
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Argus: A Framework for Staged Static Taint
Analysis of GitHub Workflows and Actions

Siddharth Muralee, Purdue University; Igibek Koishybayev, Aleksandr
Nahapetyan, Greg Tystahl, and Brad Reaves, North Carolina State University;
Antonio Bianchi, Purdue University; William Enck and Alexandros Kapravelos,

North Carolina State University; Aravind Machiry, Purdue University
https://www.usenix.org/conference/usenixsecurity23/presentation/muralee

ARGUS: A Framework for Staged Static Taint Analysis
of GitHub Workflows and Actions

Siddharth Muralee‡∗, Igibek Koishybayev†∗, Aleksandr Nahapetyan†, Greg Tystahl†,
Brad Reaves†, Antonio Bianchi‡, William Enck†, Alexandros Kapravelos†, Aravind Machiry‡

‡ Purdue University, {smuralee, antoniob, amachiry}@purdue.edu
† North Carolina State University, {ikoishy, anahape, gttystah, bgreaves, whenck, akaprav}@ncsu.edu

Abstract
Millions of software projects leverage automated workflows,
like GitHub Actions, for performing common build and de-
ploy tasks. While GitHub Actions have greatly improved the
software build process for developers, they pose significant
risks to the software supply chain by adding more dependen-
cies and code complexity that may introduce security bugs.

This paper presents ARGUS, the first static taint analy-
sis system for identifying code injection vulnerabilities in
GitHub Actions. We used ARGUS to perform a large-scale
evaluation on 2,778,483 Workflows referencing 31,725 Ac-
tions and discovered critical code injection vulnerabilities in
4,307 Workflows and 80 Actions. We also directly compared
ARGUS to two existing pattern-based GitHub Actions vul-
nerability scanners, demonstrating that our system exhibits a
marked improvement in terms of vulnerability detection, with
a discovery rate more than seven times (7x) higher than the
state-of-the-art approaches.

These results demonstrate that command injection vulnera-
bilities in the GitHub Actions ecosystem are not only perva-
sive but also require taint analysis to be detected.

1 Introduction

Continuous Integration and Continuous Deployment (CI/CD)
pipelines [29] have become ubiquitous in the software de-
velopment lifecycle. They automate various software devel-
opment processes, such as building, testing, and deploying
code. There are several well-maintained CI/CD frameworks,
including TravisCI [51], CircleCI [9], and Gitlab CI [43].

Since its introduction, the GitHub Actions platform has
gained tremendous popularity due to its convenience over
other public CI/CD providers [52]. Developers specify au-
tomation tasks using GitHub Workflows.1 A key convenience
is an ability to easily use third-party plugins called Actions,

∗Both authors made equal contributions to this work
1We use “Workflows” to refer to GitHub Workflows throughout this paper.

which bundle common tasks, such as checking out a reposi-
tory. Actions enable developers to easily create Workflows by
referencing Actions rather than specifying all of the steps [32].

Securing CI/CD pipelines is essential to supply chain se-
curity. Researchers have discovered various GitHub Work-
flows are vulnerable to code injection vulnerabilities [28, 31].
OWASP has also the Top 10 CI/CD security risks [39] to
raise awareness on CI/CD vulnerabilities, defining Poisoned
Pipeline Execution (PPE) as a specific type of code injection.

Static analysis is commonly used to detect vulnerabilities.
Recent works [7, 23, 33] have tried to find vulnerabilities in
Workflows using pattern-matching. However, the complexity
of a typical Workflow demands more sophisticated analysis
to track the data flows that occur within it, particularly when
detecting code injection vulnerabilities. The prior approaches
also fail to analyze third-party Actions and reusable work-
flows, which are pervasive in the GitHub Actions ecosystem.
Consequently, prior approaches fail to identify many non-
trivial vulnerabilities, as we show in Section 5.5.

Static Taint Tracking (STA) is a well-known technique
for tracking untrusted (tainted) data flow and is effective for
vulnerability detection [3,4,34,36,41,55]. This paper proposes
an STA framework for holistic analysis of GitHub Workflows
and uses it to detect code injection vulnerabilities. There are
two key challenges for performing STA on Workflows:

1. Non-linear execution semantics of Workflows: At a high
level, a Workflow consists of jobs, each with a sequence
of steps. A job may depend on one or more other jobs
and will only be executed after all its dependencies are
complete. If there are no dependencies, multiple jobs can
run concurrently. Additionally, there may be data flows
between jobs, making it difficult to model the execution
flow, requiring new Control Flow Graph (CFG) structures
to perform flow-based static analysis.

2. Handling interactions with third-party Actions: Workflows
reference Actions by specifying their repository and input
parameters. Actions can generate outputs, access untrusted
input, and pass data to sensitive sinks. Outputs of an Action

USENIX Association 32nd USENIX Security Symposium 6983

are used by workflows to perform other tasks or as input to
additional Actions. For effective STA, tracking data flow
through Actions requires the context of a Workflow.

In this paper, we present the ARGUS2 framework for staged
static taint analysis of GitHub Workflows and Actions. AR-
GUS identifies code injection vulnerabilities by untrusted taint
sources to sensitive taint sinks derived from GitHub documen-
tation [19] and language libraries [46]. A key component of
ARGUS is its Workflow Intermediate Representation (WIR),
which tackles the first challenge by uniformly capturing the
Workflow execution flow, irrespective of the complex and
evolving specifications. We handle third-party Actions (the
second challenge) by decoupling their flow behavior from im-
plementation. Specifically, we create programming-language-
specific plugins that analyze Actions and create taint sum-
maries describing which inputs flow to which outputs. The
summaries are created offline and stored in a Taint Summary
Database. To analyze a given Workflow, ARGUS uses the
WIR to track the flow of tainted data across steps according
to the execution flow. When a step references an Action, AR-
GUS uses its taint summary and stitches in the taint tracking
information. Finally, ARGUS raises an alert whenever tainted
data reaches a sensitive sink. We further rank each alert based
on its impact on the underlying repository.

We performed a large-scale evaluation on 2,778,483 Work-
flows (1,014,819 repositories) referencing 31,725 Actions,
and ARGUS raised alerts on 27,465 Workflows (16,003 repos-
itories). We selected 5,643 workflows for manual verification
and confirmed the presence of code injection vulnerabilities
in 5,298 workflows. Out of these, 4,307 (High and Medium
severity) could be exploited to compromise the underlying
repository. We also identified 80 vulnerable Actions, which
render any Workflow that uses them vulnerable.

We also directly compared ARGUS to two state-of-the-art
pattern-based GitHub Actions vulnerability scanners, finding
seven times more vulnerabilities.

We make the following contributions in this paper.

• We designed a Workflow Intermediate Representation
(WIR) that provides a uniform representation of GitHub
Workflows.

• We propose ARGUS, the first static taint tracking frame-
work for GitHub Workflows. ARGUS works on the WIR
and uses taint summaries to track flow across Actions.
ARGUS will be publicly available upon publication.

• We demonstrate the scalability and effectiveness of AR-
GUS by performing a large scale evaluation on 2,778,483
Workflows and 31,725 Actions. We found code injection
vulnerabilities in 5,298 Workflows and 80 Actions.

2Available as open-source at: https://secureci.org/argus

2 Background

A GitHub Workflow is defined as a YAML file in the
.github/workflows directory of a repository. This section
uses Figure 1 to describe Workflow components and execu-
tion and why analysis is nontrivial.

2.1 Workflow Components
A Workflow represents a group of tasks and their execution
ordering, e.g., workflow.yml in Figure 1. Each Workflow is
composed of jobs listed under the jobs key. A job can use
other Workflows (called Reusable Workflows) as indicated
by 1 . However, a job is usually composed of a sequence of
steps listed under the steps key. Steps form the basic unit of
computation. A step can either (a) be a shell command, as in-
dicated by s in reusable-workflow.yml, or (b) reference
an Action, as indicated by a .

Actions enable code reuse inside Workflows. A step refer-
ences actions with the uses keyword. The reference should
be to a public repository containing code for the correspond-
ing Action. For example, org2/javascript-action@v2 re-
solves to code in the github.com/org2/javascript-act
ion respository under the tag v2. GitHub has a marketplace
where developers can discover Actions.

GitHub supports three types of Actions. JavaScript Ac-
tions are written in JavaScript and can use npm pack-
ages. In Figure 1, org2/javascript-action/action.yml
is an example of JavaScript Action. Most of the stan-
dalone actions are JavaScript-based [33]. Composite Ac-
tions combine commands and Actions. They are spec-
ified in a similar manner to Workflows. In Figure 1,
org3/composite-action/action.yml shows an example
Composite Action. Finally, Docker Actions use an implemen-
tation of a Docker container, which may be referenced di-
rectly from DockerHub or from the repository containing the
Dockerfile. This paper focuses on JavaScript and Composite
actions, because (a) Docker Actions contain arbitrary binaries,
and (b) 70% of Actions in our dataset are either JavaScript or
Composite Actions (Table 2).

2.2 Workflow Execution
Workflows are executed in response to specific events. Event
triggers are specified using the on keyword as indicated by T

in Figure 1. For instance, the Workflow in Figure 1 is executed
when a pull_request occurs for the containing repository.
When triggered, the GitHub runner [20] executes jobs based
on the configuration.
Job Dependencies: A job can depend on other jobs, specified
using the needs keyword. A job will be executed only when
all of its dependencies finish executing. Multiple jobs can run
in parallel if there is no dependency relation. For instance, the
build and scan jobs in workflow.yml of Figure 1 will run in

6984 32nd USENIX Security Symposium USENIX Association

https://secureci.org/argus
github.com/org2/javascript-action
github.com/org2/javascript-action

name: "Build and Test workflow"
on: [pull_request]
jobs:
 build:
 uses: org/repo/.github/workflows/reusable@v1
 scan:
 runs-on: [ubuntu-latest]
 steps:
 - run: echo ${{github.event.issue.title}}
 - uses: org2/javascript-action@v2
 id: js
 - uses: org3/composite-action@v2
 with:
 title: ${{steps.js.outputs.title}}
 body: ${{github.event.pull_request.body}}

 notify:

 deploy:

name: "Upload-artifact
action"
inputs:
 ...
runs:
 using: “node16”
 main: “index.js”
 post: "post.js"

name: "JavaScript
Action"
inputs:
 author:
 required: true
runs:
 using: “node16”
 main: “index.js”

name: "Composite Action"
inputs:
 title:
 required: true
 body:
 required: true
runs:
 using: “composite”
 steps:
 - run: echo Hello ${{ inputs.title }}
 - name: "JavaScript Action"
 uses: org4/js-action@v1.1
 with:
 body: ${{ inputs.body }}

name: "Reusable workflow"
on:
 workflow_call:
 inputs:
 verbose:
 required: false
jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - name: "Run the bash script"
 run: ./build.sh ${{ inputs.verbose }}
 - uses: actions/upload-artifact@latest
 with:
 name: app-binary
 path: ./dst/app.o
 test:
 ...

