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Abstract
We present the first general construction of a Multi-Factor Key
Derivation Function (MFKDF). Our function expands upon
password-based key derivation functions (PBKDFs) with sup-
port for using other popular authentication factors like TOTP,
HOTP, and hardware tokens in the key derivation process. In
doing so, it provides an exponential security improvement
over PBKDFs with less than 12 ms of additional computa-
tional overhead in a typical web browser. We further present
a threshold MFKDF construction, allowing for client-side
key recovery and reconstitution if a factor is lost. Finally, by
“stacking” derived keys, we provide a means of cryptograph-
ically enforcing arbitrarily specific key derivation policies.
The result is a paradigm shift toward direct cryptographic
protection of user data using all available authentication fac-
tors, with no noticeable change to the user experience. We
demonstrate the ability of our solution to not only signifi-
cantly improve the security of existing systems implementing
PBKDFs, but also to enable new applications where PBKDFs
would not be considered a feasible approach.

1 Introduction

Since the introduction of PBKDF1 in 1991, password-based
key derivation functions (PBKDFs) have enjoyed widespread
use and deployment in a variety of settings, including in the
WPA [25] and WPA2 [26] protocols, LastPass [35] and Dash-
lane [16] applications, and Windows [13] and iOS [5] oper-
ating systems. PBKDFs provide a convenient solution to the
usable key management problem: by deterministically deriv-
ing keys based on a user’s password, systems can achieve
end-to-end encryption while providing a seamless user experi-
ence and subverting the need for secure key storage. However,
the recent surge in password-based attacks like credential
stuffing and password spraying has highlighted the critical
weakness of passwords as a sole authentication factor.

Although a growing number of platforms have imple-
mented multi-factor authentication in response to this threat,
password-derived keys (and thus all secrets encrypted with
them) remain only as secure as the passwords they are based
on. We therefore suggest the use of, and provide a novel con-
struction for, a key derivation function that incorporates all of
a user’s multiple authentication factors into the key derivation
process. In doing so, user data is, for the first time, directly
cryptographically protected by all authentication factors.

While incorporating all of a user’s login factors into the
key derivation process seems like a natural and long overdue
extension of PBKDFs, achieving this with the most popular
secondary authentication factors currently in use is difficult
in practice. Current PBKDFs rely on the relatively unchang-
ing nature of passwords to convert them, via deterministic
one-way functions (OWFs), into fixed encryption keys. By
contrast, most of the secondary factors in popular use today
constitute one-time passwords (OTPs) that are expected to
change upon each user login, which does not readily facilitate
the derivation of a static key.

In this paper, we describe and evaluate the first known
Multi-Factor Key Derivation Function (MFKDF) with support
for common authentication factors like TOTP, HOTP, OOBA
(e.g., Email/SMS), HMAC-SHA1 (e.g., YubiKey), and, of
course, static factors like passwords and recovery codes. We
do so using fast, standardized cryptographic primitives, re-
sulting in a total computational overhead of ≤ 12 ms over
PBKDFs in a typical web application (§11), with no notice-
able changes to the user experience.

Our MFKDF construction represents a fast, flexible,
secure, and practical key management solution that provides
several advantages over existing PBKDFs: it supports
self-service client-side key recovery without creating a
central point of failure, can be used to implicitly authenticate
without revealing authentication factors to a server, and
enables cryptographic enforcement of arbitrarily complex
authentication policies. We demonstrate these features by
implementing and testing MFKDF in realistic, full-stack
centralized and decentralized applications, including a
trustless decentralized cryptocurrency wallet for which
PBKDFs would not have been sufficiently secure (§10.2).

Contributions

1. We provide the first general construction of a multi-factor
key derivation function (§4). Our function provides an
exponential security improvement over PBKDFs (§6).

2. We provide KDF constructions for several popular authen-
tication factors (§5), including the first known KDF con-
structions based on HOTP and TOTP (§5.2).

3. We provide a k-of-n threshold MFKDF construction (§8.1)
that can be used to facilitate self-service account recovery
without a central point of failure (§8.2).

4. We illustrate how MFKDF can cryptographically enforce
arbitrarily specific key derivation policies (§9).
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2 Background & Motivation
In this section, we aim to motivate the need for a multi-factor
key derivation function by following the prototypical use case
of a password management system. Password managers repre-
sent a common application for client-side key derivation, with
password-based key derivation functions currently being a ma-
jor architectural component of popular password management
products like LastPass [35], Dashlane [16], and 1Password
[1]. We first describe a typical architecture of a modern pass-
word management system, then describe the drawbacks of this
current architecture, and finally illustrate how the multi-factor
key derivation function presented herein can serve to remedy
these flaws.

Password-Based Key Derivation
Password management systems are, by their nature, highly
security-sensitive due to their role as a gateway to all of a
user’s online accounts. Systems that provide adequate security
for this application are generally trustless, as users are often
concerned not only with the threat of outside actors, but also
with potential malicious activity of the service itself. The chief
goal of a secure password management system architecture
is therefore to preserve the confidentiality of stored secrets
even in the event that all centralized system components are
compromised by an adversary.1 Today, password-based key
derivation functions like PBKDF1 and PBKDF2 [29] are
critical tools for enabling this level of security. In general, a
password-based key derivation function F converts a pass-
word P, salt S, and optional configuration parameters cfg into
a key DK of length dkLen: DK = F(P,S,cfg,dkLen).

In practice, most password-based key derivation functions
are built upon, and inherit the security properties of, crypto-
graphic hash functions like SHA-256 [22]. When a user signs
in to a typical password management application, PBKDF2
is used on the client side to derive a key from the user’s pass-
word. A symmetric encryption function like AES-256 [38] is
then used to encrypt all of a user’s secrets on the client side
prior to their storage in a centralized database. Thus, even an
adversary with complete access to the database will not be
able to derive the key necessary to decrypt the user’s secrets
without knowing their password.

An important property of password-based key derivation
functions is a degree of intentional computational inefficiency
that increases the relative difficulty of brute-force attacks. For
example, the PBKDF2 configuration used by LastPass invokes
100,000 rounds of SHA-256 to increase its computational dif-
ficulty to a degree that remains relatively unnoticeable to users
but is significantly burdensome to brute-force attackers. Ad-
vanced password-based key derivation functions like Argon2
[10] have been developed to further resist brute-force attacks,
but operate in a fundamentally similar way to the functions
like PBKDF2 described above.

1To further motivate this standard, we note that LastPass has experienced
at least 6 security incidents [39], including two database breaches [45, 47].

Multi-Factor Authentication
While the password-based key derivation approach described
above is effective at binding a user’s secrets to their master
password, it is not adequate on its own to protect a user’s
account due to the well-known insecurity of passwords as a
sole authentication factor [20, 21] and their susceptibility to
attacks such as credential stuffing [2]. Therefore, services typ-
ically use multi-factor authentication (MFA) in conjunction
with password-based key derivation. Popular secondary au-
thentication factors include “soft tokens” like HMAC-based
One-Time Password (HOTP) [51] and Time-based One-Time
Password (TOTP) [52], “hard tokens” like YubiKeys [53], and
Out-of-Band Authentication (OOBA) factors like email and
SMS [24]. These factors are inserted by password managers
into the login process for obtaining an authentication token
necessary to access encrypted secrets stored in a database.

The use of MFA during the login process may prevent at-
tackers from accessing stored secrets under correct system
operation, but fails to meet the previously-stated security goal
of surviving a complete system breach. In the event of a
compromise, passwords remain the only factor necessary to
decrypt and access secrets. Thus, the current method of MFA
only superficially addresses the threat of attacks like password
spraying and credential stuffing in the context of password
management. What is therefore needed is a mechanism for en-
suring that a user’s encryption key cannot be derived without
utilizing all of their authentication factors.

Account Recovery
Absent additional considerations for account recovery, sys-
tems using password-based key derivation are liable to a com-
plete loss of user data in the event of a lost password. In
light of the fact that user passwords are, in fact, frequently
forgotten by end users [23], this risk is generally considered
untenable for users and service providers alike. This risk can
be mitigated via the use of a master key as shown in Fig. 1.

Data Encryption 
Key (DEK)

Key Encryption 
Key (KEK)

Master Key
(MK)

🔒 AES-256

User Data

🔒 AES-256

🔒 AES-256

🔒 PBKDF2

User Password

Figure 1: Typical architecture for account recovery via master key.

As illustrated above, when a user forgets their password,
they are presented with one or more alternative security chal-
lenges (e.g., security questions). Upon successful completion
of these challenges, the system uses the master key to recover
the data encryption key and decrypt any stored data.

While the use of a central master key for data recovery may
be deemed a necessary concession for the sake of usability, it
once again fails to meet our security goal of surviving central-
ized system compromise; in fact, it largely defeats the initial
purpose of using client-side user-derived keys.
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Due to the obvious drawbacks of this approach, modern
password managers rarely rely on central recovery keys for
individual accounts. Instead, they largely utilize approaches
that store recovery keys on trusted user devices. For instance,
LastPass [35], 1Password [1], and Dashlane [16] all support
account recovery via biometrics by storing a key on a trusted
smartphone. LastPass additionally supports SMS recovery by
storing a key on a trusted browser, while 1Password supports
the use of Linux authentication for recovery.

In all instances, without a central key, users must maintain
access to at least one trusted device where a recovery key has
previously been stored if they hope to recover their account.
Some services, like 1Password, go as far as to allow users
to manually store and manage their secret key, which must
be used together with their password to authenticate on new
devices. Once again, no recourse is available if this key is not
retained in at least one secure location. What is needed is a key
derivation method that supports client-side recovery of secrets
when one or more authentication factors is forgotten while
requiring neither a trusted device nor a central point of failure.

