
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Detecting API Post-Handling Bugs Using Code
and Description in Patches

Miaoqian Lin, Kai Chen, and Yang Xiao, Institute of Information Engineering,
Chinese Academy of Sciences, China; School of Cyber Security,

University of Chinese Academy of Sciences, China
https://www.usenix.org/conference/usenixsecurity23/presentation/lin

Detecting API Post-Handling Bugs Using Code and Description in Patches

Miaoqian Lin1,2 Kai Chen1,2∗ Yang Xiao1,2

1{SKLOIS†, CAS-KLONAT‡, BKLONSPT§}, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

{linmiaoqian, chenkai, xiaoyang}@iie.ac.cn

Abstract
Program APIs must be used in accordance with their spec-
ifications. API post-handling (APH) is a common type of
specification that deals with APIs’ return checks, resource
releases, etc. Violation of APH specifications (aka, APH bug)
could cause serious security problems, including memory cor-
ruption, resource leaks, etc. API documents, as a good source
of APH specifications, are often analyzed to extract specifi-
cations for APH bug detection. However, documents are not
always complete, which makes many bugs fail to be detected.
In this paper, we find that patches could be another good
source of APH specifications. In addition to the code differ-
ences introduced by patches, patches also contain descriptions,
which help to accurately extract APH specifications. In order
to make bug detection accurate and efficient, we design API
specification-based graph for reducing the number of paths
to be analyzed and perform partial path-sensitive analysis.
We implement a prototype named APHP (API Post-Handling
bugs detector using Patches) for static detection of APH bugs.
We evaluate APHP on four popular open-source programs,
including the Linux kernel, QEMU, Git and Redis, and detect
410 new bugs, outperforming existing state-of-the-art work.
216 of the bugs have been confirmed by the maintainers, and
2 CVEs have been assigned. Some bugs have existed for more
than 12 years. Till now, many submitted patches have been
backported to long-term stable versions of the Linux kernel.

1 Introduction
Application Programming Interfaces (APIs) are provided for
developers to avoid code duplication and improve code main-
tainability. In this way, developers can enjoy the rich function-
alities of APIs without knowing their detailed implementation.
Relatively, developers should be cautious when using them.
APIs should conform to the specifications in documents, such

∗Corresponding author
†State Key Laboratory of Information Security, IIE, CAS
‡Key Laboratory of Network Assessment Technology, CAS
§Beijing Key Laboratory of Network Security and Protection Technology

as checking parameters before calling APIs and following
the orders of API calls. Otherwise, serious security issues
could occur, e.g., memory corruption and denial of service.
API Post-Handling (APH) is a common type of specification.
Specifically, after a particular API call, developers need to
execute the corresponding post-operation (e.g., return checks
and memory release). For example, Figure 1 shows the patch
for a memory leak vulnerability caused by improper post-
handling for a target API platform_device_alloc (CVE-
2019-18813) [6], with a severity score of 7.5 (High). When
platform_device_add_properties fails at line 7, the vari-
able dwc->dwc3 allocated at line 3 is not freed via the post-
operation platform_device_put. By triggering this failure
repeatedly, attackers can launch a denial of service attack.

// linux/drivers/usb/dwc3/dwc3-pci.c (9bbfcee)
01 static int dwc3_pci_probe(struct pci_dev *pci, ...)
02 {
03 dwc->dwc3 = platform_device_alloc("dwc3", ...);
04 if (!dwc->dwc3)
05 return -ENOMEM;
06
07 ret = platform_device_add_properties(dwc->dwc3, p);
08 if (ret < 0)
09- return ret;
10+ goto err;
11
12 err:
13 platform_device_put(dwc->dwc3);
14 return ret;
15 }

Figure 1: Patch for CVE-2019-18813.

Due to the diversity of API usage, it is challenging to
detect improper API post-handling (aka, APH bug). Al-
though various approaches have been proposed, they usu-
ally rely on API documents [30, 36, 61] or comparable
source code [27, 29] to infer the APH specifications and
check whether the specifications are consistent with the code
implementation. Unfortunately, the quality of documents
may not be good enough to extract specifications automati-
cally. Sometimes, APH specifications are missing, making
specification extraction impossible. For example, the API

USENIX Association 32nd USENIX Security Symposium 3709

platform_device_alloc does not clearly state to use the
post-operation platform_device_put. Extracting specifica-
tions from source code is also challenging since the correct
use of the API may not be found.

Alternatively, we find that bug patches can be a good source
of APH specifications. The patched code indicates the correct
use of the API and the suitable post-handling code. Once the
specifications are summarized, they can be used to detect APH
bugs that use the same API. We also note that previous studies
have utilized bug patches to detect new bugs (e.g., through
clone detection [16, 20, 53]); however, they are limited to
similar bugs. The code should be similar so that similar bugs
can be detected. However, even for the same API, its uses
could be very diverse, which prevents previous patch-based
methods from detecting them.
Our approach. In this paper, we present APHP (API Post-
Handling bugs detector using Patches), a static framework
for detecting APH bugs using patches. APHP automatically
obtains APH specifications from patches and uses them to
detect APH bugs in a target program, without requiring simi-
larity to the buggy program. APHP has two key components:
specification extraction and APH bug detection. Extracting
specifications involves identifying the target APIs and corre-
sponding post-operations from the patched code. However,
this is not straightforward since both of them may not appear
in code differences. Patches could use the goto statement
to divert the control flow to existing code for bug fixes (e.g.,
Figure 1). We address this by comparing the path differences
between the original and patched code and identifying candi-
date target APIs and post-operations. To accurately locate the
target APIs, we leverage patch descriptions, which typically
emphasizes the target APIs to explain patch design.

Subsequently, APHP detects APH bugs by checking the
consistency between the code and the extracted specifica-
tion. To enhance precision, we characterize the APH speci-
fication using path conditions. However, the path-sensitive
analysis can be inefficient, especially for large programs like
the Linux kernel. To tackle this problem, we propose the
APH specification-based graph (ASG), which retains only the
necessary information related to APH specifications. Specifi-
cally, ASG focuses on critical variables changed by the target
APIs and thus require the post-operations (e.g., the variable
dwc->dwc3 in Figure 1), thereby significantly reducing the
amount of code to be analyzed.

We evaluated APHP on four popular open-source programs,
including the Linux kernel, QEMU, Git, and Redis. We con-
firmed that APHP found 410 new APH bugs, with 2 CVEs
assigned. Until the submission of the paper, we have reported
the APH bugs and submitted 274 patches. Among them,
216 APH bugs have been confirmed by maintainers, and 201
patches have been accepted. Interestingly, 50% of the detected
bugs existed for over five years and seven months before our
detection. Compared with the state-of-the-art tools such as
MVP [53], APHP outperforms it by improving precision by

0.49 and recall by 0.97.
Contributions. We summarize our contributions below.
• A novel approach for detecting APH bugs. We propose a
new framework, APHP, aimed at detecting APH bugs by ex-
tracting APH specifications from patches (Section 4). APHP
automatically obtains APH specifications using both code
and descriptions in patches. To improve efficiency, we design
four-tuple defined APH specifications (Section 2.2) and APH
specification-based graph (ASG) (Section 5), enabling APHP
to scale to large programs. We plan to release our code and
dataset1 to facilitate further research.
• Numerous new bugs on popular programs. We evalu-
ate APHP on four well-tested popular programs. APHP re-
vealed 410 APH bugs that could cause various security issues.
Among them, 216 bugs or patches have been confirmed or
accepted by developers, and 2 CVEs assigned. Many patches
have been backported to long-term stable versions of the
Linux kernel to improve system security (Section 7.1).
• Comprehensive comparisons with existing approaches.
We compare APHP with three types of bug detectors: patch-
based, document-based, and inconsistency-based approaches.
Our results demonstrate that APHP outperforms or compen-
sates these approaches in detecting APH bugs (Section 7.2).
• New findings and insights. Our experimental analysis pro-
vides new insights into the nature of APH bugs, revealing
error-prone APIs, implicit conventions and deviations from
standard API designs can cause hundreds of bugs when de-
velopers are unaware of them. Based on these findings, we
provide practical suggestions for avoiding and fixing APH
bugs (Section 7.5).

2 Background and Motivation

2.1 API Post-Handling
API Post-Handling (APH) manages the API’s effects after
its call. It typically involves return value checks and paired
function calls. (1) return value checks: APIs return different
values, indicating various internal states. Developers must han-
dle these values to catch errors and maintain correct program
states. (2) paired function calls: APIs may request resources
like memory and reference counts. Paired functions clean
up these resources after usage, e.g., using closedir after
opendir. Proper APH is crucial for security, while improper
APH can lead to APH bugs. These bugs can be classified
into two categories: missing APH and incorrect APH. Miss-
ing APH omits necessary operations, while incorrect APH
performs wrong operations after API calls. Previous stud-
ies discuss APH bugs’ security implications [15, 27, 29, 42].
For instance, missing return value checks may cause null-ptr-
deference [29], while incorrect return value checks can lead
to unintended behaviors [15]. Missed paired function calls

1Available in https://github.com/Yuuoniy/APHP.

3710 32nd USENIX Security Symposium USENIX Association

https://github.com/Yuuoniy/APHP

can result in memory leaks and deadlock [27], whereas incor-
rect paired function calls may cause use-after-free issues [3].
Therefore, detecting APH bugs is vital for security, but this
task is difficult because it is often unclear which APIs require
post-handling or what specific operations they require.

2.2 API Documents and Specifications
The API documents describe APH specifications, guiding de-
velopers in using APIs correctly. These specifications encom-
pass critical elements and considerations for using APIs. In a
document introducing an API, the API is the target API. The
document details the target API’s usage specification, among
other information, like functionality, and parameters. For in-
stance, the Linux kernel documents outline the specification of
kobject_init_and_add (the target API): “If this function
returns an error, kobject_put() must be called to properly
clean up the memory associated with the object”. We under-
line key elements of the APH specification. “kobject_put()”
is a post-operation to clean up the resource allocated by the
target API. “the object” is a critical variable, which requires
the post-operation. The clause “if this function returns an
error” describes the API execution status’s condition. Post-
operations might have separate documents detailing usage
conditions. For example, the platform_device_put post-
operation document states: “This function must _only_ be
externally called in error cases. All other usage is a bug”.
The phrase “in error cases” refers to the path return status’s
condition. These conditions, affecting post-operation usage,
are called path conditions. We define the key elements below.
• Target API: the function that affects variables and requires
a post-operation. Specifically, the target API may return a
value or change its argument.
• Post-operation: is performed after the target API to handle
its effects thus avoid security issues. It includes error checks,
memory releases, etc.
• Critical variable: the variable affected by the target API
and requiring the post-operation. It can either be the return
value or the argument of the target API.
• Path conditions: represent the conditions of applying a post-
operation. As we know, a target API may contain different
operations depending on the execution status, which also
requires different post-operations. Also, the return status of
the path affects the use of post-operation. These statuses can
be characterized by path conditions.

