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Abstract

Adversarial attacks are valuable for evaluating the robust-
ness of deep learning models. Existing attacks are primarily
conducted on the visible light spectrum (e.g., pixel-wise tex-
ture perturbation). However, attacks targeting texture-free
X-ray images remain underexplored, despite the widespread
application of X-ray imaging in safety-critical scenarios such
as the X-ray detection of prohibited items. In this paper, we
take the first step toward the study of adversarial attacks
targeted at X-ray prohibited item detection, and reveal the
serious threats posed by such attacks in this safety-critical
scenario. Specifically, we posit that successful physical ad-
versarial attacks in this scenario should be specially designed
to circumvent the challenges posed by color/texture fading
and complex overlapping. To this end, we propose X -Adv
to generate physically printable metals that act as an ad-
versarial agent capable of deceiving X-ray detectors when
placed in luggage. To resolve the issues associated with
color/texture fading, we develop a differentiable converter
that facilitates the generation of 3D-printable objects with
adversarial shapes, using the gradients of a surrogate model
rather than directly generating adversarial textures. To place
the printed 3D adversarial objects in luggage with complex
overlapped instances, we design a policy-based reinforcement
learning strategy to find locations eliciting strong attack per-
formance in worst-case scenarios whereby the prohibited
items are heavily occluded by other items. To verify the ef-
fectiveness of the proposed X -Adv, we conduct extensive
experiments in both the digital and the physical world (em-
ploying a commercial X-ray security inspection system for
the latter case). Furthermore, we present the physical-world
X-ray adversarial attack dataset XAD. We hope this paper will
draw more attention to the potential threats targeting safety-
critical scenarios. Our codes and XAD dataset are available
at https://github.com/DIG-Beihang/X-adv.

* Equal contribution.
† Corresponding author.
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Figure 1: Illustration of physical-world adversarial attacks
on X-ray security inspection. This paper proposes X -Adv to
generate physically realizable 3D adversarial objects. During
X-ray scanning, the detector can detect prohibited items in the
right image, but our adversarial objects deceive the detector
into failing to detect prohibited items in the left image.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable
performance across a wide area of applications [1,19,21]. Re-
cently, deep learning has been introduced into safety-critical
scenarios such as X-ray security inspection in public trans-
portation hubs (e.g., airports). In this scenario [32, 40, 42, 47],
deep-learning-based detectors are utilized to assist inspectors
in identifying both the presence and location of prohibited
items (e.g., pistols and knives) during X-ray scanning. This
approach significantly reduces the amount of human labor
required and helps to protect the public from severe risks.

Despite their promising performance, DNNs are vulnerable
to adversarial examples [38]. These elaborately designed per-
turbations are imperceptible to human vision, but can easily
mislead DNNs into making wrong predictions, thus threaten-
ing practical deep learning applications [22–24]. By contrast,
adversarial examples are also beneficial for evaluating and bet-
ter understanding the robustness of DNNs [26, 39, 50, 51, 53].
In the past years, extensive research has been conducted
into performing adversarial attacks on natural images (visual
light); however, the robustness of texture-free X-ray images
(such as in the context of X-ray prohibited item detection)
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remains underexplored. This sparsity of research presents a
severe risk to the safety of the general public, as it increases
their vulnerability to attack.

In this paper, we take the first step in physical-world adver-
sarial attacks on the X-ray prohibited item detection scenario,
i.e., deceive the detector to wrong predictions by strategically
placing adversarial objects around the prohibited item. How-
ever, simply extending existing physical attacks that work
well on natural images to the context of X-ray images is
non-trivial owing to the different imaging principles, e.g.,
the wavelengths of X-rays (0.001∼10nm) and visible light
(390∼780nm) have a huge difference. More specifically, X-
ray imaging is primarily conducted by utilizing material, thick-
ness, and attenuation coefficients, meaning that the existing
physical attacks designed for a visible light context (e.g., in-
terference textures [46] or patches [2]) cannot be effectively
applied to X-ray imaging. Thus, X-ray attacks should be con-
sidered a new type of attack problem in visually constrained
scenarios with different wavelengths. In particular, we identify
two key challenges impeding successful and feasible adver-
sarial attacks in this scenario: (1) Color/texture fading. Due
to its use of special imaging principles (i.e., beam intensity
and attenuation rule), the X-ray scanning process eliminates
most of the colors/textures and projects its outputs primarily
based on item materials and shapes. Thus, the commonly used
perturbations utilizing color disturbances will be removed by
the X-ray scanning causing them to be ineffective. (2) Com-
plex overlap. Luggage passed through an X-ray scanner often
contains a large number of objects made of different materi-
als, and overlap between these objects can degrade the attack
performance; moreover, a successful attack should not rely on
the occlusion of the prohibited item. Thus, when designing an
adversarial object, it is necessary to consider the worst-case
scenario (complex overlapping instances within the luggage),
which increases the difficulty of the task.

To address the above problems, this paper proposes an ad-
versarial attack approach called X -Adv to generate physically
realizable adversarial attacks for X-ray prohibited item detec-
tion (as shown in Figure 1). As for the color/texture fading,
we generate physically realizable 3D objects with adversarial
shapes, which enable our attacks to remain effective (since
the shape cannot be altered after the X-ray imaging). To guide
the design of the shape, we derive a differentiable converter
that projects 3D objects into X-ray images so that we could
update the shape of the object using the gradients of a surro-
gate white-box detector. As for the complex overlap, we aim
to find the locations that achieve strong attack ability even
when occluded by other objects; moreover, we ensure that the
placed adversarial objects do not overlap with the prohibited
item. We thus introduce a policy-based strategy to search for
the location that provides optimal attacking performance in
the worst-case scenario. In summary, our X -Adv can gener-
ate adversarial objects by jointly optimizing the shapes and
locations for X-ray attacks.

Extensive experiments in both the digital and physical
world using multiple benchmarks against several detectors
are conducted. Specifically, we first evaluate digital-world
attacks on multiple benchmarks against both one-stage and
two-stage detectors. We then successfully attack a commercial
X-ray security inspection system in the real world by generat-
ing adversarial metal objects using a 3D printer. Finally, we
present the physical-world X-ray adversarial attack dataset
XAD which contains 5,587 images (840 adversarial images).
We hope this paper will draw more attention to the potential
threats in safety-critical scenarios. Our contributions are:

• To the best of our knowledge, this paper is the first work
to study the feasibility of physical-world adversarial at-
tacks in the visually-constrained X-ray imaging scenario.

• We propose the X -Adv to generate physically realizable
adversarial metal objects for X-ray security inspection
attacks by addressing the color fading and complex oc-
clusion challenges.

• We conduct extensive experiments on several datasets in
both digital- and physical-world settings, and the results
demonstrate the effectiveness of our attack.

• We present the physical-world X-ray adversarial attack
dataset, XAD, consisting of 5,587 images (840 adversar-
ial images).

2 Backgrounds and Related Work

Prohibited Item Detection in X-ray Images. X-ray imag-
ing has been widely used due to its strong penetrative abil-
ity. In the X-ray security inspection scenario, inspectors usu-
ally adopt X-ray scanners to check passengers’ luggage for
the presence of prohibited items. A plethora of studies have
been devoted to detecting prohibited items (e.g., pistols) in
X-ray scanned luggage images using object detection meth-
ods [32, 42, 45, 47] to detection performance.

In addition to the X-ray image detection methods, high-
quality X-ray image datasets and benchmarks are also valu-
able for promoting the development of the research area.
Though obtaining colorful X-ray images requires high compu-
tational costs, there are still some available open-source spe-
cialized datasets for X-ray security inspection. For instance,
SIXray [32] is a large-scale X-ray dataset containing millions
of X-ray images collected from real-world subway stations.
However, the images containing prohibited items are less than
1%, and there is no bounding box annotation provided for
object detection. Some high-quality X-ray datasets for object
detection have also been made available. Wei et al. [47] first
released the OPIXray dataset, which contains 8,885 artificially
synthesized X-ray images of five categories of cutters. Tao
et al. [43] proposed the HiXray dataset, comprising 45,364
images containing 102,928 prohibited items. All images from
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the dataset are collected from X-ray scanners in airports. Re-
cently, Tao et al. [41] further proposed the first few-shot object
detection dataset in the X-ray security inspection scenario.