Motivation
In summary, current system architectures based on password-
based key derivation are flawed in a number of significant
ways. They fail to incorporate secondary authentication fac-
tors into the key derivation process, leaving users susceptible
to credential stuffing and password spraying, and introduce a
central point of failure when using master keys for account
recovery. These flaws are not problems of specific system
architectural designs, but rather are fundamentally implicated
by the use of password-based key derivation in a system.

In this paper, we aim to present a complete solution to the
problems highlighted above by constructing a multi-factor key
derivation function (MFKDF) that realizes the full benefits of
multi-factor authentication within the key-derivation process
(§4). Unlike current architectures, our suggested approach
supports client-side key recovery without using a master key
or trusted device (§8.2). In §10.1, we demonstrate a proof-
of-concept password management system architecture based
on MFKDF and illustrate its security advantages over current
architectures. Importantly, we do so with no noticeable change
to the user experience, and while supporting all of the same
2FA factors that users have already grown accustomed to,
providing a more streamlined account login and recovery
experience than systems using manual key management.

Of course, the current applications of password-based key
derivation go far beyond password management, including
use in the Windows [13] and iOS [5] operating systems and
WPA [25] and WPA2 [26] wireless protocols. The MFKDF
approach presented herein is naturally applicable to many of
these systems, such as to bring the benefits of multi-factor
authentication to operating systems and wireless networks.
Further, in §10.2, we will illustrate how the security properties
of MFKDF enable its use even in contexts where PBKDFs
would never have been considered sufficiently secure.

3 Problem Statement

Krawczyk’s analysis of HKDF [30] provides an excellent
formalization of key derivation functions. We use a modified
framework of Krawczyk here to give a formal statement of
the security of our MFKDF constructions.

There are two components to our framework: factor
constructions, which exist to derive static key material from a
specific authentication factor, and KDF constructions, which
use the results of one or more factor constructions to derive a
key. We begin by discussing the factor constructions.

Factor Constructions
Definition 1. A factor F is a two-valued probability distribu-
tion (σ,α) generated by an efficient probabilistic algorithm.

Factors are said to have a private component (σ) and a pub-
lic component (α). For example, if F = (σ,α) is a security
question, then α might contain the publicly-known question
and σ might contain the secret answer. On the other hand, if
F is a password, then α might contain the publicly-known
strength requirements while σ contains the password itself. In
this paper, we refer to the public component α as the “factor
parameters” and the private component σ as the “factor mate-
rial.” For some factors, the parameters α might change over
time, but the material σ must remain constant.

Definition 2. We say that F is a statistical m-entropy factor
if for all s and a in support of F , the conditional probability
Prob(σ = s | α = a) is at most 2−m.

Consider a factor F where α is always “What’s your fa-
vorite number between 1 and 64?” and users chose σ uni-
formly in [1,64]. Then F is a statistical 6-entropy factor.

Definition 3. We say that F is a computational m-entropy
factor if there is a statistical m-entropy factor F ′ that is com-
putationally indistinguishable from F.

Consider modifying the previous example such that α also
contains a secure encryption of σ. Now F is a computational
6-entropy factor since σ is theoretically determinable within
[1,64] given α, yet it is computationally infeasible to do so
(compared to the difficulty of guessing σ ∈ [1,64]).

Definition 4. A factor construction F uses a factor witness
Wi and parameters αi to output the factor material σ and new
parameters αi+1; F : (Wi,αi) 7→ (σ,αi+1).

A factor witness (Wi) refers to the one-time value used to
demonstrate possession of a factor. For example, Wi might
be a one-time 6-digit code in the case of HOTP. The role of
the factor construction F is to output a constant σ despite
the witness Wi potentially changing. The ability to update the
parameters (αi 7→ αi+1) each time F is invoked is critical to
making this possible.
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In this paper, we split F into the FactorDerive function,
producing σ, and the FactorUpdate, producing αi+1. Each
factor also requires a corresponding FactorSetup function to
produce the initial parameters α0 given some configuration.

Goals. In this paper, we aim to provide factor construc-
tions (FactorSetup, FactorDerive, and FactorUpdate) for
computational m-entropy factors representing HOTP, TOTP,
YubiKey, OOBA, and constant factors like passwords.

KDF Constructions
Definition 5. A KDF D outputs K (a string of ℓ bits) and αi+1
given ℓ and values (σ,αi) sampled from a factor F .

Note that by definition, a KDF is defined with respect to
a single factor. In practice, we will show that F can be a
“composite factor” which combines multiple input factors,
allowing KDF to be a multi-factor KDF (MFKDF). Thus, our
MFKDF construction needs both an MFKDFDerive function
(D) and an MFKDFSetup function that establishes the initial
parameters (α0) of the composite factor F .

Definition 6. A KDF is said to be (t,q,ε)-secure with respect
to a factor F if given a (σ,α) ∈ F no attacker A knowing
α running in time t and making at most q arbitrary queries
to KDF can distinguish between KDF(σ, ℓ) and {0,1}ℓ with
probability larger than 1/2+ ε.

Def. 6 is our main security definition for MFKDF. It states
that the output key K should be hard to distinguish from
random noise {0,1}ℓ without knowing the secret component
(factor material) σ of the input factor F .

Definition 7. A KDF is called (t,q,ε) m-entropy secure if it
is (t,q,ε)-secure with respect to all m-entropy factors.

Note that because our MFKDF constructions require spe-
cial treatment of each factor type, we cannot assert their se-
curity on arbitrary m-entropy factors. However, it is reason-
able to make this assumption of the underlying KDF (e.g.,
HKDF [30]) used to construct MFKDF.

Goals. In this paper, we aim to provide an MFKDF con-
struction (MFKDFSetup, MFKDFDerive) which uses a set of
factors S = {FA,FB, ...} and parameters αi to produce a key
K and new parameters αi+1; D : (S,αi) 7→ (K,αi+1).

We also aim to provide a k-of-n threshold multi-factor
KDF construction, where given any C consisting of ≥ k
factors in S (∀C ⊆ S s.t. |C| ≥ k), D : (C,αi) 7→ (K,αi+1).

Problem Setting
Per the above definitions, each KDF and factor F has private
components (Wi, σ, K) and public components (α). We as-
sume a legitimate user is the only party able to generate factor
witnesses Wi for their authentication factors, and thus is the
only party able to derive factor material σ and keys K. We

make no assumptions, however, of parties knowing α; the
parameters α can even be stored on a public blockchain.

Definition 8. Factors FA and FB are indepen-
dent if for all (σa,αa) ∈ FA and (σb,αb) ∈ FB,
P(σa = sa | αa = aa) = P(σa = sa | αa = aa∧αb = ab),
∧ P(σb = sb | αb = ab) = P(σb = sb | αa = aa∧αb = ab).

We add the assumption of independent factors to our
problem setting and security definitions. Most factors in
practice are independent because they rely on a random
key. A counter-example would be a security question whose
answer overlaps with the contents of a password.

Policy Constructions
Finally, we introduce the notion of a “policy-based MFKDF,”
a stronger construction than the ones introduced above which
allows implementers to specify exactly which factor combi-
nations are allowed to derive a key.

Definition 9. Given a set of factors S = {FA,FB, ...}, an al-
lowable factor combination C is any subset of factors in S
(C ⊆ S,C ̸=∅) that can be used to derive a key K.

Definition 10. A policy P is a set of all allowable factor com-
binations (P= {C1,C2, ...}) that can be used to derive a key K.

In the previously-described k-of-n threshold MFKDF, P
was restricted to containing all subsets of S of size ≥ k. How-
ever, per the above definition, P can now contain any non-
empty subsets of S, regardless of size.

Goals. We aim to provide a policy-based multi-factor KDF
construction w.r.t. P: ∀C ∈ P, DP : (C,αi) 7→ (K,αi+1).

Security Goals. Standard and threshold MFKDF are sub-
cases of policy-based MFKDF, so we define our security goals
in the policy setting. Let S = {F1,F2, ...,Fn} be n independent
computational {m1,m2, ...,mn}-entropy factors. Let PKDF
be (t,q,ε)-secure. Now given a policy-based MFKDF KDF
w.r.t. PKDF and any P ∈ P (P (S)\∅)\∅:

• Correctness. For any C ∈ P, (K,α′)← KDFP(C,α), and
C′ ∈ P, (K′,α′′)← KDFP(C′,α′), K = K′.
(Providing any valid combinations of factors should always
result in deriving the same key.)

• Safety. For any C ∈ P, (K,α′)← KDFP(C,α), and C′ ̸∈ P,
(K′,α′′)← KDFP(C′,α′), K ̸= K′ except with negligible
probability w.r.t. key size ℓ.
(Providing an invalid set of factors should be highly unlikely
to derive the correct key.)

• Entropy. Let E denote ∑{m1,m2, ...,mn} for all C ∈ P.
Then the MFKDF construction w.r.t. P shall be
(t,q,ε)-secure w.r.t. a factor FK , where FK is a computa-
tional (min(E))-entropy factor.
(Attacking the derived key should be as hard as attacking
the weakest set of allowed factors.)
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4 Multi-Factor Key Derivation

We identified a few fundamental difficulties with implement-
ing even a basic n-of-n multi-factor key derivation function.
Firstly, there are a wide variety of authentication factors that
must be supported, each requiring its own treatment of inputs
and outputs to be used for key derivation. Secondly, many of
these factors are constantly-changing OTPs, which neverthe-
less need to be used to derive the correct, static key if and only
if the correct OTP (i.e., witness Wi) is provided at that instant.
A third, self-imposed constraint is “plug-and-play” compati-
bility with existing systems using PBKDFs; systems should
not need to be entirely rearchitected to use MFKDF, and the
user experience should not be impacted whatsoever. This sec-
tion outlines, at a high level, an MFKDF design that meets
these goals along with the security goals of §3. A formal
statement of this design is given in §A.3.