const core = require('@actions/core');
const github = require('@actions/github');

try {
 // `body` input defined in action metadata file
 const body = core.getInput('body');
 console.log(`Body: ${body}!`);
 // process the body
 const payload = parse(body)
 eval(payload);
} catch (error) {
 core.setFailed(error.message);
}

echo "Branch to build: $1";
export PRODUCTION=1
make

const core = require('@actions/core');
const github = require('@actions/github');

try {
 // `pr_title` input defined in action.yml metadata
file
 // `pr_title` default value is tainted
 const title = core.getInput('pr_title');
 // sets output that can be consumed by next steps
 core.setOutput('title', `Analyzing ${title}`)
} catch (error) {
 core.setFailed(error.message);
}

reusable-workflow.yml

build.sh

org2/javascript-action/action.yml

org2/javascript-action/index.js

org3/composite-action/action.yml
org4/js-action/action.yml

org4/js-action/index.js

name: "JavaScript Action"
inputs:
 pr-title:
 default: ${{github.event.pull_request.title}}
 required: false
runs:
 using: “node16”
 main: “index.js”

actions/upload-artifact/action.yml

const core = require('@actions/core');
const github = require('@actions/github');

try {
 // uploads the artifact
 // with the name "app-binary"
 // from the path "./dist/app.o"

} catch (error) {
 core.setFailed(error.message);
}

actions/upload-artifact/index.js1

s

workflow.yml

m

T

a

Figure 1: Example demonstrating GitHub Workflow components and user-controlled data () used by different components.

parallel as there are no dependencies. Each job is executed in
an isolated virtual machine, having a configuration specified
by using the runs-on keyword (e.g., m in Figure 1). For
instance, the build job in Figure 1 will be executed on an
ubuntu-latest VM.

Executing a Job: For each job, all steps are executed sequen-
tially within the same virtual machine. If one step fails, the
next will not be executed, unless specified otherwise. During
the execution of an individual step, the runner will first set up
an environment for it and spawn a new process. For example,
if a step is a NodeJS action, the runner will spawn a NodeJS
process and call the entry point of the action. Similar setups
will be performed for Docker actions and shell commands.

Communication between Steps: The steps can communicate
through the runner. For example, a step can produce an output
variable using the ::set-output=<name>=<value> key-
word. Another step can consume that output by referencing
steps.<id>.outputs.<output_name>. After the execu-
tion of a step, the runner will check if the step created any
outputs, environment variables, or artifacts. If so, the runner
will store their values and pass them to the relevant next steps.

Triggering Event Data: A Workflow triggering event usually
contains data associated that can be controlled by the user who
triggered the event. For example, the title text associated with
an issue_open event (i.e., github.event.issue.title)

can be controlled by the user who opened the issue. In the
same manner, the source branch name (github.head_ref)
of a pull request event can be externally controlled. However,
there are certain data elements that the user does not directly
control, e.g., the issue number of an issue_open event. The
event data can be used by any component of a Workflow, as
indicated by in Figure 1.

2.3 Workflow Secrets and Permissions
Developers might need to access sensitive information
in a Workflow, such as AWS keys to automatically de-
ploy the latest version of a website. GitHub provides
the secrets feature [15], enabling developers to securely
use sensitive information in a Workflow. Specifically,
repository owners can store sensitive information us-
ing secrets (key-value pair), e.g., AWS_KEY=abcd12dfs.
These can be used in a Workflow by their name (i.e.,
key), e.g., ${{ secrets.AWS_KEY }}. During Workflow
execution, these references will be replaced by the correspond-
ing value. Furthermore, as shown by the recent work [33],
values of all secrets referenced in a Workflow are stored in a
file on the runner.
GITHUB_TOKEN: For each Workflow run, GitHub au-
tomatically generates a temporary access token called
GITHUB_TOKEN. This enables Workflows to interact with the

USENIX Association 32nd USENIX Security Symposium 6985

repository and carry out specific operations such as pushing
changes, creating releases, adding labels and tags, etc. This
token can be accessed using the GitHub context, denoted as
${{github.token}}.
Permissions: By default, GitHub assigns the GITHUB_TOKEN
read/write permissions across all scopes 3. Users can also
modify permissions of GITHUB_TOKEN for a specific workflow
using the permissions keyword within workflows. This
keyword can be utilized both at a workflow level as well as at
a job level.
Access Based on Triggers: Workflows triggered because
of a forked repository (e.g., pull request from a fork) will
not have access to any repository secrets (Even if they
are specified in the Workflow) and GITHUB_TOKEN will
have only read-only access. Developers can avoid this by
using pull_request_target trigger, which also triggers
Workflows on pull requests, but in addition, the Workflow
will have default privileges for GITHUB_TOKEN and access to
secrets — same as other triggers. The Table 1 summarizes a
Workflow’s access to secrets and GITHUB_TOKEN permissions
based on triggers.
Intra-repository pull request: During our experiments, we
found an undocumented feature that GitHub allows arbitrary
users to raise pull requests between different branches of the
same repository, e.g., merging dev to main. This clearly vio-
lates the pull-request policy [10], which requires the user to
have write access to either source or destination. Further-
more, as shown in the second column of Table 1, Work-
flows triggered because of such pull requests have privi-
leged GITHUB_TOKEN and access to secrets. We provide de-
tails of this behavior in Appendix A.1.

3 Motivation and Threat Model

Listing 1 shows a real-world code injection vulnerability (dis-
covered by ARGUS) in the issue_type_predicter.yaml
Workflow of the DynamoDS/Dynamo [12] repository (1,300
stars). The Workflow can be triggered by opening an issue, the
body of which can be controlled by an attacker. The untrusted
input github.event.issue.body () is first saved into an
environment variable ISSUE_BODY (1). Next, it is passed as
input to the frabert/replace-string-action@v1.2 ac-
tion (2), which replaces " with - and returns the output
through a variable named replaced (3). Later, replaced
is used in a shell command (4). While the string re-
placement prevents the attacker from terminating the ",
it does not prevent the attacker from performing a com-
mand substitution attack. For example, an attacker can
exploit the vulnerability by opening an issue and using
$(set +e; curl evil.com?token=$GITHUB_TOKEN;) as
the issue body to exfiltrate the GITHUB_TOKEN.

3GitHub in Feb 2023, reduced the permissions for GITHUB_TOKEN to
’read-only’ by default for all newly-created repositories [11].

name: Issue Predicter
on:
issues:
types: [opened,edited]

jobs:
issuePredicterType:
name: Issue Predicter
runs-on: ubuntu-latest
...
steps:
...

- name: Remove conflicting chars
env:

1
ISSUE_BODY: ${{github.event.issue.body}}

3 # produces output with the name: replaced
uses: frabert/replace-string-action@v1.2
id: rem_quot
with:

pattern: "\""
string: ${{ 2 env.ISSUE_BODY}}
replace-with: '-'

- name: Check Information
id: check-info
run:

ls -la
echo "analysis_response= \

$(.. "${{ 4 steps.rem_quot.outputs.replaced}}"..)"

Listing 1: Snippet of the issue_type_predicter.yaml
Workflow in the DynamoDS/Dynamo [12] repo demonstrat-
ing an Arbitrary code execution vulnerability requiring Inter-
Workflow-Action analysis – newly found by ARGUS.

Table 1: Permissions of GITHUB_TOKEN and access to secrets
based on event triggers.

Sensitive
Component

Pull request Other
Triggersb/w branches

of the same repo
from
fork

GITHUB_TOKEN default read-only default
Access to
Secrets

YES NO YES

To find this vulnerability through static taint tracking,
we need to track the flow of the tainted values within
the Workflow to correctly determine that replaced con-
tains a tainted value. Doing so requires analyzing the
frabert/replace-string-action@v1.2 Action. Finally,
we should track the flow of this output to the echo command
(a sensitive sink). In summary, this analysis requires tracking
tainted data flow across all the components of a Workflow.

3.1 Threat Model
As suggested by OWASP [39] recommendations for building
a secure CI/CD pipeline, we assume that an attacker should
not be able to: (i) execute arbitrary commands on the server
where the pipeline is executed, without visible code changes;
(ii) gain unauthorized read/write access to the repository (vio-
lating GitHub privilege model); and (iii) exfiltrate confidential
secrets. Hence, if an attacker can achieve any of these mali-

6986 32nd USENIX Security Symposium USENIX Association

cious goals, we assume a Workflow to be vulnerable.

Attacker Capabilities: We make the assumption that an
attacker can trigger a Workflow and alter any user data
that is part of the event. For instance, for the issue_open
event in Figure 1, the attacker can control the content of
github.event.issue.body (i.e., the body of the issue) but
not the issue number, which is auto-generated by GitHub.
The complete list of event data that can be manipulated by an
attacker is displayed in Table 12 (in Appendix).

Impact: Arbitrary code execution in CI/CD platforms has a
severe impact, including performing supply chain attacks [50]
that silently inject vulnerabilities into a repository [27], bit-
coin mining [21], and DDoS attacks.

The presence of sensitive information, such as secrets
and GITHUB_TOKEN (Section 2.3), further increases the sever-
ity of arbitrary code execution vulnerabilities. For example,
an attacker can exfiltrate GITHUB_TOKEN with a read/write
scope and silently push malicious code into the repository
resulting in invisible attacks [37]. There can be cases where
Workflows have reduced permissions for GITHUB_TOKEN, e.g.,
using permissions keyword or if the trigger is a pull
_request from a fork. In such cases, code execution vul-
nerabilities have a limited impact on the repository.

4 ARGUS Design

This section presents ARGUS’s design and the details of the
staged static taint analysis algorithm. Figure 2 depicts an
overview of our approach. There are two main components
in ARGUS: Taint Summary Creator and Workflow Analysis.

The Taint Summary Creator is an offline or on-demand com-
ponent that is executed for every unique Action or a reusable
Workflow. We store these summaries in a Taint Summary
Database, which will be used during the Workflow analysis.

Given a Workflow, we convert it into its Workflow Inter-
mediate Representation (WIR) representation. Then, we con-
struct the Workflow Dependency Graph (WDG) from the cre-
ated WIR and perform taint analysis by traversing the WDG.
At each step, we propagate taint according to its inputs and
output. If a step references an Action, we will use the Action’s
taint summary and stitch the taint flow. However, if there are
no pre-stored taint summaries for an Action, ARGUS will
generate it on the fly. Lastly, if ARGUS identifies tainted data
being utilized in a sink, it categorizes the vulnerability based
on its potential impact and subsequently generates a report
for the user.

4.1 Taint Sources and Sinks

In this section, we define the taint sources and taint sinks that
we are going to use throughout our taint analysis.

