ARGUS: A Framework for Staged Static Taint Analysis of GitHub Workflows and Actions

Siddharth Muralee, Purdue University; Igibek Koishybayev, Aleksandr Nahapetyan, Greg Tystahl, and Brad Reaves, North Carolina State University; Antonio Bianchi, Purdue University; William Enck and Alexandros Kapravelos, North Carolina State University; Aravind Machiry, Purdue University

https://www.usenix.org/conference/usenixsecurity23/presentation/muralee
ARGUS: A Framework for Staged Static Taint Analysis of GitHub Workflows and Actions

Siddharth Muralee†‡, Igibek Koishybayev†‡, Aleksandr Nahapetyan†, Greg Tystahl†‡, Brad Reaves†, Antonio Bianchi‡, William Enck†, Alexandros Kapravelos†, Aravind Machiry‡

† Purdue University, {smuralee, antoniob, amachiry}@purdue.edu
‡ North Carolina State University, {ikoishy, anahape, gttystah, bgreaves, whenck, akaprav}@ncsu.edu

Abstract

Millions of software projects leverage automated workflows, like GitHub Actions, for performing common build and deploy tasks. While GitHub Actions have greatly improved the software build process for developers, they pose significant risks to the software supply chain by adding more dependencies and code complexity that may introduce security bugs.

This paper presents ARGUS, the first static taint analysis system for identifying code injection vulnerabilities in GitHub Actions. We used ARGUS to perform a large-scale evaluation on 2,778,483 Workflows referencing 31,725 Actions and discovered critical code injection vulnerabilities in 4,307 Workflows and 80 Actions. We also directly compared ARGUS to two existing pattern-based GitHub Actions vulnerability scanners, demonstrating that our system exhibits a marked improvement in terms of vulnerability detection, with a discovery rate more than seven times (7x) higher than the state-of-the-art approaches.

These results demonstrate that command injection vulnerabilities in the GitHub Actions ecosystem are not only pervasive but also require taint analysis to be detected.

1 Introduction

Continuous Integration and Continuous Deployment (CI/CD) pipelines [29] have become ubiquitous in the software development lifecycle. They automate various software development processes, such as building, testing, and deploying code. There are several well-maintained CI/CD frameworks, including TravisCI [51], CircleCI [9], and Gitlab CI [43].

Since its introduction, the GitHub Actions platform has gained tremendous popularity due to its convenience over other public CI/CD providers [52]. Developers specify automation tasks using *GitHub Workflows*. A key convenience is an ability to easily use third-party plugins called *Actions*, which bundle common tasks, such as checking out a repository. Actions enable developers to easily create Workflows by referencing Actions rather than specifying all of the steps [32].

Securing CI/CD pipelines is essential to supply chain security. Researchers have discovered various GitHub Workflows are vulnerable to code injection vulnerabilities [28, 31]. OWASP has also the Top 10 CI/CD security risks [39] to raise awareness on CI/CD vulnerabilities, defining Poisoned Pipeline Execution (PPE) as a specific type of code injection.

Static analysis is commonly used to detect vulnerabilities. Recent works [7, 23, 33] have tried to find vulnerabilities in Workflows using pattern-matching. However, the complexity of a typical Workflow demands more sophisticated analysis to track the data flows that occur within it, particularly when detecting code injection vulnerabilities. The prior approaches also fail to analyze third-party Actions and reusable workflows, which are pervasive in the GitHub Actions ecosystem. Consequently, prior approaches fail to identify many non-trivial vulnerabilities, as we show in Section 5.5.

Static Taint Tracking (STA) is a well-known technique for tracking untrusted (tainted) data flow and is effective for vulnerability detection [3, 4, 34, 36, 41, 55]. This paper proposes an STA framework for holistic analysis of GitHub Workflows and uses it to detect code injection vulnerabilities. There are two key challenges for performing STA on Workflows:

1. **Non-linear execution semantics of Workflows**: At a high level, a Workflow consists of jobs, each with a sequence of steps. A job may depend on one or more other jobs and will only be executed after all its dependencies are complete. If there are no dependencies, multiple jobs can run concurrently. Additionally, there may be data flows between jobs, making it difficult to model the execution flow, requiring new Control Flow Graph (CFG) structures to perform flow-based static analysis.

2. **Handling interactions with third-party Actions**: Workflows reference Actions by specifying their repository and input parameters. Actions can generate outputs, access untrusted input, and pass data to sensitive sinks. Outputs of an Action...
are used by workflows to perform other tasks or as input to additional Actions. For effective STA, tracking data flow through Actions requires the context of a Workflow.

In this paper, we present the ARGUS framework for staged static taint analysis of GitHub Workflows and Actions. ARGUS identifies code injection vulnerabilities by untrusted taint sources to sensitive taint sinks derived from GitHub documentation [19] and language libraries [46]. A key component of ARGUS is its Workflow Intermediate Representation (WIR), which tackles the first challenge by uniformly capturing the Workflow execution flow, irrespective of the complex and evolving specifications. We handle third-party Actions (the second challenge) by decoupling their flow behavior from implementation. Specifically, we create programming-language-specific plugins that analyze Actions and create taint summaries describing which inputs flow to which outputs. The summaries are created offline and stored in a Taint Summary Database. To analyze a given Workflow, ARGUS uses the WIR to track the flow of tainted data across steps according to the execution flow. When a step references an Action, ARGUS uses its taint summary and stitches in the taint tracking information. Finally, ARGUS raises an alert whenever tainted data reaches a sensitive sink. We further rank each alert based on its impact on the underlying repository.

We performed a large-scale evaluation on 2,778,483 Workflows (1,014,819 repositories) referencing 31,725 Actions, and ARGUS raised alerts on 27,465 Workflows (16,003 repositories). We selected 5,643 workflows for manual verification and confirmed the presence of code injection vulnerabilities in 5,298 workflows. Out of these, 4,307 (High and Medium severity) could be exploited to compromise the underlying repositories. We also identified 80 vulnerable Actions, which render any Workflow that uses them vulnerable.

We also directly compared ARGUS to two state-of-the-art pattern-based GitHub Actions vulnerability scanners, finding seven times more vulnerabilities.

We make the following contributions in this paper.

- We designed a Workflow Intermediate Representation (WIR) that provides a uniform representation of GitHub Workflows.
- We propose ARGUS, the first static taint tracking framework for GitHub Workflows. ARGUS works on the WIR and uses taint summaries to track flow across Actions. ARGUS will be publicly available upon publication.
- We demonstrate the scalability and effectiveness of ARGUS by performing a large scale evaluation on 2,778,483 Workflows and 31,725 Actions. We found code injection vulnerabilities in 5,298 Workflows and 80 Actions.

2 Background

A GitHub Workflow is defined as a YAML file in the .github/workflows directory of a repository. This section uses Figure 1 to describe Workflow components and execution and why analysis is nontrivial.

