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Abstract

In software development, it is critical to detect vulnerabil-
ities in a project as early as possible. Although, deep learning
has shown promise in this task, current state-of-the-art methods
cannot classify and identify the line on which the vulnerability
occurs. Instead, the developer is tasked with searching for an
arbitrary bug in an entire function or even larger region of code.

In this paper, we propose VulChecker: a tool that can pre-
cisely locate vulnerabilities in source code (down to the exact
instruction) as well as classify their type (CWE). To accom-
plish this, we propose a new program representation, program
slicing strategy, and the use of a message-passing graph neural
network to utilize all of code’s semantics and improve the reach
between a vulnerability’s root cause and manifestation points.

We also propose a novel data augmentation strategy for
cheaply creating strong datasets for vulnerability detection in
the wild, using free synthetic samples available online. With
this training strategy, VulChecker was able to identify 24 CVEs
(10 from 2019 & 2020) in 19 projects taken from the wild, with
nearly zero false positives compared to a commercial tool that
could only detect 4. VulChecker also discovered an exploitable
zero-day vulnerability, which has been reported to developers
for responsible disclosure.

1 Introduction
Software vulnerabilities are typically introduced into

systems as a consequence of flawed security control designs
or developer error during the implementation of the software
specification. Such flaws and errors are unavoidable during
the design and implementation phases of the software life
cycle, particularly for large, complex, and interconnected
software systems, such as distributed systems. In 2020, there
were 18,352 vulnerabilities publicly reported in the Common
Vulnerabilities and Exposures (CVE) database [25], and the
total number of new vulnerabilities reported has been increas-
ing every year. In reality, many more vulnerabilities exist and
are being silently patched (e.g., [29]), exploited by malicious
actors (i.e., zero-days), or simply have yet to be discovered.

Detecting software vulnerabilities in the earliest stages
of the software life cycle is critically important, primarily
because vulnerabilities in deployed software can be exploited
by an attacker to achieve a variety of malicious ends (e.g.,
data theft, ransom, etc.). Additionally, the cost to patch
vulnerabilities at various points in the software life cycle
increases dramatically; the cost to patch a vulnerability
discovered in deployed software is exponentially higher than
the cost to patch the vulnerability during implementation. As
a result, detecting vulnerabilities in software source code has
been a highly active area of both academic and commercial
research and development for decades.

As such, static application security testing (SAST) tools
have become pervasive in the software development process
to help developers identify bugs and vulnerabilities in their
source code. SAST tools typically employ static software anal-
ysis techniques (e.g., taint analysis, data-flow analysis) and/or
libraries of vulnerability patterns, matching rules, etc., to scan
source code, identify potential bugs or vulnerabilities, and
report them for manual inspection. SAST reports are highly
precise, yielding alerts that identify specific lines of source
code as vulnerable to specific types of vulnerabilities, typically
categorized as common weakness enumerations (CWEs).
Many SAST tools are available to developers, including both
open source (e.g., Flawfinder [5], Infer [7], Clang [3]) and
commercial offerings (e.g., Fortify [2], Perforce QAC [6], and
Coverity [4]). SAST tools are typically employed during code
reviews as part of continuous integration and development
processes, or launched manually by developers.

Although SAST tools are powerful, they have several
disadvantages. First, they often report false positives (i.e.,
misidentify code as vulnerable). In most cases this is a
result of (1) limitations or incomplete rule/pattern matching
algorithms, and (2) vulnerabilities that exist in unreachable
code. Second, SAST tools struggle to detect complex and
contextual vulnerabilities, resulting in high false negative
rates (i.e., failing to identify vulnerable code). This is also a
limitation of rule/pattern matching algorithms. For example,
some program behaviors, such as integer overflows and
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underflows, are legitimate in some contexts (e.g., cryptogra-
phy) and vulnerable to exploitation in others (e.g., memory
allocation). Similarly, use-after-free vulnerabilities are highly
context sensitive, sometimes requiring long sequences of
(de)allocations over the program’s lifetime to manifest.

1.1 Recent Efforts
To overcome these limitations, researchers have recently

turned to deep learning. Specifically, prior work has ex-
plored applications of convolutional (CNN) [19, 28, 38],
recurrent (RNN) [20–23, 40], and graph neural networks
(GNN) [9, 11, 13, 14, 30, 32, 35, 39] to detect vulnerabilities
in source code. This is accomplished by representing the
software as an annotated graph (G) to encode its data-flow
(DFG), control-flow (CFG), and/or abstract syntax (AST).

While prior approaches have demonstrated good perfor-
mance, software developers are unlikely to adopt or use these
models in the same manner they currently use SAST tools.
This is because (1) these methods make predictions over entire
functions or code regions and/or (2) cannot classify the type of
vulnerability found. Using such a tool would require develop-
ers to search through hundreds of lines of code for a vulnerabil-
ity with no further information. This is even more problematic
with tools that do not classify the vulnerability [9,11,14,20–22,
30,35,38,39] since the developer has no indication of what they
are looking for or what remediation approach is required. This
issue is amplified in the presence of false positives, which are
common occurrence in existing machine learning techniques.

1.2 Insights
To develop a solution that can be readily used by developers

in a comparable manner as existing SAST tools, we first
identify the issues with current approaches and their causes:

Broad Program Slicing. To localize a vulnerability, the cur-
rent approach is to take a subgraph Gi from G as an obser-
vation for making a prediction. Gi is either an entire func-
tion [9,11,28,30,32,35,39] or a contiguous region extracted
from G with a point of interest (PoI) at the center (a.k.a., a
program slice) [13, 14, 19, 20, 22, 23, 38, 40]. As a result, a
prediction made on Gi can relate to hundreds of lines of code.
It also makes it harder for the optimizer since Gi may contain
a number of potential root cause and manifestation points.
Insight 1: To increase the precision of a prediction, the
observation must relate directly to the location of the vul-
nerability.

Incomplete Code Representations. To convert Gi into a for-
mat that machine learning can understand, symbols derived
from the AST and/or functions are either compressed [20–
23, 28, 40] or embedded using methods like Word2Vec [9,
11,19,30,32,35,39] as a preprocessing step. This method of
representing software is compatible with machine learning
techniques, but is suboptimal because it prevents the learner
from directly reasoning about instruction and dependency

semantics. Moreover, information from the AST is either (1)
omitted, (2) included in manner that inhibits graph-based
learning [9,11,30], or (3) is included incorrectly in a manner
that harms code semantics and model efficiency [32, 39].
Insight 2: To enable effective graph-based learning in this
task, a new code representation that properly incorporates
the flow of AST information is required. Furthermore, in-
struction level semantics should be explicitly provided in G
to enable efficient and effective learning.

Manifestation Distance. The manifestation of a vulnerabil-
ity can occur hundreds of lines after its root cause. Current
GNN approaches use models that can only propagate a
node’s information one or two steps away. As a result, these
GNN models cannot infer whether a potential root cause
directly influences a potential manifestation point. Instead,
these models are limited to identifying local patterns around
either point (e.g., a missing guard branch prior to a memcpy
is enough to raise an alarm).
Insight 3: To increase the model’s ability to identify
vulnerabilities, the model must be able to identify causality
across the entirety of Gi.

The Lack of Labeled Data. Deep learning requires thou-
sands of samples for training. However, since it is hard and
expensive to label vulnerabilities in real code at the instruc-
tion or even line level, large fine-grained datasets do not
exist. Therefore, current work must either: (1) use synthetic
datasets (e.g., NIST SARD [26]), which do not generalize
to large projects or real world code, or (2) use datasets that
only label code regions (program slices) or entire functions.
Insight 4: To enable cost effective high precision detection
in source code, there is a need to develop data augmentation
techniques to efficiently expand existing datasets.

Level of Program Representation. Source-level program-
ming languages are designed for programmer ease and
flexibility, and as such can capture several inter-related
and high level operations in a single line of source code.
Such rich instruction semantics are in stark contrast to
the characteristics of software vulnerabilities, which
are typically associated with atomic and machine-level
instruction semantics (e.g., out-of-bounds buffer accesses,
integer overflows). Most prior work extracts G from the
source code without lowering or compiling it. As a result,
these models are challenged with identifying low-level
vulnerabilities from abstract program representations.
Insight 5: To improve the model’s ability to reason
about vulnerabilities that have atomic machine-level
characteristics, G should capture instruction semantics at
lower levels rather than at source code.

1.3 The Proposed Solution
In this paper we propose VulChecker: a deep learning

framework for detecting the precise manifestation point
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of software vulnerabilities in source code. To accomplish
this, VulChecker first passes the program’s source code
through a custom LLVM compiler toolchain to generate a
GNN-optimized program representation, which we refer to
as an enriched program dependency graph (ePDG).

ePDGs are graph structures in which nodes represent atomic
machine-level instructions and edges represent control- and
data-flow dependencies between instructions. ePDGs are
well-conditioned for graph-based machine learning models
since they more accurately capture the flow of the software.

To localize a given vulnerability, VulChecker searches the
ePDG for potential vulnerability manifestation points, such as
calls to a free() function for double free vulnerabilities (i.e.,
CWE-415). VulChecker then cuts a subgraph Gi backwards
from that point. By having every subgraph terminate at a
potential manifestation point, the model obtains a stable and
consistent view. This enables the model to flow information
about any potential root causes in Gi down to the singular
manifestation point in question. During deployment, when
a subgraph is predicted to be vulnerable with respect to a
specific CWE, VulChecker alerts the developer to the exact
location (line and instruction) of the manifestation point in
source code and indicates the CWE type.