WIR Creator

Taint Summary
Creator

Static Taint
Analysis

Taint Plugins

Taint Summary
Database

Vulnerability
Warnings

Workflow
(YAML file)

WIR

Action's Github
Repository Taint

Summaries

Taint Summary Creation
(Offline)

JavaScript Composite

Impact
Classifier

Reports

Figure 2: Overview of ARGUS.

4.1.1 Taint Sources

As explained in Section 2.2, Workflows are triggered through
events, which might contain associated data. We consider taint
sources as all the data associated with an event that can be
completely controlled by the user triggering the event. For
instance, we consider the issue body to be a taint source for an
issue event (triggered when a user opens a issue in a GitHub
repository). We do not consider the issue number as a taint
source as it is auto-generated by GitHub, and, for this reason,
not-controllable by a user.

We analyzed the GitHub documentation [19] and identi-
fied all user-controllable data fields of each triggering event.
Note that in some cases, there might be limitations on which
fields can be controlled, such as intra-repository pull requests
(Appendix A.1).

We consider all these data fields as taint sources. Table 12
(in Appendix) provides the complete list along with the num-
ber of Workflows using each taint source.

GitHub also enables JavaScript Actions to use event data
through acccesing a Context object. We also handle this fea-
ture by mapping members of this object to the corresponding
event data fields (Table 13 in Appendix).

4.1.2 Taint Sinks

As mentioned in Section 3, in CI/CD pipelines, we do not
want an attacker to be able to execute arbitrary commands as
part of a Workflow. This is important in GitHub CI, where
the runner executes Workflows with sudo privileges. Con-
sequently, an attacker with the ability to execute arbitrary
commands as part of a Workflow has complete control of
the machine and the Workflow environment. Furthermore,
by default, the GITHUB_TOKEN available in a Workflow ex-
ecution environment has the privilege to modify its parent
repository (i.e., change the source code, add/delete artifacts,
tags, branches, etc.), thereby enabling supply chain attacks.

For these reasons, our taint sinks involve all entities en-
abling command execution. In the case of workflows, we
consider every run: statement as a sink, as they are used

USENIX Association 32nd USENIX Security Symposium 6987

to construct a bash script (as depicted in Figure 1). As for
JavaScript, all functions capable of running arbitrary com-
mands are classified as sinks.

4.2 Taint Summary Creator

As mentioned before, this component generates taint sum-
maries for Actions or, more in general, any component that a
step can reference, such as a composite Action or a reusable
Workflow (as shown in Figure 1). Based on the type of Ac-
tion, we follow different methods, which we call Plugins (see
Figure 2). The generated summaries are saved in a database
and will be used by the Workflow analysis component.

4.2.1 Composite Action

This type of Actions contains a sequence of steps. In this
case, we generate a summary by combining the summaries
of each step. For instance, consider a step that contains a
sequence of shell commands under the run key. We ana-
lyze each of these commands to see if any of these com-
mands use a tainted value or produce any output. ARGUS
uses regexes to parse the commands to look for output vari-
ables and stores the output as tainted if any input is tainted.
We focus on the two common ways a run step can set outputs.
(1) echo "::set-output name=value::" (deprecated, but
still in use); (2) echo "name=value" >> $GITHUB_OUTPUT.
We only consider cases where the value is a template string
(${{}}), e.g., "OUT=${{TVAR}}". If the variable used as part
of the value is tainted (i.e., TVAR), then we consider the output
variable (i.e., OUT) tainted. Similar steps are performed for en-
vironment variables. If a step references a JavaScript Action,
then we will get its taint summary (or create one if it does not
exist in the database) and stitch the taint flow. Finally, we will
save the taint summary in the database.

4.2.2 JavaScript Actions

This type of Actions (which is the most common) uses
JavaScript code to perform its functionality. To handle it, we
developed a dedicated static flow analysis using CodeQL [6],
a framework that converts code into a relational database and
enables easy implementation of static analysis techniques
as relational queries. Also, CodeQL supports all Node JS
versions that are supported by GitHub CI.

We first defined the taint sources (Table 13 in Appendix)
and dangerous sinks in JavaScript. As a taint source, we de-
fined all the JavaScript-specific APIs that can be used to
read from taint sources, e.g., the getInput function from
the "@actions/core" library, as shown in Figure 1.

Then, we defined specific JavaScript APIs that are used
to generate (1) output for other steps to consume, and (2)
new code and/or commands as taint sinks. For example, in
Figure 1 the "org2/javascript-action/index.js" file

1 CommitMessage: core.getInput('commit_message'),
2

3 const commitMessage = getCommitMessage(
4 inps.CommitMessage,
5 ...
6);
7 await commit(inps.AllowEmptyCommit, commitMessage);
8

9 export async function commit(allowEmptyCommit: boolean, msg:
string): Promise<void> {↪→

10 ...
11 await exec.exec('git', ['commit', '-m', `${msg}`]);
12 ...
13 }

Listing 2: The peaceiris/actions-gh-pages [40] action uses an
input argument (‘commit_message‘) in the exec function, but
this is not vulnerable as it’s provided as a list of options

uses the setOutput function to set new output, and, in the
"org4/js-action/index.js" file, a tainted source reaches
the infamous eval function.

Our CodeQL queries will search if there is a dataflow path
from any of the taint sources to a dangerous sink. We run
the CodeQL query before analyzing the workflow to create
a map of all taint sources into all taint sinks seen in the
JavaScript Action and store the results in the database. The
final summaries of the JavaScript actions will include a list of
new taint sources created by using setOutput-like functions
and a list of taint sinks reached by the given taint sources.
Handling Sanitization: We take care of implicit sanitizations
that occur because of using tainted values in composite data
structures such as a list (Listing 2) using pattern matching. We
ignore explicit sanitizations, such as if-conditions, because
(i) the majority of actions are small with simple data flows
and do not perform any sanitization; (ii) Identifying valid
sanitization routines is hard and, if performed incorrectly,
could result in false negatives. The high precision of our taint
analysis, as shown in Section 5.2, demonstrates that ignoring
explicit sanitization is a reasonable design choice.

4.3 Workflow Analysis
Given a Workflow, we first convert it to WIR and generate
its WDG. Next, we analyze the WDG and track taint flows.
Workflow Intermediate Representation (WIR): The main
design principle of WIR is to have a generic representation
to specify job dependencies and data used and produced by
each step along with its execution environment. Figure 3
shows an example of a Workflow and its WIR representa-
tion. We use taskgroups to represent jobs. Each taskgroup
has a numerical identifier execution_id which is used to
encode dependency. As shown on the left of Figure 3, the
job deploy depends on the build job as indicated by its
name specified under needs key. In WIR, this gets trans-
lated as dependency under the “deploy” taskgroup where
the execution_id of the build taskgroup is used.

Each step is called task. Each task has the following

6988 32nd USENIX Security Symposium USENIX Association

name: MyWorkflow
on: ['push']
jobs:
 build:
 runs-on: ubuntu-latest

 steps:
 - name: Checkout the repository
 uses: actions/checkout@v2
 with:
 token: ${{ secrets.GITHUB_TOKEN}}

 - name: Build Project
 id: build-proj
 run: sudo ./build.sh

 deploy:
 needs: build
 runs-on: ubuntu-latest
 steps:
 - name: Test Project
 env:
 DEPLOY_KEY: ${{secrets.AWS_KEY}}
 run: sudo ./deploy.sh

WModule {
 uid: "0bde4d",
 name: "MyWorkflow"
 triggers {
 event {type: "push", condition: ""}
 }
 taskgroups {
 "build" {
 execution_id: 0
 environment {}
 dependency {}
 tasks {
 "build_step1" {
 exec {type: "gh_action", name: "action/checkout@v2"}
 execution_id: 0
 args {name: "token", value: "${{ secrets.GITHUB_TOKEN }}"}
 environment {}
 CIvars {name: "GITHUB_TOKEN", type: "secrets", ref:arg1 }
 }
 "build-proj" {
 exec {type: "shell_cmd", command: "sudo ./build.sh"}
 execution_id: 1
 args {}
 environment {}
 CIvars {}
 }
 }
 "deploy" {
 execution_id: 1
 environment {}
 dependency {ref : 0}
 tasks {
 "test_step1" {
 exec {type: "shell_cmd", name: "sudo ./deploy.sh"}
 execution_id: 0
 args {}
 environment {name: "DEPLOY_KEY", value: "${{secrets.AWS_KEY}}"}
 CIvars {name: "AWS_KEY", type: "secrets", ref:env1}
 }
 }
 }
}

Identity Execution Mechanism

Task Dependencies

CI VariablesExecution Environment

Execution Ordering

WIR Task Attributes

GitHub Work�ow WIR Representation

Figure 3: Overview of WIR.

categories of attributes: (i) Identity: it includes the name
and other grouping attributes that identify a task. (ii) Ex-
ecution mechanism (exec): it includes all the information
on “how” the task will be executed (e.g., through shell
command or GitHub Actions). (iii) Execution environment
(environment): it contains the set of environment variables
accessed by the task. (iv) CI Variables (CIvars): it con-
tains the set of all GitHub variables accessed by the task.
(v) Inputs and Outputs (inputs and outputs): they repre-
sent, respectively, the inputs provided and the variables con-
taining the output values of a task. (vi) Execution Ordering
(execution_id): it represents the relative order in which the
task is executed within the task group.
Workflow Dependency Graph: The Workflow Dependency
Graph (WDG) is a directed acyclic 4 super graph that captures
the order in which the various components of a Workflow will
be executed. As mentioned in Section 2.1, Workflows can
have one or more jobs, that can be executed in parallel or in
an order specified by their dependencies. Each job consists of
one or more steps that are executed in sequence. The WDG
captures the order in which jobs are executed. Each job, in
turn, is represented by a StepSequence, a linear sequence
representing the control flow order between steps.

Formally, a Workflow Dependency Graph (WDG) of a
Workflow w is represented as WDG(G) = {J,E}, where:

1. J = { j1, ..., jn} is a set of nodes representing jobs in the
Workflow.

2. E = {(jx, jy) | jx ∈ J∧ jy ∈ J} is a set of edges, where
each tuple (jx, jy) indicates a directed edge from job jx
to jy.

Each edge (jx, jy) ∈ E indicates that the job jy is dependent
on jx, and thus, jx will be executed before jy. Every job j ∈ J
includes a StepSequence, dictating the execution order of its
individual steps.

4Cyclic dependencies between jobs are not allowed by GitHub

4.3.1 Workflow Taint Tracking

We follow a staged approach to perform taint tracking. List-
ing 1 shows the pseudocode of our taint tracking algorithm.
Given a Workflow W , we compute its WDG. Next, we get a
topological order (TopoSort) of the jobs in WDG represent-
ing the execution order of the jobs. When we have multiple
topological orders, we randomly select one, because job de-
pendencies with directed edges, and the results will be the
same for all valid topological orders. We initialize our taint
sources to the initial set of variables shown in Table 12.