MFKDF Construction

In Fig. 2, we illustrate an MFKDF system consisting of
general-purpose MFKDFSetup and MFKDFDerive functions,
which present a standard interface to any number of factor-
specific FactorSetup, FactorDerive, and FactorUpdate func-
tions. This modular approach allows for individual treatment
of various authentication factors, many of which are described
in §5, as well as potential forward-compatibility with future
factors. During a setup phase (e.g., upon account creation),
initial key parameters (αK,0) are produced, encapsulating sev-
eral factor parameters {αFA,0,αFB,0, ...}. The ith derive phase
(upon ith login) then proceeds as follows:

1. The key parameters αK,i are split into several factor param-
eters {αFA,i,αFB,i, ...}.

2. Each factor witness {WFA,i,WFB,i, ...}, along with its
factor parameters, {αFA,i,αFB,i, ...}, is converted by its
FactorDerive function into factor material σF .

3. The factor material {σFA ,σFB , ...} is combined by
MFKDFDerive into key material σK .

4. Let KDF be a memory-hard PBKDF like Argon2 [10].
MFKDFDerive uses KDF on σK to produce key K.

5. The FactorUpdate functions use K and αF,i to produce
αF,i+1 for each factor.

6. The factor parameters {αFA,i+1,αFB,i+1, ...} are combined
with the output of MFKDFDerive to produce the updated
key parameters, αK,i+1.

A major innovation in this approach is the feedback loop
that allows the factor constructions to use K in producing
αF,i+1, which has the effect of allowing factor constructions
to hide secrets using K. These secrets can be used to “setup”
the i+1th key derivation during the ith derivation, making
possible the use of OTP factors.
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Figure 2: Multi-phase modular MFKDF construction.
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5 Factor Constructions

As described in §1, the chief contribution of MFKDF is not
necessarily the concept of a KDF with multiple inputs, but
rather its support for existing, commonly used authentication
factors, including dynamic factors like HOTP/TOTP. In this
section, we describe MFKDF factor constructions for a wide
variety of popular authentication factors. The goal of each
factor derivation function is to convert factor parameters (αF,i)
and a factor witness WF,i (e.g., a password, YubiKey response,
or TOTP code) into fixed factor material σF that can be used
by MFKDF to derive a key (K), along with updated factor
parameters (αF,i+1). Due to the key-feedback mechanism of
§4, the factor derivation function can use K when producing
αF,i+1, but not when producing σF . A formal statement of
each factor is given in §A.2.

5.1 Constant Factors

We begin by discussing constant factors such as passwords,
security questions, and recovery codes, as these are amongst
the easiest factors to construct. In general, PBKDFs are al-
ready well suited to handle such factors, so the witness WF,i
can be directly returned as σF . In some cases, a transform
function first is applied to WF,i, such as to standardize the case
of a security answer, or to extract useful data from a UUIDv4
recovery code. No parameters are required (αF = ε) due to
the artifacts being static. Our MFKDF construction would
therefore probably be overkill for simply combining multiple
static factors, but their inclusion here is useful to facilitate
classic factor combinations like password + TOTP.

5.2 Software Tokens

We next describe factor constructions for “soft tokens,” specif-
ically HOTP [51] and TOTP [52]. Our constructions rely on
the information-theoretic security of modular arithmetic rings
to convert a dynamic OTP (WF,i) into a fixed integer (targetF )
that can be used as σF . The resulting factors are perfectly
backward-compatible with existing HOTP/TOTP implemen-
tations like “Google Authenticator.” Both support a variable
number of digits d; typically, d = 6.

5.2.1 HOTP

The HOTP factor construction is the first to take advantage
of the key feedback loop described in §4. Although a user’s
HOTP code is expected to be different upon each deriva-
tion, one can predict what the user’s next HOTP code will
be if they know the HOTP key (hotpkeyF ) and counter (ctrF ).
On the other hand, hotpkeyF cannot be stored openly, as it
would allow an attacker to bypass the HOTP factor. The
key feedback mechanism allows hotpkeyF to be stored se-
curely in αF encrypted with the final derived key K while

still being used during the ith HOTP factor derivation to set
up the i+1th derivation. During the HOTP factor setup pro-
cess for hotpkeyF , a fixed targetF is set to a random integer
in range [0,10d). The first OTP (otpF,0) is determined us-
ing hotpkeyF with ctrF,0 = 1, and the modular difference is
stored as offsetF,0 = (targetF −otpF,0) % 10d . The factor pa-
rameters αF,0 consist of (d,ctrF,0,offsetF,0,ctF), where ctF is
hotpkeyF encrypted under K. The factor derivation process
(with WF,i = otpF,i) is as follows:

1. (d,ctrF,i,offsetF,i,cti) are obtained from αF,i.

2. σF = targetF is found as (offsetF,i +WF,i) % 10d .

At this point, the factor material (σF ) has been successfully
recovered (assuming WF,i is correct), and the MFKDF deriva-
tion of K can proceed. The HOTP factor can then use K for
the remainder of the derivation process via the key-feedback
loop described in §4:

3. Decrypt hotpkeyF from ctF using K.
4. Increment ctrF (ctrF,i+1 = ctrF,i +1).
5. Determine otpF,i+1 using hotpkeyF and ctrF,i+1.

6. Calculate offsetF,i+1 as (targetF −otpF,i+1) % 10d .
7. Return (d,ctrF,i+1,offsetF,i+1,ctF) as αF,i+1.

In summary, the above HOTP factor construction succeeds
at converting a dynamic HOTP code into fixed factor material
σF through use of a modular offsetF that is updated each
round using hotpkeyF (stored as ctF ).

5.2.2 TOTP

Our TOTP factor construction uses a similar fundamental
approach to the HOTP construction, given that by definition,
TOTP(K) = HOTP(K,⌊(T −T0)/TX⌋) where T is the current
UNIX time, T0 is the initial time, and TX is the time interval
(usually 30 seconds). However, given that we cannot predict
exactly which time T the next derivation will occur, each
possible offsetF must be calculated within a fixed window w,
corresponding to {ctr,ctr+1, ...,ctr+ t}. Because hotpkeyF
is known to the client during the setup and update phases,
these offsets can be calculated without involving the TOTP
application. Thus, upon derivation at time T , all subsequent
derivations between T and w ·TX will succeed at recovering
σF (the same approach can also be used to facilitate counter
desynchronization when using HOTP). This approach is quite
practical, with a window of w = 87600 (30 days) requiring
just 219 kb of storage, and less than 850 ms to setup and
derive (see §11). When implemented, the TOTP derivation
function need not re-calculate offset values corresponding to
times in the future, and all offset calculation can be done in the
background without blocking overall MFKDF key derivation
or usage since σF is output at step 2 of the above process.
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The proposed approaches for HOTP and TOTP-based key
derivation require no modifications whatsoever to existing
applications like Google Authenticator. Because hotpkeyF is
stored within αF (encrypted as ctF ), the calculation of the
next offset value(s) occurs entirely within the FactorSetup
and FactorUpdate functions, and does not involve the
authenticator application at all beyond the user obtaining
otpF,i from the app once each login, as is always required.

Theorem. The HOTP and TOTP factor constructions yield
computational (d/log102)-entropy factors.

Proof. Consider F = (σ,α) where σ = targetF and
α = (d,ctrF ,offsetF). Now σ is uniformly random in [0,10d),
and d, ctrF , and offsetF reveal no further information about σ,
so for all s and a in support of F , the conditional probability
Prob(σ = s | α = a) is at most 10−d = 2−(d/log102). Thus, F
is a statistical (d/log102)-entropy factor. Now consider F ′

which adds ctF to α; F is computationally indistinguishable
from F ′ if Enc is secure. F ′ is the construction of §5.2.
Thus the HOTP and TOTP factors are computational
(d/log102)-entropy factors. ■

Remark. Why should entropy be limited to d/log102 when
HOTP/TOTP secrets are much larger than this? MFKDF can-
not extract more entropy than the size of the witness used
to authenticate, regardless of the size of the underlying se-
cret. In particular, because the user inputs a d-digit code to
authenticate, MFKDF cannot possibly extract more entropy
from this factor than the brute-force attack search space of all
10d possible codes. Thus, the entropy gain from HOTP/TOTP
factors in MFKDF is theoretically optimal with respect to the
amount of entropy that is possible to derive from these factors.

5.3 Hardware Tokens
We next turn our attention to hardware authentication devices
(“hard tokens”) like USB security keys and smart cards. While
FIDO Universal 2nd Factor (U2F) and FIDO2 are the most
commonly used standards for interacting with such devices,
they are intentionally impossible to use for key derivation [18].
Specifically, their inclusion of a hardware-generated random
nonce in all signatures makes device responses completely
nondeterministic even if the secret is known. Fortunately,
most hard tokens, including all YubiKeys [53], also support
authenticating via HMAC-SHA1 challenge-response, which
can be used to derive an MFKDF factor.

In the simplest construction of this factor, the HMAC key
hkF is itself used as σF . During a setup phase, a random chal-
lenge cF,0 is generated, and the corresponding response rF,0 is
determined using hkF . Both cF,0 and padF,0 = rF,0⊕hkF are
stored in αF,0.2 The factor derivation (with WF.i = rF,i) then
proceeds as follows:

2In this paper, ⊕ denotes bitwise XOR and ⊙ denotes concatenation.

1. cF,i and padF,i are extracted from αF,i.
2. The HMAC key is recovered as hkF =WF,i⊕padF,i.
3. Generate a random 160-bit challenge cF,i+1.
4. Get the corresponding response using hkF with

HMAC-SHA1 (HS1): rF,i+1 = HS1(hkF ,cF,i+1).
5. Calculate the new pad, padF,i+1 = rF,i+1⊕hkF .
6. Let σF = hkF , αF,i+1 = (cF,i+1,padF,i+1).