In order to give the model the ability to reason about
causality, we chose a different GNN than previous approaches.
In particular, we develop a model based on a message passing
GNN called Structure2Vec (S2V) [15]. With this model, we
are able to efficiently pass information over hundreds of hops
from one side of Gi to the other. Furthermore, by using S2V we
are able to supply edge features (e.g., data type for data-flow
dependencies) as well as consider a node’s features at every
propagation iteration.

Finally, to mitigate the issue of obtaining fine-grained la-
beled datasets, we propose a data augmentation technique. The
approach is to generate positive samples by injecting synthetic
traces into projects taken from the wild. The approach is cheap
because the synthetic traces are taken from open sourced la-
beled datasets like the Juliet C/C++ Test Suite [26] and G is ma-
nipulated directly to avoid compilation issues. The approach is
effective because we inject root causes at random distance away
from the manifestation point. This improves generalization by
forcing the model to search deeper into Gi over real code.

We evaluated VulChecker on five distinct CWEs: integer
overflow (CWE-190), stack overflow (CWE-121), heap over-
flow (CWE-122), double free (CWE-415), and use-after-free
(CWE-416). We chose these CWEs because they are some of
the most prevalent and exploitable types of memory corruption
plaguing development in popular languages like C/C++. These
CWEs cover both spatial and temporal memory safety issues,
testing the flexibility of our approach. They are also featured
in MITRE’s 2021 list of the 25 most dangerous CWEs.1 When
trained on only augmented data, VulChecker was able to detect

1cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

24 vulnerabilities (reported CVEs) in the 19 C++ projects we
evaluated. This was significantly more than the baseline SAST
tools, where even the commercial tool only detected 4 of the
CVEs. We also had a vulnerability analyst review the top 100
results from a model trained on both augmented and CVE data.
The analyst found that VulChecker has hit rate (precision) of 50-
80% on the top 50 results. VulChecker was also able to detect a
previously unknown vulnerability (zero-day), which has been
reported to the developers for responsible disclosure. Overall,
we found VulChecker to be a practical tool for developers be-
cause: (1) it is able to operate on large projects (such as libgit2
with over 300 files, 110k lines of code, and 18 million instruc-
tions), and (2) it has a comparatively low false positive rate.

1.4 Contributions
Overall the main contributions of this work are as follows:

• To the best of our knowledge, VulChecker is the first deep
learning framework that can both detect vulnerabilities in
source code with instruction and line-level precision and clas-
sify the type of CWE. This makes VulChecker the first practi-
cal deep learning-based SAST tool for developers, enabling
them to quickly identify and remediate vulnerabilities in
their code in the same manner as traditional SAST tools. Im-
proving upon prior techniques, developers using VulChecker
do not need to search hundreds of lines to find vulnerable
code and/or determine what type of vulnerability is present.

• We introduce the use of message passing neural networks
for the task of vulnerability detection to learn and identify
the relationship (causality) between a vulnerability’s root
cause and manifestation point in a PDG. Using this model,
we are also able to explicitly assign features to edges in our
ePDG, such as data type in the DFG component.

• We propose the ePDG, a novel graph-based machine-
learning optimized program representation that avoids the
inefficiencies and drawbacks of others in prior work.

• We present a novel data augmentation approach that helps
mitigate the lack of fine-grained datasets for GNN-based
source code vulnerability detection, while still generalizing
to real world software projects taken from the wild. The
approach is simple and easy to implement, making it a
practical way to boost the performance of future models in
this research domain.

The source code, models, and datasets presented in this
paper are available online.2 A demo of VulChecker working
as a plugin for Visual Studio Code is also available online.3

2 Related Works
In this section, we review the last three years of related work

on deep learning techniques for detecting vulnerabilities in
2https://github.com/ymirsky/VulChecker
3https://tinyurl.com/mucpt67x
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Table 1: Summary of related works in comparison with VulChecker
(1) Code Representation (2) Sample Selection (3) Feature Extraction (4) Model induction (5) Application
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2018 [28] Russle’18 • • • • • • CNN,RF • •
2018 [23] Vuldeepecker • • • • • • • BiLSTM • •
2019 [40] µVulDeePecker • • • • • • • BiLSTM • •
2019 [39] Devign • • • • • • GCN,DNN • •
2019 [14] VGDetector • • • • • • GCN,DNN •
2019 [31] NW-LCS • • • • • • LCS Scores • •
2020 [19] Li’20 • • • • • • • CNN • •
2020 [38] Zagane’20 • • • • • ◦ • DNN •
2020 [32] Funded • • • • • • GNN,GRU • • •
2020 [30] AI4VA • • • • • • • GNN,GRU • •
2021 [22] SySeVR • • • • • • • BiRNN •
2021 [20] Li’21 • • • • • • • CNN+RNN,DNN •
2021 [21] Vuldeelocator • • • • • • • BiRNN •
2021 [13] DeepWukong • • • • • • • GCN,DNN • •
2021 [35] Wu’21 • • • • • • GNN,DNN • •
2021 [9] BGNN4VD • • • • • • • GNN,GRU • •
2021 [11] Reveal • • • • • • • GCN,DNN • •

VulChecker • • • • • ◦ • • • GN (S2V) • • • •

source code and contrast them to VulChecker’s model, program
representation, and application (summarized in Table 1).

2.1 Model
Early work in this area focused on CNNs and RNNs on linear

(sequential) representations of the software’s data-flow graphs
[19,23,28,38,40]. However, a linear representation omits soft-
ware structure, which prevents the model from learning and uti-
lizing various contexts and semantics in its pattern recognition.
These linear reductions also make it hard for the model to per-
form well on code from the wild where a vulnerability can man-
ifest after hundreds of lines of noisy and complex code [11].

To overcome these issues, later work [14,39] [9,11,13,30,32,
35] used graph-based neural networks to consider the code’s
structural semantics. They utilize a graph convolutional neural
network (GCN) that propagates information to neighboring
nodes to learn embeddings for each node, which are then aver-
aged or summed prior to use in classification. However, GCNs
do not recall (i.e., propagate) a node’s original feature vector at
each iteration and struggle to learn long-distance relationships
across the input structure. To remedy this, subsequent work
[9,30,32] used gated graph recurrent neural networks (GRNN)
that leveraged a recurrent layer to recall information passed to
neighboring nodes at previous iterations. However, in these net-
works the number of layers dictated the number of propagation
iterations,which was only one or two [13]. VulChecker’s model
is based on Structure2Vec (S2V) [15], a message-passing neu-
ral network that can perform hundreds of iterations without
needing additional layers. Consequently, VulChecker is better
suited for vulnerability detection because it can identify con-
nections between distant root cause and manifestation points.

2.2 Program Representation
Prior work used a variety of graph-based program repre-

sentations (depicted in Figure 1), the simplest of which are

control-flow graphs (CFG), data-flow graphs (DFG), and
combined CFG/DFGs called program dependency graphs
(PDG). These representations can be readily generated from
source code (e.g., with tools like Joern [37]), but do not capture
instruction semantics explicitly.

More advanced representations include code property
graphs (CPG) [37] and natural code sequence CPGs (ncsCPG)
such as in [39]. CPGs merge the source code’s PDG and AST
by attaching each source line’s AST subtree under the corre-
sponding node in the PDG. This indirectly captures instruction
semantics along with control- and data-flow dependencies in
a single structure. However, such representations are not well
structured for GNN learning models since information from
the AST cannot flow across the graph. Finally, an ncsCPG
is a CPG in which the leaf nodes in each AST subtree are
superficially linked to leaf nodes in the preceding or successive
trees, as visualized with orange edges in Figure 1 [32, 39].
This enables information to flow from the AST during GNN
learning, however it is suboptimal because semantically
unrelated source code lines become linked, even if they share
no data or control dependencies.

Finally, systems that use sequential models (i.e., CNNs and
RNNs) represent code as a sequence extracted or flattened
from one of the graphical forms above [19–23, 28, 38, 40].
While appropriate for the model type being used, these
representations fail to leverage the inherently graph-like
structure and operation of software.

Regardless of the program representation used,prior work re-
lies on feature extraction to compress and express the contents
of each token or node in G. Examples include one hot encod-
ings and pre-processed embeddings (e.g., Word2Vec [24]) to
capture the meaning of different symbols and calls (e.g., int,
=, for, free(), etc.) In some cases entire portions of code are
summarized using Doc2Vec [18]. The issue with these repre-
sentations are that (1) nodes in Gi would likely capture multiple
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1 short concat(char *a, char *b, char **out) {
2   short al = strlen(a);
3   short bl = strlen(b);
4   *out = (char *) malloc(al+bl);
5   if (al)
6     memcpy(*out, a, al);
7   if (bl)
8     memcpy(*out+al,b,bl);
9   return al + bl;
  }

1 2 3 4 5 6 7

short
ReturnType

char *a
Parameter

char *
ParameterType

a
Identifier

char *b
Parameter

char *
ParameterType

b
Identifier

8 9

...

AST
NCS
CFG
DFG

Figure 1: A comparison of different code representations.
Most prior systems rely on CFG (green) and DFG (purple)
edges alone, while more recent work includes ASTs (black) to
capture the code better. However these trees are not conducive
to graph-based learning due to their terminal leaf nodes. This
is mitigated by connecting leaves with natural code sequence
(NCS) edges (orange) [32, 39], but this results in arbitrary
paths w.r.t. the data and control dependency edges.

operations in a single line of source code resulting in a loss in se-
mantic precision and (2) the use of pre-processed embeddings
prevents the model from learning the best representation to opti-
mize the learning objective (i.e., classifying vulnerabilities). In
contrast, our proposed ePDG explicitly defines node and edge
features that encode relevant information (e.g., operations)
while avoiding superficial features (e.g., variable names).