Adversarial Attacks. Adversarial examples are inputs
with small perturbations, which are imperceptible to humans
but can easily mislead DNNs into making incorrect predic-
tions [16,38]. Generally, we can classify them into digital and
physical attacks. Digital attacks usually generate adversarial
perturbation at the pixel level across the whole input image.
Szegedy et al. [38] first defined adversarial examples and pro-
posed L-BFGS attacks. By leveraging the gradient of the tar-
get model, Goodfellow et al. [17] proposed FGSM to quickly
generate adversarial examples. Since then, many types of
adversarial attacks have been proposed, such as PGD [30],
DeepFool [33], and JSMA [35]. However, due to their addi-
tion of global perturbations to the whole image, these attacks
lack physical-world feasibility.

By contrast, physical attacks aim to generate adversarial
perturbations by perturbing the visual characteristics of real
objects in the physical world. To achieve this goal, adversaries
often generate adversarial perturbations in the digital world,
then perform physical attacks by applying adversarial patches,
painting adversarial camouflage, or directly creating adversar-
ial objects in the real world [2,7,12,46]. Brown et al. [2] first
proposed the adversarial patch by confining the perturbations
into a local patch, which could then be printed to deceive
the classification models. Eykholt et al. [12] then modified
the attacking loss function and generated strong adversarial
attacks for real-world traffic sign recognition. Chen et al. [7]
proposed Shapeshifter to attack a Faster R-CNN object detec-
tor in the physical world, specifically by attaching it to the
STOP signs. In addition to the physical attacks on natural im-
ages (visible light domain), there also exist some preliminary
studies on other visually constrained scenarios. For example,
Cao et al. [3] investigated attacks in multi-sensor fusion sce-
narios, making adversarial examples invisible to both cameras
and LiDAR. Recently, Zhu et al. [54, 55] attacked thermal
infrared pedestrian detectors using small bulbs and special
clothes. Mowery et al. [34] attacked a full-body X-ray scan-
ner, while their proposed cyber-physical attacks did not aim
at neural networks and are different from adversarial attacks.

In summary, although numerous methods of physical at-
tacks on natural images have been proposed, relatively little
is known about the physical-world X-ray security inspection
attack. This paper takes the first step to study physical-world
adversarial attacks for X-ray security inspection.

3 Threat Model

3.1 Problem Definition
Object detection. An object detector fΘ(I)→ {b,c}K with
parameters Θ, which takes an image I ∈ [0,255]n as input,
outputs K detection boxes with location bk = [sk,rk,wk,hk]

and confidence ck. Moreover, f applies a non-maximum sup-
pression (NMS) operation to remove redundant bounding
boxes. The formulation of the training is as follows:

min
Θ

E(I,{yk,bk})∼DL( fΘ(I),{yk,bk}), (1)

where L(·) is the loss function that measures the difference
between the output of the detector f and the ground truth.
yk denotes the true label, and bk denotes the true bounding
box. In practice, the loss function is a weighted sum of the
classification loss Lcls and location loss Lloc:

min
Θ

E(I,{yk,bk})∼D[Lcls( f cls
Θ (I),yk)+λLloc( f loc

Θ (I),bk)].

(2)
Attacks on object detection. Given an object detector fΘ

and an input image I ∈ I with the ground truth label {y,bk},
an adversarial example Iadv satisfies the following:

fΘ(Iadv) 6= {y,bk} s.t. ‖I− Iadv‖ ≤ ε, (3)

where ‖ · ‖ is a distance metric and commonly measured via
`p-norm (p ∈{1,2,∞}). Adversarial examples in visual recog-
nition should also satisfy Iadv ∈ [0,255]n. In this paper, we
focus on deceiving the prediction class labels (i.e., y).

Physical attacks on X-ray prohibited item detection. In
this scenario, the items X = {x1, ...,xm} in the luggage are
scanned via an X-ray scanner to produce an X-ray image,
where R denotes the process of generating a pseudo-color
image depicted in Figure 1 as I = R (X)). To perform phys-
ical attacks, we generate a 3D adversarial object xadv with
adversarial shapes P and place it at the proper location C in
the luggage; the luggage is then scanned by the X-ray into
image Iadv, which could deceive the object detector fΘ(·), i.e.,
minimizing M that measures the performance of the detector:

min
P,C

M
[

fΘ(R (x1, ...,xm,xP,C
adv ),{yk,bk})

]
. (4)

3.2 Challenges for X-ray Attacks
Existing attacks mainly aim at the visible light domain by gen-
erating adversarial textures. However, it is highly challenging
to directly apply these existing attacks to the X-ray domain.
Specifically, we observe two main challenges as follows.

Challenge ¶: The significant difference between imaging
principles used in the visible light and X-ray contexts (e.g.,
different wavelengths). We here first revisit the attenuation
rule of X-ray photon beams. According to [31], a narrow beam
of X-ray photons with energy E and initial photon intensity
I0, on passing through an absorber of small thickness ∆x, will
suffer a fractional decrease of intensity ∆I/I0 given by

∆I
I0

=−µ(ρ,Z)∆x, (5)

where µ is the attenuation coefficient per unit length for an
item made of a material of density ρ and atomic composition
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Z. When the same photon beam passes through a certain
absorber of finite thickness x, the intensity is given by

I = I0 · exp(−µ(ρ,Z)x). (6)

This attenuated intensity then will be received by sensors in
X-ray scanners, according to which we can obtain the depth
profile of the X-ray images. According to Equation 5 and 6,
we can conclude that an X-ray image is constructed primarily
with reference to the material, the thickness of the object,
and the properties of the light wave itself. Different from the
perception of visible light images, X-rays tailor RGB space
into a narrow color space, which means that common attacks
that change pixel-wise textures will be ineffective for X-rays.
To address this challenge, we need to optimize adversarial
objectives to use non-color physical properties (e.g., shapes).

Challenge ·: Complex overlap due to the diversity of sam-
pling scenarios and a massive number of luggage items in
the X-ray security inspection context. Placing the adversarial
object directly on top of prohibited items would appear to be a
simple attack method. However, this approach is infeasible in
real-world applications, since luggage may be positioned ran-
domly during X-ray scanning, and the overlap rate between
adversarial objects and prohibited items under arbitrary sam-
pling conditions is low. Moreover, this violates the definition
of adversarial examples. To guarantee a feasible attack, the
attacker should consider the worst-case scenario: that is, how
to achieve an effective adversarial attack without occluding
prohibited items, and with the overlapping of other objects.

3.3 Adversarial Goals
In this paper, we attempt to generate 3D adversarial objects
with adversarial shapes to attack physical-world X-ray pro-
hibited item detection models. As illustrated in Section 3.1,
given an X-ray prohibited item detector fΘ that takes an X-
ray scanned image I as input, attackers aim to deceive fΘ

into making wrong predictions. This paper focuses on the
more meaningful attack that deceives the detector to predict
the wrong class labels rather than the wrong item locations.
Specifically, we primarily study the untargeted attack, and the
goal is to reduce the detection accuracy of detectors. Mean-
while, we also investigate the possibilities of the more difficult
targeted attack, where we aim to force the detector predictions
to the Background and make these prohibited items “invis-
ible” (Section 5.5). For the untargeted attack, the detector
predicts any other labels that are different from the ground
truth should be marked as a successful attack; while for the
targeted attack, the prediction must match the assigned label.

3.4 Possible Attack Pathways
Regarding adversarial attacks, one of the most important ques-
tions that should be answered is whether they are practical. For
our X -Adv objects, they could be applicable to multiple X-ray

image detection-related scenarios, e.g., security inspections
in public hubs, and health examinations in hospitals. Using
the X -Adv approach, adversaries could perform real-world
attacks simply by generating an adversarial metal object by
using 3D printers, then placing the item into their luggage or
bags. The proposed attacks could make detectors yield wrong
class predictions with low detection accuracy. Meanwhile, it
is also possible for adversaries to conceal a prohibited item
and make it “invisible” to the detectors, which can be achieved
by simply modifying our attacking loss.

3.5 Adversary Constraints and Capabilities
In considering the real-world X-ray security inspection sce-
nario, we take comprehensive conditions into account and
conduct both white-box and black-box attacks. In the white-
box attack setting, the adversary has full access to the target
model (e.g., architectures, weights), and is able to generate
adversarial attacks directly based on its gradients. By con-
trast, the black-box attack setting is more practical; here, the
adversary possesses only a little knowledge about the target
model. For this setting, we assume that the target model and
the source model are dealing with the same task and that the
adversary performs transfer-based attacks. Specifically, the
adversary first generates adversarial objects based on a white-
box source model from a certain dataset; the adversary then
prints the adversarial objects via a 3D printer in the real world;
finally, adversaries could simply place adversarial objects in
the luggage and attack the deployed X-ray security inspection
model. Based on this, we could guarantee that all information
of target models is unavailable to the attackers in black-box
settings, which helps us to implement the strictest measures
for simulating the physical scenarios. Moreover, to ensure our
approach is more practical, the size of our adversarial objects
should be small; thus the adversarial metal generated in this
paper only takes up 1.78% of the X-ray image.