For each job j, we call GetJobTaintSummary, which com-
putes the taint summary for j given the current set of tainted
variables Tj. The function GetJobTaintSummary returns a
summary of additional tainted variables created after analyz-
ing j with Tj. We add Tj to T and continue on to the next
jobs.
The function GetJobTaintSummary uses the StepSequence
to get the steps of the given job j in sequential order. Then,
it analyzes each step s by calling GetStepTaintSummary on
s with the current taint state. The GetStepTaintSummary
also returns a taint summary of additional tainted variables
because of s. The summary will be added to the current taint
state and the analysis will continue to the next steps.

The GetStepTaintSummary function checks if a step s is
a list of run commands, in which case the commands will
be processed as mentioned in Section 4.2.1. If the step ref-
erences an Action, then the ApplyTaintSummary function
will be invoked. This function fetches the taint summary from
the database (DB). The summary will be instantiated with
the current taint state T to get the new taint state in terms of
additional tainted variables. We use scopes to group tainted
variables according to the job that produced them. This al-
lows our taint analysis to be precise by ensuring that tainted
variables within a job are only visible to its steps, which is
the expected behavior.

In the end, we check all taint sinks and see if any of the
variables used is part of T . If this condition is true, we emit a
warning describing the use of tainted variables at a risky sink.

4.4 Impact Classifier

The final step of our system is the Impact Classifier. The goal
of this step is to assign severity to each Workflow vulnera-
bility based on three aspects: impact on the repository, ease
of exploitation, and control of exploit payload. The Figure 4
shows the decision procedure to classify vulnerabilities.
GITHUB_TOKEN: We use the permissions defined at the
Workflow level (e.g., using permissions keyword) to deter-
mine whether the token has write permissions or is read-only.
Low: We classify all vulnerabilities that have no impact on
the repository as Low severity. There are two cases: (L1)
Workflow is configured with a read-only GITHUB_TOKEN and
has no secrets. (L2) The trigger is a pull_request, and the

USENIX Association 32nd USENIX Security Symposium 6989

Algorithm 1: Algorithm for Workflow Taint Tracking
G←WDG(W)
DB← Taint Summary Database
function MAIN

J← TopoSort(G)
T ← global known taint sources
forall ji ∈ J do

Ti = GetJobTaintSummary(ji,T)
T = T ∪Ti ▷ updated known taint sources

function GETJOBTAINTSUMMARY(j,Tj)
S← StepSequence(j)
T ← Tj

forall si ∈ S do
Ti = GetStepTaintSummary(si,T)
T = T ∪Ti ▷ update known taint sources

return T
function GETSTEPTAINTSUMMARY(s,Ts)

T ← Ts
if s is run then

▷ Process bash commands
T = ProcessBashCommands(s, T)

else
▷ Apply taint summary

T = ApplyTaintSummary(DB, s, T)
return T

tainted data is head_ref (i.e., branch name) — this requires
a pull request from a fork with an attacker-controlled branch
name, e.g., Listing 3. As explained in Section 2.3, Workflows
triggered from foreign branches do not have access to read-
only GITHUB_TOKEN and no access to secrets.

High: We classify vulnerabilities impacting the repository
(write access GITHUB_TOKEN or has secrets) as High if the
exploitation is easy and does not require maintainer approval.
We consider all Workflows with non pull request targets easy
to trigger and classify vulnerabilities as High severity (marked
as H1 and H2). Even for pull_request trigger, vulnerabili-
ties caused by the title or description can be easily exploited
by raising an intra-repository pull-request, and, for this reason,
we consider them as High severity (marked as H3), e.g., List-
ing 6. As mentioned in Section 2.3, Workflows triggered this
way have privileged access to the repository and do not require
maintainer approval (Appendix A.1).

Medium: Finally, as indicated by M1, we consider Medium
severity vulnerabilities those that can impact the repository,
but triggering the corresponding Workflow requires main-
tainer approval. For instance, pull_request or push Work-
flows with taint sources, such as commits.*.author.email
(commit author’s email) or commit.message (commit mes-
sage), can only be exploited if the maintainer first approves
pull requests without verifying these parameters. After the
pull request has been merged, the attacker can raise another
intra-repository pull_request from the branch containing
the merged commit — thereby controlling the taint sources
and having access to write-access GITHUB_TOKEN and secrets.

M1

L1 L2

H1

Decision Types

GITHUB_TOKEN
has write

permissions?

Pull request
target?

Has Secrets in
the Workflow? Low

High

Medium

Yes

Yes

Yes

No

No

Is title or
description

tainted?

Yes

Pull request?
No Yes

Is head_ref
tainted?

Yes

No

Ease of
Exploitation

Control of the
Exploit Payload

Impact on the
Repository

No

No

H2 H3

Figure 4: Decision process of Impact Classifier.

on: pull_request
jobs:
build:
runs-on: macos-latest
steps:
...
- name: Update version

uses: reedyuk/write-properties@v1.0.1
with:
path: 'gradle.properties'
property: 'version'
github.head_ref <-
value: "${{ steps.read_version.outputs.value }}-${{

github.head_ref }}-${{ env.short_sha }}"↪→

Listing 3: GitLiveApp/kotlin-diff-utils [25] contains a work-
flow vulnerable to Low severity Code Injection as it passes
Tainted Data (github.head_ref ()) as the argument
for value parameter to the Action (Listing 9) that directly
uses it in exec (unsafe sink).

5 Evaluation

We evaluate ARGUS by answering the following questions.

Q1 (Taint Analysis on Actions): How accurately can our Plu-
gins perform taint analysis on Actions? What is precision
and recall?

Q2 (Taint Analysis on Workflows): How accurately can AR-
GUS perform taint analysis on Workflows? What is the
precision, recall, and performance of our analysis?

Q3 (Vulnerability Identification): How effective is ARGUS
at finding vulnerabilities? What is their security impact?

Q4 (Comparative Evaluation): How effective is ARGUS
compared to existing state-of-the-art vulnerability de-
tection techniques?

5This count does not include 79 actions due to them being taken down by
the time of analysis and one action due to cloc failing to run on the repository

6990 32nd USENIX Security Symposium USENIX Association

Table 2: Dataset 1: Public Repositories

Workflows Repos Actions
Type Num Analyzable

2,778,483 1,014,819

JavaScript 22,433 22,433 (100%)
Composite 9,292 9,292 (100%)

Docker 13,445 0 (0%)
Total 48,369 31,725 (70.2%)

Table 3: Source Line of Code (SLoc) stats for Dataset 1.

Component SLoc Stats (KLoc)
Min Avg Median St. Dev Max

Workflows 0.006 0.1041 0.058 0.1539 5.2
Actions 5 0.001 67.60 6.935 272.88 8,146.2

5.1 Datasets and Experimental Setup

Dataset 1 (Public Repositories): GitHub’s rate-limiting pol-
icy for its direct search functionality prevented us from sim-
ply scraping all of GitHub to get workflows from all public
repositories. We overcame this limitation by (1) querying all
public repository names from the GHArchive [17] database
on November 2022, and then (2) using those repository names
and fetching the latest version from GitHub during November-
December, 2022. We extracted Workflows from each repos-
itory by traversing the .github/workflows directory and
collecting all Workflow files (i.e., .yml). Each repository
can have multiple Workflows. Shown in Table 2, we col-
lected 2.7M Workflows in 1M unique repositories. We also
extracted all Actions referenced by each Workflow. An action
can have multiple versions (e.g., actions/checkout@v2 and
actions/checkout@v3), and Workflows can refer to differ-
ent versions of the same Action. We analyzed every version
of an Action that is referenced by a Workflow in our dataset.
Table 2 shows the total number of action/version combina-
tions corresponding to their types. Finally, Table 2 shows the
total number of analyzable actions by ARGUS. Even with-
out handling Docker actions, ARGUS could analyze 70% of
the actions. Statistical details of the sizes of Workflows and
Actions are shown in Table 5.

Dataset 2 (VWBENCH): We collected previously reported
vulnerable workflows [28, 31] to create a ground truth vul-
nerable dataset of 24 workflows, which we call VWBENCH.
These Workflows have unsafe sinks to which tainted data can
flow, resulting in command injection vulnerabilities.

Experimental Setup: We performed all our experiments on
an Intel(R) Xeon(R) Gold 5120 CPU with 128GB RAM. We
set a time limit of 5 minutes for analyzing each Workflow
and a time limit of 30 minutes for analyzing each Action.
Most of the Actions (80%) finished within in 3 minutes. As
mentioned previously, the Action summaries are computed

6We only count total number of unique workflow here, as some workflows
may have both multiple sinks or sources

Table 4: Results of Taint Analysis on Actions.

Type Source Sink Number of Actions
JS Comp. Total

Input Input Code Exec 3,218 5,465 8,683
Flow Arguments Arb. File R/W 2,099 N/A 2,099
Direct Tainted Code Exec 27 109 136
Flow Values Arb. File R/W 0 N/A 0

Total 6 5,219 5,574 10,918

Table 5: Precision of Taint Analysis by ARGUS on Actions.
Type Javascript Composite

TP FP Precision TP FP Precision
Input Flow 138 10 93.2 % 46 1 97.9 %
Direct Flow 27 0 100 % 109 4 96.4 %
Cumulative 175 10 94.2 % 155 5 96.8 %

offline once for every version of the Action. These summaries
are referenced while analyzing Workflows that uses them.

5.2 Q1: Taint Analysis on Actions

ARGUS supports JavaScript and Composite actions, which
are of 70% of all Actions in our dataset of public reposito-
ries (Table 2). For these Actions, Table 4 shows our taint
analysis results categorized by the types of sources and sinks.
As this evaluation considers Actions in isolation, the table
differentiates input flows (where an argument to the action
flows to an unsafe sink) and direct flows (where the Action
consumes an attacker controllable taint source that flows to
an unsafe sink). Table 6 shows the Top-5 taint sources and
sinks used in Actions. Notably, the issue title is one of the top
taint sources, and exec is the most popular sink, indicating
the prevalence of arbitrary code execution vulnerabilities. We
manually verified all the taint summaries for direct flows and
all input flows which were passed tainted values, as shown
in Table 5. We further grouped root causes by unique Ac-
tions and ignoring versions. For example, embano1/wip@v1
and embano1/wip@main are counted as a single unique ac-
tion. We found that 80 Actions (146 including versions), con-
tained direct flow vulernabilities.

Precision: As depicted in Table 5, we achieve a precision of
94.2% for Javascript actions. Our false positives arose in cases
where, even though the taint flow was accurate, there were
checks in place that prevented an attacker from triggering the
taint path (e.g., Listing 4).

In contrast, composite Actions had a precision of 96.8%.
The false positives primarily resulted from insufficient
handling of specific embedded sanitization constructs,
e.g., toJson.