2.3 Application
Some recent works have proposed detecting vulnerabilities

at the binary level. For example, in [36] the authors propose
Gemini, a deep learning model which uses Structure2Vec
and a Siamese network to measure the similarity of a given
function’s CFG to that of a vulnerable one at the binary level.
Other approaches such as DeepBinDiff [17], ASM2Vec [16],
and Bin2Vec [8] all follow similar approaches for vulnerability
detection where a repository of compiled vulnerable code
snippets are checked against the binary in question. However,
these approaches are limited since (1) the models search
for instances of vulnerabilities (e.g., heartbleed) and not the
general pattern (CWE), (2) they require binary disassembly,
a process that is undecidable in the general case, and as such
may miss bugs in code the disassembler fails to recover, and
(3) the vulnerabilities identified using these methods indicate
code regions and not specific lines.

Regarding vulnerability detection in source code, the
related works listed in Table 1 cannot directly identify the
line of a vulnerability because their representations of Gi
do not anchor a specific code line. Instead, they cut graphs

to include an entire function [9, 11, 28, 30–32, 35, 39] or
the code surrounding a potential root cause point for any
vulnerability [13,14,19,20,22,23,38,40], which leads to very
broad predictions over entire functions or larger code regions.

One exception is VulDeeLocator [21], a work developed in
parallel to VulChecker. In this work the authors first find PoIs
in the source code through the program’s AST and mark all
library/API function calls, array definitions, pointer definitions
and arithmetic expressions. Each marked PoI is then traced
down to a lower level code representation (LLVM IR).4 Then,
a forward and backward program slice is taken around the PoI
and the slice is flattened into a sequence of 900 tokens (e.g.,
call, void, @, FUN1, ’(’, ...). Next, each token in the sequence
is embedded into a vector using Word2Vec and the sequence
of vectors is passed to a bidirectional recurrent neural network
(biRNN) which predicts which line is vulnerable.

However, similar to prior work [9,11,14,20,22,30,35,38,39],
VulDeeLocator cannot indicate the vulnerability being de-
tected. This leaves the developer to guess the vulnerability out
of hundreds of CWEs. Moreover, selecting PoIs from ASTs is
not suitable for spatial and temporal memory safety violations.
In contrast our ePDG representation based on IR is closer to
machine code and resolves ambiguities regarding data types,
temporary variables, and storage locations. Furthermore,
like other works, VulDeeLocator remove loops and flatten
code into a sequence into a finite number of tokens which
reducing the code’s semantics and patterns. Finally, many
source code based systems like VulDeeLocator tailored to
specific languages. However, VulChecker performs analysis
at the IR level, making it somewhat language agnostic.
Although we only evaluate on C and C++ projects in this paper,
VulChecker has the potential to work on other languages such
as Objective-C, Fortran, and Rust since LLVM can lower them
as well. Further research is need to verify compatibility.

In summary, in contrast to the current state-of-the-art,
VulChecker (1) can locate vulnerabilities at both line and
instruction level, (2) can classify the type of vulnerability,
(3) can better associate root cause and manifestation points
by reaching deeper into program slices using a message
passing GNN, and (4) may be generalized to a wider array of
programming languages.

3 VulChecker
This section presents details on how the VulChecker

framework functions. We start with an overview of the pipeline
phases and important notation and then elaborate on each step.
Overview. For each CWE (i.e., class of vulnerability),
VulChecker trains a separate model and uses a different
sampling strategy to extract observations (i.e., potential
manifestation points). Each of VulChecker’s CWE pipelines
follow the same four steps: (1) ePDG generation, (2) sampling,
(3) feature extraction, and (4) model training or execution.

4https://llvm.org/
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S2V DNN

Potential manifestation point

S2V DNN
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𝐺

(1) ePDG Generation

𝐺𝑖

𝐺𝑗

𝐺𝑖
′

𝐺𝑗
′

𝑦𝑖

𝑦𝑗

(2) Sampling (3) Feature Extraction (4) Model Train/Execution

𝑆

𝑚𝑖

𝑚𝑗

char* ptr = (char*)malloc (SIZE);

if (err) {
abrt = 1;
log(ptr);
free(ptr);

}
…
if (abrt) {

printf(ptr);
}

(5) Annotation

Figure 2: A diagram showing the steps of VulChecker’s pipeline for one CWE. Note that the real graphs are significantly larger
than what is visualized (e.g., projects like libgit2-v0.26.1 have over 18 million nodes in G). Solid edges represent control-flow
and dashed edges are data dependencies.

Figure 2 provides a visual summary of these steps.

1. ePDG Generation: Given a target program’s source code
(denoted by S), we first compile it to LLVM IR (interme-
diate representation) and apply several optimizations. Next,
we use a custom LLVM plugin specific to the CWE type
of interest to analyze the IR, tag potential root cause and
manifestation points, and produce an ePDG of S denoted
by G. This process is detailed in Section 3.1.

2. Sampling: Next, we scan G to locate potential manifes-
tation points for the given CWE (Section 3.2) that were
tagged during ePDG generation. A manifestation point
is any node m (instruction) in G that is known to manifest
that CWE (e.g., stack memory writes for stack overflow).
For the i-th manifestation point in G, we cut a subgraph
Gi backwards from that point up to a given depth. Gi
represents an observation upon which VulChecker predicts
whether or not a vulnerability exists.

3. Feature Extraction: Using the same structure of Gi, we
create an annotated graph G

′
i where each node contains a

feature vector that explicitly captures the respective instruc-
tion in Gi. Similarly, we add explicit features to the edges
of G

′
i. Consequently, G

′
i captures the code leading up to

the i-th manifestation point in a manner that a graph-based
machine learning model can understand (Section 3.3).

4. Model Training/Execution: VulChecker predicts whether
the i-th manifestation point is vulnerable or not by passing
G

′
i through a S2V model M (Section 3.4). The S2V model

is a binary classifier trained on a specific CWE. To train M,
we use many negative samples of S, where each sample has
been augmented with many positive synthetic examples
(Section 4).

5. Annotation If M predicts G
′
i as positive, then the debug

symbols passed down from S to the i-th manifestation point
in the ePDG are used to report line number and instruction
to the developer.

3.1 ePDG Generation
The creation of an ePDG consists of two steps: (1) lowering

the source code S to LLVM IR and (2) extracting G based on
the structure and flows it contains.

3.1.1 Lowering Code to LLVM IR

The first step in ePDG generation is compiling the source
code S to LLVM IR, which provides a machine-level repre-
sentation of the target program. This process greatly simplifies
the program representation with respect to control-flow (e.g.,
complicated branching constructs in source code are reduced
to conditional jumps that test a single condition), data-flow
(e.g., definition-use chains are shorter and less complex as
they are based on virtual register values rather than source
code variables), and program semantics (IR instructions are
atomic and directly translatable to instruction set architecture
opcodes). To perform the initial lowering of source code,
VulChecker uses LLVM’s C/C++ frontend, Clang (v11.0.0).
During lowering, VulChecker instructs Clang to embed
debug information in the IR, which enables traceability of
IR instructions back to source code instructions. If S contains
labels, then they are propagated to the LLVM IR using
LLVM-provided debug information. These labels are later
passed down to ePDG nodes at a later stage.

In addition to simplifying the program representation,
VulChecker also uses semantic-preserving compiler opti-
mizations provided by LLVM to simplify and better express
the code in G. Specifically, it applies: (1) function inlining
to replace function call sites in the IR with a concrete copy
of the called function body, (2) indirect branch expansion to
eliminate indirect branching constructs, and (3) dead code
elimination to reduce the size of the output graph. All together,
these optimizations ensure that VulChecker can efficiently
analyze our ePDGs interprocedurally in the domain of the orig-
inal program, as the ePDGs contain fully-precise control- and
data-flow information in a minimally sized, connected graph.
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3.1.2 Generating the ePDG
With the simplified version of S in LLVM IR form, the

next objective is to generate an ePDG, G, that captures the
target’s control-flow, data-flow, and instruction semantics with
minimal loss. Concretely, G is a multigraph defined as:

G :=(V ,E ,q,r) (1)
where V is a set of nodes (instructions), E is a set of edges
(flows), and both q and r are mappings of nodes and edges to
classes and attributes. More formally, let q be a mapping of
nodes in V to a class of instruction, defined as

q :V →{{c,a} :c∈C,a∈Ac} (2)
where C is the set of all types of instructions in the LLVM
instruction API (e.g., return, add, allocate, etc.) and Ac is
the set of all possible attributes for instruction v∈V of type
c. Examples include static values in arithmetic operations,
function names for call instructions, and root cause and
manifestation tags. Let r be a mapping of edges in E to a pair
of nodes defined as:

r :E →{{(x,y),d,b} :x,y∈V ,d∈D,b∈Ad} (3)
where D is the set of edge types (i.e., control-flow or data-flow)
and Ad is the set of flow attributes for a flow type d (e.g., the
data type of the data dependency).