When a user wishes to sign in, they simply extract cF,i from
αF,i, and generate rF,i with their YubiKey or equivalent device.
This approach succeeds at generating static key material σF
from devices such as YubiKeys supporting HMAC-SHA1,
while maintaining the freshness of non-repeating challenges
and responses. An alternative approach could be to use a fixed
random value for σF and directly query the device with cF,i+1
to get rF,i+1, which has the benefit of not requiring hkF to be
known to the KDF, but does not provide the same freshness.

5.4 Out-of-band Authentication
Finally, we provide a general construction for out-of-band
authentication (OOBA) factors such as SMS, email, and push
notifications, which are currently amongst the most commonly
used 2FA methods. Such factors, unlike all those previously
described, are not completely trustless, instead requiring a
degree of trust in the underlying channel (e.g., the cell carrier).
The OOBA factor takes advantage of this by encrypting a
dynamic OTP of d digits under the public key of the channel
(pkF ). The modular addition of said OTP with a fixed targetF
provides the same information-theoretic security as in the
HOTP and TOTP constructions.

In the setup phase, a fixed targetF and initial otpF,0

are both chosen randomly in range [0,10d). As with
HOTP/TOTP, the modular difference is stored as
offsetF,0 = (targetF −otpF,0) % 10d . The parameters
αF,0 consist of (d,pkF ,offsetF,0,ctF), where ctF is now
otpF encrypted under pkF . The factor derivation process
(with WF,i = otpF,i) then proceeds as follows:

1. (d,pkF ,offsetF,i,ctF) are recovered from αF,i.
2. σF = targetF is found as (offsetF,i +WF,i) % 10d .
3. The next OTP (otpF,i+1) is chosen in range [0,10d).
4. Calculate offsetF,i+1 as (targetF −otpF,i+1) % 10d .
5. Encrypt otpF,i+1 under pkF as ctF,i+1.
6. Return (d,pkF,offsetF,i+1,ctF,i+1) as αF,i+1.

When a user wishes to authenticate via OOBA, they can
obtain ctF,i from αF,i, submit ctF,i to the OOBA channel, and
use WF,i = otpF,i from the channel to derive σF . In practice,
using the S/MIME key [42] of the recipient as pkF is a good
way to implement the OOBA factor for email, which can
be extended to SMS using each cell carrier’s email-to-SMS
gateway service [48].
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6 Entropy & Brute-Force Resistance
Each of the factors presented in §5 is a computational m-
entropy factor with the value of m shown in Tab. 1. For any
given factor listed below, MFKDF extracts and fully utilizes
the amount of entropy available in the witnesses used to au-
thenticate. Thus, while it may be disappointing that any given
factor does not provide more entropy, such limitations are
inherently imposed by the factors themselves, not MFKDF.

Factor Entropy Bits (m or λF )
General Typical

Constant

Passwords Varies ≈ 40 [20]
Security Questions Varies ≤ 10 [12]

UUIDv4
(Recovery Code) 122

Soft
Token

HOTP d/log10 2 ≈ 20 when d = 6
TOTP d/log10 2 ≈ 20 when d = 6

Hard
Token

HMAC-SHA1
(e.g., YubiKey) 160

OOBA SMS, Email, & Push d/log10 2 ≈ 20 when d = 6

Table 1: Entropy of supported MFKDF factors.

A vitally important feature of the MFKDF construction in
§4 is the application of a computationally-difficult KDF only
after all factor material as been combined into matK . As a
result, attackers cannot separately guess individual MFKDF
factors, and must simultaneously correctly guess all factors
to derive a key. Due to the “avalanche effect” (correlation
freeness) [3] of the underlying KDF, if the derived key is in-
correct, an attacker cannot easily determine which factor(s)
were wrongly guessed. Therefore, given n available factors
with a mean factor entropy of m̄ bits, the crack time t will
be t ∝ 2m̄ for PBKDFs and t ∝ 2m̄n for MFKDF. We thus
claim that n-factor MFKDF provides an exponential secu-
rity improvement over PBKDFs; in other words, an MFKDF
defined with respect to n m-entropy factors (F1,F2, ...,Fn) is
nm-entropy secure (see extended paper [37] for proofs).

To illustrate the practical effect of this property, consider
a typical PBKDF-derived key with 40 bits of entropy and a
2-factor password-plus-HOTP MFKDF-derived key with 60
bits of entropy. Assuming PBKDF2-SHA256-100,000 as the
underlying PBKDF (the configuration used by LastPass [39]),
a 1 TH/s attacker3 should require ≈ 1.27 days to crack the
PBKDF key and ≈ 3,653 years to crack the MFKDF key,
while the derivation time for the real user remains constant.

7 Authenticating with Derived Keys
So far, we have presented an MFKDF construction and a
series of factor constructions that succeed at converting all
of a user’s authentication factors into a static key that can
be used to encrypt user secrets. Doing so marks a paradigm

3A single AntMiner S19 provides over 100 TH/s of SHA-256 [11].

shift in multi-factor authentication from software-based as-
surance to direct cryptographic protection of sensitive user
data using all available authentication factors. The addition
of secondary factors such as TOTP into the key derivation
process allows user data to potentially remain secure under
total system compromise, even in light of threats like creden-
tial stuffing. However, we pause for a moment to step back
and consider the original purpose of these secondary factors:
securely authenticating users.

A typical way of validating secondary factors like TOTP
would be to store a user’s TOTP key at a central authentica-
tion server. During authentication, the server generates the
current TOTP code and compares it to the user-submitted
value. Doing so, however, would largely defeat the purpose of
using a TOTP factor in MFKDF, as an attacker who compro-
mises the authentication server could steal the user’s TOTP
key and derive at least that portion of the user’s MFKDF key.
The same challenge exists with many of the factors presented
in §5. Therefore, when using MFKDF, we require a means
of verifying a user’s factors that does not require server-side
storage of factor-related secrets.

Thankfully, the security properties of MFKDF allow the
derived key to itself be used to authenticate end users and
implicitly verify all of their authentication factors. Because
a properly-configured MFKDF key (K) cannot feasibly be
derived without the presentation of all constituent factors,
verifying a user’s derivation of K effectively constitutes ver-
ification of all factors. A standard key-based authentication
algorithm like ISO/IEC 9798-2 Unilateral Authentication [27]
can therefore now be used to authenticate users.4

One final obstacle is that an MFKDF-derived key K should
not directly be shared with an authentication server if it is
also to be relied on for data confidentiality. Thus, after K is
derived, separate sub-keys datakeyK and authkeyK should be
derived using HKDF [32]; datakeyK can be used to encrypt
user data (e.g., using AES [38]) and authkeyK can be used
for authentication as described above. This approach, illus-
trated in Fig. 3, results in trustless cryptographic assurance of
both data confidentiality and user authentication when using
MFKDF. It is significantly advantageous over password-based
authentication because a breach of the authentication server
does not compromise confidentiality due to the use of separate
client-side keys for encryption and authentication.

FA

FB MFKDF

FC

datakeyK

K

authkeyK

HKDF

HKDF

data

auth

AES

ISO 
9798

Figure 3: MFKDF key establishment for authentication and confidentiality.

4The asymmetric variants of ISO 9798-2 can also be deployed here by
using a symmetric MFKDF-derived key as a fixed seed to deterministically
generate an asymmetric key pair via HMAC-DRBG [8].
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8 Threshold MFKDF Construction

In §2, we introduced the challenge of account recovery when
using password-derived keys. This challenge exists, perhaps
to an even greater extent, when using multi-factor derived
keys, as the loss of any authentication factor could now imply
total data loss if no further provisions are made. While said
provisions typically entail using a master key with password-
based key derivation, we describe in this section an equivalent
recovery mechanism for MFKDF that does not implicate a
central point of failure.

In a highly typical 2FA-enabled system, a user establishes
a password, a secondary factor (e.g., HOTP), and a recovery
factor (e.g., a recovery code). The password and secondary
factor are used during normal logins; if the password is for-
gotten, the secondary factor and recovery factor can be used
together to recover it, and similarly, if the secondary factor
is forgotten, the password and recovery factor can be used
together to recover it.

We note that the above policy is effectively equivalent to
saying any 2 of the 3 established factors {FA,FB,FC} can
be used to access an account, where in that case, FA is a
password, FB is a HOTP code, and FC is a recovery code. We
make explicit this concept of 2-of-3 factors being required by
introducing a general t-of-n threshold MFKDF construction.
In doing so, we allow MFKDF keys to be recovered on the
client side as normal even if n− t factors are lost, providing
resilience against partial factor loss while codifying what is
anyway the de facto standard for recovery.

8.1 Threshold Multi-Factor Key Derivation
As with the basic n-of-n MFKDF construction in §4, our
threshold construction consists of separate setup and derive
functions. The setup function uses n factors to output a key
of ℓ bits (K ∈ {0,1}ℓ) and t-of-n parameters (αK,0), and the
derive function uses at least t of the n factors and αK,i to
output K and αK,i+1.

Let HKDF be HKDF per RFC 5869 [32],
(Share,Comb,Rec) be Shamir’s secret sharing [44],
and KDF be a hard PBKDF like Argon2 [10]. Given n factors
({F1,F2, ...,Fn}), a threshold t, and security parameter ℓ, a
k-of-n MFKDF key can be setup like so:

1. Sample σK uniformly randomly in {0,1}ℓ.
2. Split σK into n shares using Share(σK , t,n).
3. For each factor Fj, get factor material σFj .
4. Expand each σFj to size ℓ using HKDF.
5. Combine each expanded factor with its corresponding

share shareFj (padFj
= Enc(shareFj ,σFj)) to get padsK .

6. Use KDF on σK to produce K.
7. Get paramsK,0 as αF,0 for each factor using K.
8. Return (t, ℓ,paramsK,0,padsK) as αK,0.

