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Abstract
Federated learning (FL) allows untrusted clients to collabora-
tively train a common machine learning model, called global
model, without sharing their private/proprietary training data.
However, FL is susceptible to poisoning by malicious clients
who aim to hamper the accuracy of the global model by con-
tributing malicious updates during FL’s training process.

We argue that the key factor to the success of poisoning at-
tacks against existing FL systems is the large space of model
updates available to the clients to choose from. To address this,
we propose Federated Rank Learning (FRL). FRL reduces
the space of client updates from model parameter updates (a
continuous space of float numbers) in standard FL to the space
of parameter rankings (a discrete space of integer values). To
be able to train the global model using parameter ranks (in-
stead of parameter weights), FRL leverage ideas from recent
supermasks training mechanisms. Specifically, FRL clients
rank the parameters of a randomly initialized neural network
(provided by the server) based on their local training data,
and the FRL server uses a voting mechanism to aggregate the
parameter rankings submitted by the clients.

Intuitively, our voting-based aggregation mechanism pre-
vents poisoning clients from making significant adversarial
modifications to the global model, as each client will have a
single vote! We demonstrate the robustness of FRL to poison-
ing through analytical proofs and experimentation, and we
show its high communication efficiency.1.

1 Introduction

Federated Learning (FL) allows mutually untrusted clients
(e.g., Android devices) to collaborate and train a common
model, called global model, without sharing their private data.
In a single FL round, a server (e.g., a Google server) broad-
casts the current global model to a random subset of clients,
the clients compute model updates using the global model
and their private data, and share them with the server, server

1An extended version available at https://arxiv.org/abs/2110.04350
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Figure 1: The space of client updates. Green circles represent
benign updates and red triangles represent malicious updates.
To defend against poisoning, existing robust AGRs filter the
updates by creating a safe space (continuous ∈ Rd). On the
other hand, FRL limits the choices of clients by enforcing a
discrete space of updates (a permutation of integers ∈ [1,d]).
θb

g (green square) demonstrates the aggregated model for be-
nign users, and θm

g (red square) demonstrates the aggregated
model considering malicious updates. Black objects are up-
dates that are ruled out by the server.

aggregates the updates using an aggregation rule (AGR) and
updates the global model using the aggregate.

Robustness to poisoning attacks: Most of the distributed
learning algorithms, including FedAvg [31] and FedProx [29],
operate on mutually untrusted clients and server. This makes
distributed learning susceptible to the threat of poison-
ing [10, 24, 39]. A poisoning adversary can either own or
control a few of FL clients, called malicious clients, and in-
struct them to share malicious updates with the central server
in order to reduce the performance of the global model. There
are three approaches to poisoning FL: targeted [8, 41] attacks
aim to reduce the utility of the global FL model on specific
test inputs of adversary’s choice; untargeted [5,18,38] attacks
aim to reduce the utility of global model on arbitrary test
inputs; and backdoor [4, 42, 44] attacks aim to reduce the
utility on test inputs that contain a specific signal called the
trigger. In our work, we focus on the more severe threat of un-
targeted poisoning [39], which, unlike targeted and backdoor
poisoning, affects the majority FL clients.
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High-level intuition of FL untargeted poisoning: Figure 1
shows how the poisoning adversary searches for malicious
updates in the space of possible updates to maximize the
distance between benign and malicious aggregates. When the
server’s AGR is not robust, e.g., dimension-wise average [31],
there is no limitation on the adversary’s choices, so they can
maximize their goal using a malicious update arbitrarily far
from benign updates; (Figure 1-a)). Therefore, even a single
malicious client can jeopardize the accuracy of the global
model trained using FedAvg [9]. Current robust AGRs, such
as Multi-krum [9] or Trimmed-mean [45] limit the space of
acceptable updates, i.e., the safe zone shown in Figure 1-b).
These robust AGRs only consider the updates that are in the
safe zone and thereby reduce the adversary’s choices.
Continuous versus discrete space of updates: Figure 1-c)
shows how our proposed defense (FRL, which is introduced
next) limits the poisoning adversary’s choices of malicious
updates by making the space of acceptable updates discrete.
To the best of our knowledge, most of previous Byzantine ro-
bust FL algorithms use a continuous space of updates (∈ Rd),
as their frameworks are built on exchanging trained (32-bit)
weight parameters. On the other hand, in our approach, the
clients send their updates in the form of edge rankings, i.e.,
a permutation of integers ∈ [1,d] where d is the size of the
network layer; more useful edges have higher ranks. In Fig-
ure 1-c), the black dots show the discrete space of accept-
able client updates. For example, a network with 4 edges can
have 4! possible permutations of edge rankings starting from
[1,2,3,4] to [4,3,2,1]. On the other hand, in FL algorithms
with a continuous space of updates (with or without a safe
zone), the adversary’s choices are 4 weight parameters (each
of 32 bits). Note that, sparsification of the space of acceptable
updates is different from sparsification of model updates used
in compression methods, e.g., TopK [3]), RandomK [40] and
Sketched-SGD [23]. In these methods, the FL client sends
only a fraction of model updates instead of all of them, but
each parameter still has a continuous space.
Federated Rank Learning (FRL): We present FRL, a novel
FL algorithm that concurrently achieves the two goals of
robustness against poisoning attacks and communication ef-
ficiency. FRL uses a novel learning paradigm called super-
masks training [35, 46] to create edge rankings, which, as we
will show, allows FRL to reduce communication costs while
achieving significantly stronger robustness. Specifically, in
FRL, clients collaborate to find a subnetwork within a ran-
domly initialized neural network which we call the supernet-
work (this is in contrast to conventional FL where clients
collaborate to train a neural network). The goal of training
in FRL is to collaboratively rank the supernetwork’s edges
based on the importance of each edge and find a global rank-
ing. The global ranking can be converted to a supermask,
which is a binary mask of 1’s and 0’s, that is superimposed on
the random neural network (the supernetwork) to obtain the
final subnetwork. For example, in our experiments, the final

subnetwork is constructed using the top 50% of all edges. The
subnetwork is then used for downstream tasks, e.g., image
classification, hence it is equivalent to the global model in
conventional FL. Note that in entire FRL training, weights of
the supernetwork do not change.

More specifically, each FRL client computes the impor-
tance of the edges of the supernetwork based on their lo-
cal data. The importance of the edges is represented as a
ranking vector. Each FRL client will use the edge popup al-
gorithm [35] and their data to compute their local rankings
(the edge popup algorithm aims at learning which edges in a
supernetwork are more important over the other edges by min-
imizing the loss of the subnetwork on their local data). Each
client then will send their local edge ranking to the server.
Finally, the FRL server uses a novel voting mechanism to
aggregate client rankings into a global ranking vector, which
represents which edges of the random neural network (the
supernetwork) will form the global subnetwork.
Intuitions on FRL’s robustness: In traditional FL algorithms,
clients send large-dimension model updates ∈ Rd (real num-
bers) to the server, providing malicious clients significant
flexibility in fabricating malicious updates. By contrast, FRL
clients merely share the rankings of the edges of the supernet-
work, i.e., integers ∈ [1,d], where d is the size of the supernet-
work. This allows the FRL server to use a voting mechanism
to aggregate client updates (i.e., ranks), therefore, providing
high resistance to adversarial ranks submitted by poisoning
clients, since each client can only cast a single vote! There-
fore, as we will show both theoretically and empirically, FRL
provides robustness by design and reduces the impact of un-
targeted poisoning attacks. Furthermore, unlike most existing
robust FL frameworks, FRL does not require any knowledge
about the percentages of malicious clients.
Intuitions on FRL’s communication efficiency: In FRL, the
clients and the server communicate just the rankings of the
edges in the supernetwork, i.e., a permutation of indices in
[1,d]. Ranking vectors are generally significantly smaller than
the global model. This, as we will show, significantly reduces
the upload and download communication in FRL compared
to Federated Averaging (FedAvg) [31], where clients commu-
nicate model parameters, each of 32/64 bits.
Evaluation results: We experiment with three datasets in
real-world heterogeneous FL settings and show that: (1) FRL
achieves similar performance (e.g., model accuracy) as state-
of-the-art FedAvg but with significantly reduced communi-
cation costs: for CIFAR10, the accuracy and communication
cost per client are 85.4% and 40.2MB for FedAvg, while
85.3% and 26.2MB for FRL. (2) FRL is highly robust to
poisoning attacks as compared to state-of-the-art robust ag-
gregation algorithms: from 85.4% in the benign setting, 10%
malicious clients reduce the accuracy of FL to 56.3% and
58.8% with Trimmed-Mean [45] and Multi-Krum [9], respec-
tively, while FRL’s performance only decreases to 79.0%.

We also compare FRL with two communication reduc-
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tion methods, SignSGD [7] and TopK [3] and show that FRL
produces comparable communication costs and model accu-
racies. For instance, on CIFAR10, FRL, SignSGD, and TopK
achieve 85.3%, 79.1%, and 82.1% test accuracy, respectively,
when the corresponding communication costs (download and
upload) are 26.2MB, 20.73MB, and 30.79MB. On the other
hand, FRL offers significantly superior robustness. For in-
stance, on CIFAR10, 10% (20%) malicious clients reduce the
accuracy of SignSGD to 39.7% (10.0%), but FRL’s accuracy
decreases to only 79.0% (69.5%). TopK is incompatible with
existing robust aggregation algorithms, hence uses Average
aggregation and is as vulnerable as FedAvg, especially in the
real-world heterogeneous settings.