Recall: There is no ground truth for taint flows in Actions.
Therefore we used random sampling to compute an approxi-
mate metric for recall (true negatives). Specifically, we ran-
domly picked 100 actions that were considered safe by our

USENIX Association 32nd USENIX Security Symposium 6991

Table 6: Top-5 Taint sources and sinks used in GitHub Actions
Taint Sources Taint Sinks
(% of Total) (% of Total)

github.head_ref (59.64%) exec (49.73%)
github.event.pull_request.head.ref (15.10%) spawn (13.28%)
github.event.head_commit.message (9.90%) downloadTool (12.99%)

github.event.pull_request.title (4.95%) execSync (9.66%)
github.event.issue.title (3.91%) spawnSync (4.46%)

const vercel_bot_name =
core.getInput('vercel_bot_name');↪→

if (comment.user.login !== vercel_bot_name) { µ
await cancelAction(); // exit

}
...
const regex_matches =

comment.body.match(preview_url_regexp); ↪→

...
const vercel_preview_url = regex_matches[1];
if (vercel_preview_url) {

....
core.setOutput('vercel_preview_url',

vercel_preview_url); ï↪→

Listing 4: Simplified snippet from binary-com/vercel-preview-
url-action [8] Action that contains a sanitization check (µ)
before the tainted value ()–flows into a output funciton
(indicated by ï) which is not detected by ARGUS

analysis and manually verified how many of these are indeed
safe, i.e., whether any flow identified is missed by ARGUS.

Input Flow Examples: Listing 5 (Reedyuk/write-
properties [42]) and Listing 9 (embano1/wip [14] show an
example of a Composite and JavaScript Action with input
flows newly discovered by ARGUS. The figures annotate
input values (�) and the unsafe sinks () to where they flow.
It is important to note that these Actions are only vulnerable
when used by a Workflow that allows adversarially-controlled
values to pass to the input variables. Listings 6 and 3 show
real-world Workflows that use these Actions in a vulnerable
way. These examples show the necessity of static taint
analysis across Workflows. Without the context of Listing 5,
it is not possible to know that Listing 6 uses the default value
for inputs.title. Similarly, Listing 3 is needed to know
that Listing 9 is passed github.head_ref. We also consider
flows from both input arguments and tainted context into
output functions such as core.setOutput, that allow it to
be used in the future, by the workflow as input flow itself.

Direct Flow Examples: Listing 7 (94dreamer/create-
report [1]) shows an Action where the known taint source
context.payload.issue.title is directly used in exec.
Any Workflow that uses this Action is vulnerable, regardless
of whether or not it uses a known taint source itself. The
vulnerable example Action in Listing 7 is used by 64 Work-
flows, including Tencent/tdesign-vue [47] (Listing 8). We

name: "Check WIP"
description: "Checks for WIP patterns in Titles"
...
inputs:
title: �
description: "Text to perform pattern match against"
required: true
default: "${{ github.event.pull_request.title }}"

regex:
...

runs:
using: "composite"
steps:

- shell: bash
run: |

set -ex
...

if [['${{ inputs.title }}' =~ ${{ inputs.regex }}]]; then
...

Listing 5: Simplified snippet of embano1/wip [14] composite
Action that uses input argument title (�) in a run command
(unsafe sink) indicated by . Also, note that by default, the
Action uses a tainted value () for title.

name: Check "WIP" in PR Title

on:
pull_request:
types: [opened, synchronize, reopened, edited]

jobs:
wip:
runs-on: ubuntu-20.04
steps:
- name: Check WIP in PR Title
uses: embano1/wip@v1 a

Listing 6: Snippet of a workflow in vmware/govmomi [54]
repo that has an High severity Arbitrary Code Execution vul-
nerability because of an Inter-WF-Ac flow. The workflow uses
(indicated by a) embano1/wip@v1 Action (Listing 5) with
no arguments. However, the Action uses a user-controllable
(tainted) default value for an argument resulting in Arbitrary
code execution.

found many other examples, including Actions from verified
organizations, e.g., tj-actions/branch-names [49], that directly
use tainted data (e.g., github.head_ref) into an exec sink,
making any Workflow using it vulnerable.

5.3 Q2: Taint Analysis on Workflows

ARGUS’s taint analysis of a Workflow combines the taint
summaries of the Actions used by the Workflow. Table 7
shows our Workflow taint analysis results categorized by
the flow type and severity. The table differentiates two
types of flows. Intra-Workflow (Intra-WF) flows occur when
the taint is passed within the Workflow itself. In contrast,
Inter-Workflow-Action (Inter-WF-Ac) flows occur when the
taint sink is passed through or originates from an Action.
Section 5.2 showed several real-world Inter-WF-Ac exam-

6992 32nd USENIX Security Symposium USENIX Association

function renderMark() {
return > **${context.payload.action === 'reopened' ?
context.payload.sender.login + 'issue' : 'issue'}**
> **:** ${context.payload.issue.title}

..
}
const markdownString = renderMark(); ï
exec(

`curl ${wxhook} \
-H 'Content-Type: application/json' \
-d '
{
...

"markdown": {`

`"content": "${markdownString.replaceAll('"',

"'")}"↪→

}
}'`...

);

Listing 7: Simplified snippet from 94dreamer/create-report
[1] Action that unsafely has tainted value ()–flowing (ï)–
into an exec function (indicated by).

name: Issue Synchronize

on:
issues:
types: [opened, reopened]

jobs:
...
steps:
- uses: 94dreamer/create-report@main a
with:
wxhook: ${{ secrets.WX_HOOK_URL }}
token: ${{ secrets.GITHUB_TOKEN }}
type: 'issue'

Listing 8: Tencent/tdesign-vue [47] contains a workflow vul-
nerable to High severity Code Injection as it uses (indicated
by a) the Vulnerable Action (Listing 7).

ples discovered by ARGUS. An example Intra-WF flow is
shown in Listing 10. Even in this simple case, taint anal-
ysis is needed to identify the flow of information from
the untrusted github.event.issue.title variable to the
developer-defined env.ISSUE_TITLE variable.

ARGUS performed exceptionally well on our VWBench
dataset (bottom of Table 7). It successfully and precisely
found all the taint flows. This high performance is expected
as these workflows contain Intra-Workflow taint flows, and
our WIR helps precisely capture flows within a Workflow.
Severity: As mentioned in Section 4.4, we classify all the
vulnerabilities into three classes, i.e., High, Medium, and Low.
The Table 7 show the distribution of vulnerabilities according
to their severity. A few of these are because of the Intra-
repository pull request capability (Section 2.3), Table 11 in

7We only count total number of unique workflow here, as some workflows
may have both Intra-WF and Inter-WF-Ac flows

const property = core.getInput('property'); �
console.log(`property:${property}`);

const value = core.getInput('value'); �
console.log(`value:${value}`);

 exec(`grep -r "^[#]*\s*${property}=.*" "${path}"`,
(grepError) => {
if(grepError != null) {
...

} else {
 exec(`sed -ir \

"s/^[#]*\s*${property}=.*/${property}=${value}/" \
"${path}"`,
(error, stderr) => {
...

});

Listing 9: Simplified Snippet of Reedyuk/write-properties
[42] JavaScript action that uses both its inputs arguments (�)
as arguments to exec function (indicated by).

name: close
on:
issues:
types: [closed]

...
jobs:

...
env:
ISSUE_TITLE: ${{ github.event.issue.title }}

steps:
- run: |

curl -d $'message=${{ env.ISSUE_TITLE }}

?\encircle{t_{2}}?' -H 'X-TYPETALK-TOKEN: ${{
secrets.TYPETALK_TOKEN }}'
https://typetalk.com/api/v1/topics/${{
secrets.TYPETALK_TOPIC_ID }}

↪→
↪→
↪→
↪→

Listing 10: Snippet of a workflow in yagipy/habit-manager
[58] repo demonstrating Intra-WF flow by directly us-
ing Tainted Data (i.e., github.event.issue.title)
through ISSUE_TITLE (environment variable) in a unsafe
sink (shell run) resulting in High severity code injection.

Appendix shows the classification excluding them. For work-
flows with multiple reports, we selected the highest severity
report to represent the severity of the workflow. As Workflows
(and repositories) can contain multiple vulnerabilities, num-
bers in Total columns (unique Workflows and repositories)
will be less than the sum of corresponding columns. Most
(60%) of the vulnerabilities are Low and have no impact on
the repository. There are still a significant number (∼3K) of
High severity vulnerabilities, which unauthorized attackers
can exploit to gain privileged access to the underlying repos-
itory. This demonstrates the prevalence of the problem and
the need for a system like ARGUS. Furthermore, it is not easy
to fix these vulnerabilities. We present a detailed discussion
in Appendix A.4.
Precision: Due to the large number of vulnerabilities identi-
fied in the Public Repositories dataset, we focused on sam-
pling based on their severity. Specifically, we manually ver-
ified all 3,643 High severity vulnerabilities and randomly

USENIX Association 32nd USENIX Security Symposium 6993

Table 7: Severity Assignment of Vulnerabilities using the
Method in Section 4.4 and the Low vulnerabilities have no
impact on the repository. (W - Workflows, R - Repos)

Severity Intra-WF Inter-WF-Ac Total7
W R W R W R

Public Repositories

High 3,189 2,383 863 820 3,643 2,799
Medium 6,602 1,710 1,015 488 7,443 2,031

Low 13,402 9,155 3,256 2,406 16,379 11,173

VWBench

High 23 23 N/A N/A 23 23
Medium 1 1 N/A N/A 1 1

Low 0 0 N/A N/A 0 0

Total 23,193 13,248 5,134 3,714 27,489 16,027

name: Docs
...
jobs:
prepare_env:
steps:
...
- id: skip-docs-comment
name: Process comments on Pull Request to skip Docs
if: ${{ github.event.issue.pull_request }}
run: echo "::set-output name=value::$(echo ${{

contains(github.event.comment.body,
'/skip-docs') }})"

↪→

↪→

Listing 11: A false positive found by ARGUS in solo-io/gloo
[45], where github.event.comment.body is inside a CI
function which only returns a boolean

sampled 1,000 each from Medium and Low severity vulner-
abilities resulting in a total of 5,643. The Table 8 shows the
results of our manual verification and precision across each
severity. We found that 4,111 (92.65%) Intra-WF reports
and 1,671 (94.89%) Intra-WF-Ac reports were true, result-
ing in an overall precision of 93.29%. An example of a false
positive is shown in Listing 11. The two main reasons for
false positives were: (1) not handling certain embedded san-
itization constructs such as contains (similar to Actions);
and (2) failure to identify whether members of tainted objects
(e.g., context.payload.issue) are indeed used in certain
complex sinks.