Therefore, we present APH specifications as a four-tuple
<target API, post-operation, critical variable, path condi-
tions>, meaning the post-operation should be performed on
the critical variable when the path calls the target API and path
conditions are satisfied. Researchers have proposed methods
for extracting specifications from API documents and de-
tecting violations in code [30, 33]. However, missing critical
information and the difficulty of automatic extraction from
unstructured text make it necessary to explore alternative
sources containing APH specifications.

2.3 Security Patches
Vulnerabilities can compromise software security, allowing
attackers to exploit them, thereby threatening the system’s
integrity and security. To address this issue, developers re-
lease security patches to fix vulnerabilities. These patches
are typically available as commits in open-source repositories
and consist of patch code and patch descriptions2 (Figure 2
(a)). Patch code represents the changes made to the code,
including added or deleted statements marked with + or -.
Patch descriptions provide crucial information related to the
vulnerability, such as the reason for the patch, its behavior,
and the security impact. As seen in Figure 2 (a), the patch
description includes a summary in the first line, followed by
a detailed explanation containing more information about the
vulnerability, the modified function, the trigger conditions,
and the patch behaviors.

Existing methods for using security patches to detect new
bugs [16, 20, 53] focus on patch code only and employ tech-
niques like code clone detection. However, functions with
APH bugs that violate the same APH specification can vary
significantly. As a result, these methods cannot detect APH
bugs effectively due to code clone detection technique used
and inaccurate patch characterization. Although patch descrip-
tions contain valuable information about bugs, automatically
utilizing them is challenging due to the lack of consistent tem-
plates or styles within these descriptions. In our research, we
explore a way to utilize patch descriptions for bug detection.

3 Overview
Architecture. Figure 3 shows the overview of APHP. APHP
aims to automatically obtain APH specifications from patches
and use them to detect APH bugs in a target program. It
consists of two main phases: APH Specification Extraction
and Bug Detection.

In the APH Specification Extraction phase, APHP extracts
the APH specification from a patch. It contains the following
key elements: post-operation, target API, critical variable, and
path conditions. Specifically, if the patch inserts the post-
operation directly, APHP identifies it using code differences.
Otherwise, APHP utilizes path differences to identify the post-
operation. Then, APHP identifies the target API with code
semantics derived from post-operation and textual semantics
in the patch description. After that, APHP extracts the critical
variable and path conditions via static analysis. The critical
variable is operated by the target API and the post-operation.
Path conditions are held by paths that pass through the target
API and the post-operation.

During the Bug Detection phase, APHP identifies specifi-
cation violations in the target program using path-sensitive
analysis. To expedite detection, APHP first retrieves func-
tions that call the target API. These functions are the tar-
gets for checking. Then, APHP constructs each function’s

2In this paper, we refer to the commit message associated with the patch
as the “patch description”, based on previous research [46, 57].

USENIX Association 32nd USENIX Security Symposium 3711

// linux/drivers/usb/dwc2/hcd.c
01 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
02 {
03 ...
04 hcd = usb_create_hcd(&dwc2_hc_driver, ...);
05 if (!hcd)
06 goto error1;
07
08 res = platform_get_resource(pdev, ...);
09 if (!res) {
10 retval = -EINVAL;
11 goto error1;
12 }
13 retval = dwc2_core_init(hsotg, true);
14 if (retval)
15 goto error2;
16
17 error2:
18 usb_put_hcd(hcd);
19 error1:
20 return retval;
21 }

01 @@ -4152,8 +4152,10 @@ static struct
oxu_create(...){
02 struct usb_hcd *hcd;
03
04 hcd = usb_create_hcd(&oxu_hc_driver, ...);
05 if (!hcd)
06 return ERR_PTR(-ENOMEM);
07
08 hcd->rsrc_start = memstart;
09 oxu = hcd_to_oxu(hcd);
10
11 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
12 - if (ret < 0)
13 + if (ret < 0) {
14 + usb_put_hcd(hcd);
15 return ERR_PTR(ret);
16 + }
17 ...
18 return hcd;
19 }

usb: oxu210hp-hcd: Fix memory leak in oxu_create
usb_create_hcd will alloc memory for hcd, and we
should call usb_put_hcd to free it when adding fails to
prevent memory leak.

（a) Patch for a memory leak bug in oxu_create （c) A new memory leak bug found by APHP

（b) API specification

APH
specification

Post-operation
usb_put_hcd

Critical variable
hcd (return value)

Path conditions
- API call success

- error path

Target API
usb_create_hcd

call target API

perform post-operation

call target API

missing post-operation

1

1

2

2

3 3

4
4

Figure 2: An example to illustrate detecting new APH bugs using patches.

Patches Program

APH
specification

Post-operation

Target API

Critival
variable

Path
conditions

ASG generation

Target
functions

Paths
verification

Reports

Post-operation
identification

Target API
identification

Critical var
extraction

Conditions
extraction

Bug DetectionAPH Specification Extraction

Preprocess

Figure 3: The overview of APHP.

CFG and generates the corresponding ASG with critical vari-
able and target API in the specification. The ASG enables
APHP to focus on API usage information, thereby preventing
path explosion. Subsequently, APHP examines paths in the
ASG to detect violations, identifying paths meeting condi-
tions and verifying the presence of the post-operation. If the
post-operation is absent or incorrect, APHP reports it as a po-
tential bug and provides the violated specification for further
manual verification.

Example. Figure 2 provides an example to show how APHP
detects new bugs using patches. Figure 2(a) shows a patch
for a memory leak bug, including the patch description
and code differences. Before applying the patch, the API
usb_create_hcd is misused because the allocated mem-
ory resource is not released when usb_add_hcd() fails.
The patch adds the post-operation usb_put_hcd in the er-

ror path at line 14 to fix it. A similar bug exists in the
dwc2_hcd_init function as is shown in Figure 2(c). Af-
ter calling the API usb_create_hcd, the function misses
the post-operation when platform_get_resource() fails.
To detect the latter bug, APHP extracts the APH specifica-
tion in Figure 2(a) and detects its violations. Specifically,
APHP identifies the post-operation usb_put_hcd using code
differences. The API usb_create_hcd is data-dependent
with the post-operation and is also mentioned in the patch
description. Thus APHP infers it as the target API. Fur-
thermore, because usb_put_hcd() and usb_create_hcd()
both operate on the variable hcd, which is the return value
of usb_create_hcd(), APHP identifies it as the critical vari-
able. Finally, APHP collects conditions in the paths going
through usb_put_hcd() and usb_create_hcd(). The post-
operation usb_put_hcd is applied in the subsequent error
path after a successful call to the API usb_create_hcd.

After specification extraction, APHP obtains the APH spec-
ification shown in Figure 2(b). Then it investigates the pro-
gram to detect violations of the specification. Specifically,
APHP first obtains callers of usb_create_hcd and gets func-
tion dwc2_hcd_init. Then, it constructs the CFG of the func-
tion and generates the corresponding ASG with the specifi-
cation. Subsequently, it verifies paths in the ASG to detect
violations. For each path, APHP finds the path that meets
the conditions and further checks whether the post-operation
exists. The path 04-05-08-09-10-11-20 in Figure 2(c) is miss-
ing the post-operation usb_put_hcd, thus APHP reports it as
a potential bug. Unlike previous approaches, such as MVP,
the feature of APHP is to extract APH specifications using
patches, rather than detecting similar vulnerable code.

3712 32nd USENIX Security Symposium USENIX Association

4 APH Specification Extraction

For a given patch, APHP sequentially extracts the elements
of the APH specification: post-operation, target API, criti-
cal variable, and path conditions. As patches that fix APH
bugs usually have minor code differences and are closely tied
to post-operations, APHP first identifies the post-operation,
which is typically easier to identify. Next, APHP identifies the
target API by performing relaxed data-flow analysis on the
post-operation and leveraging the patch description. Finally,
based on the post-operation and the target API, APHP extracts
the critical variable and the path conditions.

4.1 Preprocessing
APHP begins by preprocessing the patch, converting it into a
proper format for later analysis. Each patch commit is iden-
tified by a unique hash value. Given this hash value, APHP
uses Pydriller [41] to parse the commit, extracting both the
patch code and its description. Specifically, APHP first locates
the modified file and obtains the modified function. From
there, APHP obtains the fixed function from the modified
file version after the patch, and the buggy function from the
version before the patch. It then computes the differences
between these two versions using AST difference, which
is syntax-aware and more fine-grained than text-based dif-
ferences. After parsing the patch, APHP constructs Code
Property Graphs [54] (CPGs) for both the fixed and buggy
versions of the function. CPGs offer a comprehensive view
of the code, enabling analysis techniques such as backward
slicing. Specifically, a CPG integrates properties from various
code representations, including abstract syntax trees (AST),
control flow graphs (CFG), and program dependence graphs
(PDG), into a unified structure.

4.2 Post-Operation Identification
Following the preprocessing, APHP proceeds to identify the
post-operation within the patch. Post-operations are neces-
sary for fixing APH bugs, and their absence often signals the
presence of such bugs. As discussed in Section 2.1, APH can
be categorized into two types: return value checks and paired
function calls. Accordingly, APHP focuses on extracting post-
operations from conditional statements and call statements,
aligning with the focus of other work [27]. This strategic
focus filters out statements unrelated to post-operations.

Before identifying the post-operation, we divide patches
into direct fix and indirect fix, depending on whether the code
differences include the post-operation. In a direct fix, the code
differences include post-operation, while in an indirect fix,
they do not [55, 56]. For example, developers often use goto
statements to avoid duplicating code in such fixes.

For a direct fix, APHP directly identifies the post-operation
using the code differences. Specifically, APHP first obtains

the added statements via AST-difference, and then uses
AST parsing to extract the post-operation. For instance,
in Figure 2(a), APHP identifies the newly inserted state-
ment at line 14, and consequently obtains the post-operation
usb_hcd_put from this statement.