Although our primary focus is on defending against untar-
geted attacks, we also evaluate the FRL’s robustness against
targeted poisoning for completeness. We consider state-of-the-
art backdoor attacks [4, 42, 44], and we empirically show that
FRL is more robust against these backdoor attacks compared
to standard weight training FL. For example on CIFAR10,
with 2% of malicious clients, semantic backdoor attacks [4]
achieve 82.7% (84.4%) average backdoor (clean) task ac-
curacy against FedAvg, while they achieve 49.2% (84.1%)
backdoor (clean) task accuracy against FRL.

In summary, we propose a federated learning approach
that is built on exchanging rankings instead of parameter
weights, and we show a ranking-based FL is more robust
to both untargeted and targeted poisoning attacks. Our key
contributions are as follows:
• We show that sparsifying the space of FL clients’ updates

can improve robustness of FL to poisoning. Because, it
significantly reduces the space for attackers to search for
malicious updates and enables more robust voting-based
aggregations. Building on this hypothesis, we design Fed-
erated Rank Learning (FRL), a novel FL system in which
clients collaboratively train a global model by ranking the
importance of the edges of a random network based on their
local data.

• We evaluate FRL on three benchmark datasets including
MNIST, CIFAR10, FEMNIST where we split them in het-
erogeneous fashion among a large number of users, i.e.,
among 1000, 1000, 3400 users respectively. We show that
FRL provides more robustness and competitive communi-
cation efficiency compared to state-of-the-art AGRs and
compression techniques.

• We obtain theoretical robustness bounds for FRL, showing
its strong robustness without any knowledge of the number
of malicious clients.

2 Related works

Supermask learning: Modern neural networks have a very
large number of parameters. These networks are generally
overparameterized [16, 17, 27, 28], i.e., they have more pa-
rameters than they need to perform a particular task, e.g.,

classification. The lottery ticket hypothesis [19] states that
a fully-trained neural network, i.e., supernetwork, contains
sparse subnetworks, i.e., subsets of all neurons in supernet-
work, which can be trained from scratch (i.e., by training
same initialized weights of the subnetwork) and achieve per-
formances close to the fully trained supernetwork. The lottery
ticket hypothesis allows for massive reductions in the sizes of
neural networks. Ramanujan et al. [35] offer a complemen-
tary conjecture that an overparameterized neural network with
randomly initialized weights contains subnetworks which per-
form as good as the fully trained network.

Poisoning attacks and defenses for federated learning
(FL): FL involves mutually untrusting clients. Hence, a poi-
soning adversary may own or compromise some of the FL
clients, called malicious clients, with the goal of mounting
a targeted or untargeted poisoning attack. In a targeted at-
tack [8, 41], the goal is to reduce the utility of the model on
specific test inputs, while in the untargeted attack [5,18,33,38],
the goal is to reduce the utility for all (or most) test inputs. It
is shown [9] that even a single malicious client can mount an
effective untargeted attack on FedAvg.

In order to make FL robust to the presence of such mali-
cious clients, the literature has designed various robust ag-
gregation rules (AGR) [9, 13, 32, 45], which aim to remove
or attenuate the updates that are more likely to be malicious
according to some criterion. For instance, Multi-krum [9]
repeatedly removes updates that are far from the geometric
median of all the updates, and Trimmed-mean [45] removes
the largest and smallest values of each update dimension and
calculates the mean of the remaining values. Unfortunately,
these robust AGRs are not very effective in non-convex FL
settings and multiple works have demonstrated strong tar-
geted [8, 42] and untargeted attacks [18, 38] on them.

Communication cost of FL: In many real-world FL ap-
plications, it is essential to minimize the communication be-
tween FL server and clients. Especially in cross-device FL,
the clients (e.g., mobile phones and wearable devices) have
limited resources and communication can be a major bottle-
neck. There are two major types of communication reduction
methods: (1) Quantization methods reduce the resolution of
(i.e., number of bits used to represent) each dimension of a
client update. For instance, SignSGD [7] uses the sign (1 bit)
of each dimension of model updates. (2) Sparsification meth-
ods propose to use only a subset of all the update dimensions.
For instance, in TopK [3], only the largest K% update dimen-
sions are sent to the server in each FL round. We note that,
communication reduction methods primarily focus on and
succeed at reducing upload communication (client→ server),
but they use the entire model in download communication
(server→ client).
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3 Preliminaries

3.1 Federated learning

In FL [24,25,31], N clients collaborate to train a global model
without directly sharing their data. In round t, the service
provider (server) selects n out of N total clients and sends
them the most recent global model θt . Each client trains a
local model for E local epochs on their data starting from the
θt using stochastic gradient descent (SGD). Then the client
sends back the calculated gradients (▽k for kth client) to the
server. The server then aggregates the collected gradients and
updates the global model for the next round. FL can be either
cross-device or cross-silo [24]. In cross-device FL, N is large
(from few thousands to billions) and only a small fraction of
clients is chosen in each FL training round, i.e., n≪ N. By
contrast, in cross-silo FL, N is moderate (up to 100) and all
clients are chosen in each round, i.e., n = N. In this work, we
evaluate the performance of FRL and other FL baselines for
cross-device FL under realistic production FL settings.

3.2 Edge-popup algorithm

The edge-popup (EP) algorithm [35] is an optimization to
find supermasks within a large, randomly initialized neural
network, i.e., called supernetwork, with performances close
to the fully trained supernetwork. EP algorithm does not train
the weights (θw) of the network, instead only decides the set
of edges to keep and removes (pops) the rest of the edges.
Specifically, EP algorithm assigns a positive score to each of
the edges in the supernetwork (θs). On forward pass, it selects
top k% edges with highest scores, where k is the percentage of
the total number of edges in the supernetwork that will remain
in the final subnetwork. On the backward pass, it updates the
scores with the straight-through gradient estimator [6].

Algorithm 1 presents EP algorithm. Suppose in a fully
connected neural network, there are L layers and layer ℓ ∈
[1,L] has nℓ neurons, denoted by V ℓ = {V ℓ

1 , ...,V
ℓ
nℓ}. If Iv and

Zv denote the input and output for neuron v respectively, then
the input of the node v is the weighted sum of all nodes
in previous layer, i.e., Iv = ∑u∈V ℓ−1 WuvZu. Here, Wuv is the
weight of the edge connecting u to v. Edge-popup algorithm
tries to find subnetwork E, so the input for neuron v would
be: Iv = ∑(u,v)∈E WuvZu.
Updating scores. Consider an edge Euv that connects two
neurons u and v, Wuv be the weight of Euv, and suv be the score
assigned to the edge Euv by Edge-popup algorithm. Then the
edge-popup algorithm removes edge Euv from the supermask
if its score suv is not high enough. Each iteration of supermask
training updates the scores of all edges such that, if having an
edge Euv in subnetwork reduces loss (e.g., cross-entropy loss)
over training data, the score suv increases.

Algorithm 1 Edge-popup (EP) algorithm
1: Input: number of local epochs E, training data D, initial weights θw and

scores θs, subnetwork size k%, learning rate η

2: for e ∈ [E] do
3: B ← Split D in B batches
4: for batch b ∈ [B] do
5: EP FORWARD (θw,θs,k,b)
6: θs = θs−η∇ℓ(θs;b)
7: end for
8: end for
9: return θs

10: function EP FORWARD(θw,θs,k,b)
11: m← sort(θs)
12: t← int((1− k)∗ len(m))
13: θp = θw⊙m, where m[: t] = 0; m[t :] = 1
14: return θp(b)
15: end function

The algorithm selects top k% edges (i.e., finds a subnetwork
with sparsity of k%) with highest scores, so Iv reduces to
Iv = ∑u∈V ℓ−1 WuvZuh(suv) where h(.) returns 1 if the edge
exists in top-k% highest score edges and 0 otherwise. Because
of existence of h(.), which is not differentiable, it is impossible
to compute the gradient of loss with respect to suv. Recall
that, the Edge-popup algorithm use straight-through gradient
estimator [6] to compute gradients. In this approach, h(.)
will be treated as the identity in the backward pass meaning
that the upstream gradient (i.e., ∂L

∂Iv
) goes straight-through h(.).

Now using chain rule, we can derive ∂L
∂Iv

∂Iv
∂suv

= ∂L
∂Iv

WuvZuwhere
L is the loss to minimize. Then we can SGD with step size η

to update scores as suv←− suv−η
∂L
∂Iv

ZuWuv.

4 Our proposal: Federated Rank Learning

Algorithm 2 Federated Ranking Learning (FRL)
1: Input: number of rounds T , number of local epochs E, number of users

per round n, seed SEED, learning rate η, subnetwork size k%
2: Server: Initialization
3: θs,θw← Initialize random scores and weights using SEED
4: R1

g← ARGSORT(θs) ▷ Sort the initial scores and obtain initial rankings
5: for t ∈ [1,T ] do
6: U ← set of n randomly selected clients out of N total clients
7: for u in U do
8: Clients: Calculating the ranks
9: θs,θw← Initialize scores and weights using SEED

10: θs[Rt
g]← SORT(θs) ▷ sort the scores based on the global ranking

11: S← Edge-PopUp(E,Dtr
u ,θ

w,θs,k,η) ▷ Client u uses
Algorithm1 to train a supermask on its local training data

12: Rt
u← ARGSORT(S) ▷ Ranking of the client

13: end for
14: Server: Majority Vote

15: Rt+1
g ← VOTE(Rt

{u∈U}) ▷ Majority vote aggregation
16: end for
17: function VOTE(R{u∈U} ):
18: V ← SUM(ARGSORT(R{u∈U})), A← SUM(V )
19: return ARGSORT(A)
20: end function

In this section, we provide the design of our federated
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rank learning (FRL) algorithm (Algorithm 2). FRL clients
collaborate (without sharing their data) to find a subnetwork
within a randomly initialized, untrained supernetwork, with
scores θs and weights θw. In each round, FRL first finds a
unanimous (global) ranking of the supernetwork edges and
then uses the subnetwork of the top ranked edges as the global
model.