Using t of the n original factors ({F1,F2, ...,Ft}) and αK,i,
the derivation function is as follows:

1. Get (t, ℓ,paramsK,i,padsK) from αK,i.
2. For each factor Fj, get factor material σFj .
3. Expand each σFj to size ℓ using HKDF.
4. Decrypt each expanded factor with its corresponding pad

in padsK to recover a share shareFi .
5. Combine shares using Comb({shareFi , ...,shareFk}) to re-

cover σK .
6. Use KDF on σK to produce K.
7. Get αF,i+1 using K for each provided factor and update

paramsK,i accordingly to produce paramsK,i+1.
8. Return (t, ℓ,paramsK,i+1,padsK) as αK,i+1.

This threshold MFKDF construction takes advantage of
the same feedback mechanism as §4 to facilitate dynamic
OTP factors, and the factor constructions from §5 can remain
unchanged due to the overall modular design. Some aspects
of the description are simplified for clarity; e.g., it omits the
use of a salt. As before, a more complete formal statement of
the scheme is given in §A.4.

8.2 Recovery & Reconstitution
Consider the 2-of-3 key described above based on a password
(FA), HOTP code (FB), and recovery code (FC). Using the
above t-of-n threshold MFKDF construction with t = 2, a
user who has forgotten their password will still be able to
derive their key using FB and FC and recover their account.
This client-side recovery process constitutes a major security
improvement by eliminating central master keys. However,
the user may now want to replace FA with a new password
FA2 moving forward, ideally without having to establish a
brand new key and re-encrypt all secrets. The above t-of-n
threshold MFKDF construction is specifically designed to
support this replacement operation like so:

1. Extract (t, ℓ,paramsK,in,padsK,in) from αK,in.
2. Derive σK from t known factors as in §8.1.
3. Get σFA2

and αFA2
of the new factor. Update paramsK,in

to reflect αFA2
, yielding paramsK,out .

4. Recover shareFA ( jth) as Rec(σK , t,n, j).
5. Update padFA

, e.g., padFA2
= shareFA ⊕σFA2

.
6. Update padsK,in to reflect padFA2

, yielding padsK,out .
7. Store αK,out = (t, ℓ,paramsK,out ,padsK,out).

The αK,out produced by this operation is effectively identi-
cal to αK,in, other than the forgotten factor FA being replaced
by FA2 ; the resulting key K is the same. This process, termed
“key reconstitution,” allows the factors constituting a threshold
MFKDF-derived key to be updated while keeping the result-
ing K static so that encrypted secrets remain accessible. The
process can be extended to add or remove factors, or update
the threshold t, without changing K as long as σK is known.
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9 Cryptographic Policy Enforcement

The t-of-n threshold MFKDF construction of §8 is sufficient
for enabling many useful authentication schemes, but falls
short of enforcing every combination of factors we might rea-
sonably hope to enforce. For example, in a four factor setup
with a password, HOTP code, recovery code, and security
questions, a 2-of-4 threshold MFKDF setup would enable
recovering either the password or HOTP code using either
the recovery code or security questions, but would also allow
the key to be derived with just the recovery code and secu-
rity questions. Furthermore, one may wish to assert that the
password only be recovered using security questions, and that
the HOTP factor only be recovered using a recovery code.
To achieve this level of specificity in enforcement of exactly
which factor combinations should be allowed to derive a key
requires a more granular key policy framework.

9.1 Policy Framework
Consider a set of available authentication factors
(S = {FA,FB, ...}). An allowable factor combination
Ci is defined as a non-empty subset of factors in S
(Ci ⊆ S,Ci ̸=∅) that can be used to derive a key (keyK). A
policy P is a set of all unique allowable factor combinations
(P = {C1,C2, ...}) to derive a key. A policy P is said to be
cryptographically enforced by a KDF if a user presenting
a factor combination (C = {FA,FB, ...}) will be able to
derive keyK if and only if C ∈ P. Given a set of factors
S, a fully expressive policy framework will be able to
enforce any policy P ∈ P (P (S) \∅) \∅. For example, a
fully-expressive policy framework for three authentication
factors (FA,FB,FC) will be able to enforce a policy P defined
by any non-empty subset of {{FA},{FB},{FC},{FA,FB},
{FB,FC},{FA,FC},{FA,FB,FC}}.

To note explicitly a few non-requirements, asserting the
absence of a factor (e.g., “user does not know password FA”)
is not meaningful in this context. Allowing derivation based
on an empty set of factors (PK = {∅}) is trivial but not partic-
ularly useful, and an empty policy (PK =∅), implying a key
is impossible to derive, is also not useful.

Using this definition of fully-expressive policy enforce-
ment, we present in this section a framework for enforcing
arbitrarily complex authentication policies using MFKDF.

9.2 Key Stacking
We introduce the notion of “key stacking” as a building block
towards cryptographic policy enforcement. Key stacking en-
tails using one multi-factor derived key as factor material for
another multi-factor derived key. Therefore, when one wishes
to derive an MFKDF key with stacked key factors, they may
first need to derive one or more intermediate MFKDF keys,
which are used as inputs to the final MFKDF key derivation.

The many intentional symmetries in the Setup and Derive
functions of MFKDF and those of MFKDF factors, namely
the use of a αF or αK , and output of fixed σF or σK , may
provide sufficient intuition into the key stacking method, but
a formal construction is still given in §A.2 for completeness.

To illustrate how key stacking enables enforcement of pre-
viously impossible factor combinations, consider again the
four-factor setup described above with a password (FA), HOTP
code (FB), recovery code (FC), and security questions (FD),
whereby the password should only be recovered using secu-
rity questions, and the HOTP should factor only be recovered
using a recovery code. With key stacking, we can now enforce
this pattern like so:

1. Let KP be a 1-of-2 MFKDF key using {FA,FB}.
2. Let KQ be a 1-of-2 MFKDF key using {FA,FC}.
3. Let KR be a 1-of-2 MFKDF key using {FD,FB}.
4. Via key stacking, FP = KP, FQ = KQ, FR = KR.
5. Let K be a 1-of-3 MFKDF key using {FP,FQ,FR}.

Per the above construction, K can be derived using a pass-
word and HOTP code, password and recovery code, or secu-
rity questions and HOTP code, but not using security ques-
tions and recovery code, password and security questions, or
HOTP and recovery code. Therefore, our desired authentica-
tion policy has been achieved. In §9.3, we will show that this
technique is sufficient to enforce arbitrarily complex authenti-
cation policies.

When using key stacking, only the final MFKDF derivation
needs a hard underlying PBKDF, and all intermediate MFKDF
derivations can use a fast KDF like HKDF or even return σK
directly. We thus expect about 10 ms of additional overhead
per stacked key (see §11). For security reasons, only the final
derived key should be fed back to the factor update functions
for all constituent factors.

9.3 Policy Enforcement
Per the completeness definition of §9.1, threshold MFKDF
and key stacking are sufficient to cryptographically enforce
any desired authentication policy P = {C1,C2, ...} given a set
of factors S = {FA,FB, ...} as follows:

1. For all Ci ∈ P, let Ki be an n-of-n key with ∀F ∈Ci.
2. Let {FK1 ,FK2 , ...} be {K1,K2, ...} via key stacking.
3. Let K be a 1-of-n key with {FK1 ,FK2 , ...}.

Per the above construction, a user presenting a factor
combination C will be able to derive K via a stacked
sub-key Ki if and only if C ∈ P; this is true for any
Ki = P ∈ P (P (S)\∅)\∅. Note while the above construc-
tion proves MFKDF can achieve arbitrary authentication pol-
icy enforcement, it is not necessarily the most efficient way
to implement any given authentication policy. The example
of §9.5 illustrates a more direct and concretely efficient im-
plementation of a particular policy.
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9.4 Security Statement
Theorem. Let HKDF be (t,q,ε)-secure. Given a set of inde-
pendent computational mi-entropy factors S and any policy
P ∈ P (P (S)\∅)\∅, let Ei denote ∑{m1,m2, ...,mn} for all
Ci ∈ P. Let j = argminiEi, and FP be a combination of C j.
Then the policy-based MFKDF construction of §A.5 w.r.t
HKDF and P shall be (t,q,ε)-secure w.r.t. FP.

Proof Sketch. Full proofs are given in the extended paper
[37]. We begin by showing that n factors can be combined
to produce a factor with entropy equal to the sum of input
factor entropy. We use this to show that the basic MFKDF
(§4) is secure w.r.t. the combination of its factors. Next, we
show that in the 1-of-n case, the threshold MFKDF (§8.1) is
secure w.r.t. its lowest-entropy factor. Finally, because policy
MFKDF (§9.3) is a composition of basic n-of-n MFKDF and
threshold 1-of-n MFKDF, it is secure w.r.t. the sum of factor
entropy in the weakest allowable combination C ∈ P.

9.5 Practical Example
Consider the following nuanced but fairly realistic authentica-
tion policy:

1. Users MUST authenticate using a password and TOTP.
2. Users MAY recover either factor using security questions

or a UUIDv4 recovery code.
3. Users MUST also always use email OTP for recovery.
4. Users MAY bypass TOTP when using a known device.5

The above policy can be enforced using threshold MFKDF
with key stacking, as shown in Fig. 4. In fact, we implement
(and cryptographically enforce) this exact policy in our cen-
tralized proof-of-concept system in §10.1.

Email
OOBA

Key 2/3

Security 
Questions

Recovery 
Code

1/2

TOTP Device

Password

2/21/2 (OR) (AND)

(OR)

Figure 4: MFKDF factor tree enforcing sample authentication policy.

5A device factor was not discussed in §5, but can be constructed quite
easily by persisting factor material on a trusted device, e.g., as a cookie.