4 X -Adv Approach

Selective Search [44] proposes a heuristic strategy to discover
potential objects from four perspectives: color similarity, tex-
ture similarity, shape similarity, and overlap similarity. Since
it is based on the methods by which humans judge objects,
this object discovery mechanism has been adopted in current
deep-learning-based object detectors. Thus, to deceive the
object detector, we can also optimize adversarial objectives
from four perspectives: color, texture, shape, and overlap.

Due to the special nature of X-ray imaging principles and
the diverse luggage sampling, physical-world adversarial at-
tacks on X-ray security inspection should take the adversarial
object’s color/texture fading and complex overlapping prob-
lems into consideration. Therefore, this paper proposes X -Adv
to generate physically realizable adversarial objects for X-ray
security inspection (as illustrated in Figure 2). This approach
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Figure 2: Illustration of X -Adv approach. For the color/texture fading problem, we derive a differentiable converter that projects
3D objects into X-ray images; this allows us to generate 3D printable objects with adversarial shapes, which is X-ray projection
invariant to X-ray imaging. We then introduce a policy-based algorithm to search for the optimal attacking location, which also
shows high physical-world feasibility to address the complex occlusion problem. By jointly optimizing the combination of attack
locations and shapes, our X -Adv can generate physically realizable adversarial attacks for X-ray security inspection.

simultaneously polishes adversarial shapes and reinforces at-
tacking locations in the worst-case scenario (no overlapping)
because the color space (e.g., color, texture) is not available.

4.1 Adversarial Shape Polishment

X-ray images, which are generated by X-ray security inspec-
tion machines from natural images, emphasize the shape and
the material while neglecting the original color/textures of
items. Thus, to successfully attack X-ray detectors, we gener-
ate objects with adversarial shapes rather than adversarial
textures (since the adversarial colors/textures would be simply
eliminated by the X-ray imaging pipeline, making such at-
tacks ineffective). Accordingly, given a 3D object x, we refine
its visual characteristics P (i.e., shape) into adversarial shape
Padv, such that the generated adversarial 3D object xadv can
attack the detector fΘ(R (xadv)) after X-ray projection.

However, the X-ray imaging pipeline is highly complex
and confidential and also varies significantly across different
types of X-ray machines. Meanwhile, it is rather difficult to
directly perform black-box query attacks since inspectors
will not allow adversaries to query the system several times.
Therefore, we propose a possible attack pathway in which we
derive a differentiable X-ray converter to simulate the X-ray
projection pipeline from 3D objects to 2D X-ray images and
then perform gradient-based transfer attacks.

However, the transformation from the depth d of a scanned
object to color images g remains unknown. Based on the
knowledge of X-ray machine vendors, the transformation
process (d→ I→ g) can be simply represented by exponential
functions, where the attenuated intensity I of X-ray beams

has an exponential relationship with the object depth d (c.f.
Eqn. 6) and the intensity I to the color g of X-ray images can
be converted using a linear transformation. Therefore, we use
the following exponential function to formulate the process:

gm(d) = a · exp(−b ·d)+q, (7)

where d indicates object depth, m is the material, gm(d) rep-
resents the pixel value of color in a certain depth and material,
and a, b, and q are undetermined coefficients correlated to m,
which will be calculated from real image sampling and re-
gression fitting. We did not use DNNs for the transformation
since it is too costly or even infeasible to collect sufficient data
(i.e., different materials with diverse thicknesses) for DNN
training (c.f. Section 5.1). We use HSV color space rather than
RGB because we found that regression in HSV space performs
better in reducing the regression error (see Appendix A.2).

However, a depth image cannot represent a unique 3D ob-
ject. Therefore, we use meshes as the format of our 3D adver-
sarial object, given that meshes have been extensively used
to parameterize 3D objects. Given an original mesh xori, the
coordinates on the XY-plane represent the shape of the image
projected onto the 2D domain, while the coordinates in the
Z-axis denote the depth (pixel value) of the image. Thus, we
can optimize the shape of the 3D object by manipulating the
coordinates in the mesh, then project the 3D mesh to a 2D
depth image, and finally convert it to an X-ray image (the
whole process is differentiable). The adversarial attack loss
can be formalized by maximizing the classification loss Lcls
of the target model, as follows:
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Ladv(X,xadv; fΘ,Rδ)= argmax
P

Lcls( fΘ(Rδ(X,xP
adv)),{yk,bk}),

(8)
where Rδ denotes the differentiable converter in Eqn. 7 that
can simulate the black-box X-ray scanning process R .

In practice, we overlap the original X-ray image I and
the converted output g(·) by I�gm(d(xP

adv)), where d(xP
adv)

refers to the Z-axis depth of adversarial mesh xP
adv, and �

indicates pixel-wise multiplication.

4.2 Attack Location Reinforcement
In the X-ray security inspection scenario, there are often a vast
number of items in the luggage. The simplest attack method
is to attack the target detector by forcing a high overlap of
adversarial objects and prohibited items. However, because
the angle at which the bag will be scanned is uncontrollable
in an X-ray detection scenario, the overlapping probability of
adversarial targets and prohibited items are low, while adver-
sarial objects are often occluded by other goods. This complex
occlusion problem brings challenges to adversarial attacks.
Therefore, we need to study effective attack algorithms in
the worst-case scenario, whereby the adversarial object does
not cover prohibited items and is heavily occluded by other
objects. Moreover, an appropriate location would increase
the effectiveness of attacks, since our X -Adv can only modify
shapes while DNNs are more sensitive to texture [8, 20, 37].

Thus, to perform attacks under such a constrained scenario,
we make full use of the location of the adversarial object and
further improve the efficiency of our attacks by searching for
the optimal attack locations. Accordingly, to achieve strong
attacks, it is necessary to jointly consider the combination of
attacking location and shape (Cbest ,Pbest):

Ladv = argmax
C,P

Lcls( fΘ(Rδ(X,xP,C
adv )),{yk,bk}). (9)

Meanwhile, these two variables are mutually interactive,
and the shape P is often influenced by the attack locations
C. If we determine the attack location Cbest , the adversarial
shape P can be optimized by the gradient descent algorithm
introduced in the previous subsection using the differentiable
converter. However, there is no gradient information available
for the attack location, which prevents us from optimizing
the coordinates of adversarial objects. Also, calculating all
possible conditions would result in unacceptably high compu-
tational costs. To tackle this problem, we apply a policy-based
algorithm to search for the optimal attack location.

Inspired by [56], we use the REINFORCE algorithm [48] to
introduce gradients between attack locations and the cost func-
tion. We define C as a finite area surrounding the prohibited
item, or the “available attacking area”, based on the ground
truth bounding box, where we can place our adversarial ob-
jects. We simulate the common suitcases scanning scenario

in the fixed top-down orientation and divide C into N evenly
spaced grids in the 2D space. In this scenario, the searching
problem is relatively simple and the trajectory (state→input,
action→location, reward→loss) has only one timestep, and
we use N discrete actions to substitute location-choosing op-
erations in a continuous area. We define the policy network
πw with parameters w, which receives the original image I as
input and outputs the attacking location C. The gradient of
the objective function J(w) with respect to w is shown as:

∇wJ(w) = G ·∇w logπ(C|I;w), (10)

where G refers to the reward of the policy. To enhance the
feasibility in the physical world, we expect the locations of
adversarial objects to vary, which can be quantified by the
standard variance σC. Therefore, G consists of two compo-
nents, attack capability, and location diversity, which can be
written as:

G = Lcls( fΘ(Rδ(X,xPori,C
adv )),{yk,bk})+α ·σC, (11)

where Pori is the initial shape of the adversarial object, and
α balances the two terms. With our policy-based searching
algorithm, we can jointly optimize the location and shape of
our adversarial objects, enabling us to perform efficient and
effective physical-world attacks.

