
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Design of Access Control Mechanisms in
Systems-on-Chip with Formal Integrity Guarantees

Dino Mehmedagić, Mohammad Rahmani Fadiheh, Johannes Müller,
Anna Lena Duque Antón, Dominik Stoffel, and Wolfgang Kunz, Rheinland-

Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Germany
https://www.usenix.org/conference/usenixsecurity23/presentation/mehmedagic

Design of Access Control Mechanisms in Systems-on-Chip
with Formal Integrity Guarantees

Dino Mehmedagić Mohammad Rahmani Fadiheh Johannes Müller
Anna Lena Duque Antón Dominik Stoffel Wolfgang Kunz

Department of Electrical and Computer Engineering,
Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Germany

Abstract
Many SoCs employ system-level hardware access control

mechanisms to ensure that security-critical operations cannot
be tampered with by less trusted components of the circuit.
While there are many design and verification techniques for
developing an access control system, continuous discoveries
of new vulnerabilities in such systems suggest a need for an
exhaustive verification methodology to find and eliminate
such weaknesses. This paper proposes UPEC-OI, a formal
verification methodology that exhaustively covers integrity
vulnerabilities of an SoC-level access control system. The
approach is based on iteratively checking a 2-safety interval
property whose formulation does not require any explicit spec-
ification of possible attack scenarios. The counterexamples
returned by UPEC-OI can provide designers of access control
hardware with valuable information on possible attack chan-
nels, allowing them to perform pinpoint fixes. We present a
verification-driven development methodology which formally
guarantees the developed SoC’s access control mechanism
to be secure with respect to integrity. We evaluate the pro-
posed approach in a case study on OpenTitan’s Earl Grey
SoC where we add an SoC-level access control mechanism
alongside malicious IPs to model the threat. UPEC-OI was
found vital to guarantee the integrity of the mechanism and
was proven to be tractable for SoCs of realistic size.

1 Introduction

Although the research field of hardware security is not new, it
has received new impetus in the recent past, especially through
the discovery of the Spectre [21] and Meltdown [24] attacks,
which highlighted how different hardware design optimiza-
tions can easily be abused to usurp security of a computing
system as a whole. Numerous hardware bug discoveries fol-
lowed, reporting a large variety of security vulnerabilities,
as documented by their ever growing number in the MITRE
common weakness enumeration (CWE) database [1].

The problem gets worse if not only cores but entire systems-
on-chip (SoCs) are considered [12, 17]. SoCs are complex in-

tegrated circuits that, besides central processing units (CPUs),
contain various specialized hardware units, such as accelera-
tors, improving the overall performance of the system. Due to
increasing diversification in SoC functionality requirements,
designers increasingly resort to integrating third-party intel-
lectual property (IP) hardware units into their SoCs. This
poses a security threat, since third-party vendors could insert
malicious hardware or firmware into their IPs, which can,
upon integration, be used to compromise functionality of the
entire SoC. Such IPs could, for example, send illegal mes-
sages to other parts of the SoC to delay, disrupt or even alter
results of security-critical operations. Security verification
of SoCs with third-party IPs becomes even more difficult if
these IPs are sold as a black box, which is often the case. This
means that the IP implementation details remain hidden from
the SoC integrators.

As an example, suppose an SoC integrator is designing a
RISC-V SoC. The integrator is provided with a direct memory
access (DMA) engine by a third-party vendor with malicious
intentions. Suppose that, unbeknownst to the SoC integrator,
the DMA engine contains a hardware Trojan that uses the
DMA’s controller privileges to change data of a protected
region in the SoC’s memory. Even though the system’s CPU
has Physical Memory Protection (PMP) implemented which
restricts access to protected memory and memory-mapped
IPs for non-privileged and untrusted programs [39], the DMA
can still modify any part of the memory, as it is a hardware
component completely separate from the CPU. This way,
the DMA engine can sabotage various functions of the SoC,
such as its ability to perform correct encryption, interrupt
servicing, controlling privilege levels of software processes,
and many more. Attacks of this kind can, therefore, cause
serious violations of the system’s operation integrity.

Such security concerns motivate SoC designers to include
a chip-level access control system that will detect and prevent
malicious or illegal messages between any IPs. For example,
the RISC-V community currently works on complementing
PMP with IOPMP, a set of hardware SoC extensions that shall
monitor all IP communication and block it if necessary [22].

USENIX Association 32nd USENIX Security Symposium 2779

Meanwhile, most semiconductor companies already have a
system-wide proprietary protection for their chips. ARM re-
alizes this with its System Memory Management Units (SM-
MUs) [8] and its TrustZone R© technology [40], while Intel
provides a similar solution through its VT-d IOMMUs [20].
Even though these mechanisms greatly reduce the chip’s at-
tack surface, it has been demonstrated that they can be circum-
vented by addition of a malicious IP block to the system [6,17].
This calls for an exhaustive verification methodology that is
able to detect all security vulnerabilities of the access control
mechanisms before tapeout.

In this paper, we propose an exhaustive verification method-
ology which can guarantee integrity of security-critical op-
erations with respect to an SoC’s access control mechanism
configuration. The approach builds upon UPEC [14, 15], a
formal method to verify confidentiality in processor cores
(cf. Sec. 2.3).

While many security approaches rely on the verification en-
gineer to explicitly formulate attack patterns in order to catch
specific vulnerabilities in a design, our new methodology,
called UPEC for Operation Integrity (UPEC-OI), requires
no such a priori security knowledge. All hardware integrity
bugs of an SoC’s access control configuration are covered by
UPEC-OI. In fact, counterexamples provided by UPEC-OI
guide the SoC designers to the exact parts of the microar-
chitecture that permit integrity attacks, giving them valuable
insight on how to conduct precise, local fixes of the security
bugs. UPEC-OI can therefore be used as a tool for designing
SoCs with integrity-proof access control hardware, which is
another key aspect that is explored in this work. Contributions
of this paper are as follows:

• We define the requirements for the SoC-level access control
mechanism that must be fulfilled to guarantee the integrity
of any security-critical operation running on the SoC. We
first formalize these requirements using the notion of a
2-safety hyperproperty [10] and then present how to make
this practical by formulating interval properties [27,36] for
unbounded property checking (Sec. 3.2).

• We present how the general characteristics of SoC access
control architectures can be leveraged to decompose the
global verification problem in the spatial and temporal
domain. This leads to a verification methodology involving
several optimizations which are key for the computational
tractability of our formal approach (Sec. 3.3).

• We propose a scalable and exhaustive verification algo-
rithm for the system’s operation integrity. The algorithm
decomposes the global computational problem in terms of
possible scenarios for the propagation of influences from
a malicious IP. This decomposition is not only based on
circuit structure (paths, components) but takes into account
the semantics of the logic circuit when analyzing these
propagation scenarios. The global proof is obtained by it-
eratively performing inductions over the proof instances

generated by this decomposition. Furthermore, the algo-
rithm integrates the optimizations that are made possible
by our general methodology (Sec. 3.4).

• A design flow is presented which proposes using UPEC-OI
in a verification-driven development approach. An SoC
design resulting from this flow is formally guaranteed to be
free of integrity vulnerabilities in its access control system
(Sec. 4).

• We demonstrate the effectiveness and feasibility of the ap-
proach on an OpenTitan SoC by upgrading its interconnect
to provide access control against untrusted IPs. We present
vulnerabilities detected by the approach, as well as its com-
puter resource usage. We prove for the final system design
that it is free of any hardware vulnerabilities that could be
exploited by a third-party IP to violate the integrity of any
security-critical operation (Sec. 5).

To the best of our knowledge, this is the first time that this
can be demonstrated for an RTL implementation of an SoC
of realistic size.

2 Background

This section briefly explains some background concepts that
our work builds upon. Section 2.1 covers basic architecture
of modern SoCs, with emphasis on the system-wide commu-
nication between its IP units. Sec. 2.2 explains the principles
behind interval property checking (IPC), a version of bounded
model checking (BMC) that allows unbounded formal proofs
of properties. Finally, Sec. 2.3 covers the UPEC verification
methodology, upon which our approach is based.

2.1 SoC Architecture and Communication

A modern SoC comprises a number of components (IPs) that
perform specific tasks and interact with each other based on a
defined communication protocol, such as AMBA R©AXI [7]
or TileLink [34]. This communication is often asymmetrical,
with some IPs assigned the role of controllers and others
the role of peripherals. CPU cores, DMA engines and debug
modules are typical examples of controller IPs. Controller
IPs can initiate transactions and send requests addressed to
specific peripheral IPs, such as memory modules, input/output
(I/O) devices, hardware accelerators, etc. The peripherals are
expected to fulfil the issued requests and respond accordingly.

Hardware that facilitates this communication and enforces
these protocols within the SoC is usually referred to as the
interconnect. This communication infrastructure can be imple-
mented as a centralized bus system, a crossbar or a network-
on-chip (NoC) [23]. Fig. 1 shows a basic SoC structure with a
crossbar-type interconnect. Here, every controller (C) is con-
nected to some or all peripherals (P) via dedicated channels.
In this example, the communication protocol is enforced by a

2780 32nd USENIX Security Symposium USENIX Association

C1
(RoT)

C2

Crossbar logic

R1

R2

A1

A2

A3

P1

P2

P3

Access Control Mechanism

I/O

I/O

I/O

C1
(TCB)

Figure 1: Basic SoC design with crossbar-type interconnect.

series of nodes. Every controller has a router node (R) respon-
sible for correct routing of each request to the appropriate
peripheral. In a similar manner, an arbiter node (A) exists
for every peripheral. These nodes are responsible for correct
arbitration if multiple requests are sent to the same peripheral
simultaneously.

For the rest of the paper, our approach is described relating
to SoCs with crossbar-type architectures. It should be noted,
however, that the proposed approach can be applied to other
on-chip communication structures in an analogous way.

2.2 Interval Property Checking
UPEC-OI uses a SAT-based formal verification technique
called Interval Property Checking (IPC) [27, 36]. To verify
that the design under verification (DUV) satisfies a property
of temporal length k, an IPC solver "unrolls" the DUV into k
combinational copies of itself, such that each copy j (0≤j<k)
represents the circuit’s state at the j-th clock cycle. It then
assigns symbolic values to the DUV’s input variables and its
starting state. In principle, this means a SAT solver will search
for any combination of input and state values in order to find
a counterexample to the property. If the property holds for all
possible input and starting state combinations, an unbounded
formal proof of the property has been obtained. A failing
property is documented by the solver with a counterexample
that shows a starting state and inputs to the DUV leading to a
state that violates the property. In IPC, the starting state may
be unreachable from reset, in which case the counterexample
is spurious and called a false counterexample. In this case,
the property needs to be strengthened with invariants so that
unreachable states are excluded in the IPC starting state.