To generate G according to this definition, VulChecker
uses a custom plugin for LLVM’s middle-end optimizer, Opt
(v11.0.0). This plugin first invokes LLVM’s built-in control-
and data-flow analyses, and then performs an instruction-by-
instruction scan of the target code. For each instruction I j,
VulChecker creates a corresponding node v j ∈V and mapping
q j ∈q : v j. Next, VulChecker uses LLVM’s API to extract se-
mantic information about I j to populate the entry {c j,a j} of q j
(e.g., operation, if the instruction is a conditional branch, etc.).
In addition to semantic information obtained directly from
LLVM’s API, these attributes also include debug information
(e.g., source file and line number), tags indicating potential
root cause and manifestation points, and labels indicating
actual root cause and manifestation points for model training.

Next, VulChecker performs a second instruction-by-
instruction pass to generate control- and data-flow edges in
G. This is determined using LLVM’s API for identifying an
instruction’s predecessors/successors and values defined/used.
For each of a given instruction’s predecessors and successors, a
corresponding edge e j,k ∈E is generated with the appropriate
type and attributes. Control-flow edges are assigned a void
data type, and data-flow edges are assigned a data type
corresponding to the value definition in the origin node (I j).
After both passes over the IR instructions derived from S
finish, the ePDG generation is complete. VulChecker outputs
G in JSON format for the next step: sampling.

3.2 Sampling
Now that S is lowered into G, VulChecker can extract

observations from G for the machine learning process. First,
we identify the points of interest (PoI) in G, which are all

potential manifestation points for a given CWE (denoted
mi ∈E). VulChecker then cuts the subgraph Gi from G such
that mi is anchored in Gi as the termination node.

3.2.1 PoI Criteria
To extract samples from G, we first identify the nodes in E

where the given CWE can manifest itself. We identify a PoI, mi,
using a lookup list of potential manifestation IR instructions.
This list is curated based on our domain expertise and related
work. Specifically, for integer overflow (CWE-190), a PoI is
any call to a function that passes integer arguments.5 While we
acknowledge that this is a heuristic, it is well validated in prior
work [33] to be an accurate criteria for distinguishing intended
and unintended overflows. This is the only heuristic we use
in our system. For stack and heap overflow (CWE-121,122),
the PoIs are any store instructions to local or dynamically
allocated memory, respectively. For use-after-free (CWE-416),
PoIs are any memory accesses to dynamically allocated
memory and for double free (CWE-415), any calls to the
memory manager’s free function. Aside from CWE-190,
these criteria are conservative, ensuring that all true positive
manifestation points will have a corresponding PoI (mi) in G.

For double free, notice how our design assumes that we
already know which function in the program performs freeing.
In practice, this information can be provided by a developer;
our system’s intended end-user.

3.2.2 Program Slicing
For each potential manifestation point mi identified in E ,

VulChecker crawls G backwards from mi using breadth first
search (BFS), up to a predefined depth ndepth, where ndepth is
a user defined parameter of VulChecker.

The resulting subgraph Gi efficiently and effectively
captures any guarding branches and root causes that may result
in a positive or negative manifestation of mi. This is because
the BFS is performed over both control-flow and data-flow
edges, indiscriminately. Consequently, instructions that may
be far apart in terms of control-flow (i.e., intermediate basic
blocks) can be closely linked by data-flow, which is useful for
bug classes like use-after-free.

Finally, since mi is the termination node of Gi, the man-
ifestation point in question is anchored to a static location,
benefiting effective message passing and localization of the
prediction—by obtaining the node’s metadata q(mi).

3.2.3 Labeling
For each Gi extracted from G, we associate a label

y = {negative, positive} based on the ground-truth for the
terminating manifestation point mi in Gi. Positive labels
(vulnerable) are assigned to lines in the source code (for
convenience) and then mapped down to IR using debug
symbols. If a line of source code contains more than one
potential manifestation point, we apply the label to the last

5Example: int x = y * 5; return foo(x);
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relevant IR instruction in the statement.6 Conversely, any mi
not labeled as vulnerable receives a negative label in G.

When labeling code projects taken from the wild, it is not
possible to have the complete ground truth for all the vulner-
abilities (exploitable mi) contained in the code because there
might be zero-day bugs. In practice, this means that our training
labels may contain some false negatives. However, we observe
good performance from our system in practice, which leads us
to believe false negatives are rare and of minor consequence.
We also note that correctly labeled negative samples will sig-
nificantly outweigh7 mislabeled zero-day bugs in the training
set, and deep neural networks are robust to noisy labels [27].

Finally, we clarify that VulChecker obtains its positive
samples from synthetic datasets. Therefore, labeling of
vulnerabilities in projects from the wild is only necessary to
evaluate VulChecker (good performance can be obtained from
augmented datasets described in section 4).

3.3 Feature Extraction
For each Gi extracted from G, we make a machine learning

observation G
′
i, which has the same graph structure as Gi. The

nodes and edges of G
′
i are assigned feature vectors that express

the respective instructions and flows. Table 2 summarizes the
feature vectors, where ‘count’ is the number of features. There
are a total of 1352 node features and 8 edge features. A node’s
feature vector captures the respective instruction using opera-
tional, structural, and semantic features. Edge features capture
information regarding connectivity (control and data flows).
Operational Node Features. To capture the operation per-
formed at a node (instruction), we extract features such as the
static value, the operation type, the basic function, and whether
or not the instruction is part of an if clause. The static values
are important for recognizing guard checks implemented by
the developer to gracefully prevent our target vulnerability
classes. Knowing whether an instruction is part of an if clause
is also a helpful context to identify bug-preventing checks
or rare cases where a bug could manifest. The operation and
function features are one-hot encodings that represent the
action of a node (instruction). The categories for these features
were collected by scanning several large software projects
from the wild (over 40 million nodes). Some of the operations
include: add, load, store, allocate, unsigned_divide,
logical_shift_right, get_element_pointer, and so on.
Some of the functions include: malloc, free, fmemopen,
printf, and lseek, among others. We also reserve a category
called ’other’ for operations which did not appear in the code
collection, but may appear in training and testing. We chose
to include an ’other’ category so that the network can apply
a weight to these occurrences. To encourage the model to
learn the patterns and avoid bias (cheating) we set the function
feature of mi to zero. We note that since VulChecker inlines all
user functions during the ePDG lowering process and use an IR

6Example (integer overflow): int x = (y * 5) + z;
7A project from GitHub can have over 100k negative samples.

representation, there is no need to tokenize function names like
in prior work. Therefore, the features of G

′
i explicitly represent

the information that best benefits the learning process.
Structural Node Features. Since G

′
i is a directed graph, we

use graph features to help the model understand the influence
of each node as it propagates messages though the structure.
For example, knowing the distance from the nearest potential
root cause point r to the anchored potential manifestation point
mi gives the machine learning model implicit information on
where relevant nodes are in the graph. We identify a potential
root cause point r j in Gi using domain expertise. Namely,
integer arithmetic operations are potential root causes for
integer overflow, stack and heap writes for stack and heap over-
flow, respectively, and calls to free memory for use-after-free
and double free. We also use a feature called the betweeness
centrality measure (BEC) [34]; a score that measures how
critical a node is for efficiently drawing paths between nodes
in G

′
i. This is a common feature used in graph-based machine

learning, and graph-based anomaly detection [12]. We use this
feature because it provides the S2V model with implicit infor-
mation on a node’s relative location in G

′
i. Later in section 3.4

we will explain how S2V uses these features to make decisions
on how to pass messages across the for graph classification.
Semantic Node Features. In addition to marking the distance
to the nearest root cause point, we also indicate if a node itself
is a potential root cause or manifestation point. This helps the
model locate potential vulnerability sources to propagate to
mi and other manifestation points that may be absorbing the
signal prior to mi. We also note the output type of the node’s
operation (e.g., int).
Edge Features. For edge feature vectors, we indicate the
type of edge (control-flow or data-dependency) and capture
the data type of the data-dependencies so that the model can
capture what kind of data goes where. By knowing the flow
of static values, external inputs (from certain functions), and
their data types, the model has enough information to foresee
(simulate) the impact of data on a program.

We represent the attributed graph G
′
i as the tuple

(Xv,Xe,A,C): a matrix of node features, Xv, a matrix of edge fea-
tures, Xe, its adjacency matrix, A, and its incidence matrix, C.

3.4 Model Training & Execution
VulChecker’s machine learning model consists of two

components that are trained end-to-end: a graph embedding
network MG and a deep neural network (DNN) classifier MC.
Our graph embedding network MG is a adaptation of the Struc-
ture2Vec (S2V) model from [15]. The model uses a neural net-
work to generate node embeddings by passing messages across
the graph’s structure. The parameters of MG are fitted to MC’s
classification learning objective such that MC

(
MG(G

′
i)
)
= y

where y is the probability that mi is a vulnerability.
The execution of MG(G

′
i) consists of a number of iterations

of message passing from each node vi ∈ V to its neighbors
v j ∈Γ(vi), where a message from node vi is in the form of the
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Table 2: Summary of Features used in G
′
i

Name Type Count

B
oo

l
N

um
.

C
at

eg
.