4.3 Overall Optimization

Based on the above discussions, the overall optimization func-
tion of our attacks L consists of the attack loss Ladv and
perceptual loss Lper, which can be written as follows:

L(X,xadv; fΘ,Rδ)=Ladv(X,xadv; fΘ,Rδ)+βLper(xadv,xori),
(12)

where we append the adversarial attack loss with a percep-
tual loss Lper to ensure the physical feasibility of adversarial
meshes, while β is a coefficient to balance the two loss func-
tions. Inspired by [4,49], we further introduce a total variation
loss into our perceptual loss to restrict the shape change as

Lperc(xadv,xori) =
1
|x| ∑

V∈xadv

∑
vi∈V

∑
vq∈N(vi)

||∆vi−∆vq||22, (13)

where V is the vertex set of 3D adversarial meshes, ∆vi indi-
cates the perturbation distance of a certain vertex vi between
xadv and the original object xori, and N(vi) refers to the ver-
tices adjacent to vi. The perceptual loss expects that a vertex
will have similar perturbations to its neighbors, which avoids
severe distortion of adversarial meshes. The pseudo-algorithm
code of our X -Adv can be found in Appendix A.1.
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5 Experiments

5.1 Experimental Setup

Datasets. We choose the commonly-used OPIXray [47]
and HiXray [43] datasets. Specifically, the OPIXray dataset
has 7,109 images in the training set and 1,776 images in the
test set, with five prohibited item categories (e.g., Folding
Knife, Straight Knife). All data are scanned from an X-ray
security inspection machine to reproduce the real-world sce-
nario in public transportation hubs. The HiXray dataset has
36,295 images in the training set and 9,069 images in the
test set, with eight prohibited item categories such as lithium
battery, liquid, lighter, etc. Images from these datasets are
captured and gathered from realistic sources, which contain
diverse suitcases of different sizes and shapes (e.g., open
trays, bags, luggage), and the prohibited items are surrounded
randomly by other items of different materials (e.g., clothes,
phones, laptops). Thus, experiments on them could better
verify the effectiveness of our attack.

Target models. To verify the effectiveness of our attacks,
we train both one-stage SSD [27] and two-stage Faster R-
CNN [15] to attack; we also attack the state-of-the-art and
commonly used detectors in X-ray prohibited item detection
scenario (DOAM [47] and LIM [43]), where we achieve simi-
lar results on clean images compared to their original papers.

Compared baselines. As discussed above, we are the first
to study adversarial attacks for X-ray prohibited item detec-
tion, especially in the physical world. However, to better il-
lustrate the superiority of our attacks, we transfer some adver-
sarial attacks from prior works into the X-ray image scenario
and compare our X -Adv with them. Specifically, we use the
original adversarial patch [2] (denoted as "AdvPatch") com-
bined with our differentiable converter to generate 2D patches,
which have no physical feasibility. As for 3D meshes, we ap-
ply meshAdv [49] with a certain color of the adversarial patch
(denoted as "meshAdv") as a baseline. We also apply vanilla
adversarial objects without shape polishment and location re-
inforcement (denoted as "Vanilla") to examine the capability
of the attacks above. Considering the cross-task domain gap,
it is reasonable to expect that these comparison methods will
not perform as well as their source works on the task at hand.

Evaluation metrics. We select the most widely used met-
ric, i.e., mAP, as the main evaluation metric. The mAP value
depicts the overall performance according to precision and
recall values, i.e., the area integral to the prediction precision
( T P

T P+FP ) and the prediction recall ( T P
T P+FN ) of object detection.

Note that we set the IoU value (the intersection rate of the
predicted border and the real border) as 50%. In particular,
the lower mAP values indicate better attack performance. For
the untargeted attack, we use mAP to evaluate the attacking
performance; for the targeted attack, besides mAP, we also
report the False Negative (FN) values with confidence as 0.8
(the higher the better).

Implementation details. We define the size of the adver-
sarial object as 20×20 square pixel and the number of objects
as 4, which takes around 2% of the whole image. More details
are shown in Appendix A.3. All the codes are implemented
with PyTorch. For all experiments, we conduct the training
and testing on an NVIDIA GeForce RTX 2080Ti GPU cluster.

X-ray converter. We obtain the coefficient of the X-ray
converter using a commercial AT6550 X-ray scanner. In prac-
tice, we have scanned 8 thicknesses (0.2∼8mm) of iron ob-
jects, 22 thicknesses (1∼60mm) of aluminum objects, and 6
thicknesses (60∼120mm) of plastic objects using our X-ray
machine. Then we sampled their color under X-ray images.
We use Eqn. 7 as the convert function, the coefficients of
which are acquired from regression fitting.

5.2 Digital-world Attacks

In this part, we evaluate our X -Adv in the digital world under
both white-box and black-box settings. Specifically, for the
white-box setting, we generate the adversarial object based on
the model, then test its attacking ability on the same model;
for the black-box setting, we first optimize the adversarial
object on one model, then test its attack performance on other
models via transfer-based attack. In more detail, we employ
4 models in the digital-world experiments including both one-
stage and two-stage detectors, and the white-box attack results
on OPIXray are shown in Table 1. More results on HiXray
and black-box attacks can be found in Appendix B. From the
results, we can identify:

¶ Despite having eliminated most of the colors and textures
in the X-ray images, the adversarial attacks still pose chal-
lenges in the X-ray prohibited item detection scenario. For
example, on the OPIXray dataset against DOAM, the clean
mAP is 74.02%, while the mAP value drops significantly to
23.05% after being attacked by our X -Adv. It should be noted
that this observation can be made for all employed models:
the observed average mAP degeneration is about 50% on
OPIXray and 30% on HiXray. Moreover, our X -Adv outper-
forms other baselines by large margins.

· It should be noted that X -Adv seems to fail in some
categories of HiXray, e.g., laptops. We hypothesize that the
reason lies in the characteristic of the target object. Laptops
usually occupy large proportions of an image, while our patch
is much smaller than these objects. Therefore, detector models
can obtain much more information about objects like laptops,
which supports correct classification.

¸ Moreover, it is important to note that the vanilla patch
could not successfully attack the detector, which indicates
that the observed vulnerabilities of these models are not the
result of poorly trained detectors.

The results for the black-box setting in Appendix B show
consistent phenomena. In summary, the digital-world evalua-
tions demonstrate that our X -Adv could successfully attack
the X-ray prohibited item detectors and outperform other
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Table 1: Digital-world white-box attacks on OPIXray. “FO”,
“ST”, “SC”, “UT”, and “MU” represent Folding Knife,
Straight Knife, Scissor, Utility Knife, and Multi-tool Knife.

(a) SSD

Setting mAP Categories

FO ST SC UT MU

Clean 72.23 78.37 37.82 92.49 69.58 82.87
Vanilla 61.46 71.51 17.86 90.20 52.45 75.29

MeshAdv 52.77 61.82 10.20 83.72 40.54 67.59
AdvPatch 40.91 47.19 5.86 74.83 25.48 51.21

X -Adv 19.20 24.11 1.46 44.48 12.59 13.37

(b) Faster R-CNN

Setting mAP Categories

FO ST SC UT MU

Clean 64.92 60.90 37.19 89.74 66.82 69.96
Vanilla 53.05 53.13 20.75 85.69 49.76 55.93

MeshAdv 49.49 44.26 17.48 81.70 44.03 59.99
AdvPatch 50.19 52.67 15.88 84.03 42.26 56.13

X -Adv 23.33 26.62 3.44 62.91 15.33 8.36

(c) DOAM

Setting mAP Categories

FO ST SC UT MU

Clean 74.02 78.92 40.88 95.65 74.08 80.55
Vanilla 67.79 74.26 32.57 91.37 63.41 77.34

MeshAdv 56.36 60.09 23.04 86.87 47.11 64.68
AdvPatch 42.04 45.57 9.41 81.19 26.44 47.60

X -Adv 23.05 18.40 4.05 64.80 18.57 9.45

(d) LIM

Setting mAP Categories

FO ST SC UT MU

Clean 73.07 79.01 36.04 94.73 72.94 82.62
Vanilla 66.44 73.58 22.78 93.08 65.17 77.62

MeshAdv 59.60 65.56 19.70 87.27 52.26 73.20
AdvPatch 49.69 54.16 14.66 80.35 35.72 63.55

X -Adv 22.46 31.64 4.28 52.59 16.65 7.13

baselines by large margins.

5.3 Physical-world Attacks

In this part, we further investigate the X-ray prohibited item
detection model robustness in the physical-world setting.

We first illustrate the attack pipeline for our physical-
world attacks (see Fig 3). In detail: ¶ we first generate
adversarial objects using our X -Adv based on a white-box
pre-trained DOAM target model; · we then transform the
adversarial objects from 3D mesh format into STL format
so that we can use a third-party 3D printer to print these 3D
objects in metal; ¸ we then put our adversarial objects into
the fabric/plastic box with other items and employ several
workers to scan them into X-ray images using a commercial
AT150180B X-ray scanner (which is commonly used in the

Physical-world Scenario

Scanned X-ray Imageedddddddddddddd X

X-ray MachineScanning

Adversarial Mesh

Adversarial Metalveerrrrrrrrrssa

3D print

Scanned X-ray 
Object

No DetectionProhibited Items Detected

Scissor

Clean Scene Adversarial Scene

Figure 3: Illustration of the physical-world attacking pipeline.
X -adv first generates adversarial meshes (3D objects); we
then print these meshes into metal objects using 3D printers;
when scanned by X-ray scanners, these metal objects will
become adversarial patches in the resulting X-ray images.

train station and airport security checkpoints); ¹ finally, we
test our physical-world adversarial examples (X-ray images)
on black-box X-ray prohibited item detection models, specif-
ically, DOAM, LIM, and Faster R-CNN, which are trained
on the physical-world dataset proposed in Section 7. Note
that, we use the commercial X-ray scanners but cannot use
their detection backend because these models/strategies are
business secrets, however, we adopt a similar black-box Faster
R-CNN. During the experiments, we have no access to and
prior knowledge of these target detectors and X-ray scanners.