2.1 Workflow Components

A Workflow represents a group of tasks and their execution ordering, e.g., workflow.yml in Figure 1. Each Workflow is composed of jobs listed under the jobs key. A job can use other Workflows (called Reusable Workflows) as indicated by (1). However, a job is usually composed of a sequence of steps listed under the steps key. Steps form the basic unit of computation. A step can either (a) be a shell command, as indicated by (2) in reusable-workflow.yml, or (b) reference an Action, as indicated by (3).

Actions enable code reuse inside Workflows. A step references actions with the uses keyword. The reference should be to a public repository containing code for the corresponding Action. For example, org2/javascript-action@v2 resolves to code in the github.com/org2/javascript-action repository under the tag v2. GitHub has a marketplace where developers can discover Actions.

GitHub supports three types of Actions. JavaScript Actions are written in JavaScript and can use npm packages. In Figure 1, org2/javascript-action/action.yml is an example of JavaScript Action. Most of the standalone actions are JavaScript-based [33]. Composite Actions combine commands and Actions. They are specified in a similar manner to Workflows. In Figure 1, org3/composite-action/action.yml shows an example Composite Action. Finally, Docker Actions use an implementation of a Docker container, which may be referenced directly from DockerHub or from the repository containing the Dockerfile. This paper focuses on JavaScript and Composite actions, because (a) Docker Actions contain arbitrary binaries, and (b) 70% of Actions in our dataset are either JavaScript or Composite Actions (Table 2).

2.2 Workflow Execution

Workflows are executed in response to specific events. Event triggers are specified using the on keyword as indicated by (4) in Figure 1. For instance, the Workflow in Figure 1 is executed when a pull_request occurs for the containing repository. When triggered, the GitHub runner [20] executes jobs based on the configuration.

Job Dependencies: A job can depend on other jobs, specified using the needs keyword. A job will be executed only when all of its dependencies finish executing. Multiple jobs can run in parallel if there is no dependency relation. For instance, the build and scan jobs in workflow.yml of Figure 1 will run in

*Available as open-source at: https://secureci.org/argus
parallel as there are no dependencies. Each job is executed in an isolated virtual machine, having a configuration specified by using the `runs-on` keyword (e.g., `ubuntu-latest` in Figure 1). For instance, the build job in Figure 1 will be executed on an `ubuntu-latest` VM.

Executing a Job: For each job, all steps are executed sequentially within the same virtual machine. If one step fails, the next will not be executed, unless specified otherwise. During the execution of an individual step, the runner will first set up an environment for it and spawn a new process. For example, if a step is a NodeJS action, the runner will spawn a NodeJS process and call the entry point of the action. Similar setups will be performed for Docker actions and shell commands.

Communication between Steps: The steps can communicate through the runner. For example, a step can produce an output variable using the `:set-output=<name>=<value>` keyword. Another step can consume that output by referencing `steps.<id>.outputs.<output_name>`. After the execution of a step, the runner will check if the step created any outputs, environment variables, or artifacts. If so, the runner will store their values and pass them to the relevant next steps.

Triggering Event Data: A Workflow triggering event usually contains data associated that can be controlled by the user who triggered the event. For example, the title text associated with an `issue_open` event (i.e., `github.event.issue.title`) can be controlled by the user who opened the issue. In the same manner, the source branch name (`github.head_ref`) of a pull request event can be externally controlled. However, there are certain data elements that the user does not directly control, e.g., the issue number of an `issue_open` event. The event data can be used by any component of a Workflow, as indicated by A in Figure 1.

2.3 Workflow Secrets and Permissions

Developers might need to access sensitive information in a Workflow, such as AWS keys to automatically deploy the latest version of a website. GitHub provides the `secrets` feature [15], enabling developers to securely use sensitive information in a Workflow. Specifically, repository owners can store sensitive information using secrets (key-value pair), e.g., `AWS_KEY=abcd12dfs`. These can be used in a Workflow by their name (i.e., key), e.g., `{{ secrets.AWS_KEY }}`. During Workflow execution, these references will be replaced by the corresponding value. Furthermore, as shown by the recent work [33], values of all secrets referenced in a Workflow are stored in a file on the runner.

GITHUB_TOKEN: For each Workflow run, GitHub automatically generates a temporary access token called `GITHUB_TOKEN`. This enables Workflows to interact with the...
repository and carry out specific operations such as pushing changes, creating releases, adding labels and tags, etc. This token can be accessed using the GitHub context, denoted as ${{\text{github.token}}}$. Permissions: By default, GitHub assigns the GITHUB_TOKEN read/write permissions across all scopes. Users can also modify permissions of GITHUB_TOKEN for a specific workflow using the permissions keyword within workflows. This keyword can be utilized both at a workflow level as well as at a job level.

Access Based on Triggers: Workflows triggered because of a forked repository (e.g., pull request from a fork) will not have access to any repository secrets (Even if they are specified in the Workflow) and GITHUB_TOKEN will have only read-only access. Developers can avoid this by using pull_request_target trigger, which also triggers Workflows on pull requests, but in addition, the Workflow will have default privileges for GITHUB_TOKEN and access to secrets — same as other triggers. The Table 1 summarizes a Workflow’s access to secrets and GITHUB_TOKEN permissions based on triggers.

Intra-repository pull request: During our experiments, we found an undocumented feature that GitHub allows arbitrary users to raise pull requests between different branches of the same repository, e.g., merging dev to main. This clearly violates the pull-request policy, which requires the user to have write access to either source or destination. Furthermore, as shown in the second column of Table 1, Workflows triggered because of such pull requests have privileged GITHUB_TOKEN and access to secrets. We provide details of this behavior in Appendix A.1.

3 Motivation and Threat Model

Listing 1 shows a real-world code injection vulnerability (discovered by ARGUS) in the issue_type_predicter.yaml Workflow of the DynamoDS/Dynamo repository (1,300 stars). The Workflow can be triggered by opening an issue, the body of which can be controlled by an attacker. The untrusted input github.event.issue.body is first saved into an environment variable ISSUE_BODY. Next, it is passed as input to the frabert/replace-string-action@v1.2 action, which replaces " with ‘ and returns the output through a variable named replaced. Later, replaced is used in a shell command. While the string replacement prevents the attacker from terminating the command substitution attack. For example, an attacker can exploit the vulnerability by opening an issue and using ${{\text{set +e; curl evil.com?token=$GITHUB_TOKEN;}}}$ as the issue body to exfiltrate the GITHUB_TOKEN.

<table>
<thead>
<tr>
<th>Component</th>
<th>Pull request</th>
<th>Other Triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GITHUB_TOKEN</td>
<td>default</td>
<td>read-only</td>
</tr>
<tr>
<td>Access to Secrets</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

To find this vulnerability through static taint tracking, we need to track the flow of the tainted values within the Workflow to correctly determine that replaced contains a tainted value. Doing so requires analyzing the frabert/replace-string-action@v1.2 Action. Finally, we should track the flow of this output to the echo command (a sensitive sink). In summary, this analysis requires tracking tainted data flow across all the components of a Workflow.