Has static value? • 1
Static value • 1
Operation {+, *, %, ...} • 54
Basic function {malloc, read, ...} • 1228
Part of IF clause • 1
Number of data dependents • 1
Number of control dependents • 1
Betweeness centrality measure • 1
Distance to mi • 1
Distance to nearest r • 1
Operation of nearest r • 54
Output dtype {int, float, ...} • 6
Node tag {r, m, none} • 2

Ve
rt

ex

Total 1352
Output dtype {float, pointer ...} 6
Edge type {CFG, DFG} 2

E
dg

e

Total 8

vector (embedding) ei. At the start of each iteration, a neural
network is used to predict what the next broadcast message
of the i-th node should be, based on (1) its neighbors’ last
messages and the feature vector stored in that node (xvi ∈Xv)
and incident edges (xei j ∈Xe). This is formulated as

ei=ReLU

(
Wvxvi+ ∑

j∈Γ(i)
Wexei j+σ

(
∑

j∈Γ(i)
e j

))
(4)

where Wv and We are matrices whose parameters are
learned during training, and σ is a deep neural network.
A single iteration can be computed in matrix form as
Et =ReLU(WvXv+CWeXe+σ(AEt−1)), where E is a matrix
containing the current node embeddings. Following the
suggestions of [36], we use the ReLU activations in σ to help
model complex relationships in the graph.

After niter iterations (a user parameter), the node embed-
dings in E are averaged together to form a single embedding
vector that is passed through a batch normalization layer
before being passed to MC.

To train the model parameters of MG and MC, we optimize
the following learning objective function:

min
Wv,We,σMG ,σMC

∑
i

LCE

(
MC(MG(G

′
i)),y

)
(5)

where LCE is the standard cross-entropy loss function.
Because of the different feature sets, we train separate

model for each CWE. We argue that having multiple models
(one for each CWE) is reasonable since (1) it only takes 1-2ms
to execute a model (2) other SAST tools (like Perforce QAC
and Checkmarx) also require the user to select which CWEs
to scan for since not all CWEs are important to the developer
and each pattern adds complexity to the search, and (3) the
models are very small (250KB each) making them very easy
to store as well as execute well on a non-GPU system.

3.5 Hyperparameters
Aside from the network parameters (e.g., depth and width

of MC and MG), VulChecker has two main hyperparameters:

𝐺 𝑤𝐺 𝐽

Potential manifestation point

Vulnerable trace

→ =

Figure 3: An illustration of an ePDG from the wild G(w) being
augmented with a synthetic vulnerability trace from Juliet G(J)

i .

ndepth, niter. Parameter ndepth cuts the subgraph backwards
from a potential manifestation point (mi), in hopes to include a
potential root cause. Parameter niter controls how far informa-
tion can be shared across the subgraph, in hopes to correlate
the direct influence of potential root causes on mi. Regarding
time performance, increasing ndepth has a polynomial time
complexity depending on the branch factor of G, whereas in-
creasing niter has a linear impact. Regarding task performance,
setting ndepth too large harms performance since more irrele-
vant information is included in Gi. On control-flow edges, it
is possible that the root cause for a positive mi will be further
than ndepth away from mi. However, we found that the data
dependency edges in Gi can greatly reduce the distance be-
tween these points in wild code. We also found that increasing
niter improves performance up to ndepth (the diameter of the
network). To find the optimal hyperparemeters for our CVE
dataset, we used Bayesian parameter optimization [1]. For
each trial, the optimiser trained a new model on a new dataset
given the selected ndepth, niter, and other DNN parameters such
as depth and learning rate. In our case, the optimizer found
niter =ndepth=50 to be the optimal setting. In general, the issue
of scoping a program slice is an open research problem,and slic-
ing is currently the best way to extract concise samples from G.

4 Data Augmentation
Motivation. To create a model that can operate on real
projects, it must be trained on samples that reflect the real
world, having large bodies of irrelevant code and benign
patterns between root causes and manifestation points.
Some line-labeled datasets exist, such as the Juliet C/C++
Test Suite from NIST [26]. However, they consist of short
synthetic programs that do not reflect real-world code. In
the absence of realistic line-labelled datasets, we propose a
data augmentation technique that combines vulnerabilities
from synthetic line-labeled datasets with real-world code to
generate realistic training samples.
Method. To accomplish this, we augment a ‘clean’ ePDG from
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a real-world project8 from GitHub by splicing into it multiple
Juliet ePDG subgraphs containing vulnerabilities. This gener-
ates a training sample with many positive manifestation points,
each of which are extracted separately during program slicing.

Formally, given an ePDG of a real-world project G(w) and
a set of vulnerable subgraphs extracted from the Juliet dataset
G(J)

i ∈J, we augment G(w) as follows (illustrated in Figure 3):

Augmentation Procedure

1. Select a G(J)
i at random from J

2. Choose a random path of length n, where 3≤n≤ndepth

3. Select a random path p in the control-flow of G(w)

with length n
4. If all nodes in p are unmarked AND p is at least s hops

away from other marked nodes; Then

(a) Split G(J)
i in the middle of its control-flow

(b) Insert and connect the first half at p[0] and the
second half at p[n]

(c) Mark all nodes along p

5. Else; count = count + 1 //There was a collision
6. If count > limit; Then return G(w)

7. Else; loop to Step 1

When VulChecker trains on the augmented G(w), it will
cut a sample G(w)

i for every potential manifestation node,
including the positive ones injected from Juliet (blue in the
figure). However, since we place samples S steps away from
nodes marked in red, G(w)

i may sometimes overlap with G(w)
j

for i ̸= j. The reason for this is to help the model learn to focus
on the target terminating manifestation point.
Validity. Since our augmentation process splices multiple
ePDGs, it may produce samples where a vulnerability ePDG
subgraph lies on an infeasible path (i.e., it is dynamically un-
reachable) in the augmented ePDG. As is typical of static anal-
ysis tools, VulChecker considers both feasible and infeasible
paths in a program. Therefore, it can still learn from such sam-
ples provided (1) the augmentation maintains the vulnerabil-
ities’ data-flow and static reachability properties, and (2) splic-
ing ePDGs does not otherwise invalidate inserted vulnerabili-
ties. To ensure (1),our augmentation process preserves the data-
flow and static reachability of G(w) and G( j). This is illustrated
in Figure 3 where (A) the augmented ePDG still contains the
same data-flow edges found in G( j) (the dashed lines) and (B)
all nodes remain statically reachable in the same order. Regard-
ing (2), augmentation cannot invalidate a vulnerability because
nodes in G( j) and G(w) are guaranteed not to interfere with each
other. Non-interference among data-flows follows from our
derivation of ePDGs from SSA (static single assignment) form
LLVM IR. In SSA form, all data values are defined exactly
once, meaning no node from G(w) can redefine a data value cre-
ated by a node in G( j). Non-interference among static control-

8We ensure these projects are free of known CVEs (see section 3.2.3).

flows arises from our augmentation procedure that ensures that
the second half of the vulnerability subgraph remains statically
reachable from the first half via at least one program path.9

In summary, the augmented samples G(w)
i help the model

generalize to more realistic scenarios because (1) they contain
real-world code and (2) they teach the model to search through
greater distances and noise to find the root cause. We note
that the same augmentation approach can be extended to other
code representations such as CFG, PDG and CPG.

5 Evaluation
In this section, we evaluate VulChecker’s performance as a

tool for detecting and localizing vulnerabilities in source code.
We accomplish this by evaluating VulChecker’s performance
at detecting vulnerabilities in the wild (real CVEs) when only
trained on augmented (synthetic) datasets. We also explore
the impact of the augmentation as well as the tool’s precision
to understand its practicality.

5.1 Experiment Setup
In this section we present our experiment setup. We note

that all of our code has been published online, including
our datasets and trained models, for use by the software and
research communities.

5.1.1 Experiments
To evaluate VulChecker, we performed 3 experiments:
EXP1: Performance. To measure VulChecker’s general
performance, we use the area under the curve (AUC) measure
where the values of 1.0 and 0.5 indicate a perfect classifier and
random guessing respectively. For application performance
(where a detection threshold is set), we measure the false pos-
itive rate (FPR), true positive rate (TPR), and accuracy (ACC).

As a baseline, we compare VulChecker to five different
source code vulnerability detection tools and methods (two
which detect vulnerabilities in code regions and three which
perform line-level localization):

Region-level detectors. The first is the approach of [31]
where ASTs of functions are converted into sequences of
nodes. Unknown code is then assigned a vulnerability score
based on its longest common subsequence (LCS) similarity
to samples of vulnerable code. We contacted the authors for
their source code, but did not hear back from them. Therefore,
we implemented their solution to the best of our ability. We
normalized the LCS values between 0 and 1 based on the length
of the largest sequence being compared. We note that although
their work performs function-level localization, it can be used
to classify the CWE. Therefore, we use this work as a baseline
because it can be compared directly to VulChecker’s detection
performance. The second is Gemini, a deep learning-based
binary level code similarity tool described in section 2.

9We manually verified that our augmentation process was sound with
respect to these two properties across a random sample of approximately 100
augmented ePDGS.
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Line-level detectors. The first is Helix QAC, a licensed
commercial SAST tool by Perforce.10 QAC is a static code ana-
lyzer that automatically scans code for CWE violations (based
on C/C++ coding rules). It both localizes at the line-level and
classifies vulnerabilities like VulChecker. The second is an
open source SAST tool called Cppcheck11 which also performs
localization and classification. The third is VulDeeLocator
(described in section 2). In the original paper, VulDeeLocator
was trained on a mix of CWEs, meaning that users could not
tell which CWE was predicted (only that a given line is vul-
nerable). In our implementation of VulDeeLocator, we mirror
VulChecker and train separate model on each CWE to refine
the predictions. We used the author’s code12 but found it very
limited: (1) it cannot parse lines which will result in large slices
and (2) it cannot efficiently parse large projects. Therefore, we
modified their code to reduce these limitations to the best of
our ability.13 We ensured that all positive cases were included
although many of negative cases were omitted. Note, this may
decrease VulDeeLocator’s false positive rates in EXP1.