The objective of FRL is to find a global ranking Rg and
convert it to a global binary mask, m, such that resulting
subnetwork, θw⊙m, minimizes the average loss of all clients.
FRL optimization can be formalized as follows:

min
Rg

F(θw,Rg) = min
Rg

N

∑
i=1

λiLi(θ
w⊙m) (1)

s.t. m[Rg < k] = 0 and m[Rg ≥ k] = 1

where N is the total number of FRL clients, Li is the loss
function for the ith client, λi is the importance, e.g., weight,
of the ith client; we use λi =

1
N , i.e., all clients have the same

weight. m is the final binary mask, where edges with top k
ranks (layer-wise) get ’1’ while others get ’0’. We use m to
compute final global model by superimposing m on θ, i.e.,
the we use the subnetwork θ⊙m as the final global model.
In Figure 2, we demonstrate a single FRL round using a
supernetwork with six edges ei∈[0,5] and three clients C j∈[1,3]
who aim to find a subnetwork of size k=50% of the original
supernetwork.

4.1 Server: Initialization (only for round t = 1)

In the first round, the FRL server chooses a random seed
SEED to generate initial random weights θw and scores θs

for the global supernetwork θ; note that, θw, θs, and SEED
remain constant during the entire FRL training. Next, the FRL
server shares SEED with FRL clients, who can then locally
reconstruct the initial weights θw and scores θs using SEED.
Figure 2- 1 depicts this step.

Recall that, the goal of FRL training is to find the most
important edges in θw without changing the weights. Unless
specified otherwise, both server and clients use the Signed
Kaiming Constant algorithm [35] to generate random weights
and the Kaiming Uniform algorithm [21] to generate random
scores. However, in Section 7.5.2, we also explore the im-
pacts of different weight initialization algorithms on the per-
formance of FRL. We use the same seed to initialize weights
and scores.

At the beginning, the FRL server finds the global rankings
of the initial random scores (Algorithm 2 line 4), i.e., R1

g =
ARGSORT(θs). We define rankings of a vector as the indices
of elements of vector when the vector is sorted from low to
high, which is computed using ARGSORT function.

Figure 2: A single FRL round with three clients and super-
network of 6 edges.

4.2 Clients: Calculating the ranks (for each
round t)

In the tth round, FRL server randomly selects n clients among
total N clients, and shares the global rankings Rt

g with them.
Each of the selected n clients locally reconstructs the weights
θw’s and scores θs’s using SEED (Algorithm 2 line 9). Then,
each FRL client reorders the random scores based on the
global rankings, Rt

g (Algorithm 2 line 10); we depict this in
Figure 2- 2a .

Next, each of the n clients uses reordered θs and finds a sub-
network within θw using Algorithm 1; to find a subnetwork,
they use their local data and E local epochs (Algorithm 2 line
11). Note that, each iteration of Algorithm 1 updates the scores
S starting from θs. Then client u computes their local rankings
Rt

u using the final updated scores (S) and ARGSORT(.), and
sends Rt

u to the server. Figure 2- 2a shows how each of the
selected n clients reorders the random scores using global
rankings. For instance, the initial global rankings for this
round are Rt

g = [2,3,0,5,1,4], meaning that edge e4 should
get the highest score (s4 = 1.2), and edge e2 should get the
lowest score (s2 = 0.2).

Figure 2- 2b shows, for each client, the scores and rank-
ings they obtained after finding their local subnetwork. For
example, rankings of client C1 are Rt

1 = [4,0,2,3,5,1], i.e.,
e4 is the least important and e1 is the most important edge for
C1. Considering desired subnetwork size to be 50%, C1 uses
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edges {3,5,1} in their final subnetwork.

4.3 Server: Majority vote (for each round t)

The server receives all the local rankings of the selected n
clients, i.e., Rt

{u∈U}. Then, it performs a majority vote over
all the local rankings using VOTE(.) function. Note that, for
client u, the index i represents the importance of the edge
Rt

u[i] for Cu. For instance, in Figure 2- 2b , rankings of C1 are
Rt

1 = [4,0,2,3,5,1], hence the edge e4 at index=0 is the least
important edge for C1, while the edge e1 at index=5 is the
most important edge. Consequently, VOTE(.) function assigns
reputation=0 to edge e4, reputation=1 to e0, reputation=2 to
e2, and so on. In other words, for rankings Rt

u of Cu and edge
ei, VOTE(.) computes the reputation of ei as its index in Rt

u.
Finally, VOTE(.) computes the total reputation of ei as the sum
of reputations from each of the local rankings. In Figure 2-
2b , reputations of e0 are 1 in Rt

1, 1 in Rt
2, and 0 in Rt

3, hence,
the total reputation of e0 is 2. We depict this in Figure 2-
3 ; here, the final total reputations for edges e{i∈[0,5]} are A =
[2,12,3,11,8,9]. Finally, the server computes global rankings
Rt+1

g to use for round t+1 by sorting the final total reputations
of all edges, i.e., Rt+1

g = ARGSORT(A).
Note that, all FRL operations that involve sorting, reorder-

ing, and voting are performed in a layer-wise manner. For
instance, the server computes global rankings Rt

g in round t for
each layer separately, and consequently, the clients selected
in round t reorder their local randomly generated scores θs

for each layer separately.

5 Robustness of FRL to poisoning

FRL and FL are distributed learning algorithms with mutually
untrusting clients. Hence, a poisoning adversary may own
or compromise some of FRL (FL) clients, called malicious
clients, and mount a targeted or untargeted poisoning attack.
As discussed in Section 1, we mainly focus on the more
severe untargeted attacks and show that FRL is significantly
more robust by design to such poisoning attacks. However,
for completeness we also evaluate robustness of FRL against
targeted attacks in Appendix C.
Intuition behind robustness of FRL: Existing FL algo-
rithms, including robust algorithms, are shown to be vulnera-
ble to various poisoning attacks [39]. One of the key reasons
behind the susceptibility of existing algorithms is that their
model updates can have a large continuous space of values.
For instance, to manipulate vanilla FedAvg, malicious clients
send very large updates [9], and to manipulate Multi-krum
and Trimmed-mean, [18, 38] propose to perturb a benign up-
date in a specific malicious direction. On the other hand, in
FRL, clients must send a permutation of indices ∈ [1,nℓ] for
each layer. Hence, FRL significantly reduces the space of the
possible malicious updates that an adversary can craft. Major-

ity voting in FRL further reduces the chances of successful
attack. Intuitively, this makes FRL design robust to poisoning
attacks. Below, we make this intuition more concrete.
The worst-case untargeted poisoning attack on FRL: Here,
the poisoning adversary aims to reduce the accuracy of the
final global FRL subnetwork on most test inputs. To achieve
this, the adversary should replace the high ranked edges with
low ranked edges in the final subnetwork. For the worst-case
analysis of FRL, we assume a very strong adversary (i.e.,
threat model): 1) each of the malicious clients has some data
from benign distribution; 2) malicious clients know the entire
FRL algorithm and its parameters; 3) malicious clients can
collude. Under this threat model we design a worst case attack
on FRL (Algorithm 3), which executes as follows: First, mali-
cious clients compute rankings on their benign data and use
VOTE(.) algorithm to compute an aggregate rankings. Finally,
each of the malicious clients uses the reverse of the aggregate
rankings to share with the FRL server in given round. The
adversary should invert the rankings layer-wise as the FRL
server will aggregate the local rankings per layer too, and it
is not possible to mount a model-wise attack.

Algorithm 3 FRL Poisoning
1: Input: number of malicious clients M, number of malicious local epochs

E ′, seed SEED, global ranking Rt
g, learning rate η, subnetwork size k%

2: function MALICIOUSUPDATE(M, SEED,Rt
g,E

′,η,k):
3: for mu ∈ [M] do
4: Malicious Client Executes:
5: θs,θw← Initialize random scores and weights using SEED
6: θs[Rt

g]← SORT(θs)
7: S← Edge-PopUp(E ′,Dtr

u ,θ
w,θs,k,η)

8: Rt
mu← ARGSORT(S) ▷ Ranking of the malicious client

9: end for
10: Aggregation:
11: Rt

m← VOTE(Rt
{mu∈[M]}) ▷ Majority vote aggregation

12: return REVERSE(Rt
m) ▷ reverse the ranking

13: end function

Now we justify why the attack in Algorithm 3 is the worst
case attack on FRL for the strong threat model. Note that, FRL
aggregation, i.e., VOTE(.), computes the reputations using
clients’ rankings and sums the reputations of each network
edge. Therefore, the strongest poisoning attack would want
to reduce the reputation of good edges. This can be achieved
following the aforementioned procedure of Algorithm 3 to
reverse the rankings computed using benign data.
Theoretical analysis of robustness of FRL algorithm: In
this section, we prove an upper bound on the failure probabil-
ity of robustness of FRL, i.e., the probability that a good edge
will be removed from the final subnetwork when malicious
clients mount the worst case attack.