3.1 Threat Model

As suggested by OWASP [39] recommendations for building a secure CI/CD pipeline, we assume that an attacker should not be able to: (i) execute arbitrary commands on the server where the pipeline is executed, without visible code changes; (ii) gain unauthorized read/write access to the repository (violating GitHub privilege model); and (iii) exfiltrate confidential secrets. Hence, if an attacker can achieve any of these mali-
cious goals, we assume a Workflow to be vulnerable.

Attacker Capabilities: We make the assumption that an attacker can trigger a Workflow and alter any user data that is part of the event. For instance, for the `issue_open` event in Figure 1, the attacker can control the content of `github.event.issue.body` (i.e., the body of the issue) but not the issue number, which is auto-generated by GitHub. The complete list of event data that can be manipulated by an attacker is displayed in Table 12 (in Appendix).

Impact: Arbitrary code execution in CI/CD platforms has a severe impact, including performing supply chain attacks [50] that silently inject vulnerabilities into a repository [27], bitcoin mining [21], and DDoS attacks.

The presence of sensitive information, such as secrets and `GITHUB_TOKEN` (Section 2.3), further increases the severity of arbitrary code execution vulnerabilities. For example, an attacker can exfiltrate `GITHUB_TOKEN` with a read/write scope and silently push malicious code into the repository resulting in invisible attacks [37]. There can be cases where Workflows have reduced permissions for `GITHUB_TOKEN`, e.g., using `permissions` keyword or if the trigger is a pull request from a fork. In such cases, code execution vulnerabilities have a limited impact on the repository.

4 ARGUS Design

This section presents ARGUS’s design and the details of the staged static taint analysis algorithm. Figure 2 depicts an overview of our approach. There are two main components in ARGUS: Taint Summary Creator and Workflow Analysis.

The Taint Summary Creator is an offline or on-demand component that is executed for every unique Action or a reusable Workflow. We store these summaries in a Taint Summary Database, which will be used during the Workflow analysis.

Given a Workflow, we convert it into its Workflow Intermediate Representation (WIR) representation. Then, we construct the Workflow Dependency Graph (WDG) from the created WIR and perform taint analysis by traversing the WDG. At each step, we propagate taint according to its inputs and output. If a step references an Action, we will use the Action’s taint summary and stitch the taint flow. However, if there are no pre-stored taint summaries for an Action, ARGUS will generate it on the fly. Lastly, if ARGUS identifies tainted data being utilized in a sink, it categorizes the vulnerability based on its potential impact and subsequently generates a report for the user.

4.1 Taint Sources and Sinks

In this section, we define the *taint sources* and *taint sinks* that we are going to use throughout our taint analysis.
to construct a bash script (as depicted in Figure 1). As for JavaScript, all functions capable of running arbitrary commands are classified as sinks.

4.2 Taint Summary Creator

As mentioned before, this component generates taint summaries for Actions or, more in general, any component that a step can reference, such as a composite Action or a reusable Workflow (as shown in Figure 1). Based on the type of Action, we follow different methods, which we call Plugins (see Figure 2). The generated summaries are saved in a database and will be used by the Workflow analysis component.

4.2.1 Composite Action

This type of Actions contains a sequence of steps. In this case, we generate a summary by combining the summaries of each step. For instance, consider a step that contains a sequence of shell commands under the run key. We analyze each of these commands to see if any of these commands use a tainted value or produce any output. ARGUS uses regexes to parse the commands to look for output variables and stores the output as tainted if any input is tainted. We focus on the two common ways a run step can set outputs. (1) echo "::set-output name=value::" (deprecated, but still in use); (2) echo "name=value" >> $GITHUB_OUTPUT. We only consider cases where the value is a template string (\${{}}), e.g., "OUT=${{TVAR}}". If the variable used as part of the value is tainted (i.e., TVAR), then we consider the output variable (i.e., OUT) tainted. Similar steps are performed for environment variables. If a step references a JavaScript Action, then we will get its taint summary (or create one if it does not exist in the database) and stitch the taint flow. Finally, we will save the taint summary in the database.

4.2.2 JavaScript Actions

This type of Actions (which is the most common) uses JavaScript code to perform its functionality. To handle it, we developed a dedicated static flow analysis using CodeQL [6], a framework that converts code into a relational database and enables easy implementation of static analysis techniques as relational queries. Also, CodeQL supports all Node JS versions that are supported by GitHub CI.

We first defined the taint sources (Table 13 in Appendix) and dangerous sinks in JavaScript. As a taint source, we defined all the JavaScript-specific APIs that can be used to read from taint sources, e.g., the getInput function from the @actions/core library, as shown in Figure 1.

Then, we defined specific JavaScript APIs that are used to generate (1) output for other steps to consume, and (2) new code and/or commands as taint sinks. For example, in Figure 1 the "org2/javascript-action/index.js" file uses the setOutput function to set new output, and, in the "org4/js-action/index.js" file, a tainted source reaches the infamous eval function.

Our CodeQL queries will search if there is a dataflow path from any of the taint sources to a dangerous sink. We run the CodeQL query before analyzing the workflow to create a map of all taint sources into all taint sinks seen in the JavaScript Action and store the results in the database. The final summaries of the JavaScript Actions will include a list of new taint sources created by using setOutput-like functions and a list of taint sinks reached by the given taint sources.

Handling Sanitization: We take care of implicit sanitizations that occur because of using tainted values in composite data structures such as a list (Listing 2) using pattern matching. We ignore explicit sanitizations, such as if-conditions, because (i) the majority of actions are small with simple data flows and do not perform any sanitization; (ii) Identifying valid sanitization routines is hard and, if performed incorrectly, could result in false negatives. The high precision of our taint analysis, as shown in Section 5.2, demonstrates that ignoring explicit sanitization is a reasonable design choice.

4.3 Workflow Analysis

Given a Workflow, we first convert it to WIR and generate its WDG. Next, we analyze the WDG and track taint flows. Workflow Intermediate Representation (WIR): The main design principle of WIR is to have a generic representation to specify job dependencies and data used and produced by each step along with its execution environment. Figure 3 shows an example of a Workflow and its WIR representation. We use taskgroups to represent jobs. Each taskgroup has a numerical identifier execution_id which is used to encode dependency. As shown on the left of Figure 3, the job deploy depends on the build job as indicated by its name specified under needs key. In WIR, this gets translated as dependency under the “deploy” taskgroup where the execution_id of the build taskgroup is used.

Each step is called task. Each task has the following

4.3.1 Workflow Taint Tracking

We follow a staged approach to perform taint tracking. Listing 1 shows the pseudocode of our taint tracking algorithm. Given a Workflow W, we compute its WDG. Next, we get a topological order (TopoSort) of the jobs in WDG representing the execution order of the jobs. When we have multiple topological orders, we randomly select one, because job dependencies with directed edges, and the results will be the same for all valid topological orders. We initialize our taint sources to the initial set of variables shown in Table 12.

