecting RØB.
Key Extraction-based Solutions. Some ransomware de-
fense systems use memory forensic techniques to retrieve
the keys of the attacker to recover the files. The study in [40]
presents a ransomware recovery mechanism that stores en-
cryption keys by hooking the crypto functions of the OS.
Similarly, the study in [46] combines process monitoring, and
file change monitoring to detect ransomware and hook crypto
API functions to retrieve the key. While these approaches are
effective on ransomware families that use Crypto APIs of the
OS, they will be ineffective against RØB-like attacks since it
does not use crypto APIs of the OS. Differently, in [33], the
authors aimed to restore the files encrypted by ransomware uti-
lizing behavioral features such as encryption time and backup
damaging behavior. The considered ransomware needs priv-
ileges to perform its malicious actions; however, RØB does
not need any privileges to perform the attack.

To test the feasibility of key extraction from RØB, we cre-
ated a Node.js script utilizing puppeteer [1] to periodically

WebApp

Reads the original file.

Swaps the original file with the swap file.

2

1

3

file.txt file.txt.crswap

Creates a swap file and writes the changes.

Figure 2: Behavior of RØB using the FSA API.
capture heap snapshots of the web application. We performed
two experiments. First, we ran RØB on a test directory and re-
trieved two heap snapshots: one during the attack and another
afterward. Second, we adjusted our script to continuously
capture heap snapshots of RØB every 5 seconds, retrieving a
total of 4 different snapshot files. We inspected all output files
to search for our predefined key. While we did not encounter
the key in the files from our first experiment, we detected the
key in a single file from our second experiment. The focus
of these experiments was the potential extraction of a raw
key during a browser-based ransomware attack. Nevertheless,
if the intermediate key representations (e.g., AES T-tables)
are detected in the snapshot, it would also be sufficient to en-
able the recovery of the key as well. Our experiments reveal
that extracting the key during a browser-based ransomware
attack is feasible, but it is not practical. Firstly, taking heap
snapshots (each snapshot is '4.8MB) of every website the
user is visiting and storing them for further analysis requires a
huge memory and may potentially affect the user experience.
Additionally, RØB can solely utilize the RSA public key en-
cryption to encrypt each file, potentially evading this type of
defense solution.

6 Potential Defense Solutions

In this study, we propose three different defense solutions
that are based on the above-mentioned approaches to mitigate
this new attack vector at different levels and we implement a
proof-of-concept design for each proposed defense solution.
In the next subsection, we first explain the details of these
approaches and present proof of concept implementations.

6.1 Approach 1: Malicious Modification Iden-
tification via API Hooking

In this approach, we aim to find indicators that would ef-
fectively identify malicious modification, hence signal the
presence of RØB-like attacks.
Stopping the attack. We show the file system activities of
RØB in Figure 2. In a read-encrypt-write loop, it reads the
files in the accessed directory one by one 1 . After that, it
creates a swap file for each file in the directory and writes
the modifications back to the related swap file. We found that
the FSA API names the swap files by appending the .crswap
extension to the original files 2 . We realized that creating
swap files with .crswap extension for every modified file
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was not documented by the API and it is one unique and
obscure behavior of the API while working on the local file
system. Lastly, as represented in 3 , it swaps the content
of the original file with the swap file and the change made
by the web application becomes permanent. Note that the
modifications made by RØB are not permanent until step 3 .
Therefore, intercepting the activity of a web application in
this step prevents RØB from making permanent changes to
the original files and stops the attack.
Implementation. Based on our analysis, we found that hook-
ing the specific functions of the FSA can stop the activ-
ity of the RØB before it makes a permanent change to the
user files. For this, we implemented a hooking script in
JavaScript. While the user is using the browser, the hook-
ing script continuously runs in the background and simul-
taneously checks if critical functions of the FSA API are
called by a web application. When the FSA API functions
such as ShowDirectoryPicker, and write are called by a
web application, the hooks of these functions are activated
and the activity of the web application is monitored and
stopped by this module before permanent malicious changes
are made on the user files. Specifically, hooking into the
ShowDirectoryPicker function allows us to get the direc-
tory path that a web application is accessing via FSA API.