As for an indirect fix, the post-operation cannot be directly
extracted from the code differences. To address the problem,
we consider path-level differences to identify it. Specifically,
the buggy path denotes the path in the buggy function that
lacks the necessary post-operation. To fix the buggy path,
the patch modifies the function’s control flow to include the
missed post-operation. Therefore, the path difference between
the buggy and patched paths allows APHP to identify the post-
operation. Based on this idea, APHP obtains the patched and
buggy paths using the code differences, then it compares the
two to identify the post-operation. For a detailed description
of this procedure, refer to Appendix A.

Although the patch may insert missed post-operations in
multiple buggy paths3, we do not need to consider every path’s
differences, as the post-operations are the same. Instead, we
only need to consider the differences of a single path pair to
identify the post-operation. Moreover, if the patch simultane-
ously contains a conditional statement and a call statement,
APHP uses keywords in the patch description to infer the
APH type, then focus on the corresponding statement type.
For example, the keyword “check” indicates return value
checks, while “leak” indicates paired function calls.

4.3 Target API Identification

After identifying the post-operation, APHP next determines
the target API, which is the function that requires a follow-up
post-operation when necessary. Identifying this API associ-
ated with the bug is crucial for detecting APH bugs. Intu-
itively, the post-operation operates the target API’s return
value. Thus we can find the function call that assigns its re-
turn value to the variable that the post-operation operates.
However, functions can also pass data via parameter pointers,
not just return values. For example, in the patch shown in Fig-
ure 4, the kobject_init_and_add function in line 6 is the
target API, and kobject_put in line 10 is the post-operation.
The variable involved is the first argument of the target API.
In this case, solely performing return value-based analysis
on line 10 would miss the function call in line 6, leading to
inaccurate results. Besides, it is hard to model all functions
invoked by the buggy function to figure out how they operate
arguments and return values. Another possible way is to re-
trieve functions associated with the post-operation. However,
considering all related functions introduces noise, resulting
in inaccurate results.

We observe that developers often highlight the target API
in patch descriptions. Based on this observation, we propose

3https://git.kernel.org/torvalds/c/b92675d998a9

USENIX Association 32nd USENIX Security Symposium 3713

https://git.kernel.org/torvalds/c/b92675d998a9

01 int bond_sysfs_slave_add(struct slave *slave)
02 {
03 const struct slave_attribute **a;
04 int err;
05
06 err = kobject_init_and_add(&slave->kobj, &slave_ktype,
07 &(slave->dev->dev.kobj), "bonding_slave");
08 - if (err)
09 + if (err) {
10 + kobject_put(&slave->kobj);
11 return err;
12 + }
13 ...
14 }

Figure 4: Patch for a reference count leak in Linux kernel.

using the patch description as auxiliary information to iden-
tify the target API. The idea is to use code semantics in patch
code to identify all possible target API candidates, while uti-
lizing textual semantics to infer the most likely one. The
textual semantics within the patch description greatly facil-
itate identifying the target API, circumventing the need for
inter-procedural data-flow analysis or modeling of all invoked
functions. Below, we describe the details.

First, APHP utilizes code semantics to identify all potential
candidates by performing a relaxed data-flow analysis on the
post-operation. It considers all function calls that utilize vari-
ables, not just those that explicitly assign variables, thereby
addressing the limitations of existing data flow analysis that
may overlook possible candidates. Specifically, APHP per-
forms backward slicing on the CPG of the fixed function,
using the post-operation statement as the slicing criterion,
and focusing on the variable within this statement (step 1).
Consequently, APHP collects all statements that have a data
relationship with the variable in the post-operation statement.
Following this, APHP retrieves all variables from the pre-
viously identified statements via AST parsing and further
obtains all function calls that assign a value to the variable or
utilize the variable as an argument (step 2). These functions
are candidates for the target API.

Following that, APHP leverages textual semantics to infer
the target API, based on the observation that such informa-
tion is often mentioned in the patch description. To do this,
APHP removes less relevant content from the description and
matches tokens to identify the target API. Specifically, we
note that developers typically mention the target API in main
clauses, while conditional clauses are usually less relevant.
For example, in Figure 5, the clause “when the call to plat-
form_device_add_proprieties fails” describes the condition
triggering the bug, which is not relevant to the target API.
Therefore, APHP enhances identification accuracy by remov-
ing clauses starting with “if” or “when”. After removing
these clauses, if a function exists in both the target API candi-
dates and the patch description, APHP infers it as the target
API. Since function names in the patch description often ap-
pear as tokens, APHP tokenizes the description to match with
target API candidates.

We illustrate the process with two examples. In the first ex-
ample, as shown in Figure 2, after determining usb_put_hcd

usb: dwc3: pci: prevent memory leak in dwc3_pci_probe
In dwc3_pci_probe a call to platform_device_alloc allocates
a device which is correctly put in case of error except
one case: when the call to platform_device_add_properties fails
it directly returns instead of going to error handling.
This commit replaces return with the goto.

Figure 5: Patch description of the patch for CVE-2019-18813.

as the post-operation, APHP identifies the variable hcd
from the statement usb_put_hcd(hcd) using AST pars-
ing. APHP then conducts relaxed data-flow analysis on the
variable hcd to obtain the target API candidates, which
include usb_create_hcd, hcd_to_oxu, usb_add_hcd, etc.
These candidates are then matched with tokens in the patch
description. Since the API usb_create_hcd is present
in both the candidate list and the description’s token list,
APHP infers it as the target API. For the second exam-
ple, we turn to the patch description of CVE-2019-18813
in Figure 5, which mentions three functions. Among them,
dwc3_pci_probe is not related to the post-operation, while
platform_device_add_properties is mentioned within a
conditional clause “when the call to ... fails”. As a result,
APHP discards them during target API identification, ulti-
mately inferring platform_device_alloc as the target API.

4.4 Critical Variable Extraction

After extracting the target API, APHP extracts the critical vari-
able. This variable, specifically affected by the target API and
requires post-operation, forms the focus of APHP’s analysis.
APHP can thereby track its specific data flow and filter out
extraneous information, such as operations related to other
variables in the target API. The critical variable appears in
both the target API call and the post-operation statement.
However, directly recording the variable name is infeasible
as it changes in various contexts.

Therefore, we represent the critical variable by its rela-
tive position in the target API (e.g., return value, first ar-
gument, or second argument). The variable is critical be-
cause it plays a specific role in the target API call. With
the target API and relative position information, APHP can
identify the critical variable consistently regardless of its
naming in various contexts. Specifically, APHP employs
AST parsing to find the common variable between the tar-
get API call and the post-operation statement. It then deter-
mines this variable’s relative position in the target API call
and identifies it as the critical variable. For example, as
shown in Figure 2, APHP parses the target API call hcd =
usb_create_hcd(&oxu_hcd_driver, ...); and the post-
operation statement usb_put_hcd(hcd);. It identifies hcd
as the common variable and, upon further analysis, recognizes
it as the return value in the target API call. Therefore, APHP
takes return value as the critical variable.

3714 32nd USENIX Security Symposium USENIX Association

4.5 Path Conditions Collection

After obtaining the target API and the post-operation, APHP
collects path conditions. These conditions capture the path-
related semantics, providing a precise characterization of the
specifications. We classify path conditions into two types: pre-
condition and post-condition. Though previous research like
Advance [30] uses pre- and post-conditions to characterize
API usages, we refine them in this paper to represent the
assumptions before and after the post-operation.

The pre-condition represents the target API’s execution
status, which can be either “success” or “failure”. Dif-
ferent execution statuses of the target API produce different
effects, which subsequently affect the post-operation. The
post-condition represents the return status of the path, which
can be either “normal” or “error”. Post-operations differ
according to the return status. For instance, as illustrated
in Figure 2(a), the post-operation must be executed after the
successful API call (pre-condition) and before the error path
returns (post-condition). If either the pre-condition or the
post-condition is not satisfied, the path does not require the
post-operation usb_hcd_put.

hcd = usb_create_hcd(&oxu_hc_driver, dev,)

!hcd

oxu = hcd_to_oxu(hcd)

return ERR_PTR(-ENOMEM);ret = usb_add_hcd(hcd, ...)

ret < 0

usb_put_hcd(hcd) device_wakeup_enable(hcd->...)

return ERR_PTR(ret)

METHOD_RETURN

return hcd;

True

FalseTrue

False

post-operation

pre-condition

post-condition

API call 1

2

3

4

5

6

7

8

Figure 6: Simplified CFG of oxu_create function.

Specifically, APHP analyzes paths in the fixed function’s
CPG to collect path conditions. These paths go through the
target API and the post-operation. To collect the pre-condition,
APHP uses a method inspired by APEx [17] to infer the exe-
cution status of the target API. The basic idea is: if an API call
fails, the caller will immediately return without executing the
rest of the normal path. Therefore, the number of statements
along the API call’s error path is fewer than those along the
corresponding success path. Additionally, the pre-condition
might be empty if no condition imposed on the target API’s
execution status. For post-condition collection, APHP bases
its analysis on the path’s return value. This is because error
return values are distinct from normal return values, mirroring
the path’s potential return status of error or normal. To dis-
tinguish these return values, APHP uses a similar method to

that adopted in IPPO [27]. For instance, in the Linux kernel,
negative values and error pointers with ERR_PTR represent
error values.

We illustrate this process using Figure 6, which shows the
sub-CFG of the oxu_create function. Here, APHP identi-
fies the path ①-②-③-④-⑤-⑥-⑦-⑧ that includes the target
API and the post-operation, as it is the only path that traverses
both usb_create_hcd and usb_put_hcd. Further, APHP an-
alyzes the path to collect the path conditions. Specifically,
APHP parses the call statement in node ① to obtain the return
value hcd and identify the condition applied to it. Node ②
enforces a check on hcd, and this path takes the False branch.
Unlike the other branch that returns immediately, this branch
has more statements, indicating the successful execution sta-
tus. Thus, the pre-condition is determined to be “success”.
Finally, APHP finds node ⑦ as the return node within this
path. By observing the return value ERR_PTR(ret), APHP
classifies the path as an error path due to the presence of
ERR_PTR. Thus, the post-condition is “error”.

5 Bug Detection

Following the APH specification extraction, APHP proceeds
to investigate the violations of these specifications. Each spec-
ification is structured in the following format: <target API,
post-operation, critical variable, path conditions>. The aim
is to find the path that calls the target API and meets the path
conditions, then verify whether the post-operation is correctly
performed on the critical variable. If the post-operation is
missing or incorrect, APHP identifies it as a potential bug.