Recall: To measure false negatives, we randomly sam-
plied 100 workflows that were considered safe for manually
verification. Similar to the Actions, we found all the results to
the true. Again, this high performance is due to the fact that
Workflows are usually small and have simple dataflows that
can be precisely captured by our WIR.

5.4 Q3: Vulnerability Identification

In this section, we present previously unknown code injection
and arbitrary code execution vulnerabilities detected by AR-
GUS, as summarized by Table 8. The input flow and direct flow
columns were explained in Section 5.2 along with correspond-
ing examples. Many of the affected Workflows have the same
root cause. For example, Tencent/tdesign-vue-next [48] and
Tencent/tdesign-vue [47] both pass tainted data to the same
Action and version (94dreamer/create-report [1]). The Unique
Root Causes column in Table 8 shows the total number of
unique root cause groups. The column Unique Actions shows
grouping according to the unique Actions. These numbers
are still large, demonstrating the importance of analyzing
Inter-Workflow-Action flows.

The Intra-WF and Inter-WF-ac rows were explained in
Section 5.3 along with corresponding examples. We verified
all findings manually and validated them by creating sample
exploits on isolated copies of the repositories. We present
an analysis of Workflow vulnerabilities and the responsible
actions in Appendix A.3.
Popularity of Affected Repositories: Although most of the
vulnerable Workflows are in less popular repositories, many
are popular. For instance, the opencv/opencv [38] repository
with more than 66,000 stars contains a vulnerable Workflow.
Exploiting such vulnerabilities in popular repositories en-
ables attackers to launch high-impact supply chain attacks
and hence an attractive target. We present complete results
in Appendix A.2.
Exploitability. To exploit a vulnerable Workflow, an attacker
must trigger specific events and and provide exploit payload
as inputs through appropriate taint sources. Consequently,
the exploitation mechanism varies with different triggers and
types of exploit payloads, which depend on tainted data flows
and sinks. We identified eight types of triggers (and corre-
sponding taint sources) and three types of taint data flows:
Intra-WF, Inter-WF-Ac, or Intra-Ac (Source and Sink both in
Action).

For each category, we selected a representative real-world
vulnerable Workflow or created a synthetic Workflow (when a
real-world case does not exist) and provided proof-of-concept
exploits for them 9. Although our exploits are aimed at steal-
ing GITHUB_TOKEN, they can be easily modified to execute
any arbitrary code.

5.4.1 Responsible Disclosure

Due a large number of affected workflows, we decided to
reach out to the GitHub Security Lab [24] for assistance
in reporting these vulnerabilities. GitHub Security Lab sug-
gested that the best way to report our vulnerabilities is through
GitHub’s private vulnerability reporting [22].

9Available as open-source at: https://secureci.org/poc

6994 32nd USENIX Security Symposium USENIX Association

https://secureci.org/poc

Table 8: Summary of New (zero day) Code Injection Vulnerabilities Detected by ARGUS. The numbers in the braces show the
precision of the corresponding severity.

Flow Type Num. Workflows Num. Repos Direct Flow Actions Input Flow Actions
High

(Total: 3,643)
Medium

(Sampled: 1,000)
Low

(Sampled: 1,000)
Total

(Expected: 5,643)
Unique

Root Cause
Unique
Actions

Unique
Root Cause

Unique
Actions

Public Repositories
Intra-WF 2,875 467 769 4,111 3,226 N/A

Inter-WF-Ac 787 597 287 1,671 1,257 55 33 34 13
Total 8 3,322 (91.18%) 985 (98.5 %) 991 (99.1%) 5,298 (93.88%) 4,000 55 33 34 13

Table 9: Disclosure status at the time of writing. IC (Issues
Created) denotes repositories where we have created issues.

Type IC Reported Confirmed Fixed Advisory

Workflow 1730 185 95 93 5
Actions 117 28 15 9 4

However, we found that only a few of repositories had this
feature enabled. Hence, we created issues requesting devel-
opers to activate the private vulnerability reporting feature in
their respective repositories. If the feature was already acti-
vated, or once the developers activated it in response to our
request, we manually filed a vulnerability report and collab-
orated closely with the developers to rectify the identified
vulnerability. In instances where the repository owners had
defined a security policy, we adhered to the specific protocol
outlined therein. Our disclosure process is ongoing. We have
created issues to request private vulnerability reporting for all
repositories with vulnerabilities we classified as High severity.
Table 9 shows the disclosure status at the time of writing.

5.5 Q4: Comparative Evaluation

ARGUS is not the first security analysis tool for GitHub Work-
flows. However, prior tools do not have the ability to perform
static taint analysis. This section compares ARGUS to state-
of-the-art tools to demonstrate the need for taint analysis.

• GHAST [7] is an enhanced variant of GWCHECKER [33]
that uses better pattern-matching to identify seven types
of security issues potentially affecting Workflows ranging
from incorrect usage of GitHub secrets to the improper
usage of Workflows permissions.

• GITSEC [23] is a CodeQL query developed by the GitHub
Security team to detect command injection and arbitrary
code execution vulnerabilities in Workflows.

We configured these tools to detect code injection vulner-
abilities and, in a few cases, enhanced them for a more fair
comparison. For instance, we modified GITSEC by adding all

9We only count total number of unique workflow here, as some workflows
may have both Intra-WF and Inter-WF-Ac flows

Table 10: Comparative Evaluation of ARGUS with other state-
of-the-art works in finding Code Injection Vulnerabilities.

Tool High/Medium Low
TP FP FN P TP FP FN P

GHAST 744 157 3,563 82.6% 331 363 660 47.7%
GITSEC 1,527 53 2,780 96.6% 204 3 787 98.5%
ARGUS 4,307 336 0 92.8% 991 9 0 99.1%

our taint sources and sinks. And for GHAST we filtered out re-
ports that are related to code injection and ignored others. We
then ran both tools on our full dataset of public repositories.
Precision (P): From the set of workflows that we manu-
ally verified, we compared the results with the reports from
GHAST and GITSEC and found that they have the precision
of 67.4% and 96.87%, respectively. In contrast, ARGUS has
a precision of 93.89% (Section 5.3). We found that out of
5,298 vulnerable Workflows, GHAST and GITSEC identi-
fied 1075 and 1,731, respectively. It is important to highlight
that these tools do not perform a severity impact assessment.
However, we employ our own impact classifier to categorize
the workflows reported by these tools.

Table 10 shows the results of our comparative evaluation.
It is interesting to see that ARGUS flagged 27,465 alerts,
whereas GHAST and GITSEC raise only 3,775 and 2,607 each.
And among this GHAST flagged 362 Workflows as vulnera-
ble which were not found by ARGUS, but they were all false
positives, whereas all alerts from GITSEC were reported by
ARGUS. The results are consistent even across different sever-
ity levels. Although the precision of GITSEC is slightly higher
(96.6% v/s 92.8%) on High/Medium severity Workflows, AR-
GUS was able to identify additional 2,780 Workflows missed
(i.e., false negatives (FN)) by GITSEC.

5.6 Limitations and Future Work

This section describes the current limitations of ARGUS and
our plans to handle them as part of our future work.

False negatives: Our current implementation only has sup-
port for JavaScript and Composite actions. However, we ob-
served many actions (30%) are developed as Docker con-
tainers. Which we do not support and might have missed
vulnerabilities resulting in false negatives. Similarly, we do
not track taint flows through files. Our extensible framework
allows us to add support for this easily. As part of our future

USENIX Association 32nd USENIX Security Symposium 6995

work, we plan to add plugins for Docker actions and track
flows across files.
Conditional Statements: Our current system does not eval-
uate conditional expressions between steps. However, our
framework is designed in such a way that it can be easily
extended to support this feature in the future.
Impact classifier: We determine the privileges
of GITHUB_TOKEN at Workflow level. However, permissions
can be defined or modified at job level. Consequently, our
approach can result in incorrect impact classification. We
plan to add support for job-level permissions in our future
work.
Tool Limitations: We use CODEQL to develop our taint
analysis, and consequently, we also inherit its limitations. For
instance, we may not be able to detect taint flows in case of
obfuscated JavaScript actions [2]. However, we did not find
any such actions in our dataset. Our plugin interface enables
us to easily integrate any other better future tools.

6 Related Work

GitHub Workflows Analysis: A few recent works imple-
mented automated analysis of Github CI workflows. In par-
ticular, Benedetti et al. [7] focused on 7 types of security
issues potentially affecting GitHub workflows (ranging from
incorrect usage of GitHub secrets to the improper usage of
workflows’ permissions). To detect these issues, the authors
developed GHAST, a tool using a pattern-matching approach
to analyze each workflows’ YAML files. Similarly, Koishy-
bayev et al. [33] developed a tool, named GWCHECKER, to au-
tomatically audit workflows, aiming at detecting the presence
of secrets in plaintext, insecure triggers, and the usage of non-
updated actions. Finally, GitHub has developed a CodeQL-
based script to detect Command Injection vulnerabilities in
workflows [23]. All these existing tools cannot precisely char-
acterize workflows’ execution flows across multiple actions,
since they use a pattern-matching, heuristic approach. On the
contrary, ARGUS uses static taint analysis to track data flow
across workflows and their used actions.
CI/CD Security Analysis: Other works explored the security
of CI/CD systems without focusing specifically on GitHub
workflows. In particular, Dullmann et al. [13] highlighted how
standard software engineering practices (such as A/B testing
and Fault Injection) should also be applied to CD pipelines
to guarantee their reliability and security. Shahin et al. [44]
further elaborated on this topic by performing a systematic lit-
erature review of approaches, tools, and practices related to the
deployment of Continues Integration pipelines. More recently,
Vassallo et al. [53] implemented a tool, named CD-Linter,
to automatically identify and fix “configuration smells” (i.e.,
CI pipeline issues caused by improper configuration) affect-
ing GitLab repositories. Additionally, Gruhn et al. [26] and
Fernandez et al. [16] proposed using, respectively, virtual

machines and Docker containers to compartmentalize the ex-
ecution of CI pipelines, mitigating possible security issues.
Unfortunately, the adoption of these systems requires signifi-
cant changes to the existing CI infrastructure.

Static Taint Analysis: Static Taint Analysis (STA) has been
extensively used in the past for security applications. For
instance, Kashyap et al. [30] and Madsen et al. [35] imple-
mented tools to perform static taint analysis of JavaScript
code. Similarly, the tools LeakMiner [59], Flowdroid [5], and
Amandroid [56] have been used to perform security vetting
of Android apps. None of these approaches could be applied
directly to the analysis of GitHub workflows since, in this
case, we need to “follow” tainted data across multiple lan-
guages (such as Javascript and Bash) and across multiple
actions, interacting with each other according to their YAML
specification.