For each job j, we call GetJobTaintSummary, which computes the taint summary for j given the current set of tainted variables T_j. The function GetJobTaintSummary returns a summary of additional tainted variables created after analyzing j with T_j. We add T_j to T and continue on to the next jobs.

The function GetJobTaintSummary uses the StepSequence to get the steps of the given job j in sequential order. Then, it analyzes each step s by calling GetStepTaintSummary on s with the current taint state. The GetStepTaintSummary also returns a taint summary of additional tainted variables because of s. The summary will be added to the current taint state and the analysis will continue to the next steps.

The GetStepTaintSummary function checks if a step s is a list of run commands, in which case the commands will be processed as mentioned in Section 4.2.1. If the step references an Action, then the ApplyTaintSummary function will be invoked. This function fetches the taint summary from the database (DB). The summary will be instantiated with the current taint state T to get the new taint state in terms of additional tainted variables. We use scopes to group tainted variables according to the job that produced them. This allows our taint analysis to be precise by ensuring that tainted variables within a job are only visible to its steps, which is the expected behavior.

In the end, we check all taint sinks and see if any of the variables used is part of T. If this condition is true, we emit a warning describing the use of tainted variables at a risky sink.

4.4 Impact Classifier

The final step of our system is the Impact Classifier. The goal of this step is to assign severity to each Workflow vulnerability based on three aspects: impact on the repository, ease of exploitation, and control of exploit payload. The Figure 4 shows the decision procedure to classify vulnerabilities.

GITHUB_TOKEN: We use the permissions defined at the Workflow level (e.g., using permissions keyword) to determine whether the token has write permissions or is read-only.

Low: We classify all vulnerabilities that have no impact on the repository as Low severity. There are two cases: (L1) Workflow is configured with a read-only GITHUB_TOKEN and has no secrets. (L2) The trigger is a pull_request, and the

4Cyclic dependencies between jobs are not allowed by GitHub
Algorithm 1: Algorithm for Workflow Taint Tracking

\[G \leftarrow WD(G) \]
\[DB \leftarrow Taint Summary Database \]
\[function \ MAIN \]
\[J \leftarrow TopoSort(G) \]
\[T \leftarrow \text{global known taint sources} \]
\[\exists j \in J \]
\[T_j \leftarrow \text{GetJobTaintSummary}(j, T) \]
\[T = T \cup T_j \uparrow \text{updated known taint sources} \]
\[function \ GetJobTaintSummary(j, T) \]
\[S \leftarrow \text{StepSequence}(j) \]
\[T \leftarrow T_j \]
\[\forall s \in S \]
\[T = \text{GetStepTaintSummary}(s, T) \]
\[T = T \cup T_i \uparrow \text{updated known taint sources} \]
\[return \ T \]
\[function \ GetStepTaintSummary(s, T) \]
\[T \leftarrow T_i \]
\[if \ s \ is \ run \ then \]
\[T = \text{ProcessBashCommands}(s, T) \]
\[else \]
\[T = \text{ApplyTaintSummary}(DB, s, T) \]
\[return \ T \]

tainted data is head_ref (i.e., branch name) — this requires a pull request from a fork with an attacker-controlled branch name, e.g., Listing 3. As explained in Section 2.3, Workflows triggered from foreign branches do not have access to read-only GITHUB_TOKEN and no access to secrets.

High: We classify vulnerabilities impacting the repository (write access GITHUB_TOKEN or has secrets) as High if the exploitation is easy and does not require maintainer approval. We consider all Workflows with non pull request targets easy to trigger and classify vulnerabilities as High severity (marked as H1 and H2). Even for pull_request trigger, vulnerabilities caused by the title or description can be easily exploited by raising an intra-repository pull-request, and, for this reason, we consider them as High severity (marked as H3), e.g., Listing 6. As mentioned in Section 2.3, Workflows triggered this way have privileged access to the repository and do not require maintainer approval (Appendix A.1).

Medium: Finally, as indicated by M1, we consider Medium severity vulnerabilities those that can impact the repository, but triggering the corresponding Workflow requires maintainer approval. For instance, pull_request or push Workflows with taint sources, such as commits.*.author.email (commit author’s email) or commit.message (commit message), can only be exploited if the maintainer first approves pull requests without verifying these parameters. After the pull request has been merged, the attacker can raise another intra-repository pull_request from the branch containing the merged commit — thereby controlling the taint sources and having access to write-access GITHUB_TOKEN and secrets.

![Decision process of Impact Classifier.](image)

Listing 3: GitLiveApp/kotlin-diff-utils [25] contains a workflow vulnerable to Low severity Code Injection as it passes Tainted Data (github.head_ref (a)) as the argument for value parameter to the Action (Listing 9) that directly uses it in exec (unsafe sink).

5 Evaluation

We evaluate ARGUS by answering the following questions.

Q1 (Taint Analysis on Actions): How accurately can our Plu-

Q2 (Taint Analysis on Workflows): How accurately can AR-

Q3 (Vulnerability Identification): How effective is ARGUS at finding vulnerabilities? What is their security impact?

Q4 (Comparative Evaluation): How effective is ARGUS compared to existing state-of-the-art vulnerability de-

5 This count does not include 79 actions due to them being taken down by the time of analysis and one action due to cloc failing to run on the repository.
5.1 Datasets and Experimental Setup

Dataset 1 (Public Repositories): GitHub’s rate-limiting policy for its direct search functionality prevented us from simply scraping all of GitHub to get workflows from all public repositories. We overcame this limitation by (1) querying all public repository names from the GHArchive [17] database on November 2022, and then (2) using those repository names and fetching the latest version from GitHub during November-December, 2022. We extracted Workflows from each repository by traversing the .github/workflows directory and collecting all Workflow files (i.e., .yml). Each repository can have multiple Workflows. Shown in Table 2, we collected 2.7M Workflows in 1M unique repositories. We also extracted all Actions referenced by each Workflow. An action can have multiple versions (e.g., actions/checkout@v2 and actions/checkout@v3), and Workflows can refer to different versions of the same Action. We analyzed every version of an Action that is referenced by a Workflow in our dataset. Table 2 shows the total number of action/version combinations corresponding to their types. Finally, Table 2 shows the total number of analyzable actions by ARGUS. Even without handling Docker actions, ARGUS could analyze 70% of the actions. Statistical details of the sizes of Workflows and Actions are shown in Table 5.

Dataset 2 (VWBENCH): We collected previously reported vulnerable workflows [28, 31] to create a ground truth vulnerable dataset of 24 workflows, which we call VWBENCH. These Workflows have unsafe sinks to which tainted data can flow, resulting in command injection vulnerabilities.