2.3 Unique Program Execution Checking
The original Unique Program Execution Checking (UPEC)
methodology [14, 15] is a formal verification methodology
that exhaustively searches for transient execution side chan-
nels in RTL hardware designs. It is based on a 2-safety hyper-

assume:
at t: micro_soc_state1 = micro_soc_state2;
at t: public_mem1 = public_mem2;

prove:
at t + k: soc_state1 = soc_state2;

Figure 2: UPEC property for confidentiality.

property [10] which verifies whether protected confidential
information can affect program execution in terms of cycle-
accurate timing or valuation of the architectural (program-
visible) registers. Any violation of this statement indicates the
existence of a side channel that could expose the secret.

The UPEC property is specified as an interval property that
is checked over a tailor-made 2-safety model, which consists
of two identical instances of the DUV. In the hardware do-
main, such 2-safety models are also referred to as miters. This
allows for a formulation of UPEC using standard property
specification languages (PSL), such as SystemVerilog Asser-
tions (SVA). Fig. 2 shows the UPEC property in a pseudo-
code PSL. The general structure of the property is that of
an implication between an assumption and a commitment. In
the assumption, initially, every microarchitectural state bit is
assumed to be equal in value to its counterpart in the other
instance. The only exceptions are the state variables that con-
tain some secret information. Since they are the only state
variables that differ at time point t, these signals are also the
only possible cause of any difference appearing elsewhere
in the system after t. This propagation of the difference is
checked by the commitment term, soc_state1 = soc_state2,
which states that all previously equal microarchitectural state
variables remain equal. If the property fails, the difference
has spread to other state variables of the core. If any of those
affected state bits is program-visible, i.e., architectural, a side
channel is detected. If the affected state bits are not program-
visible, no side channel has yet been formed. In this case,
however, the property’s time k needs to be extended in order
to check whether the affected microarchitectural state can
eventually cause a change in the architectural state of the core.
This iterative approach eventually finds all transient execution
side channels in the design. UPEC-OI adapts this approach
for finding access control integrity vulnerabilities at the level
of entire SoCs.

3 UPEC for Operation Integrity

This section presents the theoretical underpinnings of UPEC-
OI. We begin by specifying the threat model for an SoC in
Sec. 3.1. The formulation of the UPEC-OI property, first the-
oretically as a hyperproperty and then as an interval property,
is given in Sec. 3.2. Optimizations necessary to make the
approach feasible are discussed in Sec. 3.3. Finally, the full
iterative induction procedure is presented in detail in Sec. 3.4.

USENIX Association 32nd USENIX Security Symposium 2781

3.1 Threat Model

Our threat model considers an SoC equipped with an access
control mechanism capable of forming trust boundaries be-
tween different IPs. One controller IP is considered a trusted
computing base (TCB). This is a trustworthy IP that has sole
control over the access control policy. Prior to a security-
critical operation, the trusted IPs required for its execution
are to be isolated such that the secure operation cannot be
tampered with by the rest of the SoC. The TCB elevates the
required IPs to a higher security level by modifying the ac-
cess control mechanism’s configuration registers. This is done
according to the security specification of the system, which
defines the complete set of different security-critical modes
that the system could be in and designates the trust bound-
aries between the IPs for each of those modes. An example of
such an isolation mechanism is illustrated in Fig. 1. The high-
and low-level security domains (i.e., trusted vs. untrusted IPs)
are marked with continuous and dashed outlines, respectively.
Inter-domain communication, marked with light gray chan-
nels, needs to be limited such that the security-critical opera-
tion cannot be tampered with. The access policy is enforced
by the crossbar logic and trusted IPs.

Our threat model assumes that some security-critical opera-
tion is taking place. All IPs that are not in the higher security
domain are assumed to have malicious intent to interfere
with the secure operation. These IPs can work individually
or jointly, sending multiple messages through the crossbar if
necessary in an attempt to bypass the existing access control
system. All high-security-level IPs and the outside environ-
ment are considered trustworthy and will not intentionally
assist the low-security-level IPs in their malicious attempt.

3.2 UPEC-OI Property Formulation

We label the sets of our SoC’s primary input and output vari-
ables as X and Y , respectively, and its microarchitectural state
variable set as Z. The state variables that configure the access
control policy of the SoC are labeled as L⊆ Z. The set of per-
missible access control configurations, i.e., the set of allowed
valuations of L, is labeled as Λ = {λ1,λ2, ...}. This set is pro-
vided by the security specification of the system. We also
define m as the number of IP devices in the SoC. We group
all of the SoC’s hardware components in a set D = {D0,D1,
...,Dm}, such that D0 is the SoC’s crossbar logic, which in-
cludes L, while D1 to Dm are the SoC’s IPs. As an example,
our SoC in Fig. 1 would have m = 5, with D0 encompassing
all hardware in the "crossbar logic" box, while IPs C1, C2, P1,
P2 and P3 would be assigned labels D1 to D5. Configuration
registers of the "access control mechanism" box are labeled
as L.

Each Di (0≤ i≤ m) has its own sets of input, output and
state variables, Xi, Yi, and Zi ⊆ Z. As illustrated in Fig. 1,
an individual IP’s output signals are either connected to the

crossbar or belong to the SoC’s primary outputs:

Yi ⊆ X0∪Y

We consider the crossbar itself not to have any primary I/O.
If this is not the case in practice, then such primary I/O can
be modeled as a separate IP. We can therefore say that

X0∩X = Y0∩Y = /0

We also observe that each IP Di has a security level, li, as
determined by the access control configuration λ ∈ Λ, where
λ is a valuation of the registers L. We consider a two-level se-
curity mechanism, such that high-security-level devices have
their li set to 1, while low-security-level devices have their li
set to 0. D0 itself might not have a security level defined in λ,
however UPEC-OI always considers l0 = 1. We separate the
SoC’s state variables in Z and output signals in Y into high-
security-level (Zh, Yh) and low-security-level (Zl , Yl) signals.
We define the high-level state variables as all those that belong
to the trusted IPs or the system’s crossbar:

Zh =
m⋃

i=0

{
Zi, li = 1;
/0, li = 0

(1)

Similarly, we define the high-level output variables as all
primary outputs belonging to trusted IPs:

Yh =
m⋃

i=0

{
Yi∩Y, li = 1;
/0, li = 0

(2)

The state and primary output signals from untrusted IPs are
low-security-level variables:

Zl = Z \Zh (3)

Yl = Y \Yh (4)

Note that the critical hardware infrastructure that regulates
the access control configuration, i.e., the TCB, as well as all
state variables L, is always a part of Zh.

For the remainder of this paper, we model the SoC as a
deterministic Mealy-type finite state machine. This allows us
to formalize the notion of a security-critical operation, as well
as the requirements for preserving its integrity:

Definition 1 (Security-Critical Operation). A security-
critical operation of an SoC is a sequence of valuations of Zh,
during which the valuation of L is an element of Λ and is not
changed by the TCB.

Definition 2 (Operation Integrity). Integrity of a security-
critical operation requires that the output behavior of the high-
security-level domain, i.e., the values of SoC’s high-security-
level output variables Yh, is determined only by the values
of the system’s input variables X and its high-security-level
state, as given by Zh.

2782 32nd USENIX Security Symposium USENIX Association

We can express Def. 2 as a non-interference requirement for
our SoC [16]. Since the SoC is a deterministic state machine,
its outputs through Y are always based on inputs provided
through X and states given by Z. We can then argue that the
SoC’s high-security-level domain outputs, Yh, can only be
non-deterministic w.r.t. X and Zh (Def. 2) if Yh depends on
Z \ Zh = Zl . By restricting information flow from Zl to Yh,
we preserve operation integrity. This is similar to the idea
in [31], where a set of observational determinism proper-
ties is defined to ensure confidentiality of data in a software
program. Observational determinism checks for unwanted
information flows from high-security to low-security level do-
mains. We adapt this concept to encompass SoC hardware and
formulate restrictions to the information flow in the opposite
direction. This allows us to reason about the non-interference
with the SoC’s secure state instead of the secure state’s non-
observability.

We express this information flow restriction as a 2-safety
hyperproperty [10]. We define the term trace to express a
sequence τ = e0 · e1 · ...en, with et being a tuple 〈it ,st ,ot〉,
where it is the valuation of our SoC’s input variables X at
time point t, st is its state, as represented by the value of Z
at t and ot is the valuation of its output variables Y at t. We
can then define the following sequences:
• stateh(τ) is the sequence of states of the SoC’s high-

security-level domain in a trace τ. The notation
stateh(τ)[t] represents the valuation to the state variables
in Zh at time point t.
• in(τ) is the sequence of valuations to the SoC’s input

variables X in a trace τ. Likewise, in(τ)[t] is the valuation
to X at time point t.
• outh(τ) is the sequence of valuations to the SoC’s high-

security-level output variables Yh for a trace τ. The term
outh(τ)[t] represents the value of Yh at a time point t.

We define a set T that includes all traces τ of arbitrary
length, for which stateh(τ) is a security-critical operation. For
all the above defined sequences s(τ ∈ T), we define s(τ)[t..]
to represent a suffix of s that starts at and includes the time
point t.

With these notations, we formalize Def. 2 as follows: For
any two traces running security-critical operations on the SoC
whose secure-domain state at time t is identical, and whose
input sequence at and after t is the same, operation integrity
guarantees that the secure domain’s outputs after t are also
identical:

OI ∆
={(∀τ1, τ2, t where τ1,τ2 ∈ T, t ∈ N :

stateh(τ1)[t] = stateh(τ2)[t] ∧ in(τ1)[t..] = in(τ2)[t..]

=⇒ outh(τ1)[t..] = outh(τ2)[t..])}

The formulated hyperproperty fails if any difference occurs
in Yh at or after t. It can be noted that the only possible dif-
ference between the two traces at t is the low-security-level

domain’s state, as given by Zl . Therefore, any difference in the
visible behavior of the SoC’s secure domain after t can only
be caused by propagation from Zl . We call Zl the propagation
source in our hyperproperty.