For precise bug detection, path-sensitive analysis is needed.
However, this requires exploring all paths, which is cumber-
some or even infeasible, especially for large-scale programs.
A more efficient approach is to focus on a subset of paths
by selecting bug-related code in advance. Intuitively, slicing
on the critical variable can filter out irrelevant code. How-
ever, accurately obtaining the desired slice is challenging
due to the need to model function effects [2]. Besides, it is
difficult to strike the right balance between data-flow and
control-flow analysis. Data-flow slicing may exclude essen-
tial statements, such as the crucial return statement on line 15
in Figure 2(a) when slicing the hcd variable, which is vital for
path condition checking. While control-flow slicing would
introduce unrelated statements. Therefore, we introduce the
APH specification-based graph (ASG), a carefully designed
sub-CFG that retains only code related to APH specifications,
including code associated with critical variables and path con-
ditions. By doing so, we reduce analysis complexity while
retaining crucial information for bug detection.

Given a specification, APHP identifies functions that are re-
lated to the target API and checks selected paths within these
functions. More specifically, APHP first identifies the target
API’s caller functions and constructs their CFGs, and subse-
quently generates an ASG for each function. Then, APHP

USENIX Association 32nd USENIX Security Symposium 3715

explores the ASGs to identify paths that satisfy the path con-
ditions. In this way, APHP conducts partial path-sensitive
analysis on the ASGs, focusing on specific critical paths and
capturing path-related behaviors. This approach may intro-
duce some false positives due to the absence of context outside
of ASGs. We discuss this in Section 7.1. Finally, APHP deter-
mines whether the post-operation exists in the selected paths.
Next, we describe the details below.

hcd = usb_create_hcd(...)

!hcd

return retval;

!res

hcd->has_tt = 1;

res = platform_get_resource(...);

METHOD_RETURN

return 0;
usb_put_hcd(hcd)

True
False

True False

hcd->rsrc_start = res->start;

hcd->rsrc_len = ...

...

API call

missing post-operation

pre-condition

post-condition

1

2

3

5

4

6

7

8

Figure 7: ASG of dwc2_hcd_init function.

ASG generation. APHP generates the ASG by preserving
only APH-related semantics. Since effects occur after the tar-
get API call, the code range between the API call and function
exit is most relevant. Within this range, only statements re-
lated to critical variables and path conditions are essential for
checking, while others are considered irrelevant. Conditional
statements regarding target API’s execution status and re-
turn statements usually after the API call, making statements
preceding it generally unimportant for bug detection.

Based on the idea, APHP generates the ASG with the fol-
lowing steps. It first removes the statements prior to the target
API by topologically sorting the CFG nodes. Topological
sorting [43] linearizes the nodes of a CFG, ensuring that each
node appears before all the nodes it influences. To prevent fail-
ures in topological sorting due to CFG cycles, we unroll loops
once, a technique used in previous research [27, 29]. As APH
bugs are typically unrelated to the number of loop executions,
this rarely impacts the correctness. Furthermore, APHP only
keeps statements that are related to path conditions or critical
variables, termed path condition related statements (PCSs)
and critical variable related statements (CVSs). PCS is the
same as explained in Section 4.5, and CVS uses the critical
variable or assigns a value to it. Note that we take statements
that refer to the aliases of the critical variable as CVSs, too.
Specifically, APHP extracts the critical variable from the AST
of the target API call statement using the APH specification.

For example, if the critical variable specified is return value,
APHP obtains the variable name corresponding to the return
value in the target API call statement. Additionally, APHP
performs data-flow analysis to identify aliases of the critical
variable. Using these aliases, APHP obtains all CVSs.
Paths verification. After ASG generation, APHP signifi-
cantly reduces the number of paths to be analyzed. APHP
further validates paths in the ASG to detect APH bugs. Specif-
ically, APHP collects path conditions for each path and de-
termines whether it meets the required path conditions. The
path conditions are collected using the method described in
Section 4.5. Subsequently, APHP performs a direct literal
comparison to determine if conditions are satisfied. Since
different string values represent distinct conditions, the di-
rect comparison is sufficient to determine their equivalence.
APHP excludes paths that do not meet the conditions in the
given specification. Finally, APHP determines whether the
remaining path performs post-operation on the critical vari-
able or its aliases. If the post-operation is missing or incorrect,
APHP reports it as a potential bug.

pre-condition

P1

P2

P3

P4

paths

1 2 6 8

1 2 3 6 8

1 2 3 4 56 8

1 2 3 4 87

post-condition post-operation

Figure 8: Path verification for dwc2_hcd_init function.

For example, referring to the specification in Figure 2(b),
APHP first obtains callers of the target API usb_create_hcd
and constructs their CFGs. The function dwc2_hcd_init in
Figure 2 is one of the callers, with a total of 254 lines of code.
APHP generates the ASG based on the API usb_create_hcd
and its return value hcd, as shown in Figure 7. After that, only
a few paths remain. Then, APHP investigates all possible
paths in the ASG. As shown in Figure 8, there are four paths
in the ASG. Since only P2 and P3 satisfy the conditions in the
APH specification, P1 and P4 are ignored. When investigating
P2 and P3, APHP finds that P2 misses the post-operation.
Therefore, APHP reports it as a potential bug.

6 Implementation
We implemented an APHP prototype consisting of 3.5k+ lines
of Python code and 200+ lines of Scala code. The implementa-
tion includes two modules: APH specification extraction and
bug detection. The APH specification extraction module pro-
cesses and analyzes patches to generate APH specifications,
while the bug detection module utilizes these specifications
to identify bugs and generate bug reports. We employ Jo-
ern [54], a widely-used tool in previous research [53, 59],
for comprehensive code analysis. To handle loops, we unroll
them by treating for and while statements as if statements,
a common strategy used in previous work [29]. We provide
more implementation details in Appendix B.

3716 32nd USENIX Security Symposium USENIX Association

Table 1: Target program overview.

Program Version
Lines of
code

Num of
patches

Category

Linux kernel 5.16-rc1 22.5M 14115 Operating System

QEMU 7.0.0-rc4 1.8M 1096 Emulator

Git 2.37.3 870K 363 Version Control

Redis 7.0.0 263K 142 Database

7 Evaluation
To extensively evaluate the effectiveness of APHP, we first
evaluated its effectiveness in finding unknown bugs and run-
time performance. We further compared APHP with three dif-
ferent types of bug detectors: patch-based [20, 53], document-
based [30], and inconsistency-based [27]. Then, we evaluated
the effectiveness of APHP in extracting specifications and
examined the contribution of each component of APHP.
Dataset. We evaluated the effectiveness and performance of
APHP on Linux kernel, QEMU, Redis, and Git, including a
total of 25.43 million lines of code. The target programs cover
different kinds of software. We collected APH-related patches
by referring to the methods used in previous work [49]. In
particular, patch descriptions of APH-related patches contain
special keywords, and 96.15% of API misuse can be patched
with fewer than ten lines of code [13]. Therefore, we filtered
patches by matching APH-related keywords (e.g., “leak”, “er-
ror handling”, “return value”). Patches with no code changes
or code changes exceeding ten lines were excluded. While
APHP is capable of handling patches with more than ten lines
of code changes, we focus on the most common cases based
on previous research. Table 1 shows the overview of target
programs and the number of patches collected.

As it is impractical to identify all APH bugs and confirm
all specifications manually, we constructed a ground-truth
dataset to evaluate the false negatives and the effectiveness of
specification extraction in APHP. Specifically, we randomly
selected 100 APH patches (Dpatch) from Table 1 and manually
summarized the correct specifications exhibited by the patches
to create a ground truth. Based on these specifications, we
constructed a dataset of 100 bugs (Dbug) to evaluate false
negatives. Specifically, we randomly selected a target function
to inject bugs for each specification by deleting the correct
post-operation. In other words, the target functions violate the
specifications.
Platform. All experiments were carried out on a single 64-bit
server running Ubuntu 20.04 LTS and equipped with eight
Intel(R) Xeon(R) Silver 4110 CPU cores running at 2.10GHz,
128GB of memory, and a 22TB hard drive.

7.1 Effectiveness on Bug Findings
Bug findings. APHP generated bug reports with the corre-
sponding buggy functions and the violated APH specifica-
tions. We manually validated each bug report. Specifically,

Table 2: Major impacts of bugs found by APHP.

Types of bugs Prop Causes CWE-ID
Refcount leak 54.1% MFC CWE-911
Memory leak 14.9% MFC/WFC CWE-401
NULL pointer dereference 1.5% MRC CWE-690
Restricted use of resources 20.2% MFC CWE-404
Reliability 8.8% WRC/MRC CWE-235

Note: CWE = common weakness enumeration. MFC = missing paired
function call, IFC = incorrect paired function call, MRC = missing return

check, IRC = incorrect return check.

Table 3: Execution time of APHP.

Program Phase 1 Phase 2 Total
Linux 03h08m 04h50m 07h58m

QEMU 37m04s 38m30s 75m34s
Git 19m38s 26m55s 46m33s

Redis 10m43s 08m33s 19m16s

Note: Phase 1: APH specification extraction, Phase 2: bug detection.

we took bug reports as true APH bugs when the API usage
violated its specification. This indicates that the required post-
operation of the target API call is either missing or incorrect,
regardless of whether the bug is fireable or not. In addition,
most APH bugs are confined to a single function, and the
reports provide helpful information. We can typically ana-
lyze a bug report within a minute. We confirmed 410 true
bugs from 667 bug reports generated by APHP. This took
us about 12 person-hours, which we believe is manageable
as a one-time effort. Until the submission of the paper, we
have submitted patches to fix 274 bugs, and 216 new bugs
have been confirmed where 201 patches have been accepted.
Specifically, we found 402, 5, 2, and 1 bugs from the Linux
kernel, QEMU, Git and Redis, respectively. APHP found pro-
portionally more bugs in Linux kernel due to its extensive
code reuse and widespread misuse of error-prone APIs. We
discuss findings regarding the prevalence and causes of APH
bugs in Section 7.5. The numerous APH bugs found show that
developers easily make mistakes in API post-handling. The
detailed list of partial bugs is shown in Table 8 and Table 9
in the Appendix. Many of our submitted patches have been
backported to long-term stable versions of the Linux kernel,
helping to improve the system security. In addition, we ana-
lyzed the latent period of the found bugs. The average time
from bugs introduced by commits to detection is 1967 days,
or about five years and four months. Moreover, 5% of bugs
have a latent period of more than 12 years and ten months, and
50% of bugs exist longer than five years and seven months.
Security impact. Table 2 summarizes the major impacts of
the confirmed bugs. Specifically, 14.9% of the bugs lead to
memory leaks. 54.1% of the bugs lead to reference count leaks
(refcount leaks). 20.2% of bugs lead to restricted use of re-
sources due to missing resource releases. In addition, failures
to check properly after API calls also lead to various prob-
lems, including NULL pointer dereference (null-ptr-deref,
1.5%) when triggered or unintended behaviors that affect the