Experimental Setup: We performed all our experiments on an Intel(R) Xeon(R) Gold 5120 CPU with 128GB RAM. We set a time limit of 5 minutes for analyzing each Workflow and a time limit of 30 minutes for analyzing each Action. Most of the Actions (80%) finished within in 3 minutes. As mentioned previously, the Action summaries are computed offline once for every version of the Action. These summaries are referenced while analyzing Workflows that uses them.

Table 2: Dataset 1: Public Repositories

<table>
<thead>
<tr>
<th>Workflows</th>
<th>Repos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,778,483</td>
<td>1,014,819</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>Type</th>
<th>Num</th>
<th>Analyzable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JavaScript</td>
<td>22,433</td>
<td>22,433 (100%)</td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td>9,292</td>
<td>9,292 (100%)</td>
</tr>
<tr>
<td></td>
<td>Docker</td>
<td>13,445</td>
<td>0 (0%)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>48,369</td>
<td>31,725 (65.9%)</td>
</tr>
</tbody>
</table>

Table 3: Source Line of Code (SLOC) stats for Dataset 1.

<table>
<thead>
<tr>
<th>Component</th>
<th>SLOC Stats (KLOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflows</td>
<td>Min 0.006, Avg 0.1041, Median 0.058, St. Dev 0.1539, Max 5.2</td>
</tr>
<tr>
<td>Actions</td>
<td>Min 0.001, Avg 67.60, Median 6.935, St. Dev 272.88, Max 8,146.2</td>
</tr>
</tbody>
</table>

Table 4: Results of Taint Analysis on Actions.

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Sink</th>
<th>Number of Actions</th>
<th>JS</th>
<th>Comp.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Input</td>
<td>Arguments</td>
<td>Code Exec</td>
<td>3,218</td>
<td>5,465</td>
<td>8,683</td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>Direct</td>
<td>Tainted</td>
<td>Code Exec</td>
<td>27</td>
<td>109</td>
<td>136</td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>5,219</td>
<td>5,574</td>
<td>10,918</td>
</tr>
</tbody>
</table>

Table 5: Precision of Taint Analysis by ARGUS on Actions.

<table>
<thead>
<tr>
<th>Type</th>
<th>Javascript</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>Input Flow</td>
<td>138</td>
<td>10</td>
</tr>
<tr>
<td>Direct Flow</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Cumulative</td>
<td>175</td>
<td>10</td>
</tr>
</tbody>
</table>

5.2 Q1: Taint Analysis on Actions

ARGUS supports JavaScript and Composite actions, which are of 70% of all Actions in our dataset of public repositories (Table 2). For these Actions, Table 4 shows our taint analysis results categorized by the types of sources and sinks. As this evaluation considers Actions in isolation, the table differentiates input flows (where an argument to the action flows to an unsafe sink) and direct flows (where the Action consumes an attacker controllable taint source that flows to an unsafe sink). Table 6 shows the Top-5 taint sources and sinks used in Actions. Notably, the issue title is one of the top taint sources, and exec is the most popular sink, indicating the prevalence of arbitrary code execution vulnerabilities. We manually verified all the taint summaries for direct flows and all input flows which were passed tainted values, as shown in Table 5. We further grouped root causes by unique Actions and ignoring versions. For example, embano1/wip8v1 and embano1/wip8main are counted as a single unique Action. We found that 80 Actions (146 including versions), contained direct flow vulnerabilities.

Precision: As depicted in Table 5, we achieve a precision of 94.2% for Javascript actions. Our false positives arose in cases where, even though the taint flow was accurate, there were checks in place that prevented an attacker from triggering the taint path (e.g., Listing 4).

In contrast, composite Actions had a precision of 96.8%. The false positives primarily resulted from insufficient handling of specific embedded sanitization constructs, e.g., toJSON.

Recall: There is no ground truth for taint flows in Actions. Therefore we used random sampling to compute an approximate metric for recall (true negatives). Specifically, we randomly picked 100 actions that were considered safe by our
analysis and manually verified how many of these are indeed safe, i.e., whether any flow identified is missed by ARGUS.

Input Flow Examples: Listing 5 (Reedyuk/write-properties [42]) and Listing 9 (embano1/wip [14]) show an example of a Composite and JavaScript Action with input flows newly discovered by ARGUS. The figures annotate input values (♀) and the unsafe sinks (♂) to where they flow. It is important to note that these Actions are only vulnerable when used by a Workflow that allows adversarially-controlled values to pass to the input variables. Listings 6 and 3 show real-world Workflows that use these Actions in a vulnerable way. These examples show the necessity of static taint analysis across Workflows. Without the context of Listing 5, it is not possible to know that Listing 6 uses the default value for inputs.title. Similarly, Listing 3 is needed to know that Listing 9 is passed github.head_ref. We also consider flows from both input arguments and tainted context into output functions such as core.setOutput, that allow it to be used in the future, by the workflow as input flow itself.

Direct Flow Examples: Listing 7 (94dreamer/create-report [1]) shows an Action where the known taint source context.payload.issue.title is directly used in exec. Any Workflow that uses this Action is vulnerable, regardless of whether or not it uses a known taint source itself. The vulnerable example Action in Listing 7 is used by 64 Workflows, including Tencent/tdesign-vue [47] (Listing 8). We found many other examples, including Actions from verified organizations, e.g., tj-actions/branch-names [49], that directly use tainted data (e.g., github.head_ref) into an exec sink, making any Workflow using it vulnerable.

5.3 Q2: Taint Analysis on Workflows

ARGUS’s taint analysis of a Workflow combines the taint summaries of the Actions used by the Workflow. Table 7 shows our Workflow taint analysis results categorized by the flow type and severity. The table differentiates two types of flows. Intra-Workflow (Intra-WF) flows occur when the taint is passed within the Workflow itself. In contrast, Inter-Workflow-Action (Inter-WF-Ac) flows occur when the taint sink is passed through or originates from an Action. Section 5.2 showed several real-world Inter-WF-Ac exam-
The Table 7 show the distribution of vulnerabilities according to their severity. A few of these are because of the Intra-WF flow, and we found all the taint flows. This high performance is expected as these workflows contain Intra-Workflow taint flows, and our WIR helps precisely capture flows within a Workflow.

Severity: As mentioned in Section 4.4, we classify all the vulnerabilities into three classes, i.e., High, Medium, and Low. The Table 7 show the distribution of vulnerabilities according to their severity. A few of these are because of the Intra-repository pull request capability (Section 2.3), Table 11 in Appendix shows the classification excluding them. For workflows with multiple reports, we selected the highest severity report to represent the severity of the workflow. As Workflows (and repositories) can contain multiple vulnerabilities, numbers in Total columns (unique Workflows and repositories) will be less than the sum of corresponding columns. Most (60%) of the vulnerabilities are Low and have no impact on the repository. There are still a significant number (~3K) of High severity vulnerabilities, which unauthorized attackers can exploit to gain privileged access to the underlying repository. This demonstrates the prevalence of the problem and the need for a system like ARGUS. Furthermore, it is not easy to fix these vulnerabilities. We present a detailed discussion in Appendix A.4.