It should be noted that OI defines the hardware property for
operation integrity. Integrity of the overall hardware/firmware
system also relies on properly developed firmware that ac-
tivates and configures the underlying access control mech-
anism according to the security specification. For example,
it is the responsibility of the TCB’s firmware to make sure
that all IPs elevated to the high-security-level domain are
trusted, properly configured and available. Formulating such
firmware-level verification targets is out of scope of this pa-
per. However, precisely defining and verifying the hardware
requirements from Def. 2 enables the separation of concerns
in the security verification process and provides trust and the
needed hardware guarantees for the firmware developers.

assume:
at t: high_micro_state1 = high_micro_state2;
during t..t + k: primary_inputs1 = primary_inputs2;
during t..t + k: access_control_configured1();

prove:
at t + k: secure_outputs1 = secure_outputs2;
at t + k: high_soc_state1 = high_soc_state2;

Figure 3: UPEC-OI property.

C
1

So
C

 1

P
1P
2P
3

A
cce

ss C
trl

C
1

So
C

 2

P
1P
2P
3

A
cce

ss C
trl

high_micro_state_1
=

high_micro_state_2

high_soc_state_1 =
high_soc_state_2 ?

p
rim

a
ry_in

p
u

ts_
1

 = p
rim

a
ry_in

p
u

ts_2

secu
re_o

u
tp

u
ts_

1
 = secu

re_o
u

tp
u

ts_2
 ?

C
2

C
2

a
ccess_co

n
tro

l_
co

n
fig

u
red

_
1

()

Figure 4: SoC miter for UPEC-OI

We now transform our OI hyperproperty into an interval
property that is checked on a miter model. Fig. 3 shows the
UPEC-OI property expressed with a pseudo-code PSL. An
example setup of the miter model is represented graphically
in Fig. 4. Assuming the same example for an access control
policy as in Fig. 1, internal state bits of the low-security-
level domain are labeled as the propagation source. The as-
sumption high_micro_state1 = high_micro_state2 assumes
all non-propagation-source state variables (area encircled by
dotted lines) to be equal in value to their counterpart in the
other instance at starting time t. The term primary_inputs1 =
primary_inputs2, similarly, assumes the primary inputs X of

USENIX Association 32nd USENIX Security Symposium 2783

the SoC to be equal in value for the two instances. This as-
sumption has to hold for the whole duration k of our property.

This setup models the two traces with identical input se-
quences and starting state, analogous to the OI hyperproperty.
It also ensures Zl to be the only possible source of difference
propagation.

The assumption macro access_control_configured1() re-
stricts the property checker to only cover scenarios where
a security-critical operation (Def. 1) is taking place on the
SoC, i.e., it excludes from consideration traces which are not
in T . It does this by constraining the valuation of L to be one
of the elements in Λ, as per the requirement of Def. 1. (In
case there is more than one element in Λ, a separate property
for each element can be formulated and verified. We assume
that, in this process, each element of Λ is correctly captured
by access_control_configured1(). In practice, the number of
permissible configurations is typically small, since the trust
boundary in an SoC is usually fixed based on the system
architecture.)

The assumption access_control_configured1() is pro-
jected onto only SoC instance 1 of the miter model
for the whole property duration k, essentially making L
constant in that SoC instance. The logical intersection
of access_control_configured1() and high_micro_state1 =
high_micro_state2 has two implications: Firstly, it implies
that the valuation of L in SoC instance 2 becomes the same
element of Λ at time t as in instance 1, as L is a subset of Zh.
Secondly, it implies that the TCB does not modify L on its
own in either instance: The TCB is also a part of Zh and there-
fore has identical behavior in both instances, unless influenced
by the untrusted propagation source, Zl . If the untrusted prop-
agation source can tamper with the TCB behavior and can
change the valuation of L, the resulting integrity violation will
be detected since the valuation of L is not restricted after t
in the second instance. Formulating this macro requires only
architectural level knowledge of the access control mecha-
nism’s configuration registers and should thus be simple even
for complex access control implementations. The interested
reader can find an example formulation of this macro in Ap-
pendix A.

The commitment term secure_outputs1 = secure_outputs2
monitors the secure domain’s output variables Yh. As per our
definition, a counterexample to this statement represents an
integrity violation. However, proving a property with this com-
mitment term alone would only provide a guarantee bounded
to time k. Proving operation integrity exhaustively requires k
to equal the SoC’s sequential depth. In practice this is not
feasible, as unrolling an SoC of realistic size for more than a
few clock cycles is prohibitively expensive.

In order to solve this problem, UPEC-OI pursues an in-
ductive reasoning approach, inspired by the UPEC method-
ology for detecting confidentiality violations [15]. The key
element of UPEC-OI is monitoring the internal microarchi-
tectural state of the high security domain, as represented

by Zh. This is covered by the second commitment term,
high_soc_state1 = high_soc_state2. Including microarchitec-
tural state variables in the proof is a key factor for the scal-
ability and exhaustiveness of our technique, and forms the
foundation of the proposed verification methodology for ob-
taining unbounded proofs, as described in Sec. 3.4.

We adapt the terminology from [15] to classify the coun-
terexamples obtained from our property depending on which
of the two commitments are violated:

Definition 3 (T-alert). If a counterexample to the UPEC-OI
property demonstrates a trace in which the cycle-accurate
sequence of valuations to Yh is a function of the propagation
source, i.e., the valuations to Yh become different between
the SoC instances in the miter model, then integrity of the
operation is violated and the counterexample constitutes a
trespass alert.

Definition 4 (P-alert). If a counterexample to the UPEC-OI
property demonstrates a trace in which the cycle-accurate
sequence of valuations to the secure domain’s microarchitec-
tural state Zh is a function of the propagation source, i.e., the
valuations to Zh become different between the SoC instances
in the miter model, then the counterexample is not a viola-
tion of the operation integrity and constitutes a propagation
alert.

Our overall methodology relies on finding P-alerts to de-
compose the verification problem. By checking and modify-
ing the UPEC-OI property iteratively for incrementally in-
creasing values of k, we can track the difference propagation
from Zps across the SoC’s microarchitecture to see whether
it can eventually reach a secure output variable and cause a
T-alert.

3.3 Possible Optimizations
This section presents optimizations to the UPEC-OI prop-
erty and verification model that help make the methodology
scalable as well as more intuitive and comprehensible to the
verification engineer.

3.3.1 Adding Architectural State Variables as T-alert
triggers

Even though observing the output variables Yh is enough to
detect all operation integrity violations, it is worth noting that
propagation of the difference to certain bits in Zh can ob-
viously lead to changes in the secure domain’s behavior at
a later time. These are state variables that are directly used
by the secure software running on the SoC, i.e., the secure
domain’s architectural state variables Za ⊆ Zh. By acknowl-
edging that changes to these bits already constitute a T-alert,
we do not need to further increase the property time win-
dow k to track the inevitable propagation of this difference
to Yh. This optimization greatly improves the scalability of

2784 32nd USENIX Security Symposium USENIX Association

our methodology. Even though these architectural signals are
specific to each design, identifying them is simple. For CPUs,
obvious candidates are the register file, control and status reg-
isters, the program counter, etc. For peripherals, these could
be any memory elements that can easily be accessed by secure
controllers, e.g., through a load request via the interconnect.

3.3.2 Spatial Decomposition of the Propagation Source

In order to fully verify the secure operation’s integrity, all un-
secure variables in Zl need to be modeled as the propagation
source. Although it is possible to do this with all signals at
once, it can be beneficial to decompose the threat surface spa-
tially into several propagation sources Zps ⊆ Zl to be checked
individually. Modeling one low-security-level IP as Zps at a
time is a good rule of thumb. In our example SoC of Fig. 4,
this means modeling P3 as a propagation source and constrain-
ing C2 as equal between the two instances, in the same way
as constraining all of Zh. After the verification is complete,
C2 is modeled as the next Zps. This decomposition makes
the debugging process easier by avoiding difficult counterex-
amples where multiple unrelated propagations from different
low-security-level IPs occur simultaneously.

It should be noted that this optimization does not compro-
mise the generality of the proof. An attack requiring multiple
IPs to work together is still guaranteed to be detected by
UPEC-OI thanks to IPC’s symbolic-state initialization of all
other involved IPs and/or the secure domain’s state. A coun-
terexample then demonstrates a scenario where the differing
influence from Zps in the two instances determines whether
the joint attack is successful.

3.3.3 Sound Blackboxing

The computational complexity of the IPC proof can be further
reduced by exploiting two key observations: (1) All commu-
nication (and therefore interference) between IPs in an SoC is
realized through their interfaces with the crossbar. These IP
interface signals, thus, serve as information bottlenecks which
can be monitored to infer changes of the IP’s internal state.
(2) IPs whose states were constrained to be identical in the
two instances at t will go through identical states also after t
for as long as the influence from Zps has not yet reached them.

An individual IP can be blackboxed by hiding its internal
state bits and primary I/O and approximating its interface with
the crossbar as new primary I/O. This reduces the size of the
model and speeds up computation time. Since two instances
of an IP with the same state will produce identical outputs
to the rest of the system, we can blackbox all IP devices Di
whose Zi∩Zps = /0 and simply constrain their output variables
to the crossbar as equal in value in the two instances. In
the commitment of our property, instead of monitoring the
internal state of the IP, it is sufficient to monitor its input
variables from the crossbar. If a counterexample shows a

high_micro_state_1
=

high_micro_state_2

high_soc_state_1 =
high_soc_state_2 ?

So
C

 1

A
cce

ss C
trl

So
C

 2

A
cce

ss C
trl

b
b

ox_
in

p
u

ts_1
 = b

b
ox_

in
p

u
ts_2

b
b

ox_
o

u
tp

u
ts_1

 =
 b

b
ox_

o
u

tp
u

ts_2
 ?

a
ccess_co

n
tro

l_co
n

fig
u

red
_1

()

Figure 5: SoC miter with sound blackboxing of all IP devices

propagation of the difference to the IP’s interface, the IP
needs to be whiteboxed and the property check repeated.

If a part or all of an IP’s internal state variables are mod-
eled as Zps, the opposite can be done: instead of leaving its
state variables unconstrained, it is enough to blackbox the
component and leave its output variables to the remaining
part of the system unconstrained. However, this comes with
a trade-off: complete blackboxing of the propagation source
IP allows the IPC solver to assume any output combinations
to its interface with the crossbar. Therefore, it can present
counterexamples that the IP in question could not create in
reality, possibly causing unnecessary overhead in the verifica-
tion process. However, if the goal is to create an access control
mechanism that is resilient to any sorts of inputs from a con-
nected IP, e.g., to protect against third-party IPs with unknown
RTL, the IPC’s free input representation of the component
becomes a useful and exhaustive verification tool.

Fig. 5 shows our miter model example with all IPs black-
boxed. P3, which is now modeled as a separate Zps, is approxi-
mated simply through its interface with the crossbar logic. All
other input variables are constrained to be equal in value, and
all output signals to blackboxed components are monitored
in order to detect possible difference propagation.