Our implementation considers two patterns of ransomware:
1) read-encrypt-overwrite, and 2) read-encrypt-delete-write.
Considering the first pattern, hooking into the write function
stops the web application that is overwriting a file in the
local file system, thus allowing to check the created swap file.
In terms of the second pattern, hooking into removeEntry
function of the API allows us to prevent a web application
from deleting a file. Since some ransomware families do not
work in a read-encrypt-overwrite pattern and instead delete
the original file and write the encrypted version of the original
file in a new file. For this type of ransomware, the hooking
module detects a delete activity, pauses the deletion event, and
continues to monitor if the web application attempts to create
a new file. In this special case, the write function hooking is
activated and enables us to check the created swap file.
Identifying Malicious Modification. To detect a RØB-like
ransomware attack, the intent of the modification made by a
web application to a user’s files must be identified. To achieve
that, we identify two indicators, entropy change and file size
change. Both the original version and modified version of the
file can be obtained at the same time by pausing the activity
of the web application in step 3 as depicted in Figure 2.
• Entropy Change. Since files with high entropy can indicate
the file is encrypted, many ransomware defense solutions used
entropy to identify encrypted files [52]. Particularly, such stud-
ies mark a file as encrypted if the entropy of the file is above
a threshold. Different from those ransomware solutions in the
literature, we take advantage of having both versions of the
file and use the entropy change after modification as a feature
instead of threshold comparison. Compared to any benign file

modifications, encryption operation triggers a bigger entropy
change on files. We tested and verified this hypothesis by
performing in total 500K benign and 500K malicious (encryp-
tion) modification operations on 5000 files with various file
types (txt, jpeg, docx, pdf, xlsx in a dataset of files
obtained from [31]. We provided more detailed explanation
of dataset collection in Section C in Appendix.

Our analysis with 1 million modified files shows that be-
nign modifications result in very small changes in entropy.
For instance, the entropy of txt, xlsx, jpeg, docx files
increases by 0.05 on average after benign modifications. How-
ever, malicious modifications (encryption) on files can result
in large changes in entropy. For example, after encryption, the
entropy of files increase by 3.5 for txt, 0.10 for xlsx, 0.60
for jpeg, 0.60 for docx, and 0.10 for pdf files on average. For
this reason, we utilize entropy change as a feature to detect
RØB-like attacks in this solution.
• File Size Change. We also observed that the file size change
between the original file and its modified version is another
indicator to detect the malicious/benign intent of the modifi-
cation. Since the encryption operation does not expand the
data included in the file, the size of the file remains relatively
similar after the encryption. On the other hand, benign modi-
fications change the size of the file relatively more than the
encryption operation.

Our analysis with 1 million modified files shows that be-
nign modifications on files result in significant changes in
size. For instance, the size of txt, xlsx, jpeg, and docx files
increases by 15% (' 300Kb) on average after benign modi-
fications. However, malicious modifications (encryption) on
files can result in smaller changes in size compared to be-
nign modifications. Particularly, our analysis shows that size
of file size changes 0.002% for txt, 0.06% for xlsx, 0.14%
for jpeg, 0.012% for docx, and 0.006% for pdf files on av-
erage after the encryption. These results show that the file
size chance is another effective feature to identify malicious
modifications.
Classifier Evaluation. To test the effectiveness of this ap-
proach, we created a machine learning classifier that takes the
entropy change and the file size change of the files as features
and identifies the malicious modifications.We implemented
the classifier using Python’s scikit-learn library. We trained
the classifier with a dataset that includes the features of origi-
nal files and their artificially modified versions and encrypted
for various file types. To prevent overfitting, we utilized a 10-
fold cross-validation. We measured the performance metrics
for various classifiers that were previously used in the vari-
ous malware detection systems [52] such as Random Forest
(RF), K-nearest Neighbor (KNN), Decision Tree (DT), and
XGBoost. Table 3 presents the results for the evaluation of
the efficacy of our first approach in identifying encryption on
the user files. We observed that the RF classifier outperforms
other classifiers in the context of identifying encrypted txt
and docx files by introducing only one false positive (FP)
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Table 3: Performance evaluation of different ML algorithms.