Following the work of [7], we make two assumptions in
order to facilitate a concrete robustness analysis of FRL: a)
each malicious client has access only to its own data, and b)
we consider a simpler VOTE(.) function, where the FRL server
puts an edge ei in the final subnetwork if more than half of

1726    32nd USENIX Security Symposium USENIX Association



the clients have ei (a good edge) in their local subnetworks. In
other words, the rankings that each client sends to the server
is just a bit mask showing that each edge should or should
not be in the final subnetwork. The server makes a majority
vote on the bit masks, and if an edge has more than half votes,
it will be in the global subnetwork. Our VOTE(.) mechanism
has more strict robustness criterion, as it uses more nuanced
reputations of edges instead of bit masks. Hence, the upper
bound on failure probability in this section also applies to the
FRL VOTE(.) function.

Figure 3: Upper bound on the failure probability of VOTE(.)
function in FRL. α is the percentages of malicious clients and
p is the probability that a benign client puts a good edge in
its top k ranks.

The probability that our voting system fails is the probabil-
ity that more than half of the votes do not include ei in their
subnetworks. The upper bound on the probability of failure

would be 1/2
√

np(1−p)
(n(p+α(1−2p)−1/2))2 , where n is the number

of clients being processed, p is the probability that a benign
client puts ei in their top ranks, and α is the fraction of ma-
licious clients. We defer the detailed proof to Appendix A.
Figure 3 shows the upper bound on the failure of VOTE(.) for
different values of α and p. As can be seen, the higher the
probability p, the higher the robustness of FRL.

6 Communication efficiency of FRL

In FL, and especially in the cross-device setting, clients have
limited communication bandwidth. Hence, FL algorithms
must be communication efficient. We discuss here the com-
munication cost of FRL algorithm. In the first round, the FRL
server only sends one seed of 32 bits to all the FRL clients,
so they can construct the random weights (θw) and scores
(θs). In a round t, each of selected FRL clients receives the
global rankings Rt

g and sends back their local rankings Rt
u.

The rankings are a permutation of the indices of the edges in
each layer, i.e., of [0,nℓ−1]∀ℓ ∈ [L] where L is the number
of layers and nℓ is the number of parameters in ℓth layer.

Figure 4: Upload (U) and download (D) Communication cost
analysis. The download cost (D) of all SFRLs would be the
same as FRL. Download communication cost of SignSGD
would be the same as FedAvg too.

We use the naive approach to communicate layer-wise rank-
ings, where each FRL client exchanges a total of ∑ℓ∈[L] nℓ×
log(nℓ) bits. Because, for the layer ℓ, the client receives and
sends nℓ ranks where each one is encoded with log(nℓ) bits.
On the other hand, a client exchanges ∑ℓ∈[L] nℓ×32 bits in Fe-
dAvg, when 32 bits are used to represent each of nℓ weights in
layer ℓ. In Section 7.3, we measure the performance and com-
munication cost of FRL with other existing FL compressors
SignSGD [7] and TopK [2, 3].

Sparse-FRL: Here, we propose Sparse-FRL, a simple ex-
tension of FRL to further reduce the communication cost. In
Sparse-FRL, a client sends only the most important ranks
of their local rankings to the server for aggregation. For in-
stance, in Figure 2, client C1 sends Rt

1 = [4,0,2,3,5,1] in case
of FRL. But in sparse-FRL, with sparsity set to 50%, client
C1 sends just the top 3 rankings, i.e., sends R′t1 = [3,5,1]. For
each client, the sparse-FRL server assumes 0 reputation for all
of the edges not included in the client’s rankings, i.e., in Fig-
ure 2, sparse-FRL server will assign reputation=0 for edges
e4, e0, and e2. Then the server uses VOTE(.) to compute total
reputations of all edges and then sort them to obtain the final
aggregate global rankings, i.e., Rt+1

g , to use for subsequent
rounds. We observe in out experiments, that sparse-FRL per-
forms very close to FRL, even with sparsity as low as 10%,
while also significantly reducing the communication cost.

Lower-bound of communication cost of FRL: Since the
FRL clients send and receive layer-wise rankings of indices,
i.e., integers ∈ [0,nℓ − 1], for layer ℓ, there are nℓ! possi-
ble permutations for layer ℓ ∈ [L]. If we use the best pos-
sible compression method in FRL, an FRL client needs to
send and receive ∑ℓ∈[L] log(nℓ!) bits. Therefore, the down-
load and upload bandwidth for each FRL client would be
∑ℓ∈[L] log(nℓ ∗ (nℓ−1)∗ ...∗2∗1) = ∑ℓ∈[L] ∑

nℓ
i=1 log(i) bits.

Please note that in our experiment, FRL clients send and
receive the rankings without any further compression, and
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∑ℓ∈[L] ∑
nℓ
i=1 log(i) just shows a lower-bound of communica-

tion cost of FRL.
In Figure 4, we compare the upload and download com-

munication costs of one client per FL round for FedAvg,
SignSGD, and different variants of FRL for different number
of parameters. U and D are showing upload and download
communication cost. Please note that the download commu-
nication cost of all SFRLs would be the same as FRL, and
download communication cost of SignSGD would be similar
to FedAvg too. If we use a compression method to compress
the local rankings (for upload) and global rankings (for down-
load), we can improve communication cost of FRL to its
lower-bound (FRL-LB in Figure 4). In this Figure, we can see
that SFRL can provide competitive upload communication
cost and lower download communication cost compared to
SignSGD when the clients are sending only 10% of top local
rankings (SFRL 10%).

7 Empirical evaluation

In this section, we extensively evaluate the utility, robustness,
and communication cost of our FRL algorithm. This section
is organized as follows: in Section 7.1 we discuss the exper-
imental setup. In Section 7.2 we investigate the robustness
and utility of FRL, followed by Section 7.3 in which we dis-
cuss the communication cost of FRL. Next, in Section 7.4,
we compare FRL utility and robustness to an extension of
edge-popup to FL. We conclude with Section 7.5, where we
provide an ablation study on FRL. We have released the code
for reproducibility. 2

7.1 Experimental setup

7.1.1 Datasets and their distribution

We use MNIST, CIFAR10, and FEMNIST datasets. Most
real-world FL settings have heterogeneous client data, hence
following previous works [22, 37], we distribute MNIST and
CIFAR10 datasets among 1,000 clients in non-iid fashion
using Dirichlet distribution with parameter β = 1. Note that,
increasing β results in more iid datasets. FEMNIST is natu-
rally distributed non-iid among 3,400 clients. We further split
the datasets of each client into training (80%) and test (20%).

We run all the experiments for 2000 global rounds of FRL
and FL, while selecting 25 clients in each round. At the end
of the training, we calculate the test accuracy of all the clients
on the final global model, and we report the mean and stan-
dard deviation of all clients’ test accuracies in our experi-
ments. Due to space restrictions, we defer further details of
datasets, model architectures, and corresponding hyperparam-
eters settings to Appendix B.1. We independently tune the
hyperparameters for FRL and other baselines (Section 7.1.2).

2https://github.com/SPIN-UMass/FRL

We also evaluate the utility of FRL on a significantly more
complicated task, Tiny-ImageNet [1] in Section 7.5.4.

7.1.2 Baseline FL algorithms

We compare the FRL with following FL baselines:
Federated averaging: In non-adversarial FL settings, i.e.,
without any malicious clients, the dimension-wise Average
(FedAvg) [25, 31] is an effective AGR. In fact, due to its
efficiency, Average is the only AGR implemented by FL ap-
plications in practice [30, 34].
SignSGD: is a quantization method used in distributed learn-
ing to compress each dimension of gradient updates into 1
bit instead of 32 or 64 bits. To achieve this, in SignSGD [7]
the clients only send the sign of their gradient updates to
the server, and the server runs a majority vote on them.
SignSGD is designed for distributed learning where all the
clients participate in each round, so all the clients are aware
of the most updated weight parameters of the global model.
However, SignSGD only reduces upload communication
(clients→server). But, does not reduce download commu-
nication (server→clients), i.e., to achieve good performance
of the global model, the server sends all the weight parameters
(each of 32 bits) to the newly selected clients in each round.
Hence, SignSGD is as inefficient as FedAvg in download
communication.
TopK: is a sparsification method used in distributed learning
that transmits only a few dimensions of each model update
to the server. In TopK [2, 3], the clients first sort the absolute
values of their local model updates, and send the Top K%
largest model update dimensions to the server for aggregation.
TopK suffers from the same problem as SignSGD: for per-
formance reasons, the server should send the entire updated
model weights to the new selected clients.
Multi-krum: [9] proposed Multi-krum AGR as a modifica-
tion to their own Krum AGR. Multi-krum selects an update
using Krum and adds it to a selection set, S. Multi-krum
repeats this for the remaining updates (which remain after
removing the update that Krum selects) until S has c updates
such that n− c > 2m+2, where n is the number of selected
clients and m is the number of compromised clients in a given
round. Finally, Multi-krum averages the updates in S.
Trimmed-mean: Yin et al. [45] proposed Trimmed-mean
that aggregates each dimension of input updates separately. It
sorts the values of the jth-dimension of all updates. Then it
removes m (i.e., the number of compromised clients) of the
largest and smallest values of that dimension, and computes
the average of the rest of the values as its aggregate for the
dimension j.

7.2 Analyses of robustness to poisoning
We compare FRL with state-of-the-art robust aggregation
rules (AGRs): Mkrum [9], and Trimmed-mean [45]. Table 1
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Table 1: Comparing the robustness of various FL algorithms: FRL and Sparse-FRL (SFRL) (in bold) outperform the state-of-the-
art robust AGRs and SignSGD against the strongest of untargeted poisoning attacks.