We selected the Cppcheck and QAC because they are
well-known SAST tools and they perform both line-level
localization and vulnerability classification like VulChecker.
We selected [31] (LCS) because it captures the performance
of both AST and pattern matching-based approaches. We
selected Gemini because it has some parallels to VulChecker:
it uses the Structure2Vec and it detects vulnerabilities on code
structure (CFGs). However, it differs from VulChecker in
that it only operates on binary, does not use ePDGs, requires
a large labeled dataset, and it cannot localize vulnerabilities
to the line-level (only function-level). Finally, we use
VulDeepLocator since it uses deep learning to perform line
level localization like VulChecker.
EXP2: Precision. To support claims that VulChecker is
a practical and helpful tool for developers, we employed
an experienced vulnerability analyst to review the top 100
results, for each CWE and evaluated system, on a hold out
set and measured precision. Examining thousands of cases14

to determine whether they are buggy (and exploitable) is
challenging for large real-world projects due to hard problems
like determining reachability (i.e., determining whether the
conditions to trigger a bug can be satisfied starting from
the program’s entry point). Since it is infeasible to confirm
exploitability for so many cases, we employed the following
methodology to determine the precision of the system:

1. The analyst first examined the source code for each case and
determined whether the expected behavior for the predicted
CWE is present and whether the ePDG contains any checks
to handle that CWE. For example, a positive use-after-free

10https://www.perforce.com/products/helix-qac
11https://github.com/danmar/cppcheck
12Original implementation: https://github.com/VulDeeLocator
13Our implementation:

https://github.com/evandowning/VulDeeLocator
14Top 100 cases, for each CWE, for each evaluated system.

case must contain a free statement, followed by a use of
the freed variable name, without any checks in-between for
whether the variable has been freed or not. A positive integer
overflow case must contain arithmetic statements followed
by a use of the calculated result,without checking for integer
wraparound. The result of this step is two buckets: cases
that cannot contain the predicted CWE and ones that might.

2. Next, the analyst examined every known CVE for the
projects used in this experiment and collected their
corresponding patches. With this information, the analyst
examined each case in the “maybe buggy” bucket and iden-
tified the ones that match already known CVEs. The result
is a bucket of detected, previously known, vulnerabilities.

3. Finally, for the cases that might be buggy and could not
be matched to a known vulnerability, the analyst took a
random sample and attempted to verify their exploitability
using industry best-practices like fuzz testing and manual
reverse engineering. This process took several weeks.

For the purpose of this experiment, we consider cases in the
not buggy bucket from Step 1 to be false positives and cases in
the latter buckets (maybe buggy,matched to prior CVE,verified
novel vulnerability) to be true positives. This decision is based
on the fact that a “maybe buggy” case can still be a vulnerability,
even if the analyst failed to verify it given time constraints.

For the purposes of ethical disclosure, we chose to disclose
novel bugs that were verified exploitable.15 We also provide
a video demo of VulChecker operating as plugin for Visual
Studio.16

EXP3: Ablation. In our paper, we claim that training on
augmented data is beneficial because it is challenging to obtain
real world instruction or line-level labeled datasets. However,
it is not clear how much the augmentation process helps
the overall performance. To demonstrate the contribution of
the augmentation process, we perform an ablation study by
contrasting a model trained on augmented data to one trained
on synthetic data.
Case Studies. By using VulChecker on our datasets, we iden-
tified a zero-day vulnerability and incorrect CVE information.
Details on these cases can be found in the appendix.

5.1.2 Datasets
We collected a wide variety of C/C++ project for training

and testing VulChecker and the baselines. A description of
these projects, including a mapping between the projects and
the experiments, can be found in the appendix in Table 6.

Train set. To train the baselines, we used the Juliet C/C++
dataset denoted Dc

jul for CWE c. The dataset has the following
number of samples for each CWE (D190

jul : 3960, D121
jul : 4944,

D122
jul : 5922, D415

jul : 960, D416
jul : 459).

15The authors feel that reporting cases that might not be true bugs, without
a reproducible proof-of-compromise (PoC), would be disrespectful of the
developer’s time.

16https://tinyurl.com/mucpt67x
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To train VulChecker, we used D jul to augment 20 ‘clean’
projects collected from GitHub: A ‘clean’ project was selected
if it (1) did not contain a CVE for the given CWE, (2) had at least
40k lines of source code, and (3) was a cmake project.17 Then,
for each CWE, we augmented these projects using D jul . We
denote this augmented training set as Dc

aug for CWE c. Overall,
there were approximately 6k–24k positive manifestation points
and 2 million negative points per CWE (with some projects hav-
ing over 200 million nodes in total). To handle class imbalance,
we down sampled the negative points to equal proportions.

We note that data the augmentation process is part of
VulChecker’s algorithm (it cannot be applied to the other base-
line models). However, VulChecker and the baselines were all
trained on the same positive data since D jul is captured in Daug.

Test sets. In our evaluations, we used open source projects
collected from the Internet. To evaluate the models in EXP1,
we collected projects from GitHub which contain CVEs: First,
we collected a list of all relevant CVEs using the NVD database
and filtered out all CVEs that were not tagged with one of our
CWEs (leaving 3,788). For each CWE, we then filtered out all
of those without version information and that were confirmed
to be closed source (leaving 524). We then manually collected
all of the projects, filtered out any project that does not use the
cmake compilation system, and verified the CWE label in the
code. In the end, we had 19 projects with approximately 35
CVEs. Of these CVEs, 14 were from 2019 and 2020 and the
majority had CVSS ranks (severity levels) of medium or high.
We denote this dataset as Dc

cve for CWE c. For each CVE, a vul-
nerability researcher tagged the positive manifestation point
in the source code (all other points are considered negative).
In total, we used the following number of projects containing
one or more relevant CVEs (D190

cve : 9, D121
cve : 2, D122

cve : 4, D415
cve : 2,

D416
cve : 7). These projects contained millions of nodes. For more

information on these projects, see Table 5 in the appendix.
To evaluate the precision of VulChecker in EXP2, used

9 more unlabeled projects collected from GitHub. These
projects were selected if they were cmake and had no reported
CVE. We denote this dataset as Dout .

Finally, in EXP3 (ablation on data augmentation), we used a
CWE190 dataset consisting of holdout data from D jul , 1 project
from D190

cve and 5 more ‘clean’ wild projects from GitHub.

5.1.3 Model Configuration
We configured all of the CWE models with the same

hyper-parameters based on results from experimentation and
Bayesian optimization [1]. For program slicing, we used a
backwards cut depth of ndepth=50. For MG, we used an embed-
ding size of 32, 9 layers in the network σ, and performed niter =
50 propagation iterations. For MC, we used 7 dense layers of
32 neurons each. The entire model was implemented using Py-
Torch and trained end-to-end with a learning rate of 0.0001 for
100 epochs on a NVIDIA Titan RTX GPU with 24GB of RAM.

17Our current implementation of the LLVM ePDG extractor supports cmake,
but the pipeline is not fundamentally restricted to a particular build system.
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Figure 4: Performance of the line-based detectors (left) and
region-based detectors (right) in detecting CVEs in the wild.

The models in EXP1 were setup as follows. For LCS, we
followed the approach of the authors [31] and we compared
all 24k functions in Juliet to a random subset of 400 functions
from the wild,18 ensuring that all 23 vulnerable functions
were included as well. For Gemini and VulDeeLocator, a
separate model was trained on each CWE in the Juliet Dataset
(i.e., Dc

jul). For VulChecker, the models were trained on the
respective augmented CWE datasets Dc

aug. Finally, for QAC
and Cppcheck, the default configurations were used.

5.2 EXP1: Performance
In Figure 4 we present the results of the baselines which

are open-source on Dcve. In the figure, we plot each of the
models’ receiver operating characteristic (ROC) curves and
provide the models’ AUCs. The ROC plot shows the tradeoff
between the FPR and TPR at every threshold. In particular,
we are interested in the left side of the plot where the model
can be tuned to achieve a low FPR. With a FPR of 0.01, we
found that VulChecker was able to accurately identify 35%
of all 63 positive manifestations in CWE-122, 45% of the
20 manifestations in CWE-190, and all 3 manifestations in
CWE-415. When relaxing the threshold to a FPR of 0.1,
VulChecker can identify 95%, 64%, 46%, 100%, and 83% of
the CVE manifestations for CWEs 190, 121, 122, 415, and
416, respectively. A list of the 24 CVEs detected at this rate
can be found in the Appendix along with the performance at

18400 random negative samples are taken due to the slow speed of LCS.
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Table 3: Baseline comparison against a commercial SAST
tool in detecting CVEs in the wild.

VulChecker @ FPR 0.05 VulChecker @ FPR 0.1 Helix QAC
Lines CVEs Lines CVEs Lines CVEs

CWE TP FP TP TP FP TP TP FP TP
190 9 55 3 12 112 6 1 2 1
121 7 33 7 9 112 9 4 230 1
122 1 6 1 1 6 1 4 241 1
415 3 0 2 3 0 2 0 5 0
416 4 6 4 6 228 6 0 0 1

Total 24 100 17 31 458 24 9 478 4

different set FPR rates (Table 4). Cppcheck is not included in
the figure because it did not have any TPs. Instead, Cppcheck
produced 22 FPs for CWE-190 and 1 FP for CWE-415.