Model Acc. Recall Prec. F1 TP TN FN FP

RF

TXT 0.99 0.99 0.99 0.99 99997 99999 3 1

PDF 0.99 0.99 0.99 0.99 100000 99981 0 19

JPEG 0.99 0.99 0.99 0.99 99996 99996 4 4

DOCX 0.99 0.99 0.99 0.99 99997 99999 3 1

XLSX 0.99 0.99 0.99 0.99 99938 99710 62 290

KNN

TXT 0.99 1 0.99 0.99 100000 99982 0 18

PDF 0.99 0.99 0.99 0.99 99988 99990 12 10

JPEG 0.99 0.99 0.99 0.99 99995 99989 11 5

DOCX 0.99 1 0.99 0.99 100000 99982 0 18

XLSX 0.99 0.99 0.99 0.99 99692 99888 308 112

DT

TXT 0.99 0.99 0.99 0.99 99998 99995 2 5

PDF 0.98 0.99 0.99 0.99 99951 99981 49 19

JPEG 0.98 0.99 0.99 0.99 99992 99992 8 8

DOCX 0.99 0.99 1 0.99 99996 100000 4 0

XLSX 0.99 0.99 0.99 0.99 99700 99942 300 58

XGB

TXT 0.98 0.99 0.99 0.99 99997 99991 3 9

PDF 0.99 1 0.99 0.99 100000 99983 0 17

JPEG 0.99 0.99 0.99 0.99 99995 99991 5 9

DOCX 0.99 0.99 0.99 0.99 99998 99995 2 5

XLSX 0.99 0.99 0.99 0.99 99710 99935 290 65

case. In the case of jpeg files, the DT classifier presents the
best performance by presenting 99.5% accuracy without in-
troducing any FP. Finally, KNN achieves the best accuracy
performance on xlsx files introducing only two FP cases.
Evaluation Against Adaptive Attackers. In this approach,
we showed that entropy and file size changes are simple, yet
effective features in encryption detection. However, To ana-
lyze the impact of these evasion techniques on the different
file types, we created a new dataset, which includes 500 dis-
tinct files (100 per file format) using these evasion techniques.
We then retrained our classifier with this new dataset, by con-
sidering each evasion technique. A detailed description of the
dataset generation procedure and classifier selection is given
in Section D in Appendix.

Our results showed that entropy is closely proportional to
the encryption ratio in the partial encryption technique. In
terms of detection, our classifier introduced 8 FN cases in
total for 500 files with 25% partial encryption. Furthermore,
injecting low-entropy data led to a significant size increase
and decrease in entropy in all file types. We observed that
injecting low-entropy data padding introduced 8 FN cases
in total. Finally, encoding over encryption techniques had
a deterministic impact on the entropy by setting a fixed en-
tropy value across all file types. Specifically, Base64, Base32,
and hexadecimal encoding set the entropy to 5.99, 5.0, and
3.99 respectively, and increased file sizes by 33%, 60%, and
100%. Hexadecimal encoding was most effective against our
classifier, introducing 12 FN cases in total. Our experiments
revealed that while these techniques alter both file size and
entropy in ways that can make detection more challenging,
they fall short of fully mimicking the characteristics of benign

file modifications to completely evade our classifier. With this
insight, we utilized a custom evasion technique that combines
both data padding and partial encryption to perfectly mimic
benign modifications made by the user. As the entropy and
size changes in the resulting files closely resemble those in the
modified files, this combined technique successfully evaded
our classifier, introducing 454 FN cases in total.
Usability & Discussion: Hooking the web applications that
use the FSA API prevents permanent malicious modifica-
tions before they overwrite the user files. Our current im-
plementation shows entropy change and file size change are
effective in identifying malicious modifications but introduce
false negative and false positive cases in case of evasion at-
tempts. Although these attempts are theoretically possible,
they come with a cost and increase the complexity of the
attack. Regarding the usability of our first approach, false pos-
itive cases might be introduced by benign web applications
performing heavy compression/encryption as part of legiti-
mate operations. To mitigate this, an alerting module can be
implemented to warn the user about potential malicious file
changes performed by the browser. This alerting module can
launch a third dialog box that explicitly mentions detected po-
tential malicious actions (similar to AVs detecting malicious
files) and the risks of permanent data loss. This new dialog
box would prompt the users to verify the accessed website
and offer the option to proceed or cancel the modification.
Although this might introduce an additional inconvenience
due to the frequent permission dialog prompt, it would help
reduce false positives. Finally, the extortion method of the
RØB can also be considered to increase the effectiveness of
our second approach. For example, the created files by web
applications and their names can be monitored for the creation
of ransom notes.

6.2 Approach 2: Local Activity Monitoring

Our second approach to prevent RØB-like attacks employs
local activity monitoring of web applications that use the FSA
API. Such an approach can be implemented to monitor the
following local activities: 1) the FSA API function calls, 2)
browser process system calls, and 3) file system activities.
Data Collection. For the benign dataset, we created test fold-
ers and accessed them via benign web applications. We per-
formed benign operations such as editing the files, remov-
ing/adding the content from the file. For malicious dataset, we
implemented RØB with different configurations. To start with,
we created two non-adaptive configurations. The first one en-
crypts a single file (i.e., RØBEncOne) while the second one
encrypts 100 files in a single directory (i.e., RØBEncHundred).
We also created six more adaptive attacker configurations,
which will be explained later in this section. To implement
this approach, we first created a script in Node.js that hooks
every available function of the FSA API and logs the called
functions. We used those FSA API function calls as the first
feature. Second, while interacting with the file system, we
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(a) The FSA API Function Calls (2-gram) (b) System Calls (4-gram) (c) File System Activities (1-gram)

Figure 3: The heatmap plots for the similarity matrices of the features used in the local activity monitoring. The darker marking
means the pair is more differentiable.

retrieved the PID with lsof and monitored the system calls
made by the process by strace. We used the system calls as
the second feature type. Finally, we collected the file system
activities via instrumenting inotifywait.
FSA API Function Calls. The FSA API implements sev-
eral functions (getFile, write) that can be used by web
applications to interact with the local files of users. We hy-
pothesize that the sequence of function calls of RØB-like
ransomware attacks and benign web applications display dis-
tinguishable patterns, which can be used to detect the attacks.
API call monitoring has been successfully used by many mal-
ware detection studies [26]. For example, Windows API call
sequences are considered one of the representative character-
istics in behavior-based malware detection [27]. Our method
differs from those studies because the FSA API function calls
are specific to RØB-like ransomware; thereby never have been
analyzed.