10 Applications

To illustrate the immediate practical utility of MFKDF, we
implemented and evaluated a fully-featured MFKDF library
in JavaScript, which we used to produce two proof-of-concept
applications. The first proof-of-concept (§10.1) is a central-
ized full-stack web application used to demonstrate the use of
MFKDF in current PBKDF applications. The second proof-of-
concept (§10.2) is a fully decentralized application intended to
illustrate the use of MFKDF in environments where PBKDFs
would not be viable. We also used this library to perform a
performance evaluation in §11.

10.1 Centralized Proof-of-Concept
In §2, we motivated the need for MFKDF by using password
managers as an archetypal example of PBKDF-based sys-
tems. We now revisit the example of password management
by discussing our implementation of a secure MFKDF-based
password management application. To this end, we imple-
mented and evaluated a full-stack password management web
application using MFKDF for both authentication and encryp-
tion of stored passwords. All MFKDF operations take place
on the client side; the host can be fully untrusted. The integrity
of the client-side JavaScript code, including the MFKDF li-
brary, must be ensured, such as through the use of Subresource
Integrity (SRI) tags or a trusted CDN. This is exactly the de-
ployment model currently used by major PBKDF2-based web
applications such as LastPass and Dashlane, with PBKDF2
simply being replaced by MFKDF in our application.

Using the method of §9, an MFKDF-based password man-
agement application can implement and cryptographically
enforce an authentication policy of its choosing; in our proof-
of-concept application, we chose to use the policy of §9.5. Per
this policy, a user can log in normally using a password and
TOTP code, and can recover either factor if lost by using email
OOBA along with either a recovery code or security ques-
tions. When enforced with MFKDF, this policy represents a
106-times increase in brute-force difficulty over PBKDFs, and
is a major improvement over existing password management
systems which use a central master key to facilitate recovery
per SP 800-57 [7]. We also implemented the recovery and
reconstitution method of §8.2, allowing users to change a
forgotten factor after recovery without re-encrypting secrets.

Aside from the various security advantages of using
MFKDF in this application, our major takeaway from this
endeavor is with respect to the usability of MFKDF. MFKDF
does not demand the use of new authentication factors
purpose-built for key derivation, instead supporting the same
(unmodified) factors like HOTP, TOTP, YubiKey, or OOBA
that users are familiar with and likely already using (e.g.,
we verified that our application was fully compatible with
the latest version of Google Authenticator.) They can there-
fore use the same signup, login, and recovery processes, with
MFKDF operating transparently in the background to pro-
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vide enhanced security with no tangible impact on the UI or
UX (see Fig. 5). We also showed that the implementation of
common convenience features like skipping MFA on trusted
devices and recovering and reconstituting lost factors are not
hindered by the use of MFKDF. The use of MFKDF during
the login and setup processes introduced less than 100 ms of
overhead to each.

(a) Signup (b) Login (c) Persistence

(d) Recovery (e) Reconstitution

Figure 5: Authentication screens for centralized demo application.

10.2 Decentralized Proof-of-Concept
To demonstrate the potential use of MFKDF in fully decen-
tralized applications, we implemented a distributed cryptocur-
rency wallet that supports “logging in” with traditional authen-
tication factors (username, password, and MFA), but relies
on no committees or trust assumptions. In essence, the wallet
key is derived directly from the user’s authentication factors
with MFKDF whenever it is needed, rather than storing the
key (or shares thereof) on any device. While the idea of such
a wallet has already been proposed [17], its implementation
hasn’t been possible without MFKDF.

Fig. 6 illustrates the architecture we used to implement
the proof-of-concept decentralized MFKDF wallet. Users
create their wallet by establishing a 2-of-3 threshold MFKDF
key. Upon creation, the policy document is uploaded to the
InterPlanetary File System (IPFS) [9] and a corresponding
InterPlanetary Name System (IPNS) [34] record is created,
the address of which becomes the “username.”6 A user “logs
in” to their wallet using said username along with at least
two of their three authentication factors, allowing them to

6In the future, Ethereum Name Service (ENS) [33] could be used instead
of IPNS to facilitate human-readable usernames.

retain access to their wallet even if any one factor is lost or
forgotten. If the MFKDF policy document is updated, such
as to reconstitute a lost factor or upon each login for factors
like HOTP, the new policy is uploaded to IPFS and the IPNS
record is updated accordingly.

Key

Factor 3Factor 1 Factor 2

MFKDF Policy

IPFS
bafk...vx3u

IPNS
eigb...oaw

Figure 6: Architecture of decentralized MFKDF wallet demo application

Our MFKDF-based wallet has many of the traditional ben-
efits of custodial wallets (namely, portability, recoverability,
and multi-factor authentication with familiar authentication
factors) while in fact being decentralized, trustless, and non-
custodial. We present this proof-of-concept mainly to em-
phasize that the potential applications for MFKDF reach far
beyond the situations where PBKDFs would typically be de-
ployed. PBKDFs would not be considered feasible for such
an application due to the lower key entropy, potential for cre-
dential stuffing, password spraying, and brute-force, and the
inability to recover from a lost factor.

11 Performance Evaluation

To evaluate the performance of MFKDF in a practical setting,
we benchmarked a fully-featured JavaScript implementation
of MFKDF in Chrome Browser v103.0.5060.114 on Windows
10 v21H2. Our test device used an AMD Ryzen 9 5950X (16-
core, 3.4 GHz), although only single-thread performance is
relevant in this browser setting.

11.1 MFKDF Performance

Fig. 7 shows the setup and derivation time for a 3-of-3
MFKDF key and 2-of-3 threshold MFKDF key based on the
mean of N = 100 setup and derive iterations with password,
HOTP, and recovery code (UUIDv4) factors.

The 3-of-3 MFKDF setup and derivation had a mean com-
putation time of x̄ = 3.84 ms and x̄ = 10.52 ms respectively.
For the 2-of-3 threshold MFKDF, these were x̄ = 8.83 ms and
x̄ = 11.90 ms. In both cases, HKDF was used as the KDF
to isolate the overhead of MFKDF from the computational
difficulty of the underlying KDF.
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Figure 7: Setup and derivation time of 2-of-3 and 3-of-3 MFKDF.

11.2 Factor Performance

Fig. 8 shows the range of computation times for the setup and
derive functions of each supported factor across 100 iterations.
No individual factor has a setup or derive time of more than
2 ms, other than OOBA (x̄ = 21.2 ms, x̄ = 19.62 ms) and
TOTP (x̄ = 33.16 ms, x̄ = 0.49 ms).

HMAC-SHA1
(YubiKey)

   x̄ = 49.1 µs
   x̄ = 41.1 µs

Security
Question

   x̄ = 180.0 µs
   x̄ = 117.8 µs

Password    x̄ = 183.4 µs
   x̄ = 212.7 µs

HOTP    x̄ = 1.82 ms
   x̄ = 33.4 µs

OOBA x̄ = 21.2 ms   
x̄ = 19.62 ms   

10 µs 100 µs 1 ms 10 ms

TOTP x̄ = 33.16 ms   
x̄ = 487.9 µs   

UUID    x̄ = 20.9 µs
   x̄ = 13.8 µs

Setup
Derive

Figure 8: Setup and derivation time of all supported MFKDF factors.

The overhead of the TOTP factor is highly dependent on
the time window parameter used. The above results reflect
a window of 2920 cycles (24 hours). If the time window
is increased to 87600 cycles (30 days), the setup time is
x̄ = 841 ms and derivation time is x̄ = 9.31 ms.

Discussion. We noted in §2 that PBKDFs are intentionally
computationally difficult so as to slow the rate of brute-force
attacks. Most sources target a key derivation time of 250 ms.
While we used HKDF instead of a PBKDF in the above tests
to isolate the overhead of the MFKDF construction from
the intentional difficulty of the underlying KDF, the results

should be understood in the context of this 250 ms target for
the underlying KDF. Thus, even the 20 ms overhead of the
slowest factors (other than TOTP with a large w) is negligible.

12 Related Work
There are no known works that describe a general-purpose
multi-factor key derivation function or key derivation using
OTP authentication factors like TOTP and HOTP, based on a
thorough search of terms such as “multi-factor key derivation,”
“two-factor key derivation,” and “hotp/totp key derivation.”

Several prior works have proposed two-factor key deriva-
tion approaches based specifically on a YubiKey hardware
token and a password [14, 40]. Entirely biometric-based key
derivation is also a widely studied problem [6, 43, 46, 50].

Many works propose alternatives to key derivation for
solving the key management problem, in particular by secret
sharing a key amongst several user devices or [15] a trusted
committee [17, 28]. Such solutions require a majority of the
committee or devices to be honest and uncompromised, an
assumption we do not make in MFKDF.

Finally, several works address the related but distinct prob-
lem of multi-factor authenticated key exchange [19, 36, 41,
49]. Unlike key derivation, authenticated key exchange fo-
cuses on establishing a secure communication channel be-
tween two trusted parties in the presence of man-in-the-
middle adversaries. Thus, multi-factor authenticated key ex-
change (MFAKE) is an effective replacement for password-
authenticated key exchange (PAKE), but not for password-
based key derivation functions (PBKDFs) as MFKDF is.

13 Discussion
While the concept of “multi-factor key derivation” may be
apparent from the name itself, the combination of PBKDFs
with MFA is non-trivial due to the dynamic nature of popular
factors. In this paper, we overcome this challenge by con-
verting dynamic factors into static keying material using data
encrypted with the output key, essentially allowing secrets to
be safely stored within the key derivation function itself. The
key material for several factors can then be concatenated to
generate a key via a standard KDF, or via secret sharing to
produce flexible threshold and policy variants.