3.3.4 Temporal Isolation of the Propagation Source

In addition to spatial segmentation of the threat surface into
several propagation sources, we also introduce temporal iso-
lation of the source’s differential input. Assuming that the IP
containing Zps is blackboxed and that the influence of the IP
is approximated by primary inputs to the rest of the SoC, it is
sufficient to allow these primary inputs to be different in the
two instances for only the property’s initial clock cycle t. The
generality of our proof is still not lost: if an attack requires a
chain of multiple messages to be sent from the propagation
source IP, the IPC solver can assume the miter model’s state
at t as if some of those messages had already been sent. It can
also continue delivering the remaining messages in the chain
after t through the malicious IP’s interface. This optimization
prevents the IPC solver from generating a chain of multiple
unrelated attacks by the same Zps.

USENIX Association 32nd USENIX Security Symposium 2785

3.4 UPEC-OI Verification Methodology
As already mentioned, achieving an unbounded formal proof
of operation integrity with the UPEC-OI property by only
checking for T-alerts is infeasible in practice. Instead, our
methodology decomposes the verification problem by check-
ing not only for T-alerts but also for P-alerts in an iterative,
induction-based approach. This splits the verification into
two complementary procedures, a base and a step proof. The
following section develops the details of our methodology,
while also integrating the optimizations of Sec. 3.3.

Algorithm 1 UPEC-OI Verification Approach

1: procedure UPEC-OI(DUV, sec_config)
2: miter← Create_Miter_Model(DUV)
3: PS← Spatial_decomposition(DUV, sec_config)
4: for each Zps in PS do
5: miter← BBox_IPs(miter)
6: Create_UPEC-OI_Macros(miter, Zps)
7: CEX ← IPC(UPEC-OI_Comb)
8: if CEX 6= /0 then return CEX
9: UPEC-OI_BASE_PROPERTY_CHECK // (Alg. 2)

10: A =
⋃k

i=1 Ai
11: UPEC-OI_STEP_PROPERTY_CHECK // (Alg. 3)
12: return "SECURE"

Algorithm 1 shows the top-level view of the UPEC-OI
verification approach. If an operation integrity vulnerability
exists in a design, the algorithm finds it in form of a T-alert.
Otherwise, it formally guarantees operation integrity for the
given access control configuration. The algorithm requires
two inputs: the DUV itself and its desired access control
configuration, sec_config. As can be seen in lines 2–3, the
approach begins by creating the miter model and decompos-
ing the unsecure domain into several propagation sources, as
explained in Sec. 3.3.2. The verification procedure is to be
conducted for every propagation source separately. As dis-
cussed in Sec. 3.3.3, the miter model’s IPs are blackboxed
away in line 5. The only components that remain white-
boxed are the crossbar itself and any potential IPs whose
state bits are in the immediate fanout of Zps. The necessary
UPEC-OI property macros, such as high_micro_state or ac-
cess_control_configured() are created according to the loca-
tion of current Zps (line 6).

In our algorithm, “IPC (prop)” marks running a check of
property prop with a formal IPC verification tool. For ev-
ery run, the tool returns either a counterexample where prop
fails, or /0 if it holds. In line 7, we run the solver for the first
time with a special version of the UPEC-OI property, which
we denote as UPEC-OI_Comb. This property checks for the
existence of a combinational logic path between the propa-
gation source and the secure domain’s primary outputs. In
this special case, the commitments are checked at the same
clock cycle as the assumptions (k = 0). Since no state vari-

UPEC-OI_Base (affected_P_var, k, alert_candidates)
assume:

at t: high_micro_state1 = high_micro_state2;
during t..t + k: primary_inputs1 = primary_inputs2;
during t..t + k: access_control_configured1();
at t + k−1: affected_P_var1 6= affected_P_var2;
during t..t + k: bbox_inputs1 = bbox_inputs2;
during t +1..t + k: prop_source_inputs1 = prop_source_inputs2;

prove:
at t + k: alert_candidates1 = alert_candidates2;

Figure 6: UPEC-OI property for induction base

ables outside of Zps can be different at time t, only the SoC’s
secure output variables Yh are checked. If this property de-
tects a propagation through a combinational path to Yh, an
integrity violation is already discovered, the procedure is ter-
minated and the counterexample is returned to the verifica-
tion engineer (line 8). If this is, however, not the case, the
procedure is ready to start the induction base process. (In
Algorithm 1, UPEC-OI_BASE_PROPERTY_CHECK and UPEC-
OI_STEP_PROPERTY_CHECK should be read as verbatim tex-
tual replacements of Algorithms 2 and 3, respectively, not
as procedure calls. For example, Algorithm 2 generates the
sets Ai that are used in line 10.)

Besides finding any possible T-alert, the purpose of the
base procedure is to compute the set of all high-security-
level microarchitectural state variables to which the influence
from Zps can propagate in a given time window k. Once
all such variables are documented for a given k, k is incre-
mented, a new time frame is appended to the miter model
and the process is repeated until, eventually, a terminal k is
found where no further variables are affected by difference
propagation. Fig. 6 shows the UPEC-OI property modified
for the base proof. In every base property check, a P-alert
discovered in the previous iteration is added as an assump-
tion to the property. This is done by passing the affected
variable from the P-alert counterexample as an argument (af-
fected_P_var) to the property, and then assuming it as unequal
at time k−1, recreating the propagation scenario of the previ-
ously obtained counterexample. This decomposes the overall
search into proof instances of reduced complexity. Black-
boxed components of the SoC are constrained to produce in-
puts to the rest of the system that are equal between the two in-
stances with the term bbox_inputs1 = bbox_inputs2. The term
prop_source_inputs1 = prop_source_inputs2 ensures tempo-
ral isolation of the propagation source’s differential input, as
explained in Section 3.3.4.

The base property’s commitment part checks for dif-
ference propagation to any of the variables of interest
(alert_candidates). Depending on the stage of our iterative
procedure, one of three different variable groups are chosen
as alert_candidates:

1. TC – variables belonging to Za or Yh that are not black-
boxed (T-alert candidates),

2786 32nd USENIX Security Symposium USENIX Association

2. PC – all other so far unaffected high-security-level mi-
croarchitectural state variables that are not blackboxed
(P-alert candidates),

3. BC – interface signals with blackboxed components
(treated similarly like outputs).

Algorithm 2 UPEC-OI Base Property Check

1: k← 1
2: A0←{NIL}
3: repeat
4: Ak← /0

5: for each v in Ak−1 do
6: CEX ← IPC(UPEC-OI_Base(v,k,TC))
7: if CEX 6= /0 then return CEX
8: repeat
9: CEX ← IPC(UPEC-OI_Base(v,k,PC))

10: ak = Ploc(CEX)
11: PC← PC \ak
12: Ak← Ak ∪ak
13: until CEX = /0

14: repeat
15: CEX ← IPC(UPEC-OI_Base(v,k,BC))
16: ak = Ploc(CEX)
17: Whitebox_affected_module(ak)
18: CEX ← IPC(UPEC-OI_Base(v,k,Yh))
19: if CEX 6= /0 then return CEX
20: until CEX = /0

21: k← k+1
22: until Ak−1 6= /0

Algorithm 2 shows the iterative base procedure. The first
step initializes two control variables used in the approach.
Variable k indicates the base property time interval which
increases as the procedure advances. Ak is the set of all already
affected P-alert variables at time k. The set A0 is assigned a
special symbol, NIL, to indicate that for the initial time point,
k = 1, the affected_P_var argument to the UPEC-OI_Base
property is ignored, i.e., the property omits the inequality
assumption for affected_P_var.

The procedure first checks for T-alerts, as those immedi-
ately point to an integrity violation and require human atten-
tion (lines 6–7). If no T-alerts are found for a given k, the
procedure continues by looking for P-alerts. If a P-alert is
found, the operation Ploc(CEX) extracts affected variables
from the counterexample CEX and groups them into a set ak.
These variables are now considered as affected, added to the
global set Ak and removed from the PC list. Once an affected
microarchitectural state variable is removed from PC, it will
no longer be a candidate variable in the future iterations of
the property check. This removes the possibility of getting
multiple P-alerts pointing to the same affected state variable
and thus falling into an infinite loop. It also forces the IPC
solver to exhaustively search for other state variables that can

UPEC-OI_Step (affected_P_var, P_alert_candidates,
alert_candidates)

assume:
at t: P_alert_candidates1 = P_alert_candidates2;
at t: T _alert_candidates1 = T _alert_candidates2;
during t..t +1: primary_inputs1 = primary_inputs2;
during t..t +1: access_control_configured1();
at t: affected_P_var1 6= affected_P_var2;
during t..t +1: bbox_inputs1 = bbox_inputs2;
at t +1: prop_source_inputs1 = prop_source_inputs2;

prove:
at t +1: alert_candidates1 = alert_candidates2;

Figure 7: UPEC-OI property for induction step.

trigger a P-alert for the given time k. The process is repeated
until no more P-alerts are found for the given k (lines 8–13).
It should be noted that Ploc(/0) = /0. Lines 14–20 check the
blackboxed component interfaces. If a counterexample shows
an input variable to a blackboxed device as affected, this
IP is whiteboxed and all UPEC-OI macros are modified ac-
cordingly (line 17). If the newly whiteboxed module has any
primary outputs, these have to be checked for possible T-alerts
immediately after.

The base procedure is repeated, incrementing k, until a
T-alert is detected or until k reaches a time point where no
P-alerts are found. In the latter case, we have obtained a
bounded proof of our SoC’s operation integrity for the time
window k. Any T-alert that can occur at a time point later
than k can only be caused by a difference between the two
instances in a microarchitectural state variable (i.e., P-alert) at
a time point k or earlier, which is guaranteed to be detected by
our base proof. This observation forms the basis for our induc-
tion step to obtain an unbounded proof regarding T-alerts of
arbitrary temporal length. We use the list of affected variables,
denoted by A in Algorithms 1 and 3, to decompose the step
proof of the induction procedure.

Fig. 7 shows the UPEC-OI property modified for the step
proof. Unlike its base counterpart, the step property does
not assume complete microarchitectural state equivalence
between the two instances of the SoC, but rather only equiva-
lence of state variables that have not yet been affected in the
base proof. This allows IPC’s symbolic-state initialization to
implicitly “fast-forward” from time k to a time point when
further propagation of the difference can occur. For that, the
step property only needs to span two clock cycles (from t
to t + 1). The variables that have been affected in the base
proof are used in assumptions of the step property via the
affected_P_var argument. The property is run iteratively sim-
ilar to the base proof, as can be seen in Algorithm 3. It should
be noted the main loop rooted in Line 1 iterates through all el-
ements of A, including the elements that are appended within
the loop rooted in Line 4.