Our initial analysis on the dataset showed that getFile()
→ Write()→ Write.close() patterns occur for both be-
nign web applications and RØB due to the natural usage of
the FSA API. However, we observed that while this pattern
repeats once for every file in the test folder for RØB, the pat-
tern is repeated multiple times for the benign web application
as the user performs multiple changes on the files. This is
expected as ransomware is incentivized to encrypt as many
files as possible while users of benign web applications are
expected to work and modify a single file multiple times.
System Calls. Although RØB uses Wasm for encryption and
does not employ the crypto APIs of the platform, it would
still be possible to monitor the other system calls made by
that browser process while interacting with the file system.
We hypothesize that the system calls made by web applica-
tions through the browser can be used to differentiate benign
and malicious RØB-like web applications. The system call
monitoring has been successfully utilized by numerous differ-
ent types of malware detection methods in the literature [26].
Our study differs from those studies as we only monitor the
browser’s system calls.

We first manually inspected the system calls made by RØB

and vscode as an example. We observed that vscode uses a
significantly higher number of write-related system calls than
RØB. We found that while RØB’s system calls are uniformly
distributed, vscode’s system calls are randomly distributed for
each file in terms of the file size change. That is, every time
a location in memory is accessed by a benign application,
varying sizes of changes are performed while the malicious
applications apply almost the same amount of change every
time a location in memory is accessed.
File System Activities. File system activities are utilized by
ransomware detection mechanisms in the literature [52]. How-
ever, none of these approaches focus on the file system of
activity of the browser. To minimize the overhead, this ap-
proach can benefit from API hooking and identification of
the portion of the file system accessed by the web application.
Hence, only the corresponding portion of the file system that
the web application accesses can be monitored for low-level
file system activities. We first analyzed the file system ac-
tivities of RØB and vscode manually. Our analysis showed
that patterns of file system activities are generated only once
for each file on the test folder for RØB, whereas we see the
occurrence of the pattern multiple times for individual files
for vscode. This observation can be used to detect RØB-like
ransomware attacks.
Evaluation Against Adaptive Attackers. To evaluate Ap-
proach 2 against adaptive attackers, we created six different
versions of RØB: 1) RØBReordered: changes the order of the
FSA API calls randomly, 2) RØBWithBenign: adds benign
modifications (e.g. writing) between the encryption opera-
tions, 3) RØBWithBenAPI: makes benign API calls (e.g.,
battery status), 4) RØBWithEncWait: waits a random amount
of time during the encryption process, 5) RØBWithFSAWait:
adds random time intervals between the FSA API calls, and 6)
RØBWithBothWait: adds random time intervals both during
encryption and between the FSA calls.
N-gram Analysis. In this part, we analyze nine benign and
eight (two non-adaptive and six) malicious web applications
using n-gram analysis. We calculated the features using the
10% quantile ranges and used Euclidean for the distance cal-
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culation. We presented our results as heatmaps in Figure 3.
We found that web applications generate 33 FSA API function
calls on average while they generate 15k system calls and 8k
file system activities on average. We experimentally adjusted
the value of n for each feature. We observed the best results
for 2-gram in FSA API function calls, 4-gram for system calls,
and 1-gram for file system activities.

Overall results show that while ransomware samples are
clearly differentiable using the FSA API function calls and file
system activities, they are less differentiable with the system
calls. For example, a threshold-based detection system based
on system calls would likely miss the ransomware sample en-
crypting 100 files in a directory (i.e., RØBEncHundred). The
reason for this is that the impact of encrypting different files
cannot be observed in the system calls; therefore, encrypting
multiple files is creating a benign-looking behavior, which
is similar to a user modifying a file multiple times. While
the FSA API function calls and file system activities fea-
tures contain the modified file, which makes the multiple files
encrypting ransomware even easier to detect. On the other
hand, our results show that re-ordering the API calls, adding
benign API calls, or random waiting strategies do not have
any impact on FSA API function calls and file system activi-
ties since other benign API calls and timestamps of the API
calls are not considered during the feature extraction. We also
observed that out of all adaptive strategies, the strategies in-
volving additional waiting time affect the system calls feature
significantly, resulting in many false positives. Consequently,
a threshold-based detection system using system calls could
fail to detect ransomware samples such as RØBWithEncWait,
RØBWithFSAWait, and RØBWithBothWait. Similarly, such
a detection system would also misclassify some benign web
applications like photopea, text-editor, or excalidraw.
Usability & Discussion. In this approach, we showed the
feasibility of local activity monitoring to detect RØB-like ran-
somware. While monitoring the local activity of the web ap-
plications benefits from hooking to minimize the overhead, as
we observed in our evaluation against multiple types of adap-
tive attackers, adversaries can cause false results by changing
the implementation of RØB to call the other functions of
the API, make redundant system calls, or make a few small
changes on the files before encryption. On the other hand,
benign applications such as cloud storage services (Google
Drive, Dropbox, OneDrive), online code editors (GitHub, VS
Code), data processing tools (e.g., machine learning appli-
cations), and batch file conversion tools may perform mass
modification on multiple files, similar to the patterns of RØB.
In such cases, browser vendors might consider integrating
security alerts after a certain amount of modification with
clear information about the nature of the threat. So, users
can make informed decisions. This security alert may include
information about the application requesting access, the types
and quantity of modifications being made by the web appli-
cations. Additionally, browsers might define a threshold for