7 Conclusions

GitHub CI has gained tremendous popularity among devel-
opers because of its convenience over other public CI/CD
providers and easy use of third-party Actions. It is important
to ensure the security of GitHub Workflows to prevent supply
chain attacks. We present ARGUS, a framework for static taint
analysis of GitHub Workflows and Actions. Our framework is
based on the use of WIR for Workflows and taint summaries
for Actions. Our large-scale evaluation of over 2M Workflows
and 30K Actions revealed a total of 5,298 vulnerable Work-
flows (including 4,307 critical vulnerabilities) outperforming
state-of-the-art tools.

Acknowledgments

A special note of thanks goes to Jaroslav Lobačevski and
GitHub Security Lab for their assistance and support during
our study. We are also grateful to our reviewers and shepherd
for their invaluable insights and guidance. We would also like
to extend our gratitude to Sourag Cherupattamoolayil, whose
assistance and contributions were instrumental in carrying
out this research.

This research was supported by in part by the National
Science Foundation (NSF) under Grants CNS-2247686, CNS-
2207008, Amazon Research Award (ARA) on “Security Ver-
ification and Hardening of CI Workflows” and by Defense
Advanced Research Projects Agency (DARPA) under con-
tract number N6600120C4031. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF, Amazon or the
United States Government.

6996 32nd USENIX Security Symposium USENIX Association

References

[1] 94dreamer. 94dreamer/create-report. https://gith
ub.com/94dreamer/create-report.

[2] Ismail Adel AL-Taharwa, Hahn-Ming Lee, Albert B
Jeng, Kuo-Ping Wu, Cheng-Seen Ho, and Shyi-Ming
Chen. Jsod: Javascript obfuscation detector. Security
and Communication Networks, 8(6):1092–1107, 2015.

[3] Nabil Almashfi and Lunjin Lu. Static taint analysis for
javascript programs. In Tools and Methods of Program
Analysis (TMPA): 5th International Conference, Tbil-
isi, Georgia, Revised Selected Papers, pages 155–167.
Springer, 2021.

[4] Marcelo Arroyo, Francisco Chiotta, and Francisco Bav-
era. An user configurable clang static analyzer taint
checker. In 2016 35th International Conference of the
Chilean Computer Science Society (SCCC), pages 1–12.
IEEE, 2016.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6):259–269, 2014.

[6] Pavel Avgustinov, Oege De Moor, Michael Peyton Jones,
and Max Schäfer. Ql: Object-oriented queries on rela-
tional data. In 30th European Conference on Object-
Oriented Programming (ECOOP). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

[7] Giacomo Benedetti, Luca Verderame, and Alessio Merlo.
Automatic security assessment of github actions work-
flows. In Proceedings of the ACM Workshop on Soft-
ware Supply Chain Offensive Research and Ecosystem
Defenses, pages 37–45, 2022.

[8] binary-com. binary-com/vercel-preview-url-action. ht
tps://github.com/binary-com/vercel-preview
-url-action/.

[9] Continuous Integration and Delivery - CircleCI. https:
//circleci.com/.

[10] Creating a pull request. https://docs.github.com/
en/pull-requests/collaborating-with-pull-r
equests/proposing-changes-to-your-work-wit
h-pull-requests/creating-a-pull-request.

[11] Default read-only tokens. https://github.blog/ch
angelog/2023-02-02-github-actions-updating
-the-default-github_token-permissions-to-
read-only/.

[12] DynamoDS. DynamoDS/Dynamo. https://github
.com/DynamoDS/Dynamo.

[13] T. F. Düllmann, C. Paule, and A. v. Hoorn. Exploiting
devops practices for dependable and secure continu-
ous delivery pipelines. In IEEE/ACM 4th International
Workshop on Rapid Continuous Software Engineering
(RCoSE), 2018.

[14] embano1. embano1/wip. https://github.com/emb
ano1/wip.

[15] Encrypted secrets. https://docs.github.com/en/a
ctions/reference/encrypted-secrets.

[16] David Fernández González, Francisco Javier Ro-
dríguez Lera, Gonzalo Esteban, and Camino Fernán-
dez Llamas. Secdocker: Hardening the continuous in-
tegration workflow: Wrapping the container layer. SN
Computer Science, 3:1–13, 2022.

[17] GHarchive. GHarchive’s open public dataset. https:
//www.gharchive.org/, 2021.

[18] github. actions/github-script. https://github.com/a
ctions/github-script.

[19] Github. Github variables. https://docs.github.co
m/en/actions/learn-github-actions/variable
s#using-contexts-to-access-variable-values.

[20] GitHub Action Runner. https://github.com/actio
ns/runner.

[21] GitHub investigating crypto-mining campaign abusing
its server infrastructure. https://therecord.media/
github-investigating-crypto-mining-campaig
n-abusing-its-server-infrastructure/.

[22] Github private vulnerability reporting. https://docs
.github.com/en/code-security/security-advi
sories/guidance-on-reporting-and-writing/p
rivately-reporting-a-security-vulnerabilit
y.

[23] GitHub Security Code Injection Finder. https://gi
thub.com/github/codeql/blob/main/javascrip
t/ql/src/Security/CWE-094/ExpressionInject
ion.ql.

[24] Github security lab. https://securitylab.github
.com/.

[25] GitLiveApp. GitLiveApp/kotlin-diff-utils. https://gi
thub.com/GitLiveApp/kotlin-diff-utils.

[26] Volker Gruhn, Christoph Hannebauer, and Christian
John. Security of public continuous integration ser-
vices. In Proceedings of the 9th International Sympo-
sium on Open Collaboration, WikiSym ’13. Association
for Computing Machinery, 2013.

USENIX Association 32nd USENIX Security Symposium 6997

https://github.com/94dreamer/create-report
https://github.com/94dreamer/create-report
https://github.com/binary-com/vercel-preview-url-action/
https://github.com/binary-com/vercel-preview-url-action/
https://github.com/binary-com/vercel-preview-url-action/
https://circleci.com/
https://circleci.com/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://github.blog/changelog/2023-02-02-github-actions-updating-the-default-github_token-permissions-to-read-only/
https://github.blog/changelog/2023-02-02-github-actions-updating-the-default-github_token-permissions-to-read-only/
https://github.blog/changelog/2023-02-02-github-actions-updating-the-default-github_token-permissions-to-read-only/
https://github.blog/changelog/2023-02-02-github-actions-updating-the-default-github_token-permissions-to-read-only/
https://github.com/DynamoDS/Dynamo
https://github.com/DynamoDS/Dynamo
https://github.com/embano1/wip
https://github.com/embano1/wip
https://docs.github.com/en/actions/reference/encrypted-secrets
https://docs.github.com/en/actions/reference/encrypted-secrets
https://www.gharchive.org/
https://www.gharchive.org/
https://github.com/actions/github-script
https://github.com/actions/github-script
https://docs.github.com/en/actions/learn-github-actions/variables#using-contexts-to-access-variable-values
https://docs.github.com/en/actions/learn-github-actions/variables#using-contexts-to-access-variable-values
https://docs.github.com/en/actions/learn-github-actions/variables#using-contexts-to-access-variable-values
https://github.com/actions/runner
https://github.com/actions/runner
https://therecord.media/github-investigating-crypto-mining-campaign-abusing-its-server-infrastructure/
https://therecord.media/github-investigating-crypto-mining-campaign-abusing-its-server-infrastructure/
https://therecord.media/github-investigating-crypto-mining-campaign-abusing-its-server-infrastructure/
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing/privately-reporting-a-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing/privately-reporting-a-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing/privately-reporting-a-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing/privately-reporting-a-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing/privately-reporting-a-security-vulnerability
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/ExpressionInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/ExpressionInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/ExpressionInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/ExpressionInjection.ql
https://securitylab.github.com/
https://securitylab.github.com/
https://github.com/GitLiveApp/kotlin-diff-utils
https://github.com/GitLiveApp/kotlin-diff-utils

[27] Hackers backdoor PHP source code after breaching in-
ternal git server. https://arstechnica.com/gadg
ets/2021/03/hackers-backdoor-php-source-co
de-after-breaching-internal-git-server/.

[28] How We Discovered Vulnerabilities in CI/CD Pipelines
of Popular Open-Source Projects. https://cycode.c
om/github-actions-vulnerabilities/.

[29] Jez Humble and David Farley. Continuous delivery:
reliable software releases through build, test, and de-
ployment automation. Pearson Education, 2010.

[30] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John
Wagner, Kevin Gibbons, John Sarracino, Ben Wieder-
mann, and Ben Hardekopf. Jsai: A static analysis plat-
form for javascript. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. Association for Computing Ma-
chinery, 2014.

[31] Keeping your GitHub Actions and workflows secure:
Preventing pwn requests. https://securitylab.gi
thub.com/research/github-actions-preventin
g-pwn-requests/.

[32] Timothy Kinsman, Mairieli Wessel, Marco A Gerosa,
and Christoph Treude. How do software developers
use github actions to automate their workflows? arXiv
preprint arXiv:2103.12224, 2021.

[33] Igibek Koishybayev, Aleksandr Nahapetyan, Raima
Zachariah, Siddharth Muralee, Bradley Reaves, Alexan-
dros Kapravelos, and Aravind Machiry. Characterizing
the security of github {CI} workflows. In Proceedings
of the USENIX Security Symposium, pages 2747–2763,
2022.

[34] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna. Dr.
checker: A soundy analysis for linux kernel drivers. In
Proceedings of the USENIX Security Symposium, pages
1007–1024, 2017.

[35] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static
analysis of event-driven node.js javascript applications.
In Proceedings of the ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA). Association for
Computing Machinery, 2015.

[36] Abdalla Wasef Marashdih, Zarul Fitri Zaaba, and Khaled
Suwais. An enhanced static taint analysis approach to
detect input validation vulnerability. Journal of King
Saud University-Computer and Information Sciences,
2023.

[37] Florent Moriconi, Axel Ilmari Neergaard, Lucas Geor-
get, Samuel Aubertin, and Aurélien Francillon. Reflec-
tions on trusting docker: Invisible malware in contin-
uous integration systems. In 17th IEEE Workshop on
Offensive Technologies(WOOT), San Francisco, United
States, 2023.

[38] opencv. opencv/opencv. https://github.com/ope
ncv/opencv.

[39] OWASP. OWASP Top 10 CI/CD Security Risks. https:
//owasp.org/www-project-top-10-ci-cd-secur
ity-risks/, 2022.

[40] peaceiris. peaceiris/actions-gh-pages. https://gith
ub.com/peaceiris/actions-gh-pages.

[41] Nilo Redini, Aravind Machiry, Dipanjan Das, Yan-
ick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Bootstomp: On the security of bootloaders in mo-
bile devices. In Proceedings of the USENIX Security
Symposium, pages 781–798, 2017.

[42] Reedyuk. Reedyuk/write-properties. https://github
.com/Reedyuk/write-properties/.

[43] Set up Automated CI Systems with GitLab. https:
//about.gitlab.com/stages-devops-lifecycle
/continuous-integration/.