Specifically, we use X -Adv to generate 16 adversarial metal
objects and then print them in iron using a 3D printer. We col-
lect items (e.g., laptops, headphones, bags) from our staff and
students under their grants. In total, we collected 80 adversar-
ial X-ray images as the test set; some physical-world clean and
adversarial X-ray images can be found in Figure 4. Note that
all X-ray images are collected without personal information
to avoid privacy leakage. To assess the real-world feasibility
of our attacks, in addition to having our X-Adv search for the
best possible attack location (denoted as “Physical best”), we
also impose two attack settings to better simulate the physical-
world dynamic environment of items movement in luggage:
(1) slight transformations and (2) random placement. Specif-
ically, slight transformations add shift (random 10 pixels in
each direction) and rotation (-30◦∼+30◦) to adversarial ob-
jects (denoted as “Physical change”), while random placement
randomly places the adversarial objects in the entire suitcase
(denoted as “Physical random”). For better comparison, we
also provide the results of the 80 images using digital-world
attacks (denoted as “Digital attack”) and the physical-world
results on clean examples (denoted as “Clean”).

From Table 2, we can conclude that the physical attacking
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Clean Best Change

Figure 4: Detection results of some X-ray images in our
physical-world experiments (we choose images with fewer
items for better visualization). Green boxes indicate correct
classes and suitable locations; blue boxes represent correct
classes in incorrect locations; red boxes indicate incorrect
classes. We only show detection boxes with confidence >10%.

Table 2: Physical-world attack experiments on different de-
tection models. More results are shown in Appendix B.

(a) DOAM

Setting mAP Categories

SC FO ST UT

Clean 91.35 84.17 98.05 100.00 83.18
Digital attack 30.28 67.54 2.15 50.73 0.69
Physical best 33.16 66.33 18.35 44.48 3.46

Physical change 50.97 74.13 42.19 55.92 31.63
Physical random 76.17 76.06 79.19 85.33 64.10

(b) Faster R-CNN

Setting mAP Categories

SC FO ST UT

Clean 95.35 94.00 100.00 92.66 94.75
Digital attack 27.18 44.77 0.31 50.63 13.00
Physical best 24.67 62.88 2.26 23.03 10.53

Physical change 57.38 85.84 35.45 72.16 36.07
Physical random 75.57 93.00 56.03 88.95 64.29

ability of the proposed X -Adv has a significant impact on
detection accuracy, i.e., the mAP value of DOAM on phys-
ical clean samples is 91.35%, while the mAP values on the
sampled adversarial samples are 33.16% on “Physical best”,
50.97% on “Physical change”, and 76.17% on “Physical ran-
dom”, which are lower than the results on the clean counter-
parts. This observation also indicates that the safety problem
of X-ray prohibited item detection is worth studying from
a practical perspective. Moreover, we also observe that the
attacking ability of “Physical best” is stronger than that of
“Physical change” (lower mAP), which supports our motiva-
tion to search for the critical attack position. Furthermore,
compared to the digital-world attack results, the physical-
world attack results are weaker; we speculate this is because
of the digital-physical domain gap [13, 46].

5.4 Ablation Studies

In this section, we investigate the key factors that might impact
the attack ability of our X -Adv , thereby providing compre-
hensive insights and promoting a deeper understanding of our
strategy. In brief, we conduct thorough ablations on several
factors. All the experiments conducted in this part use the
DOAM target model on OPIXray and HiXray datasets.

Attack locations. Here, we investigate three additional
location-searching strategies on the attack performance, i.e.,
fixed position (denoted as “Fix”), random positions (denoted
as “Random”), and greedy-search-based positions (denoted
as “Greedy”). Our proposed attacking location search strategy
is denoted as “Reinforce”. For Fix, we place the adversarial
objects on the corners of the prohibited items; for Random,
we place the adversarial objects randomly around the prohib-
ited items; for Greedy, we first greedy-search the strongest
attack locations that maximize Lcls by placing one original
object at each location, then optimize the adversarial objects
at the corresponding locations. The experimental results on
OPIXray and HiXray can be found in Table 3, where we
can observe that among all 4 attacking location searching
strategies, the result under our “Reinforce” setting shows the
strongest adversarial attacking performance.

Moreover, we study a more limited setting where the adver-
sary could stick an adversarial object on the prohibited item.
In particular, we add experiments on OPIXray against DOAM,
where we put a 32×32 iron rectangle or a 40×40 adversarial
object generated by X -Adv on top of the target object. The at-
tack performance (49.48 mAP and 25.28 mAP) is still worse
than our original position-searching strategy (23.05 mAP).
Note that directly placing the target object into an iron box or
hiding it with iron plates could make it disappear, which can
be easily identified in practice. Meanwhile, this would also
violate the definition of adversarial attacks (cover the salient
parts and change its semantics). The goal of this experiment
is to illustrate the importance of location-searching.

The above studies demonstrate that avoiding overlap and
occlusion can increase the attack capability.

Number of objects. Regarding the number of adversarial
objects, we study whether the attack ability of the adversarial
objects differs when this number is changed. Thus, we set the
number of the adversarial objects to 1, 2, 4, and 8 respectively,
while keeping the total area of each setting the same. The
results can be found in Figure 5. As the results show, more
objects usually result in better attack performance. However,
too many adversarial objects will introduce an additional cost
in terms of physical feasibility. In practice, we set the number
of objects as 4.

5.5 Discussions and Analysis

In this part, we provide more detailed discussions and analysis
on the attack ability and physical feasibility of X -Adv . All
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Table 3: Ablation studies on different attack locations. Our
strategy achieves the best attack performance.

(a) OPIXray

Setting mAP Categories

FO ST SC UT MU

Fix 51.64 55.54 18.22 82.16 39.89 62.38
Random 38.11 40.54 8.39 76.77 26.82 38.01
Greedy 29.38 28.02 5.02 65.46 20.21 28.19

Reinforce 23.05 18.40 4.05 64.80 18.57 9.45

(b) HiXray

Setting mAP Categories

PO1 PO2 WA LA MP TA CO NL

Fix 44.68 10.48 8.95 69.06 96.42 88.76 74.69 9.04 0.00
Random 41.98 8.41 6.37 66.05 95.74 82.74 68.63 7.93 0.00
Greedy 40.19 5.77 4.14 64.88 95.47 80.44 65.76 5.06 0.00

Reinforce 38.96 5.21 3.33 63.00 95.49 77.38 63.05 4.22 0.00
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Figure 5: Ablations on the numbers of adversarial objects.

the experiments conducted in this part are using the DOAM
target model based on OPIXray and HiXray datasets.

Object materials. Different materials are rendered on X-
ray images in different colors; therefore, it is necessary to
investigate their possible influence on the final attack ability
of the generated adversarial objects. To this end, we select
three kinds of colors (materials), namely blue, green, and or-
ange, which respectively correspond to three materials that
commonly appear in the luggage, i.e., iron, aluminum, and
plastic. The results on OPIXray can be found in Figure 7(a). It
is clear that the generated adversarial objects with blue colors
(iron) show stronger attack ability, i.e., lower mAP values.
For instance, on the OPIXray dataset, the mAP value of the
iron adversarial objects is 23.05%, while that of the green
(aluminum) ones is 55.44%, and that of the orange (plastic)
ones is 55.61%. We believe that this observation is reason-
able since prohibited items (such as knives and guns) tend to
be made of metal, thus adversarial objects made of similar
materials (and rendered in similar colors) will have a higher
attack ability. On the OPIXray dataset, the prohibited items
are knives, meaning that blue (iron) outperforms other colors
significantly. Results on HiXray can be found in Appendix B.