If the step part also does not detect any T-alerts after com-
pletion, the complete UPEC-OI induction proof holds for the

USENIX Association 32nd USENIX Security Symposium 2787

Algorithm 3 UPEC-OI Step Property Check

1: for each v in A do
2: CE← IPC(UPEC-OI_Step(v,PC,TC))
3: if CE 6= /0 then return CE
4: repeat
5: CE← IPC(UPEC-OI_Step(v,PC,PC))
6: a1 = Ploc(CE)
7: PC← PC \a1
8: A← A∪a1
9: until CE = /0

10: repeat
11: CE← IPC(UPEC-OI_Step(v,PC,BC))
12: a1 = Ploc(CE)
13: Whitebox_affected_module(a1)
14: CE← IPC(UPEC-OI_Step(v,PC,Yh))
15: if CE 6= /0 then return CE
16: until CE = /0

given Zps. Finally, if the verification succeeds for every Zps in
the unsecure domain, operation integrity is guaranteed for the
given access control configuration, as denoted by line 12 in
Algorithm 1. A proof of completeness for the methodology is
available in Appendix B.

4 UPEC-OI-Driven Design Flow

This section proposes a UPEC-OI-driven design flow for ac-
cess control mechanisms in SoCs. Conventional verification
approaches require that detailed functional specifications of
the considered security mechanisms are created. This, how-
ever, is quite often prone to errors, since mapping abstract
security requirements into a detailed functional specification
is a difficult task. In UPEC-OI we can completely avoid this
problem. Instead of creating functional specifications we start
from the given threat model and only formulate the global
UPEC-OI property of Sec. 3. Counterexamples provided by
UPEC-OI directly point to the source of an integrity vulner-
ability and provide the designer with information about pos-
sible solutions on how to mitigate or eliminate such security
flaws.

Fig. 8 shows the basic steps of our design flow. The access
control security specifications (box I) are high-level descrip-
tions of the access control mechanism. They encompass de-
tails such as the number of security levels the system should
have, granularity of the domain separation (IP-level, address-
level, etc.) and, optionally, more advanced features, such as,
e.g., separation of read/write permissions. UPEC-OI prop-
erties are then formulated according to this information (cf.
Sec 6.2). The initial RTL design of the SoC (box II) is fed to
the UPEC-OI verification procedure of Sec. 3.4 (box III).

If UPEC-OI finds a T-alert, it returns a counterexample
which shows a scenario where operation integrity is breached.

System constraints
❖ Software assumptions
❖ Certified IP assumptions
❖ Environment constraints

UPEC-OI

Access Control Security
Specifications

Hardware Design (RTL)

Access control mechanism
with guaranteed operation

integrity

Manual refinement
of the access control

mechanism at the RTL

I II

III
IV V

VI

System Security Conditions
❖ Software requirements
❖ Certified IP requirements
❖ Environment restrictions

VII

Figure 8: UPEC-OI-driven design flow.

The manual inspection of the counterexample provides the
designer with valuable information on exact RTL signals in-
volved and pathways that need to be closed. The designer
can then manually refine the RTL design (box IV) until the
vulnerability is eliminated, i.e., it is no longer detected by
UPEC-OI.

Alternatively, counterexamples provided by UPEC-OI can
also show T-alerts which are facilitated by undesired behavior
of the trusted part of the system. These scenarios might not
pose an actual security threat if they correspond to behavior
that is spurious for the final design running secure firmware.
In such a case, additional constraints can be added to the
UPEC-OI properties. These restrict the proof from exploring
scenarios where the trusted domain exhibits behavior that is
precluded or forbidden in the deployed system. We present
several classes of counterexamples which might require such
constraints (box V):

Faulty behavior of a modifiable IP: A trusted component
that can be reliably refined upon request of the system integra-
tor is facilitating the integrity violation. Rather than extending
the access control hardware, the system integrator can add a
formal specification for the IP in question that forbids such
unwanted behavior. These constraints can usually be specified
at the interface of the IP with the rest of the system. The IP
design can then be enhanced and verified accordingly.

Wrong configuration: The counterexample shows be-
havior violating operation integrity due to the IPC solver
assuming a spurious configuration of the hardware (e.g., the
CPU’s memory protection is set up incorrectly). In such a
case, constraints are added to the UPEC-OI properties in form
of ISA-level configuration restrictions for programs perform-
ing these security-critical operations. The compliance of the
programs with these requirements can then be verified on the
firmware or software level.

Malicious inputs: The counterexample shows a T-alert
that is caused jointly by the propagation source and input
patterns from the outside. If these input combinations are not
realistic to occur during a security-critical operation, such as,
e.g., a debug request being sent through a JTAG interface, the

2788 32nd USENIX Security Symposium USENIX Association

UPEC-OI properties can be constrained from these cases, and
such input pattern restrictions can be provided to the end user
as formal conditions for operation integrity guarantees.

Unreachable state space: The counterexample shows
faulty behavior that is primarily due to IPC’s initialization
of the miter model in a state that is not reachable by the
SoC from reset. One or more hardware invariants have to
be written [27] to restrict the solver from entering that state
space.

After a T-alert has been handled accordingly, the verifica-
tion is restarted. This approach is repeated until no further
operation integrity vulnerabilities exist. The end product is a
secure-by-construction access control mechanism hardware
(Box VI). Furthermore, all additional constraints used in the
flow are now available as formal conditions that must be
enforced by software, other parts of hardware and/or the envi-
ronment to ensure operation integrity (Box VII). Appendix C
elaborates on this in more detail.

5 Approach Evaluation

We evaluated the proposed methodology by conducting a
case study on OpenTitan’s Earl Grey SoC [4]. This section
elaborates on how the chip was modified to include an SoC-
level access control mechanism, which was then enhanced
through the UPEC-OI-driven design flow. We present some
of the bugs discovered by the verification methodology and
the feasibility analysis of the approach. All experiments were
conducted on a commercial formal verification tool OneSpin
360 DV running on an Intel i7-6700 @ 3.40 GHz machine
with 32 GB of RAM and a Linux operating system. The base
model for our modified design was the OpenTitan silver re-
lease edition v4 [3]. All our modifications and the verification
code are openly available on GitHub [5].

5.1 Modifications on OpenTitan

OpenTitan is an open-source project aimed at developing a
reliable Root-of-Trust (RoT) SoC which can be used to ex-
ecute security-critical operations within a larger computing
environment [4]. Fig. 9 shows the basic structure of the Earl
Grey SoC. At the heart of this chip is a RISC-V Ibex CPU
core [2] which acts as the SoC controller and communicates
with various memory-mapped peripherals through load and
store requests. The SoC contains a few dozen peripherals, in-
cluding memories, I/O devices, resource managers, encryption
and hashing IPs, etc. Depending on their required clock rate,
the IP devices are either connected to the faster xbar_main
crossbar or the slower xbar_peri crossbar. The IP devices and
crossbars use the Ultra-Light TileLink protocol (TL-UL) [34]
for communication.

All OpenTitan IPs are developed in-house and verified to
comply with the overall SoC security requirements. Therefore,

JTAG

Ibex
CPU

xbar_main

rv_dm

ROM

flash

Access
Control

xbar_peri
GPIO,
I2C,
UART,
USB...

TL
output

ASYNC_FIFO

Figure 9: OpenTitan Earl Grey SoC with added components.

all of the SoC’s IPs are trusted and no dynamic access control
is implemented on the SoC level. However, our case study
considers a scenario where a user designs a system by using
the open-source Earl Grey platform as a starting point and
adding more functionality through integration of third-party
IPs. The implementation details of these IPs are unknown,
which requires the SoC to have a rigorous access control
mechanism in order to guarantee overall system security.

We have designed and integrated such an access control
mechanism into Earl Grey based on the principles laid out
in Sec. 3.1. The Ibex core was designated as the TCB and is
the only IP that can modify the access control mechanism’s
configuration registers. These keep track of the security level l
for every IP with a one-bit value (1 for high, 0 for low). The
routing logic in the crossbar has been modified to explicitly
reject requests from low-security-level controllers to high-
security-level peripherals. Communication in other directions
was still allowed, as it was believed that the already existing
crossbar microarchitecture would suffice to maintain opera-
tion integrity.

Next, we added a controller and a peripheral IP to the sys-
tem and connected it to xbar_main. These IPs model poten-
tially malicious components and can be seen in Fig. 9 as
marked with dashed outlines. It should be noted that adding a
controller IP is a realistic scenario in system integration, as
some IP devices may require controller privileges to properly
perform their functions. The actual RTL implementation of
the added components is not important for the sake of our
experiment, as they are modeling third-party IPs whose RTL
is unavailable and which will be blackboxed during the ac-
tual verification stage. Finally, the modified SoC was verified
regarding its functional correctness.

5.2 Vulnerabilities Found by UPEC-OI and
RTL Enhancements

Our access control policy considers the two added IPs as
low security level, while all other devices are considered as
high-security-level IPs. This configuration makes sense, for

USENIX Association 32nd USENIX Security Symposium 2789

C1
(RoT)

xbar_main

R1

R2

Ap

Ibex
CPU

xbar_peri

Rp

P1p

Pnp
PORT

CONTENTION!Bad IP

(a) Before

C1
(RoT)

Bad IP

xbar_main

R1

R2

Apℎ
Ibex
CPU

xbar_peri

Rpℎ P1p

PnpAp𝑙 Rp𝑙

(b) After

Figure 10: Port contention vulnerability (a) and its fix (b).

example, during system boot-up to ensure that untrusted IPs
cannot interfere with system initialization. Since the TL-UL
protocol uses a valid-ready handshake, the ready output sig-
nals from both IPs were modelled as separate propagation
sources, as they are not semantically related to the other in-
terface signals. Therefore, the low-security-level domain was
segmented into four propagation sources: (i) controller IP
request signals, (ii) controller IP ready signal, (iii) peripheral
IP response signals and (iv) peripheral IP ready signal.

The iterative induction procedure was run separately for
every propagation source, as per the steps outlined in Sec. 3.4.
Our verification methodology found 8 weaknesses in both the
added access control RTL and already existing hardware. In
the following, we present the most interesting vulnerabilities
detected and the fixes that mitigate them.