the number of allowed modifications before additional user
intervention is required. This threshold could be determined
based on typical usage patterns to minimize false positives.

6.3 Approach 3: New UI Design
In this approach, instead of detecting the malicious activity
of RØB, we aim to raise the security awareness of the users
and better inform them about the risks of allowing web appli-
cations to interact with local files.
Current Permission Boxes. The current dialog boxes imple-
mented in Chromium are shown in Figure 4 and 5. In the
permission dialog box demonstrated in Figure 4, the web ap-
plication asks for a permission to read the contents of all of
the files inside the directory selected by the user. In the per-
mission dialog box presented in Figure 5, the web application
asks for a permission to be able to (over)write all of the files
inside the directory picked by the user.
Issues. We found the following issues in the current permis-
sion dialog boxes. First, they do not clearly state the risks
of approving the permissions. For example, the current read
access permission box does not have any indicator for the po-
tential information disclosure of user-sensitive files. Similarly,
the current write access permission box does not have warn
for the risks of permanent data loss. Second, despite their
different capabilities read and write permission dialog boxes
look very similar. The users may mistakenly click one another
and give access to a web application. Third, the changes made
by the web application are not explicitly given in the write
dialog box to help the user while accepting the permanent
changes. Fourth, since it is not stated in the current permission
dialog boxes, the user may not be aware of the fact that the
web application will able to access the subdirectories inside
the selected directory too.
Design Decisions. Designing user interfaces for permissions
to ease security decisions is crucial. We define our design
decisions by applying guidelines from the state-of-the-art
studies [12, 20, 29, 49]. We note the following:
• The proposed interface must explicitly show the risks.
In [20], it has been shown that the users are likely to grant
dangerously excessive permissions when previous instances
of them have not contained reason for concern. For this, the
user interface can include words like "sensitive information
disclosure", "permanent loss". To further mitigate the ran-
somware threat in the write permission box, the keyword can
also be like "encryption" or "ransomware".
• The proposed user interface must be designed with col-
ors stated in the previous studies [49] that would effectively
capture the attention of the user. The warning icons have
been shown to be effective in the context of connection secu-
rity [30] to attract the user’s attention.
• Permission dialog boxes must not be identical so that the
user would know the difference for each box.
• The proposed new user interface must show all of the ac-
cessed/changed files for a meaningful user decision [48].
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Let site view files?
www.example.com will be able to view files in directory_name until you close 
all tabs for this site. 

Cancel View files

Let site view files?

Warning! www.example.com will be able to read all files in 
directory_name and its subdirectories until you close all tabs for this site.

www.example.com might attempt to steal your sensitive information.

Get more information on the possible risks. Does this website look 
suspicious? Report it here

Old UI

New UI

Cancel View files

Figure 4: Read access permission box (old and new).

Old UI

New UI

Save changes to directory_name?

www.example.com will be able to edit directory_name until you close all tabs 
for this site. 

Cancel Save changes

Save changes to directory_name?

Warning! www.example.com will be able to edit directory_name and its 
subdirectories until you close all tabs for this site. 

The changes made by www.example.com can cause permanent loss 
of your local data. See the impacted files….

- Edited /Users/Alice/Cloud/directory_name/test1.txt
- Edited /Users/Alice/Cloud/directory_name/test2.txt
- Edited /Users/Alice/Cloud/directory_name/sub_directory/test3.txt

Get more information on the possible risks. Does this website look 
suspicious? Report it here

Cancel Save changes

Figure 5: Write access permission box (old and new).