Despite this relatively simple structure, MFKDF has the
potential to improve new and existing applications alike. Re-
turning to our motivating example of password managers,
these applications in particular stand to benefit, allowing se-
cret keys to be derived from multiple authentication factors
rather than just from passwords (or, in some cases, directly
managed by users). Further, secure account recovery can now
be facilitated even if a recovery key was not previously stored
on a trusted user device. Moreover, the threat of credential
stuffing is significantly reduced; while attackers require just
a single attempt to check a compromised credential against
a PBKDF-encrypted ciphertext, MFKDF leaves one or more
entire factors intact which must be separately cracked.
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13.1 Limitations

There are several distinct scenarios in which an MFKDF-
derived key may be compromised, even if correctly imple-
mented with secure primitives. First, it is expected that an
MFKDF-derived key is only as secure as its underlying fac-
tors, and that these factors must themselves be properly man-
aged and protected. For example, if an SMS device is vul-
nerable to a SIM-swapping attack, then the corresponding
MFKDF OOBA factor may also be at risk.

Further, if a combination of factors with insufficient entropy
is chosen, brute-force attacks may still be feasible. As noted
in §9, MFKDF-derived keys inherit the entropy of the weakest
combination of factors allowed to derive them.

What is perhaps less obvious is that a combination of
these two attacks may also be feasible. For example, while an
MFKDF key combining a password and OTP factor may itself
be infeasible to crack, the compromise of the password factor
may allow the remaining factor to be defeated by brute-force.

Finally, the key could be compromised if it is not prop-
erly managed after derivation (e.g., via spyware or a browser
vulnerability), as is the case with PBKDF-derived keys.

13.2 Future Work
Applications. In §2, we described the wide variety of systems
currently depending on PBKDFs. Many of these systems can
be enhanced by the use of MFKDF. We hope to perhaps see
corporate networking protocols encrypting traffic using all
authentication factors, or enterprise operating systems sup-
porting disk encryption based on MFKDF. Of course, many
password managers or cloud storage services would benefit
greatly from MFKDF. As illustrated in §10.2, MFKDF also
has potential utility in decentralized applications. Overall, we
look forward to seeing many systems, new and existing, either
enhanced or made possible by MFKDF.

Factors. While the constructions given in §5 account for the
vast majority of current MFA usage [4], there remain impor-
tant authentication methods for which factor constructions
are not currently known. Chief among these are intrinsic fac-
tors like biometrics, geolocation, device fingerprinting, and
behavioral authentication. Deriving key material based on
single sign-on, in particular via OIDC, would also be very
helpful. We hope to see specific constructions for these, as
well as “general” factor constructions, perhaps based on MPC
or trusted hardware, for arbitrary factors.

Extensions. Further, we suggest a number of theoretical ex-
tensions to MFKDF that would further extend its utility. First,
while it was not our focus here, we suggest investigating the
use of MFKDF as a simple replacement to password hashing.
Next, we suggest extensions improving the forward-security
of MFKDF. We also suggest integrating MFKDF with en-
crypted databases to facilitate useful applications on MFKDF-
encrypted data, including the sharing of encrypted objects

between multiple users. Lastly, we hope to see works illustrat-
ing the backwards-compatibility of MFKDF with unmodified
PBKDF-based systems, such as via browser extensions.

Usability. Finally, while many aspects of our design were
motivated by usability, no user study has yet been performed.
Future work should therefore focus on empirically comparing
the usability of MFKDF with that of PBKDFs.

14 Conclusion
PBKDFs continue to play an outsized role in widely-used
applied cryptographic systems compared to the research at-
tention they receive. MFKDF offers a multi-axis improvement
over PBKDFs, providing better security and additional func-
tionality with no changes to the authentication factors nor
noticeable impact on the UI or UX of the end user. It repre-
sents a fast, flexible, secure, and practical solution to the key
management problem, with an emphasis on solving issues
like factor recovery, authentication policy enforcement, plug-
and-play compatibility with existing PBKDF-based systems,
and support for existing widely-used authentication factors.
In doing so, it changes the status quo of MFA from software
verification to direct cryptographic assurance.
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Availability

The source code for a JavaScript library implementing all of
the MFKDF features described in this paper is available at:

• github.com/multifactor/mfkdf

We invite interested parties to visit mfkdf.com for detailed
documentation, tutorials, unit tests, and code coverage reports.
The centralized demo, decentralized demo, and benchmarking
scripts used in this paper are available at these repositories:

• github.com/multifactor/mfkdf-application-demo

• github.com/multifactor/mfkdf-wallet-demo

• github.com/multifactor/mfkdf-benchmark
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A Algorithms
A.1 Formalization
Let an MFKDF FactorInstance Fi be a tuple
(σF ∈ {0,1}ℓF ,(key 7→ αF,i)) representing the ith derivation
of a given factor, where σF is the factor-specific key material
(static), ℓF is the number of bits of entropy in F , and
(key 7→ αF,i) is a function that takes the final derived key and
returns the factor policy (αF,i), a tuple whose contents vary
by factor.

An MFKDF factor construction consists of a FactorSetup
function, which instantiates a factor given a configura-
tion cfgF (which varies by factor), and a FactorDerive
function, which derives a factor from an instance-specific
WF,i ∈ {0,1}ℓF and a αF,i output by FactorSetup or a previous
derivation:

FactorSetup :
cfgF 7→ FactorInstance F0

FactorDerive :
WF,i,αF,i 7→ FactorInstance Fi+1

Similarly, let an MFKDF KeyInstance Ki be a tuple
(αK,i,key ∈ {0,1}ℓK ) representing the ith derivation of a key,
where key is the derived key (static), ℓK is the size of the
derived key in bits, and αK,i varies.

An MFKDF construction consists of a KeySetup function,
which instantiates a key of size ℓK given an array of
FactorInstances, and a KeyDerive function, which derives an
established key from an array of FactorInstances and a αK,i:

KeySetup :
ℓK ,FactorInstance[] FS0 7→ KeyInstance K0

KeyDerive :
FactorInstance[] FSi,αK,i 7→ KeyInstance Ki+1

In §A.2, we will provide MFKDF factor constructions for
several popular authentication factors. In §A.3, we will pro-
vide a basic MFKDF construction, and in §A.4, we will pro-
vide a threshold MFKDF construction. We use ⊙ for bitstring
and array concatenation, and ⊕ for bitwise XOR.

A.2 Factor Constructions

Algorithm 1 Factor Construction for Constant Factors

1: function SETUP(cfgF : (WF ∈ {0,1}ℓF ))
2: σF ← transform(WF)
3: return (key→ (),σF)
4: end function
5: function DERIVE(WF ∈ {0,1}ℓF ,αF,i)
6: σF ← transform(WF)
7: return (key→ (),σF)
8: end function

We begin with the factor construction for constant factors like
passwords, security questions, and recovery codes, shown in
algorithm 1. This is by far the simplest factor construction,
with just an optional transform step between the input W and
output σF . The transform step can be used, for example, to
standardize the case of a security answer, or to extract useful
data from a UUIDv4 recovery code.
Algorithm 2 Factor Construction for HMAC-SHA1

Require: Let HS1 be HMAC-SHA1 per RFC 2014 [31].
1: function SETUP(cfgF : (hmackeyF ∈ {0,1}160))
2: challengeF,0←{0,1}160

3: WF,0← HS1(hmackeyF ,challengeF,0)
4: padF,0←WF,0⊕hmackeyF
5: αF,0← (challengeF,0,padF,0)
6: return (key→ αF,0,hmackeyF)
7: end function
8: function DERIVE(WF,i ∈ {0,1}160,αF,i)
9: (challengeF,i,padF,i)← αF,i

10: hmackeyF ←WF,i⊕padF,i

11: challengeF,i+1←{0,1}160

12: responseF,i+1← HS1(hmackeyF ,challengeF,i+1)
13: padF,i+1← challengeF,i+1⊕hmackeyF
14: αF,i+1← (challengeF,i+1,padF,i+1)
15: return (key→ αF,i+1,hmackeyF)
16: end function

Algorithm 2 shows the MFKDF factor construction
for HMAC-SHA1 challenge-response, an authentication
method implemented by many hardware tokens such as
YubiKeys. Since the challengeFi

and the corresponding re-
sponse (responseF,i+1) are in effect uniformly random and
non-repeating, they can be used as a one-time pad for the
hmackeyF (which is itself the σF ) with information theoretic
security. The HMAC-SHA1 factor fixes ℓF = 160 due to the
output of SHA1 being exactly 20 bytes.
Algorithm 3 Factor Construction for OOBA

Require: Let (Enc,Dec) be public-key encryption.
1: function SETUP(cfgF : (d,pkF))
2: targetF ← N∪ [0,10d)
3: otpF,0← N∪ [0,10d)

4: offsetF,0← (targetF −otpF,0) % 10d

5: ctF,0← Enc(otpF,0,pkF)
6: return (key→ (d,pkF ,ctF,0,offsetF,0), targetF)
7: end function
8: function DERIVE(WF,i ∈ N∪ [0,10d),αF,i)
9: (d,pkF ,ctF,i,offsetF,i)← αF,i

10: targetF ← (offsetF,i +WF,i) % 10d

11: otpF,i+1← N∪ [0,10d)

12: offsetF,i+1← (targetF −otpF,i+1) % 10d

13: ctF,i+1← Enc(otpF,i+1,pkF)
14: αF,i+1← (d,pkF ,ctF,i+1,offsetF,i+1)
15: return (key→ αF,i+1, targetF)
16: end function
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Algorithm 3 shows the MFKDF factor construction for out-
of-band authentication (OOBA) factors such as email or SMS.
Unlike all other factors presented herein, OOBA factors are
not perfectly trustless; they inherently depend on the honesty
of the underlying channel (e.g., email provider, phone carrier).
The OOBA factor takes advantage of this by pre-encrypting a
numeric OTP of d digits using the public key of the channel.
The modular addition of the OTP with a fixed targetF provides
the same information theoretic security as the one-time pad
for the HMAC-SHA1 factor.
Algorithm 4 Factor Construction for HOTP

Require: Let HOTP be HOTP per RFC 4226 [51].
Require: Let (Enc,Dec) be symmetric-key encryption.