Targeted adversarial attacks. As shown in Eqn. 12, our
X -Adv maximizes the classification loss Lcls of the detector
to output wrong classes, which is the untargeted attacks. In

Clean Iron Plastic Aluminum

Figure 6: Visualization of adversarial objects with different
materials/colors (i.e., blue, orange, and green).
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Figure 7: Results using DOAM on OPIXray: (a) different
materials, (b) targeted and untargeted adversarial attacks.

addition to the untargeted attack, we here further design an-
other reasonable attack strategy, i.e., perform attacks to evade
the detector by confusing the predictor to classify the object
of interest as Background. Thus, we apply targeted attacks
and set the target label of attacks to Background (one of the
classes for detection). Specifically, we substitute Lcls with a
cross-entropy loss between the confidence of all predicted
boxes and the background class. Since the background is the
0-th class of object detectors, performing attacks that mis-
lead all boxes into the background class can also reduce the
number of predicted boxes.

As shown in Figure 7(b), in terms of mAP, the performance
of targeted attacks is weaker than that of untargeted attacks
(38.82 v.s. 23.05). However, in terms of FN bounding box
numbers, the performance of targeted attacks outperforms
untargeted attacks largely (1632 v.s. 1274). These results
demonstrate the different adversarial goals for targeted and
untargeted attacks, and the targeted attack in the X-ray se-
curity inspection scenario might be more meaningful. We
conjecture the main reasons for the above observations are as
follows: ¶ It is more difficult for targeted attacks to reduce
the mAP values in general object detection [28]. · As the
distribution of all bounding boxes shown in Figure 8, the un-
targeted attacks produce more false bounding boxes (FP) with
high confidence, which could help to reduce the precision of
detectors. However, targeted attacks result in fewer FP boxes,
and this will help to prevent the detection of prohibited items,
but the overall precision will not be too low.

Unseen prohibited items. Moreover, we are interested in
discovering the potential of X -Adv for attacks on other pro-
hibited items with unseen materials/shapes. In other words,
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Figure 8: The distribution of TP and FP bounding boxes under
different targeted and untargeted adversarial attacks. “TP”
represents True Positive, while “FP” denotes False Positive.

adversarial objects are first generated on specific types of pro-
hibited items, and then we use them to directly attack other
unseen prohibited item types without re-training. Here, we
first conduct experiments in the digital world, where we train a
group of adversarial objects using DOAM on HiXray (unseen
prohibited items: lighter, liquids, etc) and then directly test
them against another DOAM on OPIXray (prohibited items
are knives). Overall, our attack achieves 29.40 mAP which
is slightly lower than the original X -Adv attack (23.05 mAP)
that is trained on OPIXray. We then verify this in the physical
world, where we place the adversarial objects around their
unseen prohibited items, and we achieve 45.52 mAP, which
is also slightly lower than the original X -Adv attack (33.16
mAP). The above results indicate that our attack could still
work for other unseen materials/shapes without re-training.

6 Countermeasures against X -Adv

In this section, we propose three possible defenses and evalu-
ate our X -Adv against them.

Data Augmentation. Data augmentation has been iden-
tified as a popular approach for improving model robust-
ness [36]. In light of this, we introduce the data augmentation
strategy as the first countermeasure to mitigate our adversar-
ial attacks. Given the special feature space of X-ray image
recognition (i.e., limited colors and textures), we believe that
introducing additional adversarial-object-like patches might
be beneficial for improving the robustness of the X-ray prohib-
ited item detection models. Specifically, for each image, we
randomly add 1-4 blue or orange patches and mix the clean
examples with the additional examples during training using
a ratio of 1 : 1. The results can be found in Table 3(a). Here,
“V+C” denotes that the detector is trained without additional
examples and tested on clean examples, “V+A” denotes that
the detector is trained without additional examples and tested
on adversarial examples, “D+C” denotes that the detector
is trained with additional examples and tested on clean ex-
amples and “D+A” denotes that the detector is trained with
additional examples and tested on adversarial examples. It

Table 4: Countermeasure studies. (a) “V” and “D” denote
vanilla training or data augmentation; “C” and “A” refer to
testing on clean or adversarial examples; (b) We first gener-
ate adversarial examples by meshAdv on DOAM/LIM and
train the classifier; we then test the detection performance
on X -Adv generated on DOAM. ACC denotes classification
accuracy, and AUC is the area under the ROC curve; (c) We
adversarially train a prohibited item detector using RobustDet.

(a) Data augmentation

Setting mAP Categories

FO ST SC UT MU

V+C 74.06 78.75 40.90 95.66 73.56 81.42
V+A 23.05 18.40 4.05 64.80 18.57 9.45
D+C 73.94 79.44 40.52 93.82 73.40 82.54
D+A 46.69 49.06 17.05 81.21 39.68 46.46

(b) Adversarial detection

DOAM→DOAM LIM→DOAM

ACC AUC ACC AUC

OPIXray 62.66 97.99 56.66 96.53
HiXray 76.73 97.95 74.72 98.91

(c) Adversarial Training

AT Setting Attack mAP Categories

FO ST SC UT MU

PGD Clean 73.74 77.06 37.86 94.39 72.78 86.61
X -Adv 22.09 20.19 1.36 66.17 17.39 5.32

X -Adv Clean 73.49 78.21 40.77 93.23 73.58 81.64
X -Adv 53.47 55.82 20.26 84.43 49.02 57.82

can be observed that the data augmentation can to a certain
extent effectively defend the proposed X−adv method for
X-ray prohibited item detection.

Adversarial Detection. Another prevailing approach to
improving model robustness is adversarial detection. Rather
than correctly detecting the target item under the adversarial
scenario, adversarial detection aims to detect the existence of
adversarial examples [5, 9, 14, 29]. Here, we build a neural
classifier capable of distinguishing images containing adver-
sarial objects from clean X-ray images. Specifically, we use
a ResNet50 model as a classifier and trained on adversarial
examples generated by meshAdv on different models (i.e.,
DOAM and LIM). We then test the classifier on adversarial
examples generated by X -Adv on a different DOAM model.
The training set and test set of the classifier do not overlap.
The results in Table 4(b) indicate that the adversarial exam-
ples generated by different methods are quite different and
the neural classifier fails to generalize.

Adversarial Training. We choose adversarial training
(AT) as the last countermeasure for X -Adv. Although AT
for image classification has been widely studied [25,30], only
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some preliminary studies have been devoted to object detec-
tion [6, 10, 52]. Here, we adopt RobustDet [10] as the AT
method and use an SSD detector with a backbone of VGG-
16. Specifically, we adversarially train two detectors using
adversarial examples generated by (1) PGD attacks or (2) our
X -Adv. Note that the generated adversarial objects by X -Adv
during AT are different from those for testing. From Table
3(b), we could observe that ¶ AT trained on PGD attacks
show limited defense against X -Adv mainly due to the dif-
ferences between perturbations and patch/object attacks; ·
AT trained on X -Adv could mitigate our X -Adv attacks to
a certain extent; and ¸ compared to classification, it is still
comparatively difficult to adopt AT on object detection tasks.

Summary and Discussion. Despite facing significant chal-
lenges launched by our attack, the proposed defenses could
still mitigate its negative influence to some extent. Specif-
ically, for the strongest countermeasure (AT trained on our
X -Adv), we could significantly improve the model robustness
and achieve 53.47 mAP against X -Adv attacks. Meanwhile,
we could observe that the proposed countermeasures have
rather high practical feasibility for defenders mainly due to
¶ the adversarial-object-like patches of data augmentation
and adversarial attacks of adversarial detection can be easily
generated and obtained for model training; · X -Adv adver-
sarial objects of adversarial training can be generated either
based on our open-sourced codes or the provided adversarial
objects in the XAD dataset. For the physical-world implemen-
tation, defenders could simply employ a 3D printer to print
out the 3D objects based on our guidelines. Moreover, defend-
ers could combine adversarial detection with an AT model,
which could further mitigate the negative impacts of X -Adv
attacks. The feasibility of data augmentation and X -Adv AT
are verified under the physical-world setting in Appendix B.

7 Physical-world X-ray Attack Dataset

A dataset is significantly beneficial for boosting research, es-
pecially for areas where professional benchmarks are lacking
or the data collection is expensive. As we have observed in
Section 5.3, physical-world X-ray detectors are vulnerable to
our attacks. Therefore, we further present a physical-world
X-ray inspection security robustness evaluation dataset to
promote the design of robust X-ray prohibited item detectors.

7.1 Construction Details
We first introduce the construction process of our Physical-
world X-ray Attack Dataset (XAD), including the data collec-
tion, category selection, and quality control.