5.2.1 Port Contention for Access to "xbar_peri"

As mentioned before, Earl Grey’s interconnect comprises two
crossbars, xbar_ main, which is connected to the CPU, high
frequency peripherals, as well as our added malicious IPs, and
xbar_peri, which is connected to slower peripherals. The two
crossbars communicate through a bridge using the TL-UL
protocol. As can be seen in Fig. 9, a special FIFO synchro-
nizes messages from one crossbar’s clock domain to that of
the other.

Our access control mechanism uses the already existing
address decode logic in the crossbars. After a request’s re-
cipient peripheral has been determined, the access control
hardware checks the security levels of the issuing controller
and peripheral before allowing the request to be forwarded.
Since address decoding for requests designated to peripher-
als on xbar_peri is done within xbar_peri itself, both high-
and low-security-level requests pass through the xbar_main -
xbar_peri interface without any checks.

UPEC-OI found a counterexample demonstrating how the

malicious controller IP could exploit this to slow down a
security-critical operation involving a peripheral connected
to xbar_peri. Fig. 10a displays the scenario. Both controllers,
the high-security-level Ibex core and the low-security-level
malicious IP attempt to send a request to xbar_peri in the
same clock cycle, causing port contention. Since no access
control is imposed on the interface between crossbars, both
requests reach the arbiter node Ap for xbar_peri, which im-
plements a round-robin arbitration scheme. The IPC solver
assumed a starting state where it is the malicious IP’s turn to
be prioritized in the arbitration. Therefore, the CPU’s security-
critical request is put on hold for at least one clock cycle. This
seemingly insignificant delay is still enough to cause a stall
in the CPU’s pipeline, or, as seen through the UPEC-OI coun-
terexample, is enough to allow difference propagation to the
CPU’s program counter. The delay can become much greater
if the malicious controller floods xbar_peri with many re-
quests and fills up the asynchronous FIFO. In this case, a
secure request from the CPU would first have to wait for all
unsecure requests in the FIFO to be processed, which can
cause significant stalls in the operation time.

UPEC-OI also showed that simply changing the arbitration
scheme to a fixed priority for high-security-level requests
was not enough, as it did not solve the issue of low-security-
level requests being ahead of a secure request in the FIFO.
In order to completely remove this vulnerability, all timing
dependency between high-security-level requests and low-
security-level messages had to be eliminated. We, therefore,
introduced another interface between the two crossbars. Now,
the different security domains send requests through separate
interfaces, with a fixed priority for servicing the high-security-
level interface on xbar_peri’s side. This way, the low-security-
level messages can still reach xbar_peri, but cannot interfere
with the timing of high-security-level messages. Fig. 10b
shows the implemented enhancement.

5.2.2 Stalling by Keeping the "ready" Signal Low

Suppose some peripheral IPs were in the middle of fulfilling a
request for our malicious controller when they were elevated
to the high-security-level domain. If they are not allowed
to respond to the malicious controller, they will never be-
come available for the pending secure operation. This is why
communication in the direction high-security peripheral→
low-security controller was still allowed by our access control
mechanism. However, as already mentioned, the TL-UL pro-
tocol requires a ready signal be sent from the receiving side
to complete a transaction. UPEC-OI showed how this allows
the malicious controller to block the response indefinitely by
keeping its ready signal low.

To remove this vulnerability we introduced a FIFO just be-
fore the response interface of the malicious controller. We also
added control logic in the crossbar which limits the amount
of requests the malicious controller can send at the same time

2790 32nd USENIX Security Symposium USENIX Association

to be less than or equal to the depth of its new FIFO. This
way, all responses to the malicious controller are stored in
the FIFO regardless of its ready signal value, eliminating the
possibility of stalling the security-critical operation this way.

5.2.3 Sending Orphan Responses

The vulnerability described in the following is part of the orig-
inal RTL code of OpenTitan. The counterexample found by
UPEC-OI shows how the implemented hardware for message
routing can be abused by a malicious peripheral to completely
starve the SoC until reset.

Earl Grey’s crossbar logic is constructed using a col-
lection of router and arbiter nodes, just like in our exam-
ple SoC in Fig. 1. Each router node uses two microarchi-
tectural state variables to store the current communication
state of its respective controller. One of these variables,
dev_select_outstanding, stores the destination peripheral’s
ID after a request has been routed and sent successfully. The
other variable, num_req_outstanding, records the number of
requests sent by the controller that are currently pending. The
node allows its controller to send multiple requests to only one
peripheral at the same time. If the controller attempts sending
messages to other peripherals while still having outstanding
requests to the first one (i.e., num_req_outstanding 6= 0), such
messages will be rejected.

In our scenario, a trusted controller IP has last commu-
nicated with a malicious peripheral IP before being ele-
vated to the high security level domain. Even though com-
munication between the two IP devices is finished at this
point (num_req_outstanding = 0), the secure controller’s
router node still records the ID of this peripheral in its
dev_select_outstanding buffer. The router node forwards re-
sponse messages from the connected peripherals iff their ID
corresponds to the value of dev_select_outstanding. This pro-
vides a time window for the malicious, low-security-level
peripheral to send a new response message, even though no
requests are pending. Since Earl Grey’s controller IPs have
their TL-UL ready signal hardwired to "1", any such orphan
response message will be accepted. Even worse, the router
node will further decrement the num_req_outstanding vari-
able, causing it to overflow. Because of this, the controller IP
is now blocked from communicating with any other part of
the SoC, effectively starving the system.

We successfully performed the attack and managed to simu-
late starvation of the Earl Grey SoC. The results were reported
to the OpenTitan development team, which acknowledged the
weakness as a security risk. A possible fix to this vulnera-
bility simply involves checking for num_req_outstanding to
be larger than 0 alongside dev_select_outstanding in order to
forward a response message from a peripheral.

Table 1: CPU time and memory consumption for different
values of k and Zps.

Zps Time Peak memory k
(hh:mm:ss) (MB)

C request 06:41:16 23902 12
C ready 11:14:05 25483 13
P response 00:00:26 6978 3
P ready 00:00:03 6146 1

5.3 Resource Consumption

Iterating the Earl Grey SoC through the verification-driven
design flow consumed, overall, around 3 person months. This
includes the effort spent on implementing the access control
logic, its functional and UPEC-OI verification. During this
time, the flow was iterated 19 times.

For analyzing the efficiency of UPEC-OI we measure the
use of two main resources: computation time and memory.
As is the case with any IPC model, consumption of these
resources depends to a large degree on the temporal length
of the property. Tab. 1 compares these three metrics for each
of the four propagation sources (cf. Sec. 5.2). The reported
values are from the last run of the UPEC-OI procedure in
our design verification flow, i.e., from the run that proved the
system as secure. The time presented here is the sum of all
property check computation times in the inductive procedure
for the particular propagation source. It should also be noted
that all property checks were executed sequentially. Some
steps in our procedure can be parallelized, such as, e.g., it-
erations of the for loop in Algorithm 2, line 5. The memory
peak represents the highest RAM usage during any of the
procedure’s property checks. Finally, the last column shows
the maximum temporal length k of the base property that had
to be reached before no more P-alerts were found.

The results show a big difference in the time and mem-
ory used to verify the controller and peripheral propagation
sources. This is mostly due to the amount of cycles the IPC
solver had to unroll in order to find all P-alerts in the base
procedure, which greatly differs between the controller and
the peripheral case. It can be seen from the peripheral case
that, even though the modified SoC contains almost 14 mil-
lion state bits, the design’s size is not a limiting factor to the
methodology. This clearly is a merit of sound blackboxing,
which removes the majority of these state bits.

Most of the total procedure time elapsed during the property
are checks that found no counterexamples. In our case study,
all property checks that failed returned a counterexample in
under 5 minutes. This makes the approach quite fast in finding
security bugs. Even the overall time and memory used to
certify the security of the design stays well within reasonable
limits.

USENIX Association 32nd USENIX Security Symposium 2791

Our experiments show that the exhaustive verification of
the global OI property in an SoC of a realistic size is feasi-
ble with moderate manual efforts. This is a clear advantage
over conventional functional verification techniques. Those
primarily rely on the formalization of selected design behav-
iors, as well as on a priori knowledge of attack surfaces and
scenarios. By their nature, these techniques are inherently
prone to missing corner cases and previously unknown attack
patterns. There also exist approaches [27, 36] exhaustively
covering functional design specification by sets of properties.
This exercise has to be applied to every peripheral of the SoC,
which, however, can be prohibitively laborious in practice.

We review the state of the art in secure SoC-level access
control mechanisms and their verification in more detail in
the following section.

6 Related Work and Discussion

There have been numerous works in the past on secure SoC
access control architectures. A popular approach involves
adding security wrappers around untrusted IP devices [18,32].
These wrappers monitor their respective IPs to prevent any
kind of illegal messages from reaching the security-critical
part of the system. However, their monitoring logic is stat-
ically implemented in hardware, and relies on the designer
and/or hardware analysis tools to determine unsecure access
patterns and specify them explicitly, which is prone to er-
ror. In contrast, our methodology implicitly covers all attack
patterns. Prior knowledge of possible attack scenarios is not
required and there is no need for explicit specification of
allowed behavior.

Other works propose similar monitors that are re-
programmable during the chip’s lifetime in order to patch
up the system for any newly discovered vulnerabilities [9,
11, 25, 35]. These works are based on the assumption that
some security vulnerabilities will inevitably be missed during
the design phase. The goal of this paper, however, is to not
allow any access control integrity vulnerabilities to be missed.
Having formal security guarantees at the end of pre-silicon
development reduces the need for such monitors to only mit-
igate post-silicon security threats. Restuccia et al. [30] also
propose a wrapper-style access control system, and empha-
size the need to verify their access control hardware. In their
approach, security properties are formulated based on the
MITRE CWE database [1]. Although this greatly reduces
the risk of such an access control mechanism being compro-
mised, it still does not provide a formal guarantee that the
system is secure, as the properties only cover already known
weaknesses.

A hardware Trojan detection technique based on property
checking is proposed in [29]. Despite the improved coverage,
the required effort and expertise for manually formulating sev-
eral security properties is a major weakness for this approach.
Wang et al. propose an automated method of generating such

security assertions for finding hardware Trojans in [38]. The
approach relies on extracting RTL invariants from numerous
simulations traces that are produced during the system’s func-
tional validation phase. These invariant properties are then
checked by a formal tool in an attempt to find uncommon be-
havior that could be caused by a hardware Trojan. Although
it is a promising approach, it still relies on previous security
expertise to manually select signals that are to be checked
based on their likelihood of being a Trojan, which leaves room
for missing a bug.