USENIX Association 32nd USENIX Security Symposium 3717

Table 4: Accuracy of VUDDY, MVP and APHP

Program Bugs
VUDDY MVP APHP

#TP #FP #FN Precision Recall #TP #FP #FN Precision Recall #TP #FP #FN Precision Recall

Linux kernel 405 3 103 402 0.03 0.01 8 64 397 0.11 0.02 402 246 3 0.62 0.99

QEMU 5 0 4 5 0.00 0.00 0 0 5 N/A 0.00 5 3 0 0.63 1.00

Git 3 0 9 3 0.00 0.00 1 0 2 1.00 0.33 2 6 1 0.25 0.67

Redis 1 0 1 1 0.00 0.00 0 0 1 N/A 0.00 1 2 0 0.33 1.00

Total 414 3 117 411 0.03 0.01 9 64 405 0.12 0.02 410 257 4 0.61 0.99

system’s reliability (8.8%). The remaining bugs (0.5%) cause
problems such as memory corruption. Two CVEs related
to APH were assigned in the process: CVE-2022-29156 in
Linux kernel and CVE-2022-33105 in Redis. Both of them
are evaluated as of high severity.
False positives. We manually confirmed 667 bug reports, of
which 402 are true bugs and the rest are false positives. The
false positive rate of APHP is 39%, which is acceptable for
static analysis-based detection and lower than related tools,
such as IPPO [27], which has a 63.5% false-positive rate. We
identify three main causes of false positives. (1) Imprecise
data flow analysis causes 55% of false positives. APHP’s
intra-procedural analysis struggles to track data flow when
post-operations and target APIs are in different functions. (2)
Incorrect path condition analysis accounts for 33% of false
positives. APHP employs methods from prior studies [17,27],
such as Apex [17], to extract path conditions. However, these
methods can be imprecise due to inaccurate assumptions.
For instance, Apex assumes that successful API calls contain
more statements than their corresponding fail paths, but this
assumption is not always true, leading to false positives. (3)
The remaining 12% of false positives stem from insufficient
contextual information and unusual code patterns. In some
cases, target APIs are executed under specific conditions (e.g.,
when a local variable flag is set). However, ASGs may filter
out this context, causing false positives.
False negatives. We evaluated APHP’s false negative rate by
running it on Dbug using Dpatch. APHP detected a total of 84
bugs, with a false negative rate of 16% ((100-84))/100). We
identify four main reasons for these false negatives. First, six
bugs are missed due to incorrect specification extraction. We
evaluate specification extraction and analyze the failures in
Section 7.3. Second, four bugs are missed because the path
conditions of the buggy paths fail to meet the specifications’
path conditions, causing them to be filtered out. Third, another
four bugs are missed due to imprecise path conditions collec-
tion, such as failing to recognize error paths for void functions.
Finally, one bug is missed due to inaccurate CFG generation
by Joern [54]. We note that the specification extraction pro-
cess may produce partially correct specifications. In some
cases, these specifications can still facilitate bug detection.
For example, suppose the inferred API is not the correct API
that should be identified. If the correct and inferred APIs are
frequently used together, bugs may still be identified using

the inferred API. Such situation happens for several times in
our evaluation.
Run-time performance. We evaluated APHP’s run-time per-
formance, as shown in Table 3. For the most time-consuming
analysis process against the Linux kernel (23.5 million lines
of code), APHP completed the analysis in 8 hours. For other
programs, APHP finished in about an hour. These results il-
lustrate that APHP performs bug detection in an acceptable
time for large programs like Linux kernel. APHP tackles
scalability issues by employing intra-procedural and paritial
path-sensitive analysis on ASGs. Specifically, APHP focuses
only on the target API’s callers to reduce analyzed functions.
ASGs help minimize the amount of code analyzed. Neverthe-
less, APHP’s strategies, such as ASGs and intra-procedural
analysis, may lead to false positives and negatives due to
missed critical intra- and inter-procedural context.

7.2 Comparison with the State-of-the-Art
Comparison with patch-based detectors. To the best of
our knowledge, limited work specifically targets detecting
unknown APH bugs or API misuses using patches. Thus, we
compared APHP with state-of-the-art patch-based bug detec-
tors, VUDDY [20] and MVP [53], which are not limited to
particular bug types. While both VUDDY and MVP detect
same or similar bugs using bug patches as inputs, APHP ex-
tracts API specifications from patches and identifies buggy
code violating these specifications. We compared these tools
to explore their respective performances in detecting APH
bugs. We evaluated these tools using the patches listed in Ta-
ble 1 as inputs to identify new bugs in the same program. This
comparison method is similar to the evaluation method used
in MVP [53]. To evaluate the accuracy of various approaches,
we used five standard metrics, true positives (TPs), false pos-
itives (FPs), false negatives (FNs), precision (T P

T P+FP) and
recall (T P

T P+FN). However, obtaining all the bugs in a program
is impossible. As a result, we only measured verifiable bugs.
To ensure fairness, we considered all bugs found by APHP,
VUDDY, and MVP as ground-truth when calculating false
negatives (FNs). For instance, FNs of APHP refer to bugs (i.e.,
not FPs) detected by VUDDY and MVP but not identified by
APHP. In particular, we manually examined reports detected
by each tool to determine whether they were true bugs. The
results of the comparison are shown in Table 4.

3718 32nd USENIX Security Symposium USENIX Association

False positives analysis for VUDDY and MVP. VUDDY
generated 120 reports, including 3 TPs and 117 FPs, primarily
due to abstraction technique limitations. Over-abstraction
causes VUDDY to fail in distinguishing buggy and patched
functions. MVP generated 73 reports, including 9 TPs and 64
FPs. The false positives result from inaccurate vulnerability
signatures (41 FPs) and patch signatures (23 FPs). MVP’s
signatures are too general and can produce incorrect patch
signatures, leading to false positives.

False negatives analysis for VUDDY and MVP. Existing
patch-based approaches, VUDDY and MVP, have limitations
in detecting APH bugs. VUDDY misses 99% of these bugs
due to including bug-irrelevant statements in signatures, while
MVP fails to detect 98% of APH bugs because of noise in-
troduced by its slicing algorithm and the lack of path-level
differences consideration. Additionally, MVP’s failure to per-
form path-sensitive detection results in missed bugs when
target functions already have a post-operation.

False negatives analysis for APHP. VUDDY and MVP
found 12 true bugs, 8 of which can also be detected by APHP.
Two missed bugs resulted from failures in specification ex-
traction. Another two were missed because the target APIs
in the buggy code differed from those in the original patches.
We discuss the limitations of APHP in handling target API
aliases in Section 8.
Comparison with Advance. We compared APHP with Ad-
vance [30] to demonstrate the ability of document-based ap-
proaches in detecting APH bugs. Other studies are excluded
from comparison because they are either not open-sourced
(e.g., [61] and [36]) or have inferior performance compared
to Advance (e.g., [33]). Advance requires API documents as
inputs. To accommodate this, we provide it with documents
collected from comments above functions in the analyzed
programs, which often contain useful documentation-like de-
scriptions, and from third-party library websites [44] used in
these programs. Among the 410 bugs discovered by APHP,
only six bugs were detected by Advance. Three factors con-
tribute to Advance’s false negatives: (1) 50.4% of cases due
to missing post-operation information in API documents; (2)
46.7% of cases result from Advance overlooking sentences
lacking strong sentiments, leading to missed specification ex-
traction; (3) 2.9% of cases occur due to Advance’s verification
code generation missing critical information from documents,
resulting in false negatives. The results show that APHP ef-
fectively compensates for Advance’s shortcomings, detecting
bugs that Advance cannot find.
Comparison with IPPO. Existing approaches like FICS [1],
Crix [29], and IPPO [27] detect bugs using inconsistency
checking, with IPPO being a state-of-the-art tool. We are
interested in how many bugs discovered by APHP can be
discovered by IPPO, as well as acknowledging that IPPO may
identify bugs outside APHP’s scope, as it is not limited to
detecting APH bugs. Since IPPO has achieved good results
in the Linux kernel, 96.7% (266/275) of the bugs found in the

Linux kernel, we use the 402 bugs discovered by APHP in
the Linux kernel as a benchmark. Results show IPPO fails to
detect any bugs in the benchmark due to two factors: (1) in-
adequate security operations identification (392 FNs), where
IPPO struggles to accurately identify custom security oper-
ations in programs, and (2) similar paths requirement (10
FNs), where IPPO fails to detect bugs because of missing ref-
erence paths and similar path pairing issues. The evaluation
shows that APHP can effectively compensate for inconsis-
tency checking.

7.3 Effectiveness of Specification Extraction.

In the Appendix, Table 10 presents the top 50 API pairs sorted
by the number of associated patches. Each row details the
program, target API, post-operation API, whether the API pair
is documented, and the number of corresponding new bugs
identified by APHP. The identified API pairs cover various
functionality categories, such as memory management, device
management, file operations, etc. Furthermore, they exhibit a
diverse distribution of bug frequency, with some pairs corre-
lating to more new bugs. We inspected the corresponding API
documentation to verify the presence of these post-operations.
The results show that 56% (28/50) of them are undocumented
but can be extracted from patches. This highlights that patches
can provide valuable information not always found in docu-
mentation. API documentation and patches serve as comple-
mentary sources for specification extraction.

The effectiveness of specification extraction was evaluated
on Dpatch. Results show an overall correctness of 89% for
inferred specifications, with a precision and recall of 89%.
Each patch has its specification, incorrect extraction of a spec-
ification could cause a false positive while simultaneously
missing the correct specification, resulting in a false negative.
We identify 11 false positives, which stem from incorrect iden-
tification of target API, post-operation, and path conditions,
resulting in 7, 1, and 3 false positives, respectively. The
most challenging aspect is identifying the target API, lead-
ing to the majority of failures. Three factors contribute to
this issue. First, one failure is caused by inaccurate variable
alias analysis. APHP identifies target API candidates using
data flow analysis, which involves imprecise alias analysis
of variables. This imprecision leads to the omission of some
candidates, including the correct target API. Second, impre-
cise description analysis leads to four failures. As APHP is
unable to fully understand text semantics, it misidentifies tar-
get APIs when multiple APIs are mentioned in the diverse
and complex patch descriptions, failing to identify which API
is the target API. Third, missing target API information in
patch descriptions results in two failures, as APHP mistakenly
infers the target API when it is not mentioned in descriptions.
Moreover, APHP fails to identify post-operation in cases of
unusual fixing patterns, such as modifying branching con-
ditions to fix reference count leaks [55]. Finally, imprecise

USENIX Association 32nd USENIX Security Symposium 3719

Table 5: Comparison with APHP– on Dpatch and Dbug.