Dataset AGR No malicious 10% malicious 20% malicious

MNIST + LeNet
1000 clients

FedAvg 98.8 (3.2) 10.0 (10.0) 10.0 (10.0)
Trimmed-mean 98.8 (3.2) 95.1 (7.7) 87.6 (9.5)

Multi-krum 98.8 (3.2) 98.6 (3.3) 97.9 (4.1)
SignSGD 97.2 (4.6) 96.6 (5.0) 96.2 (5.6)

FRL 98.8 (3.1) 98.8 (3.1) 98.7 (3.3)
SFRL Top 50% 98.2 (3.8) 97.04 (4.4) 95.1 (7.8)

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 10.0 (10.1) 10.0 (10.1)
Trimmed-mean 84.9 (11.0) 56.3 (16.0) 20.5 (13.2)

Multi-krum 84.7 (11.3) 58.8 (15.8) 25.6 (14.4)
SignSGD 79.1 (12.8) 39.7 (15.9) 10.0 (10.1)

FRL 85.3 (11.3) 79.0 (12.4) 69.5 (14.8)
SFRL Top 50% 77.6 (13.0) 41.7 (15.4) 39.7 (15.2)

FEMNIST + LeNet
3400 clients

FedAvg 85.8 (10.2) 6.3 (5.8) 6.3 (5.8)
Trimmed-mean 85.2 (11.0) 72.7 (15.7) 56.2 (20.3)

Multi-krum 85.2 (10.9) 80.9 (12.2) 23.7 (12.8)
SignSGD 79.3 (12.4) 76.7 (13.2) 55.1 (14.9)

FRL 84.2 (10.7) 83.0 (10.9) 65.8 (17.8)
SFRL Top 50% 75.2 (12.7) 70.5 (14.4) 60.39 (14.8)

gives the performances of robust AGRs, SignSGD, and FRL
with different percentages of malicious clients using attacks
proposed by Shejwalkar et al. [38], Bernstein et al. [7], and Al-
gorithm 3 respectively. To attack FRL, we choose 25 random
malicious clients in each FRL round to generate the malicious
update. Here, we make a rather impractical assumption in
favor of the previous robust AGRs: we assume that the server
knows the exact % of malicious clients in each FL round.
Note that, FRL does not require this knowledge.
FRL achieves higher robustness than state-of-the-art ro-
bust AGRs: We note from Table 1 that, FRL is more robust
to the presence of malicious clients who mount untargeted
poisoning attacks, compared to Multi-Krum and Trimmed-
mean, when percentages of malicious clients are 10% and
20%. For instance, on CIFAR10, 10% malicious clients can
decrease the accuracy of FL models to 56.3% and 58.8% for
Trimmed-mean and Multi-Krum respectively; 20% malicious
clients can decrease the accuracy of the FL models to 20.5%
and 25.6% for Trimmed-mean and Multi-Krum respectively.
On the other hand, FRL performance decreases to 79.0% and
69.5% for 10% and 20% attacking ratio, respectively.

We make similar observations for MNIST and FEMNIST
datasets: for FEMNIST, 10% (20%) malicious clients reduce
accuracy of the global model from 85.8% to 72.7% (56.2%)
for Trimmed-Mean, and to 80.9% (23.7%) for Multi-krum,
while FRL accuracy decreases to 83.0% (65.8%).
FRL is more accurate than SignSGD: First, we note
that, in the absence of malicious clients, FRL is significantly
more accurate than SignSGD. For instance, on CIFAR10 dis-
tributed in non-iid fashion among 1000 clients, FRL achieves

85.3% while SignSGD achieves 79.1% , or on FEMNIST,
FRL achieves 84.2% while SignSGD achieves 79.3%. This
is because, FRL clients send more nuanced information via
rankings of their subnetworks compared to SignSGD, where
clients just send the signs of their model updates.
FRL is more robust than SignSGD: Next, we note from
Table 1 that, FRL is more robust against untargeted poisoning
attacks compared to SignSGD when percentages of mali-
cious clients are 10% and 20%. For instance, on CIFAR10,
10% (20%) malicious clients can decrease the accuracy of
SignSGD model to 39.8% (10.0%). On the other hand, FRL
performance decreases to 79.0% and 69.5% for 10% and 20%
attacking ratio respectively. We make similar observations for
MNIST and FEMNIST datasets: for FEMNIST, 10% (20%)
malicious clients reduce accuracy of the global model from
85.8% to 76.7% (55.1%) for SignSGD, while FRL accuracy
decreases to 83.0% (65.8%).
Sparse-FRL robustness: We evaluate robustness of SFRL
Top 50% against 10% and 20% malicious clients. As we can
see from Table 1, by sending only top half of the local rank-
ings, the accuracy goes from 85.3% (FRL) to 77.6% (SFRL).
SFRL also can provide robustness to some extend, but ad-
versary has more influence on the global ranking since half
of the rankings are missing. For instance, on CIFAR10, 10%
(20%) malicious clients can decrease the accuracy of global
ranking to 41.7% (39.7%) from 77.6%. Also for FEMNIST,
10% (20%) malicious clients can decrease the accuracy of
global ranking to 70.5% (60.39%) from 75.2%. We can see
when malicious clients’ percentages are higher, SFRL can
perform better compared to existing robust AGR.
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Table 2: Comparing the accuracy and communication cost of
FedAvg, SignSGD, TopK, FRL and Sparse-FRL (SFRL) with
different percentages of sparsity (in bold). Parentheses in the
accuracy column show standard deviation of the accuracy.

Algorithm Accuracy Upload/Download (MB)
MNIST + LeNet + 1000 clients

FedAvg 98.8 (3.1) 6.20/ 6.20
FRL 98.8 (3.2) 4.05/ 4.05

SFRL Top 50% 98.2 (3.8) 2.03/ 4.05
SFRL Top 10% 89.5 (9.2) 0.40/ 4.05

SignSGD 97.2 (4.6) 0.19/ 6.20
TopK 50% 98.8 (3.2) 3.29/ 6.20
TopK 10% 98.7 (3.2) 0.81/ 6.20

CIFAR10 + Conv8 + 1000 clients
FedAvg 85.4 (11.2) 20.1/ 20.1

FRL 85.3 (11.3) 13.1/ 13.1
SFRL Top 50% 77.6 (13.0) 6.5/ 13.1
SFRL Top 10% 27.5 (14.4) 1.3/ 13.1

SignSGD 79.1 (13.6) 0.63/ 20.1
TopK 50% 82.1 (11.8) 10.69/ 20.1
TopK 10% 77.8 (13.0) 2.64/ 20.1

FEMNIST + LeNet + 3400 clients
FedAvg 85.8 (10.2) 6.23/ 6.23

FRL 84.2 (10.7) 4.06/ 4.06
SFRL Top 50% 75.2 (12.7) 2.03/ 4.06
SFRL Top 10% 59.2 (15.0) 0.40/ 4.06

SignSGD 79.3 (12.4) 0.19/ 6.23
TopK 50% 85.7 (9.9) 3.31/ 6.23
TopK 10% 85.5 (10.0) 0.81/ 6.23

FRL versus FedAvg and TopK: We omit the results of non-
robust aggregations, FedAvg and TopK, because even a single
malicious client [9] can jeopardize their performances.
Robustness of FRL against targeted poisoning: Although
our primary focus is on defending against untargeted attacks,
for completeness, we also evaluate the FRL’s robustness
against targeted poisoning, and especially against state-of-
the-art backdoor attacks [4, 42, 44] in Appendix C. Backdoor
attacks are successful in traditional continuous updates based
FL (e.g., FedAvg), because in a given round, the adversary
can scale its malicious update and cancel the effect of benign
clients’ updates, thereby forcing the global model to be their
malicious model [4]. However, by design, FRL is robust to
such scaling as it uses rankings based updates where scaling
is impossible.

However, we empirically show that FRL is more robust
than tradition FL algorithms, even against the backdoor at-
tacks that do not use scaling [4, 42]. For example, with 2%
of malicious clients and non-iid distributed CIFAR10 data,
semantic backdoor attacks [4] achieve 82.7% (84.4%) aver-
age backdoor (clean) task accuracy against FedAvg, while
they achieve 49.2% (84.1%) backdoor (clean) task accuracy
against FRL.

7.3 Communication cost analysis

In FRL, both clients and server communicate just the edge
ranks instead of weight parameters. Thus, FRL reduces both

upload and download communication cost. Table 2 illustrates
the utility, i.e., the mean and standard deviation of all clients’
test accuracies and, communication cost of FRL and state-
of-the-art quantization (i.e., SignSGD [7]) and sparsification
(i.e., TopK [2, 3]) communication-reduction methods.
FRL versus SignSGD: SignSGD in FL reduces only the
upload communication, but for efficiency reasons, the server
sends all of the weight parameters (each of 32 bits) to the
newly selected clients. Hence, SignSGD has very efficient up-
load communication, but very inefficient download communi-
cation. For instance, on CIFAR10, for both upload and down-
load, FRL achieves 13.1MB each while SignSGD achieves
0.63MB and 20.1MB, respectively.
FRL versus TopK: We compare FRL and TopK where
K ∈ {10,50}%. FRL is more accurate than Topk for MNIST
and CIFAR10: on CIFAR10, FRL accuracy is 85.3%, while
TopK accuracies are 82.1% and 77.8% with K=50% and
K=10%, respectively. Similar to SignSGD, Topk more ef-
ficiently reduces upload communication, but has very high
download communication. Therefore, the combined upload
and download communication cost per client per round is
26.2MB for FRL and 30.79MB for TopK with K=50%; note
that, even then TopK performs worse than FRL.
Communication cost reduction due to Sparse-FRL
(SFRL): We now evaluate SFRL explained in Section 6.
In SFRL with top 50% ranks, clients send the top 50% of
their ranks to the server, which reduces the upload bandwidth
consumption by half. Please note that the download cost of
SFRL is the same as FRL since the FRL server should send
all the global rankings to the selected clients in each round.
We note from Table 2 that, by sending fewer ranks, SFRL re-
duces upload communication at a small cost of performance.
For instance, on CIFAR10, SFFRL with top 50% reduces the
upload communication by 50% at the cost reducing accuracy
from 85.4% to 77.6%.