Rajendran et al. use Bounded Model Checking (BMC) to
look for SoC integrity vulnerabilities in [28]. They formu-
late security properties which make sure that security-critical
buffers can only be updated in legal ways. This requires
manual specification of what is allowed, which can be cum-
bersome and is prone to error. Furthermore, the approach uses
general BMC which can only provide a bounded proof of a
property.

Other works [19, 37] propose security verification methods
for hardware described on higher abstraction layers. Although
this greatly reduces complexity, it is ignorant of the fine de-
tails of the hardware microarchitecture which can also be a
cause of security vulnerabilities. We believe that verification
at the RTL is necessary to guarantee pre-silicon security for
as long as RTL is used as the golden model for hardware
implementation in chip design.

6.1 UPEC-OI for Weaker Notions of Integrity

None of the aforementioned approaches formulate precise
security requirements that their access control mechanisms
and/or verification methodologies try to satisfy. The main
integrity objective for the security wrappers in [9], [18], [30]
and [35] is restricting illegal modification of trusted buffers of
the SoC by untrusted IPs. Similarly, [28] formulates properties
which intend to detect the same kinds of illegal modifications
of protected data. This security aspect is fully covered by
our OI hyperproperty and the UPEC-OI methodology. Any
possible modification of the high-security-level domain’s data
by the propagation source is detected by a UPEC-OI coun-
terexample. In addition, UPEC-OI also covers any timing
interference that the propagation source can have with the
protected parts of the SoC, as demonstrated by the counterex-
amples presented in Sec. 5.

There may exist cases where some of the UPEC-OI restric-
tions on the information flow could be deemed too conserva-
tive and detrimental to the desired SoC performance goals.
The possible impact of low-security hardware on the timing
of the protected part of the SoC is not an integrity issue un-
der all circumstances [33]. Therefore, timing interference by
the low-security-level domain of the SoC can be permissi-
ble in some applications. Although UPEC-OI is intrinsically
sensitive to any interference with the trusted subsystem’s
cycle-accurate behavior, the property can be modified such

2792 32nd USENIX Security Symposium USENIX Association

that timing interferences are neglected. The verification en-
gineer can identify control signals in the untrusted hardware
which regulate timing of operations, and constrain them to be
equal between the two SoC instances. Meanwhile, the data
signals would be left unconstrained. In this way, UPEC-OI
would only consider cases where the untrusted IP’s control
signals, such as e.g., valid and ready signals in the TL-UL
protocol, cause a transaction with identical timing in the two
SoC instances, but with possibly different data. If such data
reaches any T-alert candidate buffers, a counterexample is
generated. However, cases such as port contention, message
delays, denial-of-service attacks, etc. would be ignored in
the modified approach. In such a case the verified design
conforms to a weaker notion of integrity, compared to the
UPEC-OI hyperproperty (cf. Sec. 3.2).

6.2 UPEC-OI for Different Variants of Access
Control Mechanisms and Policies

In Sec. 3 we introduce UPEC-OI based on a general model of
access control. Variants of access control mechanisms with
different practical features can be mapped to UPEC-OI, as
described in the following.

More complex security lattices: In practice, security lat-
tices enforced by SoC-level access control mechanisms can
have more than two security levels, as well as mutually exclu-
sive sandbox environments. UPEC-OI can still map hardware
in such a lattice into its two-security-level model: all security
levels and domains that are allowed to influence the security-
critical operation currently under verification are considered
high-security-level, while all the others are considered low-
security-level. For example, let us consider a security lattice
for an SoC with 3 security levels, ordered from highest to low-
est: machine, supervisor and user. Furthermore, let us assume
that the user security level contains two mutually isolating
execution environments: local and remote. If we are verifying
hardware for integrity of operations in the local environment,
then the high security level includes all security levels and
subdomains that are allowed to influence operations in the
local subdomain: the entire machine and supervisor security
level, as well as the local subdomain of the user security level.
The remote subdomain is assigned the low security level.

Read/Write permissions: A common feature in access
control mechanisms is the distinction between read and write
permissions. In the context of integrity, UPEC-OI should only
verify information flow restrictions related to write permis-
sions.

Address-level granularity: Many SoCs feature memory-
mapped peripherals, i.e., different registers within a single
IP can have distinct addresses. In such systems, the access
control mechanism can also have the same address-level gran-
ularity, so that a controller IP might have access to some
registers of a peripheral, but not to others. This class of ac-
cess control mechanisms can also be verified with UPEC-OI

by categorizing individual state variables of an IP into the
low- or high-security-level domain, as opposed to entire IPs
(cf. Sec. 3.2). It should be noted that a separate proof for each
register may be unnecessary, since the configuration of the ac-
cess control can be represented symbolically, which implicitly
covers all possible situations with different trust boundaries.
A work employing symbolic representation of security con-
figurations for confidentiality verification is reported in [26].

7 Conclusion

This paper shows that ensuring integrity of an SoC’s access
control mechanism using a formal verification approach is
possible and feasible. The considered property targets the
integrity of any security-critical operation within the system’s
secure domain against all activities of an untrusted third-party
IP. We present proof procedures that decompose this global
verification problem such that it can be solved for SoCs of
realistic size. An important element of our proof procedures is
sound blackboxing. It does not only turn out to make a major
contribution to handling computational complexity but also
allows for giving integrity guarantees even at the presence
of third-party IPs whose internal microarchitecture is not
disclosed by the provider.

We show how our verification approach can drive the design
of effective SoC-level access control mechanisms such that
the final design is guaranteed to be secure w.r.t. the considered
integrity property. This is practically demonstrated at the
example of the security-conscious OpenTitan’s Earl Grey
SoC. To the best of our knowledge, this is the first time that
such strong guarantee can be given for a design of this kind.

Future work includes expanding the methodology to cover
also other security targets and to create a verification-driven
design framework with formal guarantees of resilience against
transient execution attacks [15], functional confidentiality
bugs [26], data-dependent computing [13], and more.

8 Acknowledgements

We are grateful to all our reviewers for substantial feedback
and help with revising the paper. We further thank Jörg Bor-
mann from Siemens EDA OneSpin, as well as Sayak Ray
and Jason Fung from Intel for fruitful discussions and sug-
gestions related to this research. The work reported in this
paper was partially supported by research grants BMBF ZuSE
(Scale4Edge), 16ME0122K-16ME0140+16ME0465, DFG
SPP Nano Security, KU 1051/11-1 and by the Intel Corp.
Scalable Assurance Program.

References

[1] Common weakness enumeration. https://cwe.
mitre.org/.

USENIX Association 32nd USENIX Security Symposium 2793

https://cwe.mitre.org/
https://cwe.mitre.org/

[2] Ibex core documentation website. https:
//ibex-core.readthedocs.io/en/latest/index.
html.

[3] OpenTitan GitHub repository. https://github.com/
lowRISC/opentitan.

[4] OpenTitan website. https://opentitan.org/.

[5] UPEC-OI enhanced OpenTitan GitHub repository.
https://github.com/nodix95/opentitan.

[6] Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pis-
meny, Nadav Amit, Adam Morrison, and Dan Tsafrir.
Characterizing, exploiting, and detecting DMA code in-
jection vulnerabilities in the presence of an IOMMU. In
Proceedings of the Sixteenth European Conference on
Computer Systems, EuroSys ’21, page 395–409. Associ-
ation for Computing Machinery, 2021.

[7] Arm Limited. AMBA R©AXI and ACE protocol specifi-
cation, 2021.

[8] ARM Limited. Arm system memory management unit
architecture specification R©SMMU, architecture version
3, 2021.

[9] Abhishek Basak, Swarup Bhunia, and Sandip Ray. A
flexible architecture for systematic implementation of
SoC security policies. In 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages
536–543, 2015.

[10] Michael R Clarkson and Fred B Schneider. Hyperprop-
erties. Journal of Computer Security, 18(6):1157–1210,
2010.

[11] Atul Prasad Deb Nath, Sandip Ray, Abhishek Basak, and
Swarup Bhunia. System-on-chip security architecture
and CAD framework for hardware patch. In 2018 23rd
Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 733–738, 2018.

[12] Ghada Dessouky, David Gens, Patrick Haney, Garrett
Persyn, Arun Kanuparthi, Hareesh Khattri, Jason M
Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran.
Hardfails: Insights into software-exploitable hardware
bugs. In USENIX Security Symposium, pages 213–230,
2019.

[13] Lucas Deutschmann, Johannes Müller, Mohammad R.
Fadiheh, Dominik Stoffel, and Wolfgang Kunz. To-
wards a formally verified hardware root-of-trust for
data-oblivious computing. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, DAC’22,
page 727–732, New York, NY, USA, 2022. Association
for Computing Machinery.

[14] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark
Barrett, Subhasish Mitra, and Wolfgang Kunz. Processor
hardware security vulnerabilities and their detection by
unique program execution checking. In Design, Automa-
tion & Test in Europe Conf. (DATE), pages 994–999,
2019.

[15] Mohammad Rahmani Fadiheh, Alex Wezel, Johannes
Mueller, Joerg Bormann, Sayak Ray, Jason M Fung,
Subhasish Mitra, Dominik Stoffel, and Wolfgang Kunz.
An exhaustive approach to detecting transient execu-
tion side channels in RTL designs of processors. IEEE
Transactions on Computers, 2022.

[16] J. A. Goguen and J. Meseguer. Security policies and
security models. In 1982 IEEE Symposium on Security
and Privacy, pages 11–11, 1982.

[17] Mathieu Gross, Nisha Jacob, Andreas Zankl, and Georg
Sigl. Breaking TrustZone memory isolation and secure
boot through malicious hardware on a modern FPGA-
SoC. 2015.

[18] Festus Hategekimana, Taylor J L Whitaker,
Md Jubaer Hossain Pantho, and Christophe Bobda.
Secure integration of non-trusted ips in socs. In
2017 Asian Hardware Oriented Security and Trust
Symposium (AsianHOST), pages 103–108, 2017.

[19] Bo-Yuan Huang, Sayak Ray, Aarti Gupta, Jason M Fung,
and Sharad Malik. Formal security verification of con-
current firmware in SoCs using instruction-level abstrac-
tion for hardware. In IEEE/ACM Design Automation
Conference (DAC), pages 1–6, 2018.

[20] Intel Corporation. Intel R© virtualization technology for
directed I/O architecture specification, 2022.

[21] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre
attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203, 2018.

[22] Nick Kossifidis. Updates from the RISC-V TEE group,
2021.

[23] Hyung Gyu Lee, Naehyuck Chang, Umit Y. Ogras, and
Radu Marculescu. On-chip communication architecture
exploration: A quantitative evaluation of point-to-point,
bus, and network-on-chip approaches. 12(3), may 2008.