• The proposed new user interface must include a link that
redirects the user to a web page for more information about
the API and its risks.
Improvements Over Old UI. With these design decisions,
we proposed two new UIs as shown in Figure 4 and Figure 5
for the read and write access, respectively. In the new UIs, we
added the warning icon, the keyword "subdirectory" in the
explanation, and a hyperlink to get more information about
this API and its risks. Also, in the write box, we added the
keywords such as "permanent loss" and an option allowing
users to see which files were modified by the web application.
Usability & Discussion: The key benefit of the new UI de-
sign approach is its seamless integration with the existing
permission dialog boxes, without incurring any additional
overhead. The new UI clearly outlines the capabilities of
web applications and any potential malicious intent they may
possess. Furthermore, to enhance both the effectiveness and
usability of this approach, the new UI could incorporate ani-
mations and avatars to boost user engagement and understand-
ing [36], incorporate multilingual support, and integrate with
accessibility technologies [18]. The new UI design can be
integrated into the API’s source code, this approach directly
impacts every web application utilizing the FSA API, i.e., no
installation required. Although redesigning user interfaces
can help in protecting users from various attacks, an attacker
can still gain the user’s trust via malicious tactics [34, 41].

7 Related Work
Ransomware Defense. The ransomware defense approaches
can be grouped into three categories: static analysis-based,
dynamic analysis-based, and key extraction-based. Static
analysis-based solutions [64] use structural features such as
strings and opcodes to detect ransomware. Dynamic analysis-
based solutions use behavioral features such as network and
registry activity, API/system call usage [13, 40, 65], I/O ac-
cess patterns, and file system activity [52], network traf-
fic features [14, 21, 22, 47], registry changes [35, 37]. The
works [33,46] used memory forensics and behavioral analysis

to extract keys and recover the files.
Web API Security. Several works in the literature have ana-
lyzed the security and privacy of emerging web APIs. In [32],
the authors identified a vulnerability in the Geolocation API,
analyzed its impact, and discussed potential countermeasures.
In [55], the authors explored a new attack vector through the
screen-sharing API and discussed the effectiveness of the
existing web defense systems. In [62], Weeks discussed the
possible adverse effects of exploiting the FSA API, which
includes data exfiltration and the potential code execution.

8 Conclusion

In this work, we designed and implemented the first browser-
based ransomware - RØB and showed the inefficacy of the
underlying FSA API documentation. Our extensive evalua-
tions with 3 different OSs, 29 distinct directories and 5 cloud
providers showed that RØB is capable of encrypting numer-
ous types of files in various local directories, cloud-integrated
directories, external storage devices, and network-shared fold-
ers. As existing ransomware detection systems including com-
mercial antivirus solutions face several issues against RØB
due to its distinct features, there was a need to propose a new
defense solution against RØB-style attacks. Therefore, we
proposed three different defense approaches to mitigate this
new attack vector at different levels.
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Appendix

A Responsible Disclosure Communication
Process Details

In this section, we provide the details of our communication
and disclosure process with the respective developers and
editors of the FSA API, which is Google.
Email Contact: On February 17, 2022 we sent an email to
one of the main developers of the FSA API about our find-
ings. They acknowledged our findings and redirected us to

the editor of the FSA documentation for possible documenta-
tion [61] improvements as they agreed it was a weak expla-
nation. Although we had several exchanges with them, they,
unfortunately, did not swiftly act on it to provide any improve-
ments (although we offered our help). Note that at that point,
we have been already conducting an extensive analysis on
this problem (i.e., different OSes, anti-virus products, cloud
providers, etc.).
Security Bug Report and Opening GitHub Issue: After-
wards, we submitted a security bug report to Chromium on
November 7, 2022, which is not a public process, and ex-
plained our findings and possible documentation improve-
ments. They recommended us to open a public GitHub issue
in order to be able to swiftly update the documentation based
on our findings. However, due to the anonymity requirements
of the conference and to prevent the further publicization of
the issue at that moment, we have not opened an issue on
GitHub then.
Video Conference with the FSA API Developers/Editors:
Then, we contacted and met with the FSA API developer-
s/editors via video conference on November 10, 2022. In the
meeting, we further explained the impacts of the ransomware
through the FSA API, possible documentation improvements,
and our defense solutions to the developers. They acknowl-
edged that the ransomware risks in the documentation were
downplayed and agreed to update the documentation based
on our findings. In the meeting, we also mentioned the po-
tential publication of the paper to the developers and editors
of the API. In turn, they asked us to provide them with our
suggestions on how to improve the documentation and we
have been working with them on this front to better reflect
the ransomware risks in the documentation.

B Further UI Improvements
Further UI improvements are also possible. We found that
some cloud platforms (e.g., OneDrive) have similar permis-
sion boxes for file-sharing, which include other details that
can be adapted by the FSA API. First, there is an icon of the
accessed website to prevent spoofing attacks. Second, there
is an explanation that the website is not endorsed by the API.
Moreover, there is a link to report suspicious websites, which
could help the developer in building a blocklist to help users
in the long term. Finally, there is a link to the website’s pri-
vacy statement to learn more about how the data will be used
by the website. We have not integrated these into our designs
in Figure 4 and 5 to maintain the simplicity of our design.