Data collection. We exploit one advanced X-ray security
inspection machine, AT150180B, to generate the X-ray im-
ages in our dataset. We first randomly place the objects in
the plastic/fabric box to mimic the similar environment in the
real-world scenario; we then send these boxes through the

Level 1

Level 2

Level 3

Level 4

(b) Adversarial objects (c) Severity levels

Folding Knife Scissors Straight Knife Utility Knife

(a) Prohibited item category

Figure 9: Illustration of the images in our XAD. (a) illustrates
the prohibited item categories; (b) denotes the X-ray images
of physical-world adversarial objects; (c) denotes the different
severity levels in the testing set.

security inspection machine, after which the machine outputs
the X-ray images. To prevent privacy leakage, all images are
collected legally: items are borrowed from our staff members
and students, and do not contain personal information.

Category selection. As shown in Figure 9, we select 4 cat-
egories of prohibited items (cutters, scissors, folding knives,
straight knives, and utility knives) that frequently appear in
daily life. The 4 categories of cutters have different shapes
and scales, which meets the category selection diversity re-
quirements. The sufficient numbers of instances can provide
a more credible evaluation for various models.

Quality control procedure. We followed a similar anno-
tation quality control procedure to the famous vision dataset
Pascal VOC [11]. All annotators followed the same annota-
tion guidelines, including what to annotate, how to annotate
bounding, how to treat occlusion, etc. Moreover, to ensure
the accuracy of annotation, we divided the annotators into 3
groups. All images were randomly assigned to 2 out of the 3
groups for annotation, after which a final group was specially
organized for confirmation.

7.2 Data Properties

Subset division. Our XAD contains two subsets, i.e., a
training set with clean X-ray images and a testing set with
physical-world adversarial attacks. The 4,537 images in the
training set simulate the real-world scenario to help models
achieve satisfactory generalization performance. For the test-
ing set, we follow [18] and generate adversarial images from
210 clean X-ray images with 4 different severity levels (0
to 4, where “0” denotes clean images). Specifically, for each
item layout, we first place all the items in the box and X-ray
scanned them to obtain a clean image; we then place 1∼4

3792    32nd USENIX Security Symposium USENIX Association



Table 5: Detailed data properties of our XAD dataset.

(a) Quality distribution

Category Scissor Folding knife Straight knife Utility knife

Training 1,048 1,300 1,300 926
Testing 54 54 52 50

Total 2,002 1,354 1,352 976

(b) Object materials and X-ray image colors

Colors Materials Typical examples

Orange Organic Substances Plastics, Clothes
Blue Inorganic Substances Irons, Coppers

Green Mixtures Edge of phones

Table 6: Results on different levels of XAD.

Setting mAP Categories

SC FO ST UT

Level 0 91.74 96.29 86.98 84.86 98.84
Level 1 72.98 79.25 61.32 69.30 82.04
Level 2 50.10 66.47 33.79 60.84 39.29
Level 3 30.83 55.76 18.59 41.15 7.82
Level 4 27.50 53.63 15.19 35.17 6.00

adversarial metals in the box respectively and scanned them
to collect 4 versions of adversarial images with 4 severity
levels. Thus, our testing set contains 1,050 samples which are
all scanned from a real X-ray machine. See Fig 9 for samples.

Category distribution. Our XAD dataset contains 4,537
images and 4 categories of 4,830 instances with bounding-box
annotations of prohibited cutters.

Color Information. The colors of objects under X-ray are
determined by their chemical composition, mainly reflected
in the material, which is introduced in Table 5(b).

Instances per image. In the training set of our XAD, each
image contains at least one prohibited object. In particular,
the image numbers containing 1, 2, 3, and 4 prohibited objects
are 4069, 234, 23, and 1, respectively.

7.3 Preliminary Experiments on XAD
After introducing our XAD, we further conduct experiments
on XAD to demonstrate the difficulties and practicability of
maintaining robust detectors. Specifically, we use the DOAM
model for detection. We train the model on the training set of
XAD and then evaluate it on the test set. The implementation
details are the same as our main experiment. From Table 6, we
can make several observations: ¶ The detector shows weak
performance on our XAD dataset with the model’s perfor-
mance on prohibited item recognition reducing by as much as
60% in terms of mAP. · Increasing the number of adversarial
objects improves the attack and therefore increases the recog-
nition difficulties in this scenario. We encourage researchers

to design stronger training strategies or defense modules and
evaluate their robustness on this benchmark.

8 Conclusion and Future Work

This paper takes the first step to study physical-world adver-
sarial attacks for X-ray prohibited item detection. Specifically,
we propose X -Adv , which generates physically realizable
adversarial objects to circumvent the color fading and com-
plex occlusion problems in this scenario. Although the results
presented here are promising, there are several research direc-
tions that we are interested in exploring in the future. ¶ We
hope X -Adv can be used as a tool to better debug and under-
stand the nature of object detectors’ robustness. · We would
like to generate attacks in other soft materials which are more
stealthy. ¸ We are interested in attacks against more types of
prohibited items. ¹ Our X -Adv can be regarded as a general
attacking framework for visually constrained scenarios. In
this paper, we focus on attacking X-ray inspection scenarios;
we will further extend our attacks to other complex scenarios.

9 Ethics Statement

As an effective way to discover safety problems, adversarial
attacks will encourage researchers to pay more attention to
model robustness. Based on this, this paper proposes X -Adv
to attack X-ray prohibited item detectors. Our large-scale ex-
periments demonstrated that existing X-ray prohibited item
detection models (even commercial systems) are not infal-
lible and can still be easily deceived. All experiments are
conducted on public-available datasets, and all images for
physical-world attacks are collected legally from our staff and
students without personal information under their grants.

To mitigate potential real-world impacts of the attacks, this
paper ¶ proposes three countermeasures and discusses their
practical feasibility for defending X -Adv ; · presents the
physical-world X-ray attack dataset XAD to promote the de-
sign and re-training of stronger detectors; and ¸ disclose the
results, countermeasures, and resources to two relevant X-ray
security inspection service providers and a stakeholder user at
the airport checkpoint. Based on our easy-to-use countermea-
sures, we help them to recognize this critical security issue
and move the first step to improve the robustness of their
detection backend with adversarial training. Moreover, these
service providers are also suggested to utilize the white-box
X -Adv to help reveal the vulnerabilities of their detectors and
further design stronger models. Despite the threats identi-
fied in this paper, we should note that a real-world adversary
would still find it difficult to pass X-ray security inspection
systems carrying prohibited items without detection, as hu-
man inspectors still help with checking luggage. We thus
further suggested the airport checkpoint pay attention to the
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employment of human inspectors, which can relieve the con-
cerns on the potential negative abuses of X -Adv.
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Appendix

A Implementation Details

A.1 Pseudo Code of X -Adv Algorithm

Algorithm 1 X -Adv Algorithm
Input: X-ray image I, label y and bounding box b of the

prohibited item, initial state of meshes xori, maximum lo-
cation reinforcement iterations NC, and maximum shape
polishment iterations NP.

Output: Adversarial example Iadv, adversarial meshes xadv.
1: Initialize policy network π.
2: for i in NC do
3: Sample a location C in π(I;w).
4: Calculate reward G according to Eqn. 11.
5: Update policy network π according to Eqn. 10.
6: end for
7: Initialize xadv as xori.
8: for i in NP do
9: Generate Iadv = I�gm(d(xP,C

adv )).
10: Calculate cost function L according to Eqn. 12.
11: Update xadv by Adam optimizer.
12: end for

A.2 X-ray Converter
To obtain the coefficient of the X-ray converter, we have
scanned a group of objects with different types of materials
and thicknesses. The photo of the scanned objects and their X-
ray images is provided in Figure A.1. For every thickness and
material, we sample an area of 20×20 pixels and calculate the
average pixel value as the color for this specific thickness and
material. We use Eqn. 7 as the conversion function, fitting the
coefficient a,b,c to the depth and color pairs. The illustration
of regression curves for iron is shown in Figure A.2.

The goodness of fit R2 for Hue, Saturate, and Value is 0
(Hue is a constant value), 0.993, and 0.984, which demon-
strates that the proposed conversion function fits well.

A.3 Detailed Settings of Experiments
Training of target models. All models in our paper (i.e.,
SSD, DOAM, LIM, and Faster R-CNN) use VGG-16 as back-
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plastic

aluminum

iron

Figure A.1: Physical-world photos and X-ray images of
scanned objects with different materials and thicknesses. The
number under the objects denotes the thickness of the object
in millimeters.

Figure A.2: Regression curves of depths to HSV values for
iron material. We sample 8 different thicknesses from 0.2mm
to 8mm.

bones. We use pre-trained weights on the VOC0712 dataset
and fine-tune our model on them, which is applied by previous
works [43, 47] to reduce the training time. We use the SGD
optimizer with momentum 0.9 and weight decay 5× 10−4.
For SSD, DOAM, and LIM, we train them with batch size
24 and a learning rate of 0.0001. For Faster R-CNN, we train
them with batch size 1 and a learning rate of 0.001. All mod-
els are trained with a maximum of 100 epochs, and we select
the checkpoints with the highest mAP as our target models.