7.4 Comparison with naïve extension of edge-
popup algorithm to FL

As discussed in Section 4.2, prior works [36] on supermask
training and its following works [14, 43] do not consider
rankings, and instead find subnetworks in randomly initialized
networks by just training the scores, in a centralized training
setting. Algorithm 4 shows the naïve extension of [36] to FL,
where the clients train and exchange scores (32bits floats).
Like FedAvg, these scores are from a continuous space of float
numbers (as opposed to parameter ranks in FRL). At the end
of each FL round, the server averages the local score updates
to aggregate them and produces global scores (different from
our majority vote aggregation). It is important to note that
our majority vote aggregation only works on a set of ranking
inputs.

Exchanging such scores is as vulnerable to poisoning as
regular FL because they are not scale-free and discrete similar
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Algorithm 4 Edge-popup based FL (EFL)
1: Input: number of rounds T , number of local epochs E, number of users

in each round n, seed SEED, learning rate η, subnetwork size k%
2: Server: Initialization
3: θs

0,θ
w← Initialize random scores and weights using SEED

4: for t ∈ [1,T ] do
5: U ← set of n randomly selected clients out of N total clients
6: for u in U do
7: Clients: Calculating the scores using EP
8: θw← Initialize weights using SEED
9: St

u← Edge-PopUp(E,Dtr
u ,θ

w,θs
t−1,k,η) ▷ Client u uses

Algorithm1 to train a supermask starting from global scores θs
t−1

10: end for
11: Server: Averaging the scores
12: θs

t+1← AVG(St
{u∈U})

13: end for

to rankings. Table 3 compares the performance of FedAvg,
where the clients train weight parameters, EdgePopUPFL,
using this naïve application of Edge-popup where the clients
train scores, and FRL, where the clients are training rankings.
If we use scores as the clients’ updates, even one malicious
client can generate its adversarial score update and re-scales it
to cancel the effect of other benign updates. On the other hand,
rankings are scale-free, and the adversary cannot increase its
influence by re-scaling the rankings.

Table 3: Comparing the robustness of EFL, a naïve edge-
popup based FL (Algorithm 4), with robustness of FRL.

Dataset
# of clients AGR Percentage of Malicious Clients

0% 10% 20%

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 10.0 (10.1)
EFL 84.2 (11.3) 10.0 (10.1)
FRL 85.3 (11.3) 79.0 (12.4) 69.5 (14.8)

Furthermore, as discussed in Section 4, FRL’s performance
does not just come from using the Edge-popup algorithm,
but rather from introducing an efficient protocol to rank and
aggregate them which enables achieving high accuracy and
robustness. Overall, a major novelty of our work is that, to the
best of our knowledge, FRL is the first scalable, distributed
training algorithm that trains using parameters rankings to
effectively defend against poisoning attacks. Below is the
summary of our contributions compared to the naïve extension
of [36] to FL:
• Transform the continuous, local scores into discrete and

scale-free rankings (Section 4.2).
• Develop algorithms to aggregate local rankings to produce

global rankings (Section 4.3).
• Map global rankings back to local scores for further local

training (Section 4.2).

7.5 Ablation study
In this section, we perform an extensive ablation study to un-
derstand performances of FRL under various settings. Specif-
ically, we evaluate the performances of FRL while varying

Table 4: Comparing the performance of FRL and FedAvg in
cross-device FL setting using two non-iid data distribution
methods. We distribute data among 1000 clients with two
methods described briefly below; please check Section 7.5.1
for more details.

Dataset Type of Non-IID Metric Algorithm
FedAvg FRL

MNIST
LeNet
N=1000

Dirichlet
Distribution β = 1

Mean 98.8 98.8
STD 3.1 3.1
Min 75.0 75.0
Max 100 100

Randomly 2 classes
assigned to each client

Mean 98.4 98.3
STD 4.3 4.1
Min 70.0 80.0
Max 100 100

CIFAR10
Conv8
N=1000

Dirichlet
Distribution β = 1

Mean 85.4 85.3
STD 11.2 11.3
Min 33.3 33.3
Max 100 100

Randomly 2 classes
(assigned to each client)

Mean 70.6 70.9
STD 21.9 19.2
Min 0 10.0
Max 100 100

non-iid data distributions methods (Section 7.5.1), weight ini-
tialization algorithms (Section 7.5.2), sparsity (Section 7.5.3),
and size of supernetwork (Section 7.5.4).

7.5.1 FRL under different heterogeneous data distribu-
tion methods

So far, we evaluated all of our experiments when the data is
distributed non-iid using Dirichlet distribution with parameter
β = 1. In this method of non-iid data distribution, all clients
will get at least a few samples from each data class with
non-zero probabilities that Dirichlet distribution generates.
However, this non-iid data distribution need not represent
all the practical FL settings. In fact, there may exist non-iid
distributions that make training FL models more difficult.
Therefore in this section, we consider a more difficult setting
where the data distribution is more non-iid.
Assigning only two classes to each client: We experi-
ment with the more extreme non-iid distribution considered
by McMahan et al. [31]. More specifically, to distribute of
MNIST and CIFAR10 data among 1000 clients, we sort all
the (i.e., combined train and test) MNIST and CIFAR10 data
according to their classes and then we partition them into
2000 shards. Hence, each shards of training MNIST has 30
images and each CIFAR10 shard has 25 images of a single
class. Then we assign two random shards to each client re-
sulting in each client having data from at most two classes.
Therefore, in CIFAR10 experiments, each client has 50 train-
ing images, and 10 test images, and in MNIST experiments,
each client has 60 training images and 10 test images. We
only use this assignment in Section 7.5.1.

Table 4 shows the performances of FRL and FedAvg using
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different methods of non-iid assignment. We distribute the
data between 1000 clients using: (I) Dirichlet distribution
with β = 1 similar to [22, 37] and (II) the method described
above from [31]. In Table 4, we note that FRL achieves simi-
lar performances as FedAvg for different heterogeneous data
distribution methods. For instance, on CIFAR10, FedAvg and
FRL achieves similar performances of 85.4% and 85.3% re-
spectively when data is distributed according to (I). Similarly,
when data is distributed according to (II), FedAvg and FRL
achieve similar performances of 70.6% and 70.9%, respec-
tively.

We make similar observations for MNIST as well: FedAvg
achieves 98.8% and 98.4% for the two methods of data dis-
tribution respectively, while FRL achieves 98.8% and 98.3%
accuracy.

7.5.2 FRL under different weight initializations

Table 5: Comparing the performance of FRL with different
random weight initialization algorithms with the performance
of vanilla FedAvg for cross-device setting. Using Singed
Kaiming Constant (UK) as weight initialization gives the best
performance for all the datasets.

Dataset
Metric Algorithm

FedAvg FRL
Winit ∼ - XN NK UK

MNIST
LeNet
N=1000

Mean 98.8 96.6 98.7 98.8
STD 3.1 5.2 3.2 3.1
Min 75.0 57.1 75.0 75.0
Max 100 100 100 100

CIFAR10
Conv8
N=1000

Mean 85.4 63.6 82.0 85.3
STD 11.2 15.6 11.9 11.3
Min 33.3 0 0 33.3
Max 100 100 100 100

FEMNIST
LeNet
N=3400

Mean 85.8 69.2 82.9 84.2
STD 10.2 14.2 11.1 10.7
Min 10.0 0 14.3 7.1
Max 100 100 100 100

In FRL, the weight parameters are randomly initialized at the
start and remain fixed throughout the training. An appropriate
initialization is instrumental to the success of FRL, since the
FRL clients are sending the local rankings of these edges;
more important edges get higher ranks. They generate these
rankings by feeding the subnetwork of top rank edges and
calculating the gradient of the loss with respect to the scores,
so distribution of these random weights has a high impact
on the calculated loss. We use three different distribution for
initializing the weight parameters as follows:
Glorot Normal [20] where we denote by XN . Previous
work [46] used this initialization to demonstrate that sub-

networks of randomly weighted neural networks can achieve
impressive performance.
Kaiming Normal [21] where we denote by Nk defined as
NK = N

(
0,
√

2/nℓ−1

)
where N shows normal distribution.

nℓ shows the number of parameters in the ℓth layer.
Singed Kaiming Constant [35] where all the weights are
a constant σ but they are assigned {+,−} randomly. This
constant, σ, is the standard deviation of Kaiming Constant.
We show this initialization with UK as we are sampling from
{−σ,+σ} where σ =

(√
2/nℓ−1

)
.

Table 5 shows the results of running FRL for three datasets
under the three aforementioned initialization algorithms. We
compare FRL with FedAvg and report the mean, standard
deviation, minimum, and maximum of the accuracies for the
clients’ accuracies in FRL and FedAvg at the end of training.
As we can see under three different random initialization,
using Signed Kaiming Constant (UK) results in better perfor-
mance. We note from Table 5 that FRL with Signed Kaiming
Constant (UK) initialization achieves performance very close
to the performance of FedAVg.

Note that, since the FRL clients update scores in each round,
unlike initialization of weights, initialization of scores does
not have significant impact on the final global subnetwork
search. Therefore, we do not explore different randomized
initialization algorithms for scores and simply use Kaiming
Uniform initialization for scores.