Specification extraction Bug detection
Approach Precision Recall Precision Recall

APHP 89% 89% 45% 84%
APHP– 26.5% 94% 6% 88%

Table 6: Comparison of scale of ASG and CFG.

Num of nodes Num of paths Avg. path length
ASG 14.4 45.4 8.7
CFG 106.0 2942.2 61.6

% Reduction 86.4% 98.5% 85.9%

value analysis causes failures in identifying post-conditions
due to inaccurate return value analysis.

7.4 Ablation Study
Contribution of patch descriptions. To evaluate the con-
tribution of patch descriptions, we compared APHP’s perfor-
mance with and without them on Dpatch and Dbug. Without
patch descriptions, we treated all target API candidates as
the target API and extracted specifications for each. This ap-
proach is referred to as APHP–. Table 5 displays the results
for precision ((i.e., TP / (FP + TP)) and recall (i.e., TP / (TP +
FN) in each phase. During the specification extraction, APHP,
which considers patch descriptions, achieved a precision of
89% and a recall of 89%, whereas APHP– had a lower pre-
cision of 26.5% and a slightly higher recall of 94%. This
suggests that APHP obtains a more accurate target API and,
in turn, higher-quality specifications. In bug detection, APHP
achieved a precision of 45% and a recall of 84%, while APHP–
had a significantly reduced precision of 6% and marginally
higher recall of 88%. It is worth noting that APHP– attains
higher recall in specification extraction by considering all
target API candidates, resulting in a more exhaustive search.
However, this leads to a significant decrease in precision and
a high number of false positives. In contrast, APHP utilizes
patch descriptions for more accurate target API identification,
improving overall performance. These results highlight the
value of patch descriptions in attaining high-quality specifica-
tions and effective bug detection.
Contribution of ASG generation. We evaluated the impact
of ASG generation on the amount of code analyzed by com-
paring the metrics of generated ASGs with those of the orig-
inal control flow graphs (CFGs). Specifically, we randomly
selected 500 target functions and used their original CFGs as
baselines. The statistics for ASGs and CFGs are displayed
in Table 6. The average reduction in the number of nodes,
number of paths, and the average length of paths achieved by
ASGs are 86.4%, 98.5%, and 85.9%, respectively, compared
to the original CFGs. These results suggest that ASG gener-
ation can substantially reduce the amount of code analyzed,
consequently enhancing bug detection efficiency.

7.5 Findings and Suggestions

Our investigation yields several key findings that shed light
on the prevalence and causes of APH bugs. Specifically, we
discover that widespread use of error-prone APIs and develop-
ers’ limited knowledge of them could result in numerous bugs.
Additionally, API implicit usage specifications derived from
program-specific conventions and non-standard API designs
also contribute to the occurrence of bugs. In the following
sections, we first elaborate on our findings and then provide
suggestions to prevent and fix APH bugs based on the findings
and patch investigations.
Widespread use of error-prone APIs leads to numerous
bugs. We find that error-prone APIs frequently misused by de-
velopers, leading to bugs. For instance, Open Firmware (OF)
Device Tree APIs [18] in Linux kernel, which provide access
to hardware devices, are often misused. Certain APIs can re-
trieve the desired device node, returning a node pointer with a
reference count increment. Part of them are shown in Table 7
in the Appendix. Developers should perform of_node_put()
on the pointer after use to prevent reference count leaks. How-
ever, they frequently overlook this specification, resulting in
numerous bugs. Table 10 shows additional error-prone APIs
like clk_prepare_enable and pm_runtime_enable.
API misuse due to implicit usage specifications derived
from program-specific conventions. APIs may have im-
plicit usage specifications tied to program-specific conven-
tions, causing mistakes by inexperienced developers. For ex-
ample, functions in the Linux kernel may use ERR_PTR() to
encode error numbers into pointers. To catch errors in this
case, developers should use IS_ERR() instead of null check-
ing. However, developers often confuse the two, leading to
repetitive bugs.
API designs deviating from default conventions may
lead to bugs. Some API designs deviate from default con-
ventions, causing confusion and bugs. For example, the
pm_runtime_get_sync API has both 0 and 1 as success-
ful return values, contrary to the Linux kernel convention
of returning 0 for success and non-zero for failure. This de-
viation can lead to incorrect error handling. Additionally,
APIs kobject_init_and_add and pm_runtime_get_sync
require post-handling for cleanup even when API calls fail,
which can be counter-intuitive and cause bugs.
Suggestions for avoiding APH Bugs. Based on our find-
ings, we suggest several ways to avoid APH bugs. First,
API designers could follow general conventions and provide
clear documentation, such as Javadoc-style annotations [32].
Additionally, documentation for error-prone APIs could in-
clude proper usage examples and potential pitfalls. Sec-
ond, API developers may provide helper functions to sim-
plify API usage, like the devm_pm_runtime_enable for the
pm_runtime_enable API, which performs post-handling au-
tomatically. Third, API users should carefully review docu-
mentation, paying attention to API usage specifications in

3720 32nd USENIX Security Symposium USENIX Association

addition to API functionality. Utilizing CI pipeline regression
tools [45] can also help identify potential issues.
Suggestions for fixing APH bugs. We propose several sug-
gestions for bug fixers when patching APH bugs: (1) In-
vestigate patches for effective fixing patterns. Bug fixers
may explore patches using tools like Pydriller [41] and
GitPython [12] to discover diverse ways of fixing bugs.
For instance, when addressing a memory leak caused by
g_strdup_printf(), fixers may insert g_free() or use the
macro g_autofree on the pointer variable for automatic
cleanup. (2) Search for similar bugs with tools. To avoid
incomplete fixes, bug fixers may consider examining and ad-
dressing instances of similar bugs in other code paths or func-
tions as thoroughly as possible. Tools such as vgrep [38] and
weggli [50] assist in quick pattern matching. (3) Write clear
and detailed patch descriptions. Following community guide-
lines [19], bug fixers may strive to write clear and detailed
patch descriptions, like the one in Figure 2(a), to help other
developers understand bugs and learn from past mistakes.

8 Discussion
Identifying APH patches. It is worth mentioning that our
method’s primary contribution is not identifying APH patches.
We employ simple heuristics to find patches potentially re-
lated to APH bugs, which may have certain limitations. Upon
random inspection of the identified patches, we found that
62% are relevant to APH bugs, while the remaining patches
address issues such as code refactoring or fixing other types
of bugs. To enhance the accuracy of patch identification, more
advanced methods could be considered, such as incorporating
text semantics [60] and code semantics [48].
Generalizability. We conducted an empirical study of APH
patches to assess the generalization of APHP. In this study,
we measured the prevalence of structured patch descriptions
among APH patches. The percentages of patch descriptions,
including target API, post-operation, critical variable, and path
condition, are 88%, 62%, 24%, and 86%, respectively. APHP
primarily uses patch descriptions for target API identification
and can handle unstructured or incomplete descriptions. In
Linux kernel, QEMU, Git, and Redis, 12%, 56%, 61%, and
86% of APH patch descriptions lack mention of the target
APIs, with the higher percentage in Redis due to its less stan-
dardized descriptions. Additionally, our analysis reveals that
96% of APH patches are confined to a single function, making
intra-functional analysis sufficient for most cases. The remain-
ing 4% of patches that modify multiple functions are more
complex, such as patches that address multiple bugs simul-
taneously and patches involving code refactoring. To better
handle these cases, APHP could be extended with techniques
like inter-procedural analysis [37] and modular analysis [28].
Identifying target API across different code patterns.
APHP detects bugs for callers of target APIs using speci-
fications extracted from patches. However, programs may use
different code patterns, such as API wrappers and aliases,

which can lead to missed bugs. To address this, we can extend
APHP using techniques such as code clone detection [40] and
call graph analysis [47] to identify and link different code
patterns, including wrappers and aliases, to the original target
APIs. This allows us to expand the specifications and detect
more bugs.
Mitigating false negatives and false positives. To enhance
APHP’s effectiveness, we can adopt several approaches to
reduce both false negatives and false positives. First, we can
adopt advanced NLP techniques [8] to better utilize patch
descriptions. If patch descriptions do not mention target APIs,
we can supplement them with information from other sources,
such as the corresponding bug reports. Additionally, as an
auxiliary measure, human-built specifications adhering to
APHP’s format can be employed for bug detection, albeit
at the cost of increased manual effort. Next, we can improve
path conditions collection by incorporating strategies from
other work. Specifically, we can use error-only functions [7]
in addition to error codes to better identify error paths. Fur-
thermore, inaccurate data flow analysis is a significant reason
for false positives. We can use advanced analysis techniques
like alias analysis [34] and escape analysis [5] to address this.
Finally, we can employ symbolic execution [35] to eliminate
false bug reports that arising from infeasible paths.

9 Related Work

Bug detection using historical bugs. Our work is closely re-
lated to previous studies that detect bugs using historical bugs,
which fall into two main categories: clone-based and learning-
based approaches. Clone-based approaches [16,20,25,51,53]
employ code clone detection. CP-Miner [25] utilizes token-
based matching, while VUDDY [20] leverages vulnerability-
preserving abstraction. MVP [53] generates signatures for
known vulnerabilities. Learning-based approaches [21–24,
59] use vulnerability features to train detection models, of-
ten requiring large and clean datasets. Different from them,
APHP combines the code and descriptions of patches to iden-
tify critical information.
Bug detection using documents. Previous studies focus on
detecting bugs using documents, primarily for API misuse
detection [30, 33, 36, 61]. For instance, Advance [30] ex-
tracts specifications from API documents using sentiment
analysis, while Ren et al. [36] build API constraint knowl-
edge graphs. Unlike these studies, APHP mines knowledge
from previous bugs to obtain correct APH specifications.
Bug detection using source code. Many studies use source
code to detect bugs through inconsistency checking, such as
IPPO [27], APIsan [58], and FICS [1]. These approaches iden-
tify common API usage patterns or mine function pairs from
code [3,9,26,39,52]. They then check whether the API usage
meets the requirements of the identified patterns or function
pairs. Unlike these studies that use source code, APHP mines
patterns from bug patches.