X -Adv . We adopt an Adam optimizer with a learning
rate of 0.1 and a maximum of 24 iterations to optimize
the adversarial loss. To accelerate the speed of attacks, we
set the batch size of the attack as 10, which means that ev-
ery 10 images share the same group of adversarial objects.
Experimental results have proven the viability of this ap-
proach. The initial shape of the 3D object is a sphere with
26 vertices and 48 faces. During optimization, the coordi-
nates of vertices are updated with the guidance of the gra-
dients, while the adjacent relation of vertices remains un-
changed. The coefficient of location variance α is 0.05; the
coefficient of perceptual loss β is 0.1 in SSD, DOAM, and
LIM, and 0.01 in Faster R-CNN. We train the REINFORCE
policy for 200 iterations for every batch. For the available
attack area C, we define (xmin,ymin),(xmax,ymax) as the co-
ordinates of a ground truth box, and w,h is the width and
height of the box. Adversarial objects should have no overlap
with the center area of the ground truth box, i.e., the area of
(xmin +0.25w,ymin +0.25h),(xmax−0.25w,ymax−0.25h).

Vanilla adversarial objects. We simply set the optimizing

Table A.1: Time consumption of our X -Adv on OPIXray
dataset for the SSD detector. We perform 24 iterations of
shape polishment and 200 iterations of location reinforcement,
which is consistent with other experiments. We show the time
consumption of one iteration and one batch.

Time Cost (s) Shape Polishment Location Reinforcement

Iteration 0.51 0.28
Batch 12.15 55.93

Table B.1: Performance comparison between different materi-
als on HiXray dataset.

Setting mAP Categories

PO1 PO2 WA LA MP TA CO NL

Plastic 55.22 43.10 39.12 64.01 96.48 91.79 77.15 30.09 0.00
Aluminum 43.79 23.11 24.27 51.41 94.44 83.11 72.67 1.33 0.00

Iron 38.96 5.21 3.33 63.00 95.49 77.38 63.05 4.22 0.00

epoch to 0 to get vanilla spheres as adversarial objects.
MeshAdv [49]. We apply the same loss with X -Adv to

perform MeshAdv attacks. MeshAdv does not have the X-ray
converter and location reinforcement; thus we fix the color of
the converter and set the attack location as the four corners of
the available attack areas.

Adversarial Patch [2]. We apply the first term of X -Adv
loss (i.e., Ladv) for Adversarial Patch attacks. The initial shape
of the adversarial patch is a 20×20 depth image filled with 0.
To utilize a 2D patch, the gradient is calculated and updated
on the depth image rather than a 3D object. We set the attack
location as the four corners of available attack areas.

A.4 Time Consumption of X -Adv
In Table A.1, we show the time consumption of our X -Adv
attack on OPIXray dataset for the SSD detector. All of our ex-
periments are conducted on 1 GPU of NVIDIA RTX 3080Ti
and 8 CPU cores of Intel Xeon Gold 6148 @2.40GHz. The re-
sults demonstrate that our X -Adv generates adversarial attacks
with reasonable time consumption.

Also, we should note that the location reinforcement pro-
cess takes the most time during the attack generation, and we
will accelerate this process in future work.

B Additional Experimental Results

Different from OPIXray dataset, images in HiXray dataset
may contain more than one prohibited item. We only attack
images with only one prohibited item (about 3,227 images)
for simplicity. The performance of different materials on the
HiXray dataset is shown in Table B.1; the physical-world
results on LIM are shown in Table B.2; the countermeasure
validation in the physical world is shown in Table B.3;the
black-box attack results on OPIXray and HiXray are shown in
Table B.4; the white-box attack results on HiXray are shown
in Table B.5. These results demonstrate the effectiveness.
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Table B.2: Additional results of physical-world attack experi-
ments on LIM.

Setting mAP Categories

SC FO ST UT

Clean 96.20 98.85 99.55 95.58 90.82
Digital attack 29.56 76.69 4.08 31.06 6.41
Physical best 29.46 73.88 8.80 24.09 11.04

Physical change 51.38 75.30 47.94 41.46 40.81
Physical random 77.26 88.56 86.33 81.60 52.53

Table B.3: Countermeasure studies in the physical world.
We train the defended models on the XAD dataset in the
digital world, and evaluate their performance by collecting
real images in the physical-world scenario.

(a) Data augmentation

Setting mAP Categories

SC FO ST UT

V+C 91.35 84.17 98.05 100.00 83.18
V+A 33.16 66.33 18.35 44.48 3.46
D+C 90.57 85.76 97.14 98.42 80.98
D+A 51.16 63.15 31.79 72.27 37.42

(b) Adversarial Training

AT Setting Attack mAP Categories

SC FO ST UT

X -Adv Clean 91.12 95.03 98.85 100.00 70.59
X -Adv 59.15 89.18 49.64 80.25 17.54

Table B.4: Mean average precision of digital-world black-box
attacks on OPIXray and HiXray datasets. The adversarial
examples are generated from the source model and evaluated
on the target model. Bold results denote the best performance
of attacking in each column.

(a) OPIXray

Source Model Target Model

SSD Faster R-CNN DOAM LIM

SSD 19.20 30.01 44.37 39.31
Faster R-CNN 45.60 23.33 55.12 53.67

DOAM 36.46 28.69 23.05 40.00
LIM 26.90 28.37 38.59 22.46

(b) HiXray

Source Model Target Model

SSD Faster R-CNN DOAM LIM

SSD 33.41 41.28 45.02 40.45
Faster R-CNN 50.32 39.39 48.18 48.75

DOAM 45.94 42.09 38.96 44.87
LIM 42.27 47.94 44.99 32.53

Table B.5: Digital-world white-box attacking results on
HiXray dataset. PO1, PO2, WA, LA, MP, TA, CO, and NL
denote “Portable charger 1 (lithium-ion prismatic cell)”,
“Portable charger 2 (lithium-ion cylindrical cell)”, “Water”,
“Laptop”, “Mobile Phone”, “Tablet”, “Cosmetic” and “Non-
metallic Lighter”.

(a) SSD

Setting mAP Categories

PO1 PO2 WA LA MP TA CO NL

Clean 63.06 58.76 57.61 74.24 97.55 95.18 80.66 40.47 0.02
Vanilla 56.94 54.33 42.65 73.99 96.81 92.43 77.87 17.46 0.00

MeshAdv 48.14 40.90 22.56 63.79 96.45 86.20 66.40 8.82 0.00
AdvPatch 43.71 29.55 6.62 65.95 96.65 77.62 59.98 13.30 0.00

X -Adv 33.41 10.96 3.52 46.91 95.11 57.17 52.89 0.67 0.00

(b) Faster R-CNN

Setting mAP Categories

PO1 PO2 WA LA MP TA CO NL

Clean 66.91 74.06 62.51 81.19 98.43 95.60 80.66 42.86 0.00
Vanilla 58.60 56.04 38.51 80.58 97.73 94.49 80.10 21.38 0.00

MeshAdv 51.12 28.53 17.84 77.00 98.20 92.64 80.19 14.54 0.00
AdvPatch 48.37 42.05 1.40 77.37 97.91 82.84 74.79 10.56 0.00

X -Adv 39.39 21.91 4.54 62.73 94.33 70.99 56.98 3.64 0.00

(c) DOAM

Setting mAP Categories

PO1 PO2 WA LA MP TA CO NL

Clean 63.43 64.71 57.02 72.11 97.14 94.68 80.86 41.70 0.01
Vanilla 54.23 44.33 30.91 74.77 96.65 92.43 80.39 14.32 0.00

MeshAdv 45.93 12.24 10.01 73.35 96.41 89.54 75.82 10.09 0.00
AdvPatch 42.20 16.27 0.31 67.50 96.02 85.05 67.20 5.26 0.00

X -Adv 38.96 5.21 3.33 63.00 95.49 77.38 63.05 4.22 0.00

(d) LIM

Setting mAP Categories

PO1 PO2 WA LA MP TA CO NL

Clean 64.84 69.89 57.85 69.98 97.89 95.10 81.71 46.24 0.08
Vanilla 55.34 49.03 34.09 66.35 98.10 91.74 75.41 28.00 0.01

MeshAdv 46.51 29.23 11.38 60.59 97.90 86.77 71.13 15.09 0.00
AdvPatch 40.75 25.65 0.31 52.11 97.98 76.88 61.20 11.83 0.00

X -Adv 32.53 2.98 0.70 37.94 97.18 60.61 58.82 1.99 0.00
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