The results in Figure 4 show that VulChecker outperforms
the other methods by a large margin. This is because AST
(LCS), CFG (Gemini) and linear (VulDeeLocator –see section
2.3) structures cannot capture all code behaviors, such as data
dependencies, whereas VulChecker’s ePDGs captures these
behaviors explicitly.

In Table 3 we compare the performance of VulChecker to
the closed-source solution (Helix QAC) on Dcve (TP and FP
are the true positive and false positive counts respectively).
When setting VulChecker’s FPR to be on par with the
commercial tool QAC (FPR 0.1), we find that VulChecker
detects significantly more CVEs than QAC in Dcve (24 vs. 4).
Unlike QAC, which cannot adjust its sensitivity, VulChecker
can be adjusted. Specifically, we can raise the FPR to 0.2 and
detect 31 CVEs (with double the FPs) or lower the FPR to
0.05 and detect 17 CVEs (with a quarter the FPs). We note
that although VulChecker and QAC have ∼460 FPs at the
line-level, there are hundreds of thousands of lines of code in
the target projects. Therefore, 460 FPs is reasonable.

We note that since the software projects in Dc
cve are older

versions of the software (Table 5), they contain a number
of bugs and vulnerabilities that we have labeled as negative.
Therefore, the FPR is actually lower since the top results
contain other bugs and vulnerabilities. Through a manual
inspection of the top 50 results for each CWE, we found that
3–7 additional instances of each CWE were detected.

In summary, VulChecker demonstrates good performance
in detecting the exact lines and instructions of exploitable
vulnerabilities (CVEs) in real world projects. Moreover, it can
operate with the same FPR as a commercial SAST tool while
detecting x6 more CVEs. This is a meaningful result, since
the model was trained for ‘free’ on augmented data labeled
with only synthetic samples.

5.3 EXP2: Model Precision
In deployment, a user would train VulChecker on both

Dc
aug and Dc

cve to obtain a more complete and accurate model.
To evaluate the precision and practicality of VulChecker in
this scenario, we manually inserted different instances of
vulnerability CWE-190 into libgd. We found that when a

Figure 5: The precision (hit rate) of VulChecker on the holdout
set when trained on both augmented and CVE datasets.

model is trained on both D190
aug and D190

cve it increases the rank of
these manifestation points from the 20th–64th positions to the
1st position (highest score). Ranking is achieved by sorting
results according to model’s softmax confidence scores.

With this knowledge, we trained new models on both
Dc

aug and Dc
cve and executed each of them on our holdout set

Dout . Since the holdout set has no ground truth, we hired a
vulnerability analyst to examine the top 100 results (from
1 million potential manifestation points). Figure 5 plots the
precision of VulChecker on the top k results for each CWE. A
rise in precision indicates sequence (cluster) of positive cases
found. As expected, the precision drops as k increases since the
model’s confidence lowers over k. Using the analyst’s findings,
we found that 50-80% of the top 50 results, and 45-70% of the
top 100 results were true positives, according to our criteria
defined in Subsection 5.1. Concretely, the following counts of
true positive cases were found in the top 100 results for each
CWE (CWE190:68, CWE121:47, CWE122:46, CWE415:71,
CWE416:28).

The analyst then took these true positives and attempted
to manually match them with previously known CVEs, using
their patches as reference. For CWEs 190, 121, 122, 415 and
416 we found 23.5%, 32.6%, 89.0%, 24.2% and 14.8% of
the true positives to be 17 verified CVEs. Note that because
a CVE can match multiple related lines in the source code,
multiple true positives cases can correspond to the same CVE.
The CVEs identified are included in Appendix A.

Lastly, the analyst attempted to verify the exploitability
of the remaining true positive cases using standard practices
like fuzz testing and manual reverse engineering. This yielded
1 verified zero-day vulnerability, which we disclosed to
developers for patching. A case study of this vulnerability is
included in Appendix B.

In summary, VulChecker provides valuable information
to developers with a minimal number of false alarms. This
means that in deployment, VulChecker can be a practical tool
for identifying vulnerabilities in source code.

USENIX Association 32nd USENIX Security Symposium    6569



5.4 EXP3: Ablation Study on Augmentation
In Figure 6, we present the ROC curves and AUC values for

a model trained on only synthetic data. The model performs
extremely well on other synthetic samples because the samples
are short and have virtually no noise. However, the same model
fails to generalise to the real world software and vulnerabilities
found in Dcve. This is a troubling insight since many prior pro-
posals in this domain have evaluated their model’s performance
on the synthetic datasets like SARD [14, 19, 20, 22, 30, 35, 38],
so it is not clear whether these can perform well in practice. We
note that the proposed augmentation process can be applied
to these works since the algorithm is agnostic to CFG, PDG,
and CPG code graphs. However, we leave this comparative
study for future work since it is outside the scope of our target
application (line/instruction level vulnerability detection).

When contrasting the results in Figure 6 to those of Figure 4,
we can clearly see the benefit and importance of the data aug-
mentation. This is also apparent in the knowledge captured by
each of the models: In Figure 7, we plot MG’s embeddings of
G

′
i (prior to the DNN classification) when trained on synthetic

CWE-121 samples (left) and augmented CWE-121 samples
(right). From the plots, we can see that the model trained on syn-
thetic data learns a very simple representation since it is easy
for it to separate negative and positive manifestation points.
On the other hand, the vulnerabilities in augmented data have
much longer distances between the root cause and manifesta-
tion points. This forces the model to look deeper into G

′
i and

to learn how to distinguish benign code from vulnerable code
while overlooking irrelevant code. This can be seen in Figure 7
where the model trained on augmented data has difficulty sepa-
rating the concepts in the ground truth (top right), but succeeds
in associating the learnt concepts in samples from the wild
(bottom right). In contrast, the model trained on synthetic data
easily separates the concepts in training (top left) but fails to as-
sociate/identify any of the samples from the wild (bottom left).

In summary, the proposed data augmentation strategy is
a cheap and effective way to boost a model’s performance
on real software projects. Given the shortage of fine-grained
labeled datasets from the wild, this augmentation approach
enables the research, development, and actual deployment of
line-level classifiers.

6 Assumptions & Limitations
In this framework we made several assumptions about the

environment and use cases.

Responsiveness. In order to lower the code into LLVM IR,
the code must be able to compile. This means that new
reports to the developer will only become available at
certain time-frames and not in real-time while typing. For
example, when the developer completes a line of code
or entire segment. We believe this is a reasonable delay
since the programmer will still be engaged in the code
and can quickly resolve the problem before moving on.
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Figure 6: Performance of VulChecker when trained on
synthetic data, then either tested on synthetic (left) or tested
on real data (right).

Figure 7: The embeddings of G
′
i learnt by S2V when trained

on synthetic (left) or augmented (right) data. Black (negative)
and red (positive/vulnerable) points are samples taken from
the model’s training set. Grey points are embeddings of novel
samples taken from the wild. For visualization, all plots have
been reduced from 32 to 2 dimensions using T-SNE.

Security. An advanced attacker may use adversarial machine
learning [10] to poison the training set (e.g., include
crafted negative samples which will cause the model
to miss certain vulnerability patterns in deployment).
Although this attack is possible, it is challenging because
the attacker must know which GitHub projects will be
collected.

Regarding attacks on a trained model, it may be possible
to generate adversarial perturbations in S such that Gi
will not be detected by M as vulnerable. This is less
of a threat in private projects with trusted contributors
(e.g., a software company). Regardless, there are some
significant challenges that the attacker must accomplish
to generate perturbations: (1) it is an open research
question whether it is possible to generate adversarial
perturbations on source code that will compile, and (2)
the mapping of S to G is not differentiable so the attacker
can only operate on G

′
i.

Integrity. Since we use projects from the wild for our augmen-
tation, it is possible that vulnerabilities in these projects
exist and will be considered as negative during training.
This may confuse the model and impact the performance.
Although we showed that this technique works well em-
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pirically, further research is needed to understand how the
quantity and quality of these bugs impact a trained model.

Depth. A fundamental limitation of VulChecker is the range
of parameter ndepth. If ndepth is substantially large then
it would become prohibitively expensive to train and
execute VulChecker on every potential manifestation
point. Moreover, the size of G can negatively impact the
models ability to identify long-distance relationships [41].
Therefore, when a root cause is significantly far from a
positive manifestation point, VulChecker will not be able
to confidently detect the bug. We note that ePDGs con-
sider data dependency edges which significantly shorten
the distance between root causes and manifestation points
in G. However, the problem of efficient long-distance
causality in static analysis is an open problem, unresolved
in existing approaches (see section 2).

7 Conclusion
There is a large gap between the current state-of-the-art and

a practical deep learning SAST tool that can be used by devel-
opers. In this paper, we proposed VulChecker, the first tool that
can both perform line/instruction level vulnerability detection
and classify the indicated vulnerability. We have also proposed
(1) a new code representation (ePDG) for low level GNN tasks
on software and (2) a novel data augmentation strategy to help
GNN-based SAST tools work on real world software.
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Appendix
A Additional Results on CVE Detection

The following breaks down which CVEs are detected by
VulChecker and QAC for different FPRs:

• With an FPR set to 0.05, and trained on augmented data
only, VulChecker successfully identified the following
CVEs in the projects listed in Table 5: CVE-2011-0904,
CVE-2016-2799, CVE-2016-5824, CVE-2016-9584,
CVE-2016-9591, CVE-2017-12982, CVE-2017-14520,
CVE-2017-15565, CVE-2017-15642, CVE-2018-10887,
CVE-2019-10020, CVE-2019-10024, CVE-2019-13590,
CVE-2019-14288, CVE-2019-17546, CVE-2019-8356,
CVE-2020-15305, and CVE-2020-15389.