Precision: Due to the large number of vulnerabilities identified in the Public Repositories dataset, we focused on sampling based on their severity. Specifically, we manually verified all 3,643 High severity vulnerabilities and randomly selected a few for ARGUS.

Listing 7: Simplified snippet from 94dreamer/create-report [1] Action that unsafely has tainted value (ebooks)--flowing (ebooks)--into an exec function (indicated by ebooks).

Listing 8: Tencent/tdesign-vue [47] contains a workflow vulnerable to High severity Code Injection as it uses (indicated by ebooks) the Vulnerable Action (Listing 7).

Listing 8: Tencent/tdesign-vue [47] contains a workflow vulnerable to High severity Code Injection as it uses (indicated by ebooks) the Vulnerable Action (Listing 7).

Listing 9: Simplified Snippet of Reedyuk/write-properties [42] JavaScript action that uses both its inputs arguments (ebooks) as arguments to exec function (indicated by ebooks).

Listing 10: Snippet of a workflow in yagipy/habit-manager [58] repo demonstrating Intra-WF flow by directly using Tainted Data (i.e., github.event.issue.title ebooks) through ISSUE_TITLE (environment variable) in an unsafe (shell run) resulting in High severity code injection.
Table 7: Severity Assignment of Vulnerabilities using the Method in Section 4.4 and the Low vulnerabilities have no impact on the repository. (W - Workflows, R - Repos)

<table>
<thead>
<tr>
<th>Severity</th>
<th>Intra-WF</th>
<th>Inter-WF-Ac</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Public Repositories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>3,189</td>
<td>2,799</td>
<td>3,189</td>
</tr>
<tr>
<td>Medium</td>
<td>6,602</td>
<td>1,710</td>
<td>6,602</td>
</tr>
<tr>
<td>Low</td>
<td>13,402</td>
<td>3,714</td>
<td>13,402</td>
</tr>
<tr>
<td>VWBench</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>23</td>
<td>23</td>
<td>N/A</td>
</tr>
<tr>
<td>Medium</td>
<td>1</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Low</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>23,193</td>
<td>13,248</td>
<td>5,134</td>
</tr>
</tbody>
</table>

name: Docs
...
jobs:
 prepare_env:
 steps:
 - id: skip-docs-comment
 name: Process comments on Pull Request to skip Docs
 if: ${{ github.event.issue.pull_request }}
 run: echo "skip-docs-comment"
 with:
 name: Process comments on Pull Request to skip Docs
 contains(github.event.comment.body, "skip-docs")
Listing 11: A false positive found by ARGUS in solo-io/gloo [45], where github.event.comment.body is inside a CI function which only returns a boolean

sampled 1,000 each from Medium and Low severity vulnerabilities resulting in a total of 5,643. The Table 8 shows the results of our manual verification and precision across each severity. We found that 4,111 (92.65%) Intra-WF reports and 1,671 (94.89%) Inter-WF-Ac reports were true, resulting in an overall precision of 93.29%. An example of a false positive is shown in Listing 11. The two main reasons for false positives were: (1) not handling certain embedded sanitization constructs such as contains (similar to Actions); and (2) failure to identify whether members of tainted objects (e.g., context.payload.issue) are indeed used in certain complex sinks.

Recall: To measure false negatives, we randomly sampled 100 workflows that were considered safe for manually verification. Similar to the Actions, we found all the results to the true. Again, this high performance is due to the fact that Workflows are usually small and have simple dataflows that can be precisely captured by our WIR.

5.4 Q3: Vulnerability Identification

In this section, we present previously unknown code injection and arbitrary code execution vulnerabilities detected by ARGUS, as summarized by Table 8. The input flow and direct flow columns were explained in Section 5.2 along with corresponding examples. Many of the affected Workflows have the same root cause. For example, Tencent/design-vue [48] and Tencent/design-vue [47] both pass tainted data to the same Action and version (94dreamer/create-report [1]). The Unique Root Causes column in Table 8 shows the total number of unique root cause groups. The column Unique Actions shows grouping according to the unique Actions. These numbers are still large, demonstrating the importance of analyzing Inter-Workflow-Action flows.

The Intra-WF and Inter-WF-ac rows were explained in Section 5.3 along with corresponding examples. We verified all findings manually and validated them by creating sample exploits on isolated copies of the repositories. We present an analysis of Workflow vulnerabilities and the responsible actions in Appendix A.3.

Popularity of Affected Repositories: Although most of the vulnerable Workflows are in less popular repositories, many are popular. For instance, the opencv/opencv [38] repository with more than 66,000 stars contains a vulnerable Workflow. Exploiting such vulnerabilities in popular repositories enables attackers to launch high-impact supply chain attacks and hence an attractive target. We present complete results in Appendix A.2.

Exploitability. To exploit a vulnerable Workflow, an attacker must trigger specific events and provide exploit payload as inputs through appropriate taint sources. Consequently, the exploitation mechanism varies with different triggers and types of exploit payloads, which depend on tainted data flows and sinks. We identified eight types of triggers (and corresponding taint sources) and three types of taint data flows: Intra-WF, Inter-WF-Ac, or Intra-Ac (Source and Sink both in Action).

For each category, we selected a representative real-world vulnerable Workflow or created a synthetic Workflow (when a real-world case does not exist) and provided proof-of-concept exploits for them. Although our exploits are aimed at stealing GITHUB_TOKEN, they can be easily modified to execute any arbitrary code.

5.4.1 Responsible Disclosure

Due a large number of affected workflows, we decided to reach out to the GitHub Security Lab [24] for assistance in reporting these vulnerabilities. GitHub Security Lab suggested that the best way to report our vulnerabilities is through GitHub's private vulnerability reporting [22].

9 Available as open-source at: https://secureci.org/poc
Table 8: Summary of New (zero day) Code Injection Vulnerabilities Detected by ARGUS. The numbers in the braches show the precision of the corresponding severity.

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>Num. Workflows</th>
<th>Num. Repos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-WF</td>
<td>2,875</td>
<td>787</td>
</tr>
<tr>
<td>Inter-WF-Ac</td>
<td>467</td>
<td>287</td>
</tr>
<tr>
<td>Total</td>
<td>3,322</td>
<td>985</td>
</tr>
</tbody>
</table>

Table 9: Disclosure status at the time of writing. IC (Issues Created) denotes repositories where we have created issues.