C Approach 1 - Dataset Creation
To calculate the size and entropy change between an origi-
nal file and its modified versions, we need a comprehensive
dataset that covers different types of files with various ver-
sions where users performed a diverse set of modifications.
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Table 4: The list of web applications used for the local activity
monitoring experiments.

Web Application Type Link
RobEncOne malicious N/A
RobEncHundred malicious N/A
RoBReordered malicious N/A
RoBwithBenign malicious N/A
RoBwithBenAPI malicious N/A
RoBwithEncWait malicious N/A
RoBwithFSAWait malicious N/A
RoBBothWait malicious N/A
bangle benign https://bangle.io/
drawio benign https://app.diagrams.net/
excalidraw benign https://excalidraw.com/
GitHub benign https://github.dev/github/dev
glitch benign https://googlechromelabs.github.io/browser-fs-access/demo/
photopea benign https://www.photopea.com/
svgco benign https://svgco.de/
text-editor benign https://googlechromelabs.github.io/text-editor/
vscode benign https://vscode.dev/

We searched for such databases in various resources including
IEEE DataPort, Google Dataset Search, and Kaggle. However,
we could not find a suitable dataset for our needs. Hence, we
decided to create our own dataset that includes different file
types with various realistically-generated versions.

We selected five file types, namely pdf, docx, xlsx,
txt, jpeg, that may contain sensitive data of users and enter-
prises. The Digital Corpora consists of almost 1 million real
files from government websites and is distributed freely [31].
Using the Digital Corpora, we collected 1000 files from each
file type. The average file size of each type of a file is 0.67MB
for pdf, 0.24MB for docx, 0.29MB for xlsx, 0.58MB for
txt, and 0.15MB for jpeg formats.

To mimic user behavior on the files, we considered adding
and removing contents from the files to generate different
versions. While doing that, we paid attention to preserving
the file formats. To have a comprehensive dataset, we created
100 different versions of each file. The first 50 versions are
content removed versions of files are created to mimic dele-
tion operations made by users. On the other hand, the other
second 50 versions are content-added versions of the files are
created to reflect data appending operation made by the user.
We developed Python scripts that perform these procedures
on the files. The low-level details of how we created 100 dif-
ferent versions of each file with respect to each file type are
summarized as follows:

Modification of txt files For the content removal operation
from a text file, we define a range between 1 and n, where n is
the number of words in the text file. Afterward, we generate a
random number r in the range of [1,n] using Python’s built-in
random function that generates random numbers with respect
to Uniform Random Distribution. Then, starting from the end
of the text file, we remove r words from the original version
of the text file and created the new version of the file. For
the content insertion operation, we generate another random
number r in the same way and we randomly choose r words
from the word database that includes the contents of all the
text files in our dataset and append these randomly chosen

words to the end of the text file.
Modification of docx files For the content removal opera-
tion from a docx file, we used a similar methodology with
text files. Specifically, we first generate a random number r
between 1 and n where n is the number of words in the docx
file. Then, starting from the end of the docx file, we remove
r words from the docx file to create the content removed
version. In the context of creating content-added versions of
the docx file, we utilized our docx content database. Such
that, we retrieve r words randomly from the docx content
database and also randomly choose a jpeg file from our jpeg
file database and append them to the docx file.
Modification of pdf files For the content removal operation
from a pdf file, we first generate a random number r that is in
the range of [1,n] where n represents the number of pages of
the pdf file. Afterward, we remove the content that resides on
the rth page of the pdf file to generate the content-removed
version of the file.To generate the content-added version of
the file, we randomly choose a pdf file from our dataset and
add its content on the rth page to the end of the pdf file.
Modification of jpeg files We perform the content-removal
operation on jpeg file by cropping the file randomly. To
achieve this, we define two random variables, namely r1 that
is between 1 and n, and r2 that is between 1 and m, where n
represents the width and m represents the height of the jpeg
file. By using these randomly generated width and height
values, we crop the jpeg file starting from the left top cor-
ner ((0,0) coordinates). After this operation, the jpeg file is
cropped to become an r1xr2 image. We create the other 50 dif-
ferent versions of a jpeg file by merging it with another jpeg
file randomly selected from our database, which includes all
jpeg files in our dataset.
Modification of xlsx files To perform the removal operation
on an xlsx file, we first calculate the number of rows in a
xlsx file. Then, we define a range between 1 and n, where n
is the number of rows in the xlsx file. Afterward, we create a
random number r in this range and remove r rows from the
end of the xlsx file. To perform adding operation, we add a
random number (r) of rows to the end of the xlsx file that is
retrieved from xlsx file database.
Reflecting Malicious Changes. To reflect malicious changes
(i.e, encryption with RØB) on the files, we encrypted each
file including modified versions in our dataset with RØB that
uses the AES-256 encryption algorithm.