1: function SETUP(cfgF : (d,hotpkeyF ∈ {0,1}ℓF ))
2: targetF ← N∪ [0,10d)
3: otpF,0← HOT P(hotpkeyF ,1) % 10d

4: offsetF,0← (targetF −otpF,0) % 10d

5: function POLICY(key)
6: ctF ← Enc(hotpkeyF ,key)
7: return (d,1,offsetF,0,ctF)
8: end function
9: return (POLICY, targetF)

10: end function
11: function DERIVE(WF,i ∈ N∪ [0,10d),αF,i)
12: (d,ctrF,i,offsetF,i,ctF)← αF,i

13: targetF ← (offsetF,i +WF,i) % 10d

14: ctrF,i+1← ctrF,i +1
15: function POLICY(key)
16: hotpkeyF ← Dec(ctF ,key)
17: otpF,i+1← HOT P(hotpkeyF ,ctrF,i+1) % 10d

18: offsetF,i+1← (targetF −otpF,i+1) % 10d

19: return (d,ctrF,i+1,offsetF,i+1,ctF)
20: end function
21: return (POLICY, targetF)
22: end function

Algorithms 4 and 5 show MFKDF factor constructions
for HOTP and TOTP respectively, each supporting a vari-
able number of OTP digits d (typically, d = 6). HOTP is
the first factor to take advantage of the key feedback mech-
anism described in §4, allowing the hotpkeyF to be securely
embedded within αF and used to set up Fi+1 during the deriva-
tion of Fi by incrementing ctrF,i. The TOTP and HOTP con-
structions takes advantage of the same information theoretic
blinding via modular arithmetic as is used in the OOBA
factor. The TOTP construction is similar to HOTP, with
the addition of a window parameter w. By default, we sug-
gest w = 87600 cycles (30 days). Note that by definition,
TOTP(K) = HOTP(K,⌊(T −T0)/TX⌋). Per our construction,
the offset value is calculated for every possible time be-
tween T and T + wTX ; this does not reveal anything use-
ful to attackers due to the forward security of TOTP. For
the OOBA, HOTP, and TOTP constructions presented above,
ℓF = d/log10 2 (ℓF ≈ 20 when d = 6).

Algorithm 5 Factor Construction for TOTP

Require: Let HOTP be HOTP per RFC 4226 [51].
Require: Let T,T0,TX be TOTP times per RFC 6238 [52].
Require: Let (Enc,Dec) be symmetric-key encryption.

1: function SETUP(cfgF : (d,w, totpkeyF ∈ {0,1}ℓF ))
2: targetF ← N∪ [0,10d)
3: ctrF,0← ⌊(T −T0)/TX⌋
4: for j← 0,w do
5: otp← HOT P(totpkeyF ,ctrF,0 + j) % 10d

6: offsetsF,0[ j]← (targetF −otp) % 10d

7: end for
8: function POLICY(key)
9: ctF ← Enc(totpkeyF ,key)

10: return (d,w,ctrF,0,offsetsF,0,ctF)
11: end function
12: return (POLICY, targetF)
13: end function
14: function DERIVE(WF,i ∈ N∪ [0,10d),αF,i)
15: (d,w,ctrF,i,offsetsF,i,ctF)← αF,i
16: ctrF,i+1← ⌊(T −T0)/TX⌋
17: idxF,i← ctrF,i+1− ctrF,i
18: offsetF,i← offsetsF,i[idxF,i]

19: targetF ← (offsetF,i +WF,i) % 10d

20: function POLICY(key)
21: hotpkeyF ← Dec(ctF ,key)
22: for j← 0,w do
23: otp← HOT P(totpkeyF ,ctrF,i+1 + j) % 10d

24: offsetsF,i+1[ j]← (targetF −otp) % 10d

25: end for
26: return (d,w,ctrF,i+1,offsetsF,i+1,ctF)
27: end function
28: return (POLICY, targetF)
29: end function

We also include the factor construction for the “stacked key”
factor in algorithm 6, although its construction may already
be evident from the symmetric definitions of an MFKDF con-
struction and an MFKDF factor construction. The MFKDF
input, FactorInstance[] FS, is provided to the SETUP and
DERIVE functions as WF ; the KeySetup or KeyDerive func-
tion is invoked, and the derived key keyKF is returned as the
factor key material σF . Thus, ℓF = ℓKF here.

Algorithm 6 Factor Construction for Key Stacking

1: function SETUP(cfgF : (ℓK ,FactorInstance[] FS))
2: KeyInstance KF,0← KeySetup(ℓK ,FS)
3: (αKF ,0,keyKF

)← KF,0
4: return (key→ αKF ,0,keyKF

)
5: end function
6: function DERIVE(FactorInstance[] FSF ,αF,i)
7: KeyInstance KF,i+1← KeyDerive(FSF ,αF,i)
8: (αKF ,i+1,keyKF

)← KF,i+1
9: return (key→ αKF ,i+1,keyKF

)
10: end function
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A.3 MFKDF Construction
Algorithm 7 is a simple n-of-n MFKDF construction. Each
authentication factor is converted into factor material σF via
its corresponding factor construction. The σF for all factors
are concatenated to form σK , which in turn is used to derive
the key via a PBKDF. The key feedback mechanism of §4
is then used to produce αK,i+1, making possible the use of
dynamic factors like HOTP.

Algorithm 7 MFKDF Construction

Require: Let KDF be a hard PBKDF like Argon2 [10].
1: function SETUP(ℓK ,FactorInstance[] FS0)
2: saltK ←{0,1}ℓK

3: σK ← ε

4: fnsK,0← []
5: fpsK,0← []
6: for all FactorInstance F ∈ FS0 do
7: (σF , fnF)← F
8: σK ← σK⊙σF
9: fnsK,0← fnsK,0⊙ fnF

10: end for
11: key← KDF(ℓK ,σK ,saltK)
12: for all fnK,0 ∈ fnsK,0 do
13: αF,0← fnK,0(key)
14: fpsK,0← fpsK,0⊙αF,0
15: end for
16: return ((ℓK ,saltK , fpsK,0),key)
17: end function
18: function DERIVE(FactorInstance[] FSi,αK,i)
19: (ℓK ,saltK , fpsK,i)← αK,i
20: σK ← ε

21: fnsK,i← []
22: fpsK,i+1← []
23: for all FactorInstance F ∈ FSi do
24: (σF , fnF)← F
25: σK ← σK⊙σF
26: fnsK,i← fnsK,i⊙ fnF
27: end for
28: key← KDF(ℓK ,σK ,saltK)
29: for all fnK,i ∈ fnsK,i do
30: αF,i+1← fnK,i(key)
31: fpsK,i+1← fpsK,i+1⊙αF,i+1
32: end for
33: return ((ℓK ,saltK , fpsK,i+1),key)
34: end function

A.4 Threshold MFKDF Construction
Algorithm 8 implements a t-of-n threshold MFKDF. It ex-
pands upon the simple MFKDF construction by adding a
threshold parameter t. The key material (σK) is split into n
shares via Shamir’s secret sharing [44], which are then padded
by factor keys derived using HKDF [32]. The one-time-pad
can also be replaced by symmetric-key encryption as long
as no checksums or integrity mechanisms are included in the
scheme. Thus, if at least t factors are provided, t shares can be

derived from their pads in αK and thus σK can be recovered.
Algorithm 8 Threshold MFKDF Construction

Require: Let KDF be a hard PBKDF like Argon2 [10].
Require: Let HKDF be HKDF per RFC 5869 [32].
Require: Let (Share,Comb) be secret sharing (SSS) [44].

1: function SETUP(t, ℓK ,FactorInstance[] FS0)
2: σK ←{0,1}ℓK

3: saltK ←{0,1}ℓK

4: key← KDF(ℓK ,σK ,saltK)
5: sharesK,0← Share(σK , t, len(FS0))
6: fpsK,0← []
7: fsK ← []
8: for all FactorInstance F ∈ FS0 do
9: (σF , fnF)← F

10: padF ← HKDF(ℓK ,σF ,ε,ε)
11: shareF ← padF ⊕ sharesK,0[i]
12: fsK ← fsK⊙ shareF
13: αF,0← fnF(key)
14: fpsK,0← fpsK,0⊙αF,0
15: end for
16: return ((t, ℓK ,saltK , fpsK,0, fsK),key)
17: end function
18: function DERIVE(FactorInstance[] FSi,αK,i)
19: (t, ℓK ,saltK , fpsK,i, fsK)← αK,i
20: sharesK,i← []
21: fnsK,i← []
22: fpsK,i+1← fpsK,i
23: for all FactorInstance F ∈ FSi do
24: (σF , fnF)← F
25: padF ← HKDF(ℓK ,σF ,ε,ε)
26: shareF ← padF ⊕ fsK [ j]
27: sharesK,i← sharesK,i⊙ shareF
28: fnsK,i← fnsK,i⊙ fnF
29: end for
30: σK ← Comb(sharesK,i, t, len(fsK,i))
31: key← KDF(ℓK ,σK ,saltK)
32: for all fnK,i ∈ fnsK,i do
33: αF,i+1← fnK,i(key)
34: fpsK,i+1[ j]← αF,i+1
35: end for
36: return ((t, ℓK ,saltK , fpsK,i+1, fsK),key)
37: end function

A.5 Policy MFKDF Construction
Algorithm 9 Policy MFKDF Construction

1: function SETUP(t, ℓK ,FactorInstance[][] P)
2: FactorInstance[] R← []
3: for all FactorInstance[] C ∈ P do
4: SK← ALG6SETUP((ℓK ,C))
5: R← R⊙SK
6: end for
7: return ALG8SETUP(1, ℓK ,R)
8: end function
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