[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. pages 973–990, 2018.

2794 32nd USENIX Security Symposium USENIX Association

https://ibex-core.readthedocs.io/en/latest/index.html
https://ibex-core.readthedocs.io/en/latest/index.html
https://ibex-core.readthedocs.io/en/latest/index.html
https://github.com/lowRISC/opentitan
https://github.com/lowRISC/opentitan
https://opentitan.org/
https://github.com/nodix95/opentitan

[25] Wei-Kai Liu, Benjamin Tan, Jason M. Fung, Ramesh
Karri, and Krishnendu Chakrabarty. Hardware-
supported patching of security bugs in hardware IP
blocks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2022.

[26] Johannes Müller, Mohammad Rahmani Fadiheh,
Anna Lena Duque Anton, Thomas Eisenbarth, Dominik
Stoffel, and Wolfgang Kunz. A formal approach to con-
fidentiality verification in SoCs at the register transfer
level. In IEEE/ACM Design Automation Conference
(DAC). IEEE, 2021.

[27] Minh D. Nguyen, Max Thalmaier, Markus Wedler, Jörg
Bormann, Dominik Stoffel, and Wolfgang Kunz. Un-
bounded Protocol Compliance Verification using Inter-
val Property Checking with Invariants. IEEE Transac-
tions on Computer-Aided Design, 27(11):2068–2082,
November 2008.

[28] Jeyavijayan Rajendran, Vivekananda Vedula, and
Ramesh Karri. Detecting malicious modifications of
data in third-party intellectual property cores. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, 2015.

[29] Michael Rathmair, Florian Schupfer, and Christian
Krieg. Applied formal methods for hardware trojan
detection. In 2014 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 169–172, 2014.

[30] Francesco Restuccia, Andres Meza, and Ryan Kastner.
AKER: A design and verification framework for safe
and secure SoC access control. In 2021 IEEE/ACM
International Conference On Computer Aided Design
(ICCAD), pages 1–9, 2021.

[31] A William Roscoe. CSP and determinism in security
modelling. In Proc. IEEE Symposium on Security and
Privacy, pages 114–127. IEEE, 1995.

[32] Heba Salem and Nigel Topham. Trustworthy computing
on untrustworthy and trojan-infected on-chip intercon-
nects. In 2021 IEEE European Test Symposium (ETS),
pages 1–2, 2021.

[33] Spyridon Samonas and David Coss. The cia strikes back:
Redefining confidentiality, integrity and availability in
security. Journal of Information System Security, 10(3),
2014.

[34] SiFive. Sifive tilelink specification, 2017.

[35] Benjamin Tan, Rana Elnaggar, Jason M. Fung, Ramesh
Karri, and Krishnendu Chakrabarty. Toward hardware-
based IP vulnerability detection and post-deployment
patching in systems-on-chip. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 40(6):1158–1171, 2021.

[36] Joakim Urdahl, Dominik Stoffel, and Wolfgang Kunz.
Path predicate abstraction for sound system-level mod-
els of RT-level circuit designs. IEEE Trans. on
Comp.-Aided Design of Integrated Circuits & Systems,
33(2):291–304, Feb. 2014.

[37] Nandeesha Veeranna and Benjamin Carrion Schafer.
Hardware trojan detection in behavioral intellectual
properties (IP’s) using property checking techniques.
IEEE Transactions on Emerging Topics in Computing,
5(4):576–585, 2017.

[38] Chenguang Wang, Yici Cai, Qiang Zhou, and Haoyi
Wang. ASAX: Automatic security assertion extrac-
tion for detecting hardware trojans. In 2018 23rd Asia
and South Pacific Design Automation Conference (ASP-
DAC), pages 84–89, 2018.

[39] A. Waterman and K. Asanović. The RISC-V Instruction
Set Manual, Version 20191213, 2019.

[40] Joseph Yiu. ARMv8-M architecture technical overview,
2015.

A Example of access_control_configured()

In this appendix we provide a code snippet of the macro
access_control_configured() from our OpenTitan case study.
Here, the added controller and peripheral were considered to
be low-security, while all other IPs were on the high-security
level. As can be seen, the controller security level register lists
the added controller as low security ("0"), while the peripheral
security level register assumes all peripherals as secure (binary
"1"), except for the added peripheral, whose security level is
defined by the register’s least-significant bit.

function automatic access_control_configured();
access_control_configured = (
miter.inst_1.acm.controller_cfgreg == 1’b0 &&
miter.inst_1.acm.peripheral_cfgreg == 19’h7fffe
);
endfunction

B Proof of Correctness for the UPEC-OI
Induction-Based Procedure

Theorem: For a given SoC design, if the UPEC-OI method-
ology does not detect any T-alert, the design fulfills the OI
hyperproperty.

Proof: We observe the following characteristics of the
UPEC-OI methodology:

1. The IPC solver used in the UPEC-OI methodology per-
forms any-state proofs with a symbolic starting state, i.e.,
it explores all possible valuations of state variables that
fulfill the assumptions of the property.

USENIX Association 32nd USENIX Security Symposium 2795

2. The macro access_control_configured() in the UPEC-OI
properties does not restrict the state of any part of the
system other than L. It restricts L to hold a valuation that
is an element of Λ.

3. All other assumptions of UPEC-OI only restrict the rela-
tion between the two instances in the miter model and not
the individual instance’s state space.

4. T-alert candidates (TC) and P-alert candidates (PC) to-
gether form the set of all whiteboxed high-security-level
state variables in the SoC at the start of the UPEC-OI
verification process. A variable is removed from PC only
when it has already been detected as affected.

Based on the described observations, we can prove the theo-
rem by contradiction. Assume that there exist an execution
trace (CEX) that violates the hyperproperty OI d clock cycles
after the initial property time point t, but is not detected by
the UPEC-OI methodology. If we label the UPEC-OI_Base
property’s largest time window as k, we can distinguish the
following two cases:

1. If d ≤ k:

CEX shows at least one high-security level output vari-
able (yh ∈ Yh) that depends on the propagation source.
For all the time windows smaller or equal to k clock cy-
cles, the UPEC-OI_Base method (Alg. 2) exhaustively
checks whether T-alert candidates, which include Yh as
a subset, depend on the propagation source (line 6 in
Alg. 2). Therefore, there is definitely a call to the IPC
solver with UPEC-OI_Base property for the time window
of length d, in which Yh is compared between the two de-
sign instances in the miter. This IPC call may only fail
to detect a T-alert if either the starting state of CEX for
one of the SoC instances at t0 is not included in the sym-
bolic starting state of the UPEC-OI interval property, or
the state of CEX for one of the SoC instances at t0 violates
the access_control_configured() macro assumptions of the
interval property. The first case is in contradiction with the
any-state proof of IPC, since the symbolic starting state in-
cludes, as a subset, all reachable states of the system. The
second case is in contradiction with the OI hyperproperty
since any trace that violates the macro does not represent
a security-critical operation τ ∈ T .

2. If d > k:

There exists a starting subsequence (prefix) of CEX with
a temporal length shorter than or equal to k. This prefix
shows an execution trace in which a certain high-security
level state variable (zp

h ∈ Zh) depends on the propagation
source. Apart from T-alert candidates (TC), the UPEC-
OI_Base method also checks the base property for all
P-alert candidates (PC) for time windows up to k clock
cycles (Line 9 in Alg. 2). Therefore, there is definitely a
call to the IPC solver with the UPEC-OI_Base property,

in which zp
h is compared between the two design instances

in the miter. Based on similar reasoning as in (1), the
UPEC-OI_Base proof is guaranteed to find a P-alert that
corresponds to the prefix trace. For this P-alert, UPEC-
OI_Step may only fail to detect the subsequent T-alert
if the states of the SoC instances reached at time later
than t + k in CEX are either not included in the symbolic
starting state of the UPEC-OI step interval property or
they violate the access_control_configured() assumption
macro. This is again in contradiction with the underlying
assumptions of the proof as explained above.

C Soundness of the UPEC-OI-Driven Design
Flow

We label the set of all states that are reachable by the SoC
from reset as R. During a security-critical operation, even
within R there can exist illegal configurations of the system,
caused by e.g., improper firmware commands, unexpected
environment inputs, etc. We define a subset of R that excludes
such unwanted states of the system as the security-reachable
state space, S. We make the following two observations:

1. All hardware invariants employed in the IPC proof must
be supersets of R.

2. All other input and firmware constraints, as discussed in
Chapter 4, restrict the proof to a state set, which can be
a subset of R, but must be a superset of S.

Complying with these two requirements guarantees that
the UPEC-OI-driven design methodology is sound and all
practically relevant scenarios for security-critical operations
are considered.

In view of the OI hyperproperty of Sec 3.2, the first itera-
tion of the design flow considers the trace set T . The set of
all states traversed by the traces in T is a superset of S. This
means that T may also include some unwanted behaviors. In
the sequence of iterations, counterexamples guide a refine-
ment process, where these unwanted behaviors are removed
by constraints and invariants. This corresponds to refining the
set T to a subset that is practically relevant. This subset still
contains all traces that traverse states in S.

Ensuring the soundness of hardware invariants is a straight-
forward process and many verification tools feature dedicated
solvers to prove their soundness. The soundness of input and
firmware constraints can also be ensured by considering them
as requirements for the system’s firmware and/or the out-
side environment, which can be checked separately, e.g., by
using firmware verification techniques. This compositional
approach guarantees that the completeness of the UPEC-OI
verification flow is maintained within our design methodol-
ogy.

2796 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	SoC Architecture and Communication
	Interval Property Checking
	Unique Program Execution Checking

	UPEC for Operation Integrity
	Threat Model
	UPEC-OI Property Formulation
	Possible Optimizations
	Adding Architectural State Variables as T-alert triggers
	Spatial Decomposition of the Propagation Source
	Sound Blackboxing
	Temporal Isolation of the Propagation Source

	UPEC-OI Verification Methodology

	UPEC-OI-Driven Design Flow
	Approach Evaluation
	Modifications on OpenTitan
	Vulnerabilities Found by UPEC-OI and RTL Enhancements
	Port Contention for Access to "xbar_peri"
	Stalling by Keeping the "ready" Signal Low
	Sending Orphan Responses

	Resource Consumption

	Related Work and Discussion
	UPEC-OI for Weaker Notions of Integrity
	UPEC-OI for Different Variants of Access Control Mechanisms and Policies

	Conclusion
	Acknowledgements
	Example of access_control_configured()
	Proof of Correctness for the UPEC-OI Induction-Based Procedure
	Soundness of the UPEC-OI-Driven Design Flow