[44] M. Shahin, M. Ali Babar, and L. Zhu. Continuous inte-
gration, delivery and deployment: A systematic review
on approaches, tools, challenges and practices. IEEE
Access, 2017.

[45] solo-io. solo-io/gloo. https://github.com/solo-io
/gloo/.

[46] Cristian-Alexandru Staicu, Martin Toldam Torp, Max
Schäfer, Anders Møller, and Michael Pradel. Extracting
taint specifications for javascript libraries. In Proceed-
ings of the ACM/IEEE 42nd International Conference
on Software Engineering, pages 198–209, 2020.

[47] Tencent. Tencent/tdesign-vue. https://github.com
/Tencent/tdesign-vue/.

[48] Tencent. Tencent/tdesign-vue-next. https://github
.com/Tencent/tdesign-vue-next.

[49] tj-actions. tj-actions/branch-names. https://github
.com/tj-actions/branch-names.

[50] Santiago Torres-Arias, Hammad Afzali, Tris-
hank Karthik Kuppusamy, Reza Curtmola, and
Justin Cappos. in-toto: Providing farm-to-table
guarantees for bits and bytes. In Proceedings of the
USENIX Security Symposium, 2019.

6998 32nd USENIX Security Symposium USENIX Association

https://arstechnica.com/gadgets/2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/
https://arstechnica.com/gadgets/2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/
https://arstechnica.com/gadgets/2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/
https://cycode.com/github-actions-vulnerabilities/
https://cycode.com/github-actions-vulnerabilities/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://github.com/opencv/opencv
https://github.com/opencv/opencv
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://github.com/peaceiris/actions-gh-pages
https://github.com/peaceiris/actions-gh-pages
https://github.com/Reedyuk/write-properties/
https://github.com/Reedyuk/write-properties/
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://github.com/solo-io/gloo/
https://github.com/solo-io/gloo/
https://github.com/Tencent/tdesign-vue/
https://github.com/Tencent/tdesign-vue/
https://github.com/Tencent/tdesign-vue-next
https://github.com/Tencent/tdesign-vue-next
https://github.com/tj-actions/branch-names
https://github.com/tj-actions/branch-names

[51] Travis CI - Test and Deploy Your Code with Confidence.
https://travis-ci.org/.

[52] Pablo Valenzuela-Toledo and Alexandre Bergel. Evolu-
tion of github action workflows. In 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 123–127. IEEE, 2022.

[53] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Har-
ald C. Gall, and Massimiliano Di Penta. Configuration
smells in continuous delivery pipelines: A linter and a
six-month study on gitlab. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020. Association for
Computing Machinery, 2020.

[54] vmware. vmware/govmomi. https://github.com/v
mware/govmomi/.

[55] Gary Wassermann and Zhendong Su. Static detection of
cross-site scripting vulnerabilities. In Proceedings of the
30th international conference on Software engineering,
pages 171–180, 2008.

[56] Fengguo Wei, Sankardas Roy, and Xinming Ou. Aman-
droid: A precise and general inter-component data flow
analysis framework for security vetting of android apps.
ACM Transactions on Privacy and Security (TOPS),
21(3):1–32, 2018.

[57] xamarin. xamarin/backport-bot-action. https://gith
ub.com/xamarin/backport-bot-action.

[58] yagipy. yagipy/habit-manager. https://github.com
/yagipy/habit-manager.

[59] Zhemin Yang and Min Yang. Leakminer: Detect infor-
mation leakage on android with static taint analysis. In
2012 Third World Congress on Software Engineering,
pages 101–104, 2012.

A Appendix

A.1 Intra-repository pull requests
The creation of pull requests between two branches of a repos-
itory requires contributor access to that repository or member-
ship in the organization to which the repository belongs [10].
However, we found that it is possible to create a pull request
between two branches of a repository without possessing such
access rights.

This is significant because an attacker could misuse this to
trigger a vulnerable workflow, which is configured to run on
the pull_request event. And, since this event is triggered
from a branch of the same repository, first-time contributor

Table 11: Severity Assignment of Vulnerabilities excluding
those because of intra-repository pull-request. (W - Work-
flows, R - Repos)

Severity Intra-WF Inter-WF-Ac Total10

W R W R W R

Public Repositories

High 2,909 2,130 564 530 3,244 2,451
Medium 5,699 1,436 933 453 6,468 1,731

Low 14,585 9,682 3,637 2,731 17,753 11,821

Total 23,193 13,248 5,134 3,714 27,465 16,003

protections are disabled, GITHUB_TOKEN runs with default per-
missions, and user-defined secrets are passed to the workflow.

However, since the attacker does not possess write ac-
cess to the repository, the modifications they can make
are limited to pull request parameters, specifically the title
(pull_request.title) and body (pull_request.body).
This limitation constrains the attacker’s ability to manipu-
late the content of the pull request but does not prevent them
from triggering a vulnerable workflow configured to run on
the pull_request event - if they manage to get malicious
git metadata inserted into the source branch through benign
commits.

It is crucial to note that a fix would necessitate changes in
the design of our impact classifier. Specifically, the attacker
would only be able to trigger vulnerable workflows with a
pull_request trigger from a fork, resulting in them not con-
taining secrets and a read-only GITHUB_TOKEN. Table 12 and
Table 13 also illustrate these sources with a t icon. Similarly,
any workflow with only a pull_request trigger will be au-
tomatically classified as low severity. We have implemented
this modified version of the impact classifier and present the
corresponding results in Table 11.

A.2 Popularity

The Figure 5 shows the popularity of the vulnerable Work-
flows based on GitHub stars. Although most of the vulnerable
Workflows are in less popular repositories, many are popular.
For instance, the opencv/opencv [38] repository with more
than 66,000 stars contains a Workflow with a Low severity
arbitrary code execution vulnerability that can be triggered by
any user on GitHub. Exploiting Workflows in popular reposi-
tories enables attackers to launch high-impact supply chain
attacks and hence an attractive target.

A.3 Workflow Vulnerabilities and Affecting
Actions

10We only count total number of unique workflow here, as some workflows
may have both Intra-WF and Inter-WF-Ac flows

USENIX Association 32nd USENIX Security Symposium 6999

https://travis-ci.org/
https://github.com/vmware/govmomi/
https://github.com/vmware/govmomi/
https://github.com/xamarin/backport-bot-action
https://github.com/xamarin/backport-bot-action
https://github.com/yagipy/habit-manager
https://github.com/yagipy/habit-manager

1 on:
2 issues:
3 types: labeled
4

5 jobs:
6 type-invalid:
7 runs-on: ubuntu-latest
8 if: "${{ contains(github.event.label.name, 'Type: Invalid')

}}"↪→
9 steps:

10 - uses: actions/github-script@v6
11 with:
12 script: |
13 await github.rest.issues.update({
14 issue_number: context.issue.number,
15 owner: context.repo.owner,
16 repo: context.repo.repo,
17 state: "closed",
18 })

Listing 12: facebook/react-native [25] contains a Workflow
that uses actions/github-script [18] (an Input flow action) in a
safe way.

Unlike, Direct Flow Actions, not all Workflows that use
Input Flow Actions are vulnerable. For instance, Listing 12
shows an example of the Workflow that correctly uses an
Input Flow Action by not passing tainted data. We found that
most workflows use these Input Flow Actions in a safe way. In
contrast, some Actions such as backport-bot-action [57]
have no safe usages.

A.4 Challenges in Fixing Workflow Vulnera-
bilities

The adoption of GitHub Workflow is on the rise. Unfortu-
nately, this also increases the prevalence of vulnerabilities. Al-
though, in general, fixing the taint vulnerabilities is relatively
easy and requires adding proper sanitization. But depending
on the type of vulnerability, the fix should be done on the
action or the Workflow. For actions that directly use tainted
values, we need to fix the corresponding action by adding
proper sanitization (e.g., Listing 7). But for other actions,
the fix might have to happen on the Workflow. For instance,
the purpose of actions/github-script [18] is to execute the
command provided as input. So, it is the responsibility of the
Workflow not to pass tainted value to the actions/github-script.
In these cases, the fix needs to be added on the Workflow side.

0
1-10

11-50
51-100

101-500
>=501

20

40

60

80

100

3,930

775

161 42
187 203

Number of Stars on GitHub (�).

Pe
rc

en
ta

ge
(%

)o
fR

ep
os

.

Figure 5: Popularity of Repositories with Arbitrary Code
Execution Vulnerabilities.

Table 12: Workflow taint sources and the number of
workflows that use the taint sources. (t shows sources
with increased severity due to Inter-repository pull request
capability—Appendix A.1)

Name Workflows Count
github.event.issue.title 3,579
github.event.issue.body 3056
github.event.discussion.title 395
github.event.discussion.body 312
github.event.comment.body 3,371
github.event.review.body 105
github.event.pages.*.page_name 0
github.event.commits.*.message 4
github.event.commits.*.author.email 1
github.event.commits.*.author.name 2
github.event.head_commit.message 7,374
github.event.head_commit.author.email 140
github.event.head_commit.author.name 321
github.event.head_commit.committer.email 44
github.event.workflow_run.head_branch 2114
github.event.workflow_run.head_commit.message 338
github.event.workflow_run.head_commit.author.email 13
github.event.workflow_run.head_commit.author.name 117
t github.event.pull_request.title 6,469
t github.event.pull_request.body 7,154
github.event.pull_request.head.label 624
github.event.pull_request.head.repo.default_branch 0
github.head_ref 32,568
github.event.pull_request.head.ref 16,102
github.event.workflow_run.pull_requests.*.head.ref 0

Table 13: Taint sources specific to JavaScript action. (t in
Table 12 are also applicable to actions) –Appendix A.1)

Module name Properties/Functions
@actions/github All sources present in Table 12 are

sources in JavaScript as well and can
be accessed using the context parame-
ter (e.g., issue.title can be accessed using
context.payload.issue.title)

@actions/core getInput()
getMultilineInput()

Global objects process.env

7000 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Workflow Components
	Workflow Execution
	 Workflow Secrets and Permissions

	Motivation and Threat Model
	Threat Model

	Argus Design
	Taint Sources and Sinks
	Taint Sources
	Taint Sinks

	Taint Summary Creator
	Composite Action
	JavaScript Actions

	Workflow Analysis
	Workflow Taint Tracking

	 Impact Classifier

	Evaluation
	Datasets and Experimental Setup
	 Q1: Taint Analysis on Actions
	 Q2: Taint Analysis on Workflows
	 Q3: Vulnerability Identification
	 Responsible Disclosure

	Q4: Comparative Evaluation
	Limitations and Future Work

	Related Work
	Conclusions
	Appendix
	 Intra-repository pull requests
	Popularity
	Workflow Vulnerabilities and Affecting Actions
	Challenges in Fixing Workflow Vulnerabilities