• With the FPR set to 0.1 we also detect CVE-2014-6053,
CVE-2016-2799, CVE-2017-15372, CVE-2017-9775,
CVE-2019-3822, and CVE-2019-5435.

• With the FPR set to 0.2 we also detect CVE-2017-8816,
CVE-2018-14618, CVE-2018-20330, CVE-2018-7225,
CVE-2019-14289, CVE-2019-5482, and CVE-2020-
27828.

• Perforce QAC detects: CVE-2019-3822, CVE-2018-
20330, CVE-2014-9655, and CVE-2020-15305.

• The 17 CVEs detected in EXP2: CVE-2005-3628,
CVE-2008-3522, CVE-2009-3605, CVE-2013-1788,
CVE-2016-10251, CVE-2016-8693, CVE-2016-8886,
CVE-2016-9396, CVE-2017-7698, CVE-2018-5727,
CVE-2018-5785, CVE-2019-13282, CVE-2019-13289,
CVE-2019-16927, CVE-2019-5435, CVE-2019-9200
and CVE-2022-27337.

B Case Studies
Zero-day detection. During evaluation, VulChecker

uncovered a novel and exploitable zero-day vulnerability in
one of the analyzed C++ projects, demonstrating its ability
to identify new bug patterns. The vulnerable code snippet is
shown in Figure 8 of the appendix, with some lines removed
for brevity. In this case, the vulnerable function is is a lexical
parser designed to process PDF files. Unfortunately, such
parsing is difficult to implement correctly, and the function
is almost 100 lines long, posing a challenge for both manual
and SAST-assisted code review. As it turns out, due to how
the developers nested calls to hd_read_byte, with only
the outer-most code loop checking the buffer’s bounds, a
maliciously crafted PDF file can cause the final default
switch case to write outside the buffer, causing a heap overflow.

Fortunately, VulChecker is able to detect the overflowing
instruction in a matter of minutes as a manifestation point for
CWE-122, which we verified with an expertly crafted proof-
of-compromise (PoC). We have disclosed this vulnerability
to the project’s developers, who at the time of writing have
acknowledged the issue and are developing a patch.

Supply Chain Risk Reduction. One detection made by
VulChecker that surprised us occurred in Poppler version
0.10.6. In this case, VulChecker labeled a buggy line that we
determined to be CVE-2009-0756, however this conclusion
was initially perplexing because according to the official
CVE advisory, the bug was only known to exist in versions
0.10.4 and earlier, not 0.10.6. However, once we downloaded
the patch published by the developers and compared it to
our version of Poppler, we discovered that we indeed had a
vulnerable version of the library, despite having downloaded it
directly from the vendor’s website. This is significant because
developers frequently check the library dependencies of their
projects against CVE advisories for potential risks. In this case,
without VulChecker’s analysis, such checks would wrongly
conclude that there is no need to worry about CVE-2009-0756
since the library’s version falls outside of known vulnerable
releases. In reality, the CVE was present in our experiment.

Table 4: Performance at Different FPR Rates
CWE

@FPR= 190 121 122 415 416
TPR 0.450 0.121 0.349 1.000 0.167
FPR 0.005 0.006 0.009 0.000 0.0050.01
ACC 0.993 0.986 0.980 1.000 0.994
TPR 0.800 0.569 0.444 1.000 0.667
FPR 0.036 0.049 0.019 0.000 0.0290.05
ACC 0.964 0.947 0.971 1.000 0.971
TPR 0.950 0.638 0.460 1.000 0.833
FPR 0.095 0.091 0.062 0.000 0.0860.1
ACC 0.905 0.906 0.930 1.000 0.914
TPR 1.000 0.759 0.587 1.000 0.833
FPR 0.165 0.185 0.156 0.000 0.0860.2
ACC 0.836 0.814 0.839 1.000 0.914
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char * s = lb −> s c r a t c h ;
char * e = s + lb −> s i z e ;
/ * t r u n c a t e d f o r b r e v i t y * /
whi le ( 1 ) {

i f ( s == e ) {
s += p d f _ l e x b u f _ g r o w ( c tx , l b ) ;
e = lb −> s c r a t c h + lb −> s i z e ;

}
c = h d _ r e a d _ b y t e ( c tx , f ) ;
sw i t ch ( c ) {

case EOF :
goto end ;

case ’ ( ’ :
/ * t r u n c a t e d * /
break ;

case ’ ) ’ :
/ * t r u n c a t e d * /
break ;

case ’ \ \ ’ :
c = h d _ r e a d _ b y t e ( c tx , f ) ;
sw i t ch ( c ) { / * t r u n c a t e d * / }
break ;

d e f a u l t :
* s ++ = c ; / * BUG: o v e r f l o w * /
break ;

}
}

Figure 8: Exploitable zero-day found by VulChecker. A lack
of bounds checking while performing lexical parsing for PDF
files can result in an overflow write.

C Details on the Datasets

Table 5: The CVE Projects used in the Testsets
CWE Project Version |V |
190 curl curl 7.56.1, 7.64.1 573k, 584k

libcurl curl 7.61.0, 7.63.0 571k
libgit2 0.26.1, 0.27.2 18.2 mil., 18.7 mil.
libjpeg turbo 2.0.1 274k
libtiff 4.0.10 297k
libvncserver LibVNCServer 0.9.11 197k
sound.exchange sox 14.4.2 416k

121 poppler poppler 0.55 2.7 mil.
sound.exchange sox 14.4.2 416k

122 curl curl 7.61.1 568k
graphite2 1.3.5 228k
jasper version 2.0.22 445k
sound.exchange sox 14.4.2 416k

415 jasper version 2.0.11 417k
openjpeg 2.3.1 256k

416 jasper version 2.0.11 417k
libical 1.0.0, 2.0.0 1.1 mil., 973k
openexr 2.5.1 890k
openjpeg 2.3.1 256k
sound.exchange sox 14.4.2 416k

    *Reflects most recent listed version 

  CWE Dataset 
Category 

Source 
Files 

Lines of 
Code 

GitHub 
Stars   190 121 122 415 416 

P
ro

je
ct

 

avian 

1.2.0 
► ► ► ► ► JVM 182 67897 1204 

bdwgc-gc 

7.6.0 
► ► ► ► ► 

Garbage 
Collector 

114 35658 2021 

Bento4 

1.5.0, 1.5.1 
► ► ► ► ► Audio 308 54137 1361 

curl  

7.56.1, 7.64.1 
● ○  ○ ○ 

Networking 788 171503 25236 
7.61.1   ●   
7.77.0 ╬ ╬ ╬ ╬ ╬ 

graphite2  

1.3.5 
○ ○ ● ○ ○ Fonts 230 53219 117 

hdContents ╬ ╬ ╬ ╬ ╬ PDF 32 8404 7 

jasper  

2.0.11 
○ ○  ○ ● 

Images 237 61291 168 
2.0.22 ► ► ● ► ► 

libarchive  

3.2.0, 3.2.1 
► ► ► ► ► Compression 573 142818 1743 

libcurl  

7.61.0, 7.63.0 
● ○  ○ ○ Networking 803 175816 25236 

libiec61850  

1.3.0 
► ► ► ► ► Networking 423 103682 485 

libgd  

2.2.3 
 ○ ○ ○ ○ Images 373 85035 732 

libgit2  

0.26.1, 0.27.2 
● ○ ○ ○ ○ 

Git 978 205102 8444 
1.1.0 ╬ ╬ ╬ ╬ ╬ 

libical  

1.0.0, 2.0.0 
○ ○ ○ ○ ● Networking 287 87021 229 

libjpeg-turbo  

2.0.1 
●╬ ○╬ ○╬ ○╬ ○╬ Images 284 79668 2882 

libtiff  

4.0.10 
● ○ ○ ○ ○ Images 279 103394 53 

libvncserver  

0.9.11, 0.9.12 
● ○ ○ ○ ○ 

Networking 138 41734 834 
0.9.13 ╬ ╬ ╬ ╬ ╬ 

libzip-rel  

1.2.0 
► ► ► ► ► Compression 152 14364 530 

libzmq  

4.2.5 
 ○ ○ ○ ○ Networking 365 47324 7787 

openexer  

2.5.1 
○ ○ ○ ○ ● Images 816 282636 1224 

openjpeg  

2.1.2, 2.3.1 
○ ○ ○ ● ● 

Images 559 226120 802 
2.3.1     ● 
2.4.0 ╬ ╬ ╬ ╬ ╬ 

poppler  

0.55 
► ● ► ● ► 

PDF 685 218518 N/A 

0.10.6, 0.53 ► ► ► ► ► 
sound_exchange 

14.4.2 
● ● ● ○ ● Audio 394 75803 N/A 

tigervnc  

1.7.1 
 ○ ○ ○  Networking 419 45016 3360 

○ Used in EXP1 and EXP2 to make 𝐷𝑎𝑢𝑔  for training (has no CVE for the CWE) 

● Used in EXP1 and EXP2 to make 𝐷𝑐𝑣𝑒  for testing (has CVE label(s))  

► Used in EXP2 for testing to make 𝐷𝑜𝑢𝑡  (no labels) 

 ╬ Used in EXP3 for testing and has no reported CVE for CWE190 

 

Table 6: Details on the source code projects taken from the wild
and used in this paper. Left: a mapping of which project was
used for each dataset by CWE. Right: Statistics on the projects.
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