USENIX Association 32nd USENIX Security Symposium 3721

10 Conclusion
APH bugs are a common type of API misuse bugs, resulting
in various security issues. In this paper, we propose APHP, a
novel framework to detect APH bugs using patches. APHP
extracts APH specifications using code differences and patch
descriptions, then uses these specifications to detect bugs.
Furthermore, we design the ASG (APH specification-based
graph) and perform partial path-sensitive analysis to improve
detection accuracy and efficiency. Evaluations on four open
source programs show APHP outperforms state-of-the-art
approaches, detecting 410 new APH bugs, with 216 confirmed
and 2 CVEs assigned.

Acknowledgments
We would like to thank our shepherd and the anonymous re-
viewers for their insightful comments. We are also grateful to
the maintainers of the open source software for their invalu-
able feedback during our patch submission. The authors are
supported in part by NSFC (92270204, U1836211, 62202462),
and Youth Innovation Promotion Association CAS.

References
[1] Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan Williams, and Long

Lu. Finding Bugs Using Your Own Code: Detecting Functionally-
similar yet Inconsistent Code. In Proceedings of the 30st USENIX
Security Symposium (Security), 2021.

[2] Leeann Bent, Darren C. Atkinson, and William G. Griswold. A Com-
parative Study of Two Whole Program Slicers for C. 2001.

[3] Pan Bian, Bin Liang, Jianjun Huang, Wenchang Shi, Xidong Wang,
and Jian Zhang. SinkFinder: Harvesting Hundreds of Unknown Inter-
esting Function Pairs with Just One Seed. In Proceedings of the 28th
SIGSOFT Foundations of Software Engineering (FSE), 2020.

[4] Steven Bird, Ewan Klein, and Edward Loper. Natural Language
Processing with Python. O’Reilly Media, Inc., 1st edition, 2009.

[5] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C.
Sreedhar, and Samuel P. Midkiff. Escape analysis for Java.
In Proceedings of the 1999 Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA),
1999.

[6] The MITRE Corporation. CVE-2019-18813: a memory leak vul-
nerability in Linux kernel. https://www.cvedetails.com/cve/
CVE-2019-18813, 2022.

[7] Daniel DeFreez, Haaken Martinson Baldwin, Cindy Rubio-González,
and Aditya V. Thakur. Effective Error-Specification Inference via
Domain-Knowledge Expansion. In Proceedings of the 27th SIGSOFT
Foundations of Software Engineering (FSE), 2019.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. ArXiv, abs/1810.04805, 2019.

[9] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen McCamant.
Detecting Kernel Memory Leaks in Specialized Modules with Owner-
ship Reasoning. In Proceedings of the 28th Network and Distributed
System Security Symposium (NDSS), 2021.

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. Fine-grained and Accurate Source Code Dif-
ferencing. In Proceedings of the 29th International Conference on
Automated Software Engineering (ASE), 2014.

[11] Python Software Foundation. difflib. https://docs.python.org/
3/library/difflib.html, 2022.

[12] GitPython-developers. GitPython. https://github.com/
gitpython-developers/GitPython, 2022.

[13] Zuxing Gu, Jiecheng Wu, Jiaxiang Liu, Min Zhou, and Ming Gu. An
Empirical Study on API-Misuse Bugs in Open-Source C Programs. In
Proceedings of the 43rd Annual Computer Software and Applications
Conference (COMPSAC), 2019.

[14] Aric A. Hagberg, Daniel A. Schult, and Pieter Swart. Exploring Net-
work Structure, Dynamics, and Function using NetworkX. 2008.

[15] Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. Au-
tomatically Detecting Error Handling Bugs Using Error Specifications.
In Proceedings of the 25th USENIX Security Symposium (Security),
2016.

[16] Jiyong Jang, Abeer Agrawal, and David Brumley. ReDeBug: Finding
Unpatched Code Clones in Entire OS Distributions. In Proceedings of
the 33rd IEEE Symposium on Security and Privacy (S&P), 2012.

[17] Yuan Jochen Kang, Baishakhi Ray, and Suman Sekhar Jana. APEx:
Automated Inference of Error Specifications for C APIs. In
Proceedings of the 31st International Conference on Automated
Software Engineering (ASE), 2016.

[18] The kernel development community. DeviceTree Kernel API. https:
//docs.kernel.org/devicetree/kernel-api.html, 2022.

[19] The kernel development community. Doc for submitting patches.
https://docs.kernel.org/process/submitting-patches.
html, 2023.

[20] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. Vuddy: A
scalable approach for vulnerable code clone discovery. In Proceedings
of the 38th IEEE Symposium on Security and Privacy (S&P), 2017.

[21] Z. Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu.
VulPecker: An Automated Vulnerability Detection System Based
on Code Similarity Analysis. In Proceedings of the 32nd Annual
Conference on Computer Security Applications (ACSAC), 2016.

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and
Hai Jin. VulDeeLocator: A Deep Learning-based Fine-grained Vul-
nerability Detector. IEEE Transactions on Dependable and Secure
Computing (TDSC), 2021.

[23] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan
Chen. SySeVR: A Framework for Using Deep Learning to Detect Soft-
ware Vulnerabilities. IEEE Transactions on Dependable and Secure
Computing (TDSC), 2021.

[24] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,
Zhijun Deng, and Yuyi Zhong. VulDeePecker: A Deep Learning-Based
System for Vulnerability Detection. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium (NDSS), 2018.

[25] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner:
A Tool for Finding Copy-paste and Related Bugs in Operating System
Code. In Proceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2004.

[26] Zhenmin Li and Yuanyuan Zhou. PR-Miner: Automatically Extract-
ing Implicit Programming Rules and Detecting Violations in Large
Software Code. In Proceedings of the 13th SIGSOFT Foundations of
Software Engineering (FSE), 2005.

[27] Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhenguang Liu,
Jianhai Chen, and Qinming He. Detecting Missed Security Opera-
tions Through Differential Checking of Object-based Similar Paths.
In Proceedings of the 27th ACM Conference on Computer and
Communications Security (CCS), 2021.

[28] Kangjie Lu. Practical Program Modularization with Type-Based De-
pendence Analysis. In Proceedings of the 44th IEEE Symposium on
Security and Privacy (S&P), 2023.

3722 32nd USENIX Security Symposium USENIX Association

https://www.cvedetails.com/cve/CVE-2019-18813
https://www.cvedetails.com/cve/CVE-2019-18813
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://docs.kernel.org/devicetree/kernel-api.html
https://docs.kernel.org/devicetree/kernel-api.html
https://docs.kernel.org/process/submitting-patches.html
https://docs.kernel.org/process/submitting-patches.html

[29] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting Missing-Check
Bugs via Semantic- and Context-Aware Criticalness and Constraints
Inferences. In Proceedings of the 28th USENIX Security Symposium
(Security), 2019.

[30] Tao Lv, Ruishi Li, Yi Yang, Kai Chen, Xiaojing Liao, Xiaofeng Wang,
Peiwei Hu, and Luyi Xing. RTFM! Automatic Assumption Discovery
and Verification Derivation from Library Document for API Misuse
Detection. In Proceedings of the 27th ACM Conference on Computer
and Communications Security (CCS), 2020.

[31] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose
Finkel, Steven Bethard, and David McClosky. The Stanford CoreNLP
Natural Language Processing Toolkit. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics
ACL), 2014.

[32] Oracle. Javadoc Tool. https://www.oracle.com/
technical-resources/articles/java/javadoc-tool.html,
2023.

[33] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and
Amit Paradkar. Inferring Method Specifications from Natural Language
API Descriptions. In Proceedings of the 34th International Conference
on Software Engineering (ICSE), 2012.

[34] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efficient Field-
Sensitive Pointer Analysis of C. ACM Transactions on Programming
Languages and Systems (TOPLAS), 30:4 – es, 2007.

[35] David A. Ramos and Dawson R. Engler. Under-Constrained Symbolic
Execution: Correctness Checking for Real Code. In Proceedings of the
2015 USENIX Annual Technical Conference (ATC), 2015.

[36] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Lim-
ing Zhu, and Jianling Sun. API-Misuse Detection Driven by Fine-
Grained API-Constraint Knowledge Graph. In Proceedings of the 35th
International Conference on Automated Software Engineering (ICSE),
2020.

[37] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise Interproce-
dural Dataflow Analysis via Graph Reachability. In Proceedings of
the 22nd ACM-SIGACT Symposium on Principles of Programming
Languages (POPL), 1995.

[38] Valentin Rothberg. vgrep. https://github.com/vrothberg/vgrep,
2022.

[39] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L Lawall, and
Gilles Muller. Hector: Detecting Resource-Release Omission Faults
in Error-Handling Code for Systems Software. In Proceedings of
the 43rd Annual International Conference on Dependable Systems and
Networks (DSN), 2013.

[40] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal Kumar Roy,
and Cristina V. Lopes. SourcererCC: Scaling Code Clone Detection
to Big-Code. In Proceedings of the 38th International Conference on
Software Engineering (ICSE), 2016.

[41] Davide Spadini. Pydriller. https://github.com/ishepard/
pydriller, 2022.

[42] Xin Tan, Yuan Zhang, Xiyu Yang, Kangjie Lu, and Min Yang. Detecting
Kernel Refcount Bugs with Two-Dimensional Consistency Checking.
In Proceedings of the 30th USENIX Security Symposium (Security),
2021.

[43] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput., 1:146–160, 1972.

[44] GTK Development Team. GLib Documentation. https://docs.gtk.
org/glib/, 2023.

[45] The Travis CI team. Travis CI. https://www.travis-ci.com/,
2023.

[46] Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu,
Xin Xia, Jacques Klein, and Tegawend’e F. Bissyand’e. Is this Change
the Answer to that Problem?: Correlating Descriptions of Bug and Code
Changes for Evaluating Patch Correctness. In Proceedings of the 44th
International Conference on Automated Software Engineering (ICSE),
2022.

[47] Frank Tip and Jens Palsberg. Scalable Propagation-Based Call Graph
Construction Algorithms. In Proceedings of the 15th Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 2000.

[48] Shu Wang, Xinda Wang, Kun Sun, Sushil Jajodia, Haining Wang, and
Qi Li. GraphSPD: Graph-Based Security Patch Detection with En-
riched Code Semantics. In Proceedings of the 44th IEEE Symposium
on Security and Privacy (S&P), 2022.