Ramanujan et al. [35] also considered these three initial-
ization to find the best subnetwork in centralized machine
learning setting. They also showed that using Singed Kaim-
ing Constant gives the best supermasks. Our results align with
their conclusions, hence we use Singed Kaiming Constant to
initialize the weights and Kaiming Uniform to initialize the
scores of the global supernetwork.

7.5.3 FRL with varying sizes of subnetworks

In FRL, each client uses Edge-popup (Algorithm 1) and their
local data to find a local ranking by finding a subnetwork
within a randomly initialized global network, which we call
supernetwork. Edge-popup algorithm uses parameter k which
represents the % of all the edges in a supernetwork which will
remain in the final subnetwork. For instance, k = 50% denotes
that each client finds a subnetwork within a supernetwork that
has half the number of edges as in the supernetwork.

Figure 5 illustrates how the performance of FRL varies
with the sizes of local subnetworks that the clients share with
the server. In other words, when we vary the sparsity k% of
edge popup algorithm during local subnetwork search k ∈
[10,20,30,40,50,60,70,80,90]%. Interestingly we note that,
FRL performs the worst when clients use all (k=100%) or
none (k=0%) of the edges. This is because, it is difficult to
find a subnetwork with small number of edges. While using
all of the edge essentially results in using a random neural
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(a) MNIST (b) CIFAR10 (c) FEMNIST

Figure 5: Comparing performance of FRL for different subnetwork sizes. k (x-axis) shows the % of weights that each client is
including in its subnetwork, test accuracy (y-axis) shows the mean of accuracies for all the clients on their test data. The chosen
clients in each round send all the ranks to the server. FRL with subnetworks of ∈ [40%,70%] result in better performances.

network. As we can see FRL with k ∈ [40,70]%, gives the
best performances for all the three datasets. Hence, we set
k=50% by default in our experiments.

7.5.4 FRL with larger networks

We already discussed the performance of the FRL for MNIST,
CIFAR10, and FEMNIST datasets using moderately large
neural networks with number of parameters ranging from
1.62M to 5.27M. In this section, we conduct experiments to
demonstrate the effectiveness of FRL for very large networks:
ResNet18 and ResNet34, with number of parameters 11.11M
and 21.26M, respectively. Along with CIFAR10, we conduct
experiments using a larger and significantly more challeng-
ing Tiny-ImageNet dataset. Table 7 shows the network ar-
chitectures we use for these experiments. We have a batch
normalization layer in these networks after each convolution
layer. Following the setting of [14, 35, 43], we set the batch
normalization to the non-affine mode, i.e., the scale and bias
terms are set to γ = 1 and β = 0. We use the hyperparameters
described in Section B.1 for all the models.
Tiny-ImageNet Table 6 shows the performance of FRL and
FedAvg on Tiny-ImageNet for different network sizes, where
ResNet18 and ResNet34 have 11.26 and 21.36 millions pa-
rameters respectively. From this table, we can see that FRL
can achieve similar accuracy as FedAvg; for example, by
using ResNet18, FRL achieves 31.0% test accuracy while
FedAvg achieves 30.8% test accuracy.

Table 6: FRL with larger networks for CIFAR10 and Tiny-
ImageNet distributed over 1000 FL clients.

Dataset Network # of Params FRL Acc (%) FedAvg Acc (%)

CIFAR10
N = 1000

Conv8 5.27M 85.3 85.4
ResNet18 11.11M 89.3 89.9
ResNet34 21.26M 90.2 91.4

Tiny-ImageNet
N = 1000

ResNet18 11.26M 31.0 30.8
ResNet34 21.36M 30.9 30.8

CIFAR10. In Table 6, we show the final test accuracy of dif-
ferent models, Conv8 with 5.27M parameters, ResNet18 with
11.11M parameters, and ResNet34 with 21.26M parameters.
We can see that FRL can achieve similar test accuracies as
FedAvg for different model sizes. For example, For ResNet18,
FRL achieves 89.3% test accuracy while FedAvg achieves
89.9% test accuracy.

8 Conclusions

We designed a novel collaborative learning algorithm, called
Federated Rank Learning (FRL), to address the issues of
robustness to poisoning and communication efficiency in ex-
isting FL algorithms. We argue that a core reason for the sus-
ceptibility of existing FL algorithms to poisoning is the large
continuous space of values in their model updates. Hence, in
FRL, we use ranks of edges of a randomly initialized neural
network contributed by collaborating clients to find a global
ranking and then use a subnetwork based only on the top
edges. Use of rankings in a fixed range restricts the space
available to poisoning adversaries to craft malicious updates,
and also allows FRL to reduce the communication cost. We
show, both theoretically and empirically, that ranking based
collaborative learning can effectively mitigate the robustness
issue as well as reduce the communication costs involved.
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A Theoretical analysis of FRL’s robustness

In this section, we detail the proof of robustness of FRL. In
other words, we prove an upper bound on the failure probabil-
ity of robustness of FRL, i.e., the probability that a good edge
will be removed from the final subnetwork when malicious
clients mount the worst case attack. Following SignSGD [7],
for this proof, we assume a simpler VOTE(.) function where
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if more than half of the clients add an edge ei to their subnet-
works, then FRL server adds it to the final global subnetwork.
We also assume that the malicious clients do not collude.

Assume that edge ei is a good edge, i.e., having ei in the
final subnetwork improves the performance of the final sub-
network. Let Z be the random variable that represents the
number of clients who vote for the edge ei to be in the final
subnetwork, i.e., the number of clients whose local subnet-
work of size k% of the entire supernetwork (Algorithm 2 line
11) contains ei. Therefore, Z ∈ [0,n] where n is the number of
clients being processed in a given FRL round.

Let G and B be the random variable that represent the
number of benign and malicious clients that vote for edge ei,
respectively; the malicious clients inadvertently exclude the
good edge ei in their local subnetwork based on their benign
training data.

There are total of αn malicious clients, where α is the
fraction of malicious clients that B of them decides that ei
is a bad edge and should not be removed. Each of the ma-
licious clients computes the subnetwork on its own benign
training data, so B of them do not conclude that ei is a good
edge. Hence, Z = G + B. We can say that G and B have
binomial distribution , i.e., G ∼ binomial([(1−α)n, p] and
B ∼ binomial([αn,1− p] where p is the probability that a
benign client has this edge in their local subnetwork and α is
the fraction of malicious clients. Note that the probability that
our voting in simplified FRL fails is P[failure] = P[Z <= n

2 ],
i.e., when more than half of the clients vote against ei, i.e.,
they do not include ei in their local subnetworks. We can find
the mean and variance of Z as follows:

E[Z] = (1−α)np+αn(1− p) (2)

Var[Z] = (1−α)np(1− p)+αnp(1− p) = np(1− p) (3)

[12] provides an inequality where for a random variable
X with mean µ and variance σ2 we have P[µ−X >= λ]<=

1
1+ λ2

σ2

. Using this inequality, we can write:

P[Z <=
n
2
] =P[E[Z]−Z >=E[Z]−n/2]<=

1

1+ (E[z]−n/2)2

var[Z]
(4)

because 1+ x2 >= 2x, we have:

P[Z <=
n
2
]<= 1/2

√
Var[Z]

(E[Z]−n/2)2 (5)

= 1/2

√
np(1− p)

(np−αnp+αn−αnp−n/2)2

= 1/2

√
np(1− p)

(n(p+α(1−2p)−1/2))2

What this means is that the probability that the simplified
VOTE(.) fails is upper bounded as in (5). We show the effect
of the different values of α and p in Figure 3. We can see from
Figure 3, if the benign clients can train better supermasks (bet-
ter chance that a good edge ended in their subnetwork), the
probability that the attackers succeed is lower (more robust-
ness). VOTE(.) in FRL (Section 4.3) is more sophisticated
and puts more constraints on the malicious clients, hence the
about upper bound also applies to FRL.

B Additional details on experimental setup

In this section, we provide the details of experimental setup
that are missing from Section 7.

B.1 Datasets and model architectures
We use four benchmark datasets widely used in prior works
on federated learning robustness:
MNIST is a 10-class class-balanced classification task with
70,000 gray-scale images, each of size 28 × 28. We exper-
iment with LeNet architecture given in Table 7. For local
training in each FRL/FL round, each client uses 2 epochs. For
training weights (experiments with FedAvg, SignSGD, TopK),
we use SGD optimizer with learning rate of 0.01, momentum
of 0.9, weight decay of 1e-4, and batch size 8. For training
ranks (experiments with FRL), we use SGD with learning rate
of 0.4, momentum 0.9, weight decay 1e-4, and batch size 8.
CIFAR10 [26] is a 10-class classification task with 60,000
RGB images (50,000 for training and 10,000 for testing), each
of size 32 × 32. We experiment with a VGG-like architecture
given in Table 7, which is identical to what [35] used. For local
training in each FRL/FL round, each client uses 5 epochs. For
training weights (experiments with FedAvg, SignSGD, TopK),
we use SGD with learning rate of 0.1, momentum of 0.9,
weight decay of 1e-4, and batch size of 8. For training ranks
(experiments with FRL), we optimize SGD with learning rate
of 0.4, momentum of 0.9, weight decay of 1e-4, and batch
size of 8.
FEMNIST [11, 15] is a character recognition classification
task with 3,400 clients, 62 classes (52 for upper and lower
case letters and 10 for digits), and 671,585 gray-scale images.
Each client has data of their own handwritten digits or letters.
We use LeNet architecture given in Table 7. For local training
in each FRL/FL round, each client uses 2 epochs. For training
weights (experiments with FedAvg, SignSGD, TopK), we use
SGD with learning rate of 0.15, momentum of 0.9, weight
decay of 1e-4, and batch size of 10. For training ranks (ex-
periments with FRL), we optimize SGD with learning rate of
0.2, momentum of 0.9, weight decay of 1e-4, and batch size
of 10.
Tiny-ImageNet [1] contains 100K, 10k, 10k training, valida-
tion and test images respectively for 200 classes downsized
to 64×64 colored images, so each class has 500 training, and
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Table 7: In our experiments, we use the following, state-of-
the-art model architectures from [14, 35, 43].