D Approach 1 - Evaluation Against Adaptive
Attackers

To evaluate our first approach against more adaptive attackers,
we randomly selected 500 files (100 per file type) from our
original benign dataset. We created corresponding 500 mali-
cious files for each evasion technique. We repeated this pro-
cess for different techniques. Then, we evaluated the impact
of the technique and its success rate in evading our classifier.
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Table 5: Evaluation against more adapt attackers.

Technique Acc. Recall Prec. F1 TP TN FN FP

Partial Encryption

TXT 1.0 1.0 1.0 1.0 100 0 0 0
PDF 0.98 0.98 1.0 0.98 98 0 2 0
JPEG 0.99 0.99 1.0 0.96 99 0 1 0

DOCX 0.98 0.98 1.0 0.98 98 0 2 0
XLSX 0.97 0.97 1.0 0.98 97 0 3 0

Low-entropy
Data Padding

TXT 1.0 1.0 1.0 1.0 100 0 0 0
PDF 0.97 0.97 1.0 0.98 97 0 3 0
JPEG 0.99 0.99 1.0 0.96 99 0 1 0

DOCX 0.99 0.99 1.0 0.96 99 0 1 0
XLSX 0.97 0.97 1.0 0.98 97 0 3 0

Post-encryption
Encoding (Base64)

TXT 1.0 1.0 1.0 1.0 100 0 0 0
PDF 0.99 0.99 1.0 0.99 99 0 1 0
JPEG 0.99 0.99 1.0 0.96 99 0 1 0

DOCX 0.99 0.99 1.0 0.99 99 0 1 0
XLSX 0.96 0.96 1.0 0.97 96 0 4 0

Post-encryption
Encoding (Base32)

TXT 1.0 1.0 1.0 1.0 100 0 0 0
PDF 1.0 1.0 1.0 1.0 100 0 0 0
JPEG 1.0 1.0 1.0 1.0 100 0 0 0

DOCX 1.0 1.0 1.0 1.0 100 0 0 0
XLSX 0.99 0.99 1.0 0.99 99 0 1 0

Post-encryption
Encoding (Hexadecimal)

TXT 1.0 1.0 1.0 1.0 100 0 0 0
PDF 0.94 0.94 1.0 0.96 94 0 6 0
JPEG 0.95 0.95 1.0 0.97 95 0 5 0

DOCX 1.0 1.0 1.0 1.0 100 0 0 0
XLSX 0.99 0.99 1.0 0.99 99 0 1 0

Custom
Evasion

TXT 0.1 0.1 1.0 0.18 10 0 90 0
PDF 0.12 0.12 1.0 0.21 12 0 88 0
JPEG 0.06 0.06 1.0 0.11 6 0 94 0

DOCX 0.09 0.09 1.0 0.16 9 0 91 0
XLSX 0.09 0.09 1.0 0.16 9 0 91 0

During the classifier evaluation, we used 10-fold to ensure a
clean split between training and test data. The average size of
each file type in our new dataset is 0.72MB for pdf, 0.23MB
for xlsx, 0.33MB for docx, 0.12MB for jpeg and 0.40MB
for txt files. Also, the average entropy values of each type
in our dataset are 7.54 for pdf, 7.68 for xlsx, 7.37 for docx,
7.80 for jpeg and 4.32 for txt files. To mimic the adap-
tive attacker behavior on the files, we used partial encryption,
low-entropy data padding (e.g., injecting low-entropy data),
encoding post-encryption, and custom evasion. We algorith-
mically chose the best-performing classifier in an automated
fashion. Specifically, the KNN classifier yielded the best re-
sults for xlsx files, the Decision Tree classifier for pdf, jpeg,
and txt files, and the XGBoost classifier for docx files. We
presented the results of our experiments in Table 5. The de-
tails of our dataset creation procedure for evasion techniques
are as follows:
Partial-Encryption: To mimic partial-encryption behavior
on the files, we encrypted 25% of the file content using the
AES-256 algorithm.
Low-entropy data padding:To mimic the low-entropy data
padding behavior on the files, we initially encrypted the files
using the AES-256 algorithm. Subsequently, we injected a
random amount of low-entropy data consisting of null charac-
ters (e.g., \x00, with a randomly defined length varying from
10,000 to 20,000) to the file content.
Encoding Post-Encryption: To perform the encoding post-
encryption technique, we initially encrypted each file type
using the AES-256 algorithm. Then, we applied various en-
coding techniques to the files, including Base64, Base32, and

hexadecimal encoding.
Custom Evasion: In this scenario, we combined both data
padding and partial encryption techniques to mimic the benign
modification of the user. To achieve that, we continuously
encrypt the 25% of the file and injected a amount of data until
it achieves the ±10% of the average entropy and size of the
benignly modified file.
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