<table>
<thead>
<tr>
<th>Type</th>
<th>IC</th>
<th>Reported</th>
<th>Confirmed</th>
<th>Fixed</th>
<th>Advisory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow</td>
<td>1,730</td>
<td>185</td>
<td>95</td>
<td>93</td>
<td>5</td>
</tr>
<tr>
<td>Actions</td>
<td>117</td>
<td>28</td>
<td>15</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

However, we found that only a few of repositories had this feature enabled. Hence, we created issues requesting developers to activate the private vulnerability reporting feature in their respective repositories. If the feature was already activated, or once the developers activated it in response to our request, we manually filed a vulnerability report and collaborated closely with the developers to rectify the identified vulnerability. In instances where the repository owners had defined a security policy, we adhered to the specific protocol outlined therein. Our disclosure process is ongoing. We have created issues to request private vulnerability reporting for all repositories with vulnerabilities we classified as High severity. Table 9 shows the disclosure status at the time of writing.

5.5 Q4: Comparative Evaluation

ARGUS is not the first security analysis tool for GitHub Workflows. However, prior tools do not have the ability to perform static taint analysis. This section compares ARGUS to state-of-the-art tools to demonstrate the need for taint analysis.

- **GHAST [7]** is an enhanced variant of GWCHECKER [33] that uses better pattern-matching to identify seven types of security issues potentially affecting Workflows ranging from incorrect usage of GitHub secrets to the improper usage of Workflows permissions.

- **GitSEC [23]** is a CodeQL query developed by the GitHub Security team to detect command injection and arbitrary code execution vulnerabilities in Workflows.

We configured these tools to detect code injection vulnerabilities and, in a few cases, enhanced them for a more fair comparison. For instance, we modified GitSEC by adding all

Table 10 shows the results of our comparative evaluation. It is interesting to see that ARGUS flagged 27,465 alerts, whereas GHAST and GitSEC raise only 3,775 and 2,607 each. Among this GHAST flagged 362 Workflows as vulnerable which were not found by ARGUS. GHAST and GitSEC were reported by ARGUS. The results are consistent even across different severity levels. Although the precision of GitSEC is slightly higher (96.6% vs 92.8%) on High/Medium severity Workflows, ARGUS was able to identify additional 2,780 Workflows missed (i.e., false negatives (FN)) by GitSEC.

5.6 Limitations and Future Work

This section describes the current limitations of ARGUS and our plans to handle them as part of our future work.

False negatives: Our current implementation only has support for JavaScript and Composite actions. However, we observed many actions (30%) are developed as Docker containers. Which we do not support and might have missed vulnerabilities resulting in false negatives. Similarly, we do not track taint flows through files. Our extensible framework allows us to add support for this easily. As part of our future
work, we plan to add plugins for Docker actions and track flows across files.

Conditional Statements: Our current system does not evaluate conditional expressions between steps. However, our framework is designed in such a way that it can be easily extended to support this feature in the future.

Impact classifier: We determine the privileges of `GITHUB_TOKEN` at Workflow level. However, permissions can be defined or modified at job level. Consequently, our approach can result in incorrect impact classification. We plan to add support for job-level permissions in our future work.

Tool Limitations: We use CODEQL to develop our taint analysis, and consequently, we also inherit its limitations. For instance, we may not be able to detect taint flows in case of obfuscated JavaScript actions [2]. However, we did not find any such actions in our dataset. Our plugin interface enables us to easily integrate any other better future tools.

6 Related Work

GitHub Workflows Analysis: A few recent works implemented automated analysis of GitHub CI workflows. In particular, Benedetti et al. [7] focused on 7 types of security issues potentially affecting GitHub workflows (ranging from incorrect usage of GitHub secrets to the improper usage of workflows’ permissions). To detect these issues, the authors developed GHAST, a tool using a pattern-matching approach to analyze each workflows’ YAML files. Similarly, Koishybeyev et al. [33] developed a tool, named GWCHECKER, to automatically audit workflows, aiming at detecting the presence of secrets in plaintext, insecure triggers, and the usage of non-updated actions. Finally, GitHub has developed a CodeQL-based script to detect Command Injection vulnerabilities in workflows [23]. All these existing tools cannot precisely characterize workflows’ execution flows across multiple actions, since they use a pattern-matching, heuristic approach. On the contrary, ARGUS uses static taint analysis to track data flow across workflows and their used actions.

CI/CD Security Analysis: Other works explored the security of CI/CD systems without focusing specifically on GitHub workflows. In particular, Dullmann et al. [13] highlighted how standard software engineering practices (such as A/B testing and Fault Injection) should also be applied to CI/CD pipelines to guarantee their reliability and security. Shahin et al. [44] further elaborated on this topic by performing a systematic literature review of approaches, tools, and practices related to the deployment of Continues Integration pipelines. More recently, Vassallo et al. [53] implemented a tool, named CD-Linter, to automatically identify and fix “configuration smells” (i.e., CI pipeline issues caused by improper configuration) affecting GitLab repositories. Additionally, Gruhn et al. [26] and Fernandez et al. [16] proposed using, respectively, virtual machines and Docker containers to compartmentalize the execution of CI pipelines, mitigating possible security issues. Unfortunately, the adoption of these systems requires significant changes to the existing CI infrastructure.

Static Taint Analysis: Static Taint Analysis (STA) has been extensively used in the past for security applications. For instance, Kashyap et al. [30] and Madsen et al. [35] implemented tools to perform static taint analysis of JavaScript code. Similarly, the tools LeakMiner [59], Flowdroid [5], and Amandroid [56] have been used to perform security vetting of Android apps. None of these approaches could be applied directly to the analysis of GitHub workflows since, in this case, we need to “follow” tainted data across multiple languages (such as Javascript and Bash) and across multiple actions, interacting with each other according to their YAML specification.

7 Conclusions

GitHub CI has gained tremendous popularity among developers because of its convenience over other public CI/CD providers and easy use of third-party Actions. It is important to ensure the security of GitHub Workflows to prevent supply chain attacks. We present ARGUS, a framework for static taint analysis of GitHub Workflows and Actions. Our framework is based on the use of WIR for Workflows and taint summaries for Actions. Our large-scale evaluation of over 2M Workflows and 30K Actions revealed a total of 5,298 vulnerable Workflows (including 4,307 critical vulnerabilities) outperforming state-of-the-art tools.

Acknowledgments

A special note of thanks goes to Jaroslav Lobačevski and GitHub Security Lab for their assistance and support during our study. We are also grateful to our reviewers and shepherd for their invaluable insights and guidance. We would also like to extend our gratitude to Sourag Cherupattamoolayil, whose assistance and contributions were instrumental in carrying out this research.

This research was supported by in part by the National Science Foundation (NSF) under Grants CNS-2247686, CNS-2207008, Amazon Research Award (ARA) on “Security Verification and Hardening of CI Workflows” and by Defense Advanced Research Projects Agency (DARPA) under contract number N6600120C4031. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF, Amazon or the United States Government.
References

A Appendix

A.1 Intra-repository pull requests

The creation of pull requests between two branches of a repository requires contributor access to that repository or membership in the organization to which the repository belongs [10]. However, we found that it is possible to create a pull request between two branches of a repository without possessing such access rights.