Architecture Layer Name Number of parameters

LeNet [43]
(MNIST and
FEMNIST)

Conv(32) 288
Conv(64) 18432
FC(128) 1605632

FC(10) or FC(62) 1280 or 7936

Conv8 [35]
(CIFAR10)

Conv(64), Conv(64) 38592
Conv(128), Conv(128) 221184
Conv(256), Conv(256) 884736
Conv(512), Conv(512) 3538944

FC(256), FC(256), FC(10) 592384

ResNet18 [43]
(CIFAR10 and
Tint-ImageNet)

Conv(64), [Conv(64), Conv(64)] × 2 149184
[Conv(128), Conv(128)] × 2 524288
[Conv(256), Conv(256)] × 2 2097152
[Conv(512), Conv(512)] × 2 8388608

Avg-Pool -
FC(10) or FC(200) 5120 or 102400

ResNet34 [43]
(CIFAR10 and
Tint-ImageNet)

Conv(64), [Conv(64), Conv(64)] × 3 222912
[Conv(128), Conv(128)] × 4 1114112
[Conv(256), Conv(256)] × 6 6815744
[Conv(512), Conv(512)] × 3 13107200

Avg-Pool -
FC(10) or FC(200) 5120 or 102400

50 validation and 50 test images. We distribute the training
data over 1000 clients in a non-iid fashion using Dirichlet dis-
tribution with parameter β = 1. We run FedAvg and FRL for
4000 global rounds, and in each round, the FL server selects
25 clients randomly. For local training weights (experiments
with FedAvg), we use SGD optimizer with a learning rate
of 0.01, momentum 0.9, weight decays of 1e-5, batch size 8,
and local epochs 2. For training ranks (experiment with FRL),
we use SGD with a learning rate of 0.8, momentum of 0.9,
weight decay of 1-e5, batch size 8, and local epochs 1. We
optimize the hyperparameters based on the validation data
and report the final accuracy on the test data.

B.2 Model architectures
Table 7 shows the state-of-the-art model architectures and
corresponding datasets that we use in our experiments. We
also show the number of parameters in each of their layers.

C FRL against targeted poisoning

So far, we evaluated the robustness of FRL against untargeted
attacks. In this section, we evaluate the robustness against
targeted poisoning, and specifically against backdoor poison-
ing attacks. We consider state-of-the-art backdoor attacks of
three types: semantic [4], artificial [44], and edge-case [42]
backdoor attacks. In this section, we first briefly discuss the
three backdoor attack types; next, we discuss our evaluation
setup, and finally, we present the experiment results at the
end.

C.1 Existing FL backdoor attacks
Backdoor attacks [39] aim to misclassify any input that con-
tains a specific signal called backdoor trigger, while correctly

(a) Semantic backdoor (b) Artificial backdoor (c) Edge-Case back-
door

Figure 6: Backdoor examples for different categories of tar-
geted poisoning attacks on CIFAR10.

classifying inputs not containing the trigger. Based on the
type of triggers, there are three kinds of backdoor attacks:
Semantic backdoor attacks [4] aim to misclassify a spe-
cific set of inputs that naturally contain a backdoor trigger.
Figure 6(a) shows inputs from CIFAR10 data with the back-
ground of black stripes on a yellow wall as the naturally
present, semantic trigger.
Artificial backdoor attacks [4, 44] aim to misclassify any
input containing a manually added trigger. Figure 6(b) shows
inputs with F shaped white pixels as the artificial trigger.
Edge-Case backdoor attacks [42] aim to misclassify inputs
that are from the tail of the training data distribution. Hence,
adversary can compute their model updates using mislabeled
edge-case data and manipulate the global model to learn the
incorrect correlation between data and labels. Figure 6(c)
shows edge-case inputs for CIFAR10 distribution which are
Southwest airplane images from Internet.

C.2 Evaluation setup
C.2.1 Training hyperparameters
We compare the performances of the FRL and FedAvg against
the above backdoor attacks. We evaluate the accuracy of the
(poisoned) global model on the main (inputs without trigger)
and backdoor (inputs with trigger) tasks. Following [4, 42],
for all the experiments, we start from a pre-trained model with
80.0% test accuracy and train it for 1,000 more FL rounds
when malicious clients are present. We use N = 1000 clients,
distribute CIFAR10 as in Section 7, and randomly select n =
25 clients in each round. We report the final test accuracy
and the average of backdoor test accuracies over the 1000 FL
rounds when percentages of malicious clients is in {1, 2, 5,
10}. We assume that each malicious client has some benign
data (per the distribution scheme from Section 7) and all the
backdoored data. We use the same hyperparameters discussed
in Section 7 for training CIFAR10 on Conv8 model.

C.2.2 Backdoor attack hyperparameters

Model Replacement in FL backdoor Attacks: FL backdoor
poisoning attacks use a strategy called model replacement
where the malicious client first finds a malicious update that
contains the backdoor, then it scales the model parameters
to cancel the contributions from the other honest clients. For
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example, if there are m malicious clients selected in FL round
t, each malicious client u calculates its backdoored update θt

u,
and re-scaled it to λθt

u where λ = m
n where n is the number of

selected clients in each FL round. Model replacement strategy
requires that the global model is close to convergence, so
the malicious clients can replace the global model with their
backdoored model, which performs well on the main task.
Following this strategy, the backdoor accuracy would be very
high in FedAvg, even if one of the malicious clients is chosen
in one round. However, in FRL, re-scaling is not possible as
the clients are sending their local rankings where each ranking
are a permutation of the indices of the edges in each layer,
i.e., of [0,nℓ−1]∀ℓ ∈ [L] where L is the number of layers and
nℓ is the number of parameters in ℓth layer. To have a fair
comparison with FedAvg, we did not use a model replacement
strategy for FedAvg too.
Semantic backdoors: We choose images with vertically
striped walls in the background (Figure 7 (a)) as the back-
doors. Of these 12 images with this trigger in the CIFAR10
dataset, we use 9 of them for training the backdoors while
keeping the other three for testing the backdoor accuracy. The
malicious clients want the global model to predict these im-
ages as the bird (class label=2). We measure the backdoor
accuracy on 1000 randomly rotated and cropped versions of
the three backdoor images held out of the adversary’s training.
Artificial backdoors: We add a particular pixel pattern to
the top left corner of the first nine (not bird) images of the
CIFAR10 dataset (Figure 7 (b)) and change their labels to
bird (label=2). To evaluate these attacks, we pick 256 random
(not bird) images from CIFAR10 and add this pattern to them
with the label of class bird.
Edge-Case backdoors: We collect 980 images from public
web by searching for Southwest airplanes (similar to what
[42] did) and resize the images to 32×32 (Figure 7 (c)). We
set their target labels as truck (class label=9). We use 784
of these images for training and keep 196 of them for the
evaluation of the backdoor.

C.3 Evaluation results
Semantic backdoor attacks: Figure 7 (a) shows the perfor-
mance of FedAvg and FRL on the main task and the backdoor
task when different percentages of malicious clients want
to put a semantic backdoor in the global model. This figure
shows that FRL is more robust against semantic backdoor
attacks for different percentages of malicious clients. For ex-
ample, with 2% of malicious clients, training FedAvg results
in 84.4% final test accuracy with 82.7% average backdoor
accuracy, while training FRL results in 84.1% and 49.2% ac-
curacy on the main task and backdoor task, respectively. The
existence of a more significant number of malicious clients
(e.g., 10%) results in higher backdoor accuracy for both Fe-
dAvg and FRL as the malicious clients have more influence
on the global model to introduce their backdoor; with exis-
tence of 10% of malicious clients, training FedAvg and FRL

achieves 95.7% and 91.2% average backdoor accuracy respec-
tively.

(a) Semantic backdoor results

(b) Edge-Case backdoor results

Figure 7: FL backdoor poisoning attacks on CIFAR10 dis-
tributed over 1000 clients with Dirichlet (β= 1.0) for presence
pf adversary in 1000 FL rounds.

Artificial backdoor attacks: These attacks are ineffective
when the adversary cannot use model replacement strategy
(i.e., cannot re-scale their parameters). In FRL, malicious
clients cannot scale their updates, as they submit a local rank-
ing (from a discrete space of updates). To be fair, we also
did not use re-scaling in our experiments for FedAvg. We did
not report the results for this attack, as the backdoor accuracy
would be 0% for both FRL and FedAvg with no parameter
re-scaling. It means that the global model always predict the
right label (not the adversary target label "bird") for the test
backdoor images.
Edge-Case backdoor attacks: Figure 7 (b) shows that FRL
is more robust against Edge-case backdoor attacks for dif-
ferent percentages of malicious clients. For example, with
2% of malicious clients, training FedAvg results in 83.7%
final test accuracy with 77.3% average backdoor accuracy,
while training FRL results in 84.0% and 64.6% accuracy on
the main task and backdoor task, respectively. Similar to se-
mantic backdoors, a larger number of malicious clients (e.g.,
10%) results in higher backdoor accuracy for both FedAvg
and FRL; with 10% of malicious clients, training FedAvg and
FRL achieves 94.0% and 90.3% average backdoor accuracy
respectively.
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