This is significant because an attacker could misuse this to trigger a vulnerable workflow, which is configured to run on the pull_request event. And, since this event is triggered from a branch of the same repository, first-time contributor protections are disabled, GITHUB_TOKEN runs with default permissions, and user-defined secrets are passed to the workflow.

However, since the attacker does not possess write access to the repository, the modifications they can make are limited to pull request parameters, specifically the title (pull_request.title) and body (pull_request.body). This limitation constrains the attacker’s ability to manipulate the content of the pull request but does not prevent them from triggering a vulnerable workflow configured to run on the pull_request event - if they manage to get malicious git metadata inserted into the source branch through benign commits.

It is crucial to note that a fix would necessitate changes in the design of our impact classifier. Specifically, the attacker would only be able to trigger vulnerable workflows with a pull_request trigger from a fork, resulting in them not containing secrets and a read-only GITHUB_TOKEN. Table 12 and Table 13 also illustrate these sources with a 🚫 icon. Similarly, any workflow with only a pull_request trigger will be automatically classified as low severity. We have implemented this modified version of the impact classifier and present the corresponding results in Table 11.

A.2 Popularity

The Figure 5 shows the popularity of the vulnerable Workflows based on GitHub stars. Although most of the vulnerable Workflows are in less popular repositories, many are popular. For instance, the opencv/opencv [38] repository with more than 66,000 stars contains a Workflow with a Low severity arbitrary code execution vulnerability that can be triggered by any user on GitHub. Exploiting Workflows in popular repositories enables attackers to launch high-impact supply chain attacks and hence an attractive target.

A.3 Workflow Vulnerabilities and Affecting Actions

Table 11: Severity Assignment of Vulnerabilities excluding those because of intra-repository pull-request. (W - Workflows, R - Repos)

<table>
<thead>
<tr>
<th>Severity</th>
<th>Intra-WF</th>
<th>Inter-WF-Ac</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>High</td>
<td>2,909</td>
<td>2,130</td>
<td>564</td>
</tr>
<tr>
<td>Medium</td>
<td>5,699</td>
<td>1,436</td>
<td>933</td>
</tr>
<tr>
<td>Low</td>
<td>14,585</td>
<td>9,682</td>
<td>3,637</td>
</tr>
<tr>
<td>Total</td>
<td>23,193</td>
<td>13,248</td>
<td>5,134</td>
</tr>
</tbody>
</table>

Footnote: We only count total number of unique workflow here, as some workflows may have both Intra-WF and Inter-WF-Ac flows

Unlike, Direct Flow Actions, not all Workflows that use Input Flow Actions are vulnerable. For instance, Listing 12 shows an example of the Workflow that correctly uses an Input Flow Action by not passing tainted data. We found that most workflows use these Input Flow Actions in a safe way. In contrast, some Actions such as backport-bot-action [57] have no safe usages.

A.4 Challenges in Fixing Workflow Vulnerabilities

The adoption of GitHub Workflow is on the rise. Unfortunately, this also increases the prevalence of vulnerabilities. Although, in general, fixing the taint vulnerabilities is relatively easy and requires adding proper sanitization. But depending on the type of vulnerability, the fix should be done on the action or the Workflow. For actions that directly use tainted values, we need to fix the corresponding action by adding proper sanitization (e.g., Listing 7). But for other actions, the fix might have to happen on the Workflow. For instance, the purpose of actions/github-script [18] is to execute the command provided as input. So, it is the responsibility of the Workflow not to pass tainted value to the actions/github-script. In these cases, the fix needs to be added on the Workflow side.

Figure 5: Popularity of Repositories with Arbitrary Code Execution Vulnerabilities.

Table 12: Workflow taint sources and the number of workflows that use the taint sources. (useClass shows sources with increased severity due to Inter-repository pull request capability—Appendix A.1)

<table>
<thead>
<tr>
<th>Name</th>
<th>Workflows Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>github.event.issue.title</td>
<td>3,579</td>
</tr>
<tr>
<td>github.event.issue.body</td>
<td>3056</td>
</tr>
<tr>
<td>github.event.discussion.title</td>
<td>395</td>
</tr>
<tr>
<td>github.event.discussion.body</td>
<td>312</td>
</tr>
<tr>
<td>github.event.comment.body</td>
<td>3,371</td>
</tr>
<tr>
<td>github.event.review.body</td>
<td>105</td>
</tr>
<tr>
<td>github.event.pages.*.page_name</td>
<td>0</td>
</tr>
<tr>
<td>github.event.commits.*.message</td>
<td>4</td>
</tr>
<tr>
<td>github.event.commits.*.author.email</td>
<td>1</td>
</tr>
<tr>
<td>github.event.commits.*.author.name</td>
<td>2</td>
</tr>
<tr>
<td>github.event.head_commit.message</td>
<td>7,374</td>
</tr>
<tr>
<td>github.event.head_commit.author.email</td>
<td>140</td>
</tr>
<tr>
<td>github.event.head_commit.author.name</td>
<td>321</td>
</tr>
<tr>
<td>github.event.head_commit.committer.email</td>
<td>44</td>
</tr>
<tr>
<td>github.event.workflow_run.head_branch</td>
<td>2114</td>
</tr>
<tr>
<td>github.event.workflow_run.head_commit.message</td>
<td>338</td>
</tr>
<tr>
<td>github.event.workflow_run.head_commit.author_email</td>
<td>13</td>
</tr>
<tr>
<td>github.event.workflow_run.head_commit.author.name</td>
<td>117</td>
</tr>
<tr>
<td>github.event.pull_request.title</td>
<td>6,449</td>
</tr>
<tr>
<td>github.event.pull_request.body</td>
<td>7,154</td>
</tr>
<tr>
<td>github.event.pull_request.head_label</td>
<td>624</td>
</tr>
<tr>
<td>github.event.pull_request.head.repos.default_branch</td>
<td>0</td>
</tr>
<tr>
<td>github.head_ref</td>
<td>32,568</td>
</tr>
<tr>
<td>github.event.pull_request.head.ref</td>
<td>16,102</td>
</tr>
<tr>
<td>github.event.workflow_run_pull_requests.*.head.ref</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 13: Taint sources specific to JavaScript action. (useClass in Table 12 are also applicable to actions) —Appendix A.1)

<table>
<thead>
<tr>
<th>Module name</th>
<th>Properties/Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>@actions/github</td>
<td>All sources present in Table 12 are sources in JavaScript as well and can be accessed using the context parameter (e.g., issue.title can be accessed using context.payload.issue.title)</td>
</tr>
<tr>
<td>@actions/core</td>
<td>getInput() getMultilineInput()</td>
</tr>
<tr>
<td>Global objects</td>
<td>process.env</td>
</tr>
</tbody>
</table>

7000 32nd USENIX Security Symposium