[49] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia.
PatchDB: A Large-Scale Security Patch Dataset. In Proceedings of
the 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2021.

[50] weggli rs. weggli. https://github.com/weggli-rs/weggli, 2022.

[51] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee. MOVERY:
A Precise Approach for Modified Vulnerable Code Clone Discovery
from Modified Open-Source Software Components. In Proceedings of
the 31st USENIX Security Symposium (Security), 2022.

[52] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and
Kangjie Lu. Understanding and Detecting Disordered Error Handling
with Precise Function Pairing. In Proceedings of the 30th USENIX
Security Symposium (Security), 2021.

[53] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng
Li, Binghong Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi.
MVP: Detecting Vulnerabilities using Patch-Enhanced Vulnerability
Signatures. In Proceedings of the 29th USENIX Security Symposium
(Security), 2020.

[54] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Mod-
eling and Discovering Vulnerabilities with Code Property Graphs. In
Proceedings of the 35th IEEE Symposium on Security and Privacy
(S&P), 2014.

[55] Xiyu Yang. Linux kernel commit 62b4011fa7be. https://git.
kernel.org/torvalds/c/62b4011fa7be, 2023.

[56] Yang Yingliang. Linux kernel commit 739752d655b3. https://git.
kernel.org/torvalds/c/739752d655b3, 2023.

[57] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao,
Pan Bian, and Bin Liang. SemFuzz: Semantics-based Automatic Gen-
eration of Proof-of-Concept Exploits. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS), 2017.

[58] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and
M. Naik. APISan: Sanitizing API Usages through Semantic Cross-
Checking. In Proceedings of the 25th USENIX Security Symposium
(Security), 2016.

[59] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu.
Devign: Effective Vulnerability Identification by Learning Comprehen-
sive Program Semantics via Graph Neural Networks. In Proceedings of
the 33rd International Conference on Neural Information Processing
Systems (NIPS), 2019.

[60] Yaqin Zhou and Asankhaya Sharma. Automated Identification of Secu-
rity Issues from Commit Messages and Bug Reports. In Proceedings of
the 25th SIGSOFT Foundations of Software Engineering (FSE), 2017.

[61] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano
Panichella, and Harald Gall. Analyzing APIs Documentation and Code
to Detect Directive Defects. In Proceedings of the 39th International
Conference on Software Engineering (ICSE), 2017.

USENIX Association 32nd USENIX Security Symposium 3723

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://github.com/vrothberg/vgrep
https://github.com/ishepard/pydriller
https://github.com/ishepard/pydriller
https://docs.gtk.org/glib/
https://docs.gtk.org/glib/
https://www.travis-ci.com/
https://github.com/weggli-rs/weggli
https://git.kernel.org/torvalds/c/62b4011fa7be
https://git.kernel.org/torvalds/c/62b4011fa7be
https://git.kernel.org/torvalds/c/739752d655b3
https://git.kernel.org/torvalds/c/739752d655b3

A Appendix: Details of Path Difference-Based
Identification

This appendix provides a detailed description of the path
difference-based identification used in APHP for indirect fixes.
APHP identifies the buggy and patched paths by analyzing
added and deleted statements in the code differences, and then
compares these paths to identify the post-operation. Specifi-
cally, APHP obtains the patched paths (PPs) by finding paths
that go through added statements based on the CPG of the
fixed function. Correspondingly, APHP obtains the buggy
paths (BPs) by finding paths that go through deleted state-
ments based on the CPG of the buggy function. If there is only
one patched path and one buggy path, APHP directly com-
pares the difference between these two paths to get statements
that only exist in the patched path. Otherwise, APHP finds the
corresponding buggy path based on path similarity for a given
patched path. Specifically, a path is a sequence of statements.
Of all the paths in BPs, the corresponding buggy path has
the most statements in common with the patched path. As
a result, the corresponding buggy path is the most similar
to the patched path. The similarity score of the two paths is
calculated by the SequenceMatcher method in difflib [11].

Consider the indirect fix shown in Figure 1 as an exam-
ple. The patch removes return ret in line 9 and adds
goto err in line 10. APHP obtains the patched path:
03-04-07-08-10-13-14 using the added statement and gets
the buggy path: 03-04-07-08-09 using the deleted state-
ment. Next, APHP compares the two paths to obtain the
statement that only appears in the patch path (goto state-
ments are ignored). Then APHP obtains the statement
platform_device_put(dwc-dwc3) in line 13. Further, it
gets the post-operation platform_device_put.

B Appendix: Implementation Details

This appendix provides implementation details of the APH
specification extraction and bug detection modules.
APH Specification Extraction. We use the third-party library
Pydriller [41] to process patch commits. Gumtree [10] is a
state-of-the-art AST difference tool, and we use it for AST
difference. For the text analysis, we used dependency analysis
provided by Stanford CoreNLP [31] to remove conditional
clauses and NLTK [4] to tokenize patch description. During
patch analysis, we filter out obvious noise in the patch code.
Specifically, code differences also contain modifications to
debug information that are unrelated to the specification, such
as function calls dev_err, pr_debug, etc.
Bug Detection. In the detection phase, we use weggli [50]
to obtain callers of specific target functions. Weggli is a very
fast and robust semantic search tool that can quickly get the
callers of target APIs. We use NetworkX [14] to analyze the
CFGs exported from Joern and perform ASG generation and
path verification. We perform topological sorting using the

NetworkX topological_sort interface, which employs a
non-recursive depth-first search algorithm. APHP performs
intra-procedural analysis and may result in false positives
due to missing inter-procedural context. To mitigate this, we
employ a one-layer inter-procedural analysis, as used in prior
work [42]. As for bug reports, we report bugs and give the
APH specifications they violate. It can significantly reduce
the time required for manual confirmation. In addition, we
provide reference patches. Even if developers are not familiar
with the target API, they can quickly capture critical informa-
tion from the patches. Moreover, these patches also contain
descriptions, such as security implications. It assists develop-
ers in identifying security threats and prioritizing patching.

Table 7: Device Tree APIs for get device node.

API Description API

OF device

node getter

of_parse_phandle

of_find_matching_node

of_find_compatible_node

of_find_node_by_name

of_find_node_by_path

of_find_node_by_phandle

of_get_child_by_name

of_find_matching_node_and_match

of_get_next_parent

of_graph_get_remote_node

of_get_next_child

of_cpu_device_node_get

Table 8: Bugs detected by APHP in Qemu, Git and Redis, Col
Status indicates the status of the patch with S,C,A,indicating
submitted, confirmed, accepted, respectively.

System Buggy function Impact Status
Qemu mft_qom_set memleak A
Qemu mft_qom_set memleak A
Qemu ubi_get_volnum_by_name memleak S
Qemu chip_init memleak S
Qemu chip_init memleak S
Git cmd_clean memleak C
Git expire_commit_graphs memleak A
Redis streamGetEdgeID memleak A

3724 32nd USENIX Security Symposium USENIX Association

Table 9: 100 confirmed bugs in the bugs detected by APHP in Linux kernel, Col Status indicates the status of the patch with
S,C,A,indicating submitted, confirmed, accepted, respectively

Buggy func Impact Status
mtk_mipi_tx_probe null-ptr-deref A
aspeed_vuart_probe null-ptr-deref A
__create_synth_event memory leak A
mlxbf_pmc_map_counters reliability A
anx7625_register_i2c_dummy_clients reliability A
dmi_sysfs_register_handle refcount leak A
vmbus_add_channel_kobj refcount leak A
pdcs_register_pathentries refcount leak A
ab8500_fg_sysfs_init refcount leak A
meson_smp_prepare_cpus refcount leak A
axxia_boot_secondary refcount leak A
ehci_hcd_ppc_of_probe refcount leak A
cns3xxx_init refcount leak A
zynq_get_revision refcount leak A
xive_spapr_init refcount leak A
xen_dt_guest_init refcount leak A
omap_gic_of_init refcount leak A
dpaa2_ptp_probe refcount leak A
tegra210_clock_init refcount leak A
tegra20_clock_init refcount leak A
tegra114_clock_init refcount leak A
versatile_reboot_probe refcount leak A
rockchip_grf_init refcount leak A
realview_gic_of_init refcount leak A
of_flash_probe_versatile refcount leak A
aspeed_adc_set_trim_data refcount leak A
scmi_regulator_probe refcount leak A
imx_sc_thermal_probe refcount leak A
spufs_init_isolated_loader refcount leak A
xive_get_max_prio refcount leak A
bcm4908_partitions_fw_offset refcount leak A
parse_redboot_of refcount leak A
of_get_devfreq_events refcount leak A
mv88e6xxx_mdios_register refcount leak A
mtk_pcie_init_irq_domains refcount leak A
max77620_initialise_fps refcount leak A
am65_cpsw_nuss_probe refcount leak A
am65_cpsw_init_cpts refcount leak A
aries_audio_probe refcount leak A
bcma_mdio_mii_register refcount leak A
meson_encoder_hdmi_init refcount leak A
meson_encoder_cvbs_init refcount leak A
mdp4_modeset_init_intf refcount leak A
ti_dra7_xbar_route_allocate refcount leak A
qcom_smd_parse_edge refcount leak A
omap2430_probe refcount leak A
of_get_ocmem refcount leak A
of_get_dram_timings refcount leak A
brcm_pcie_probe refcount leak A
xemaclite_of_probe refcount leak A

Buggy func Impact Status
snd_proto_probe refcount leak A
smsm_parse_ipc refcount leak A
smp2p_parse_ipc refcount leak A
sdma_event_remap refcount leak A
rockchip_pinctrl_probe refcount leak A
q6v5_alloc_memory_region refcount leak A
nmk_pinctrl_probe refcount leak A
mxs_sgtl5000_probe refcount leak A
mxs_saif_probe refcount leak A
mtk_pctrl_init refcount leak A
imx8m_probe refcount leak A
fsl_rio_setup refcount leak A
dvic_probe_of refcount leak A
atmel_ebi_probe refcount leak A
ath10k_setup_msa_resources refcount leak A
a6xx_gpu_init refcount leak A
sysfb_create_simplefb memory leak A
pcm030_fabric_probe memory leak A
dwc3_qcom_acpi_register_core memory leak A
softingcs_probe memory leak A
ti_dra7_xbar_route_allocate memory leak A
octeon_cf_probe memory leak A
mtk_smi_device_link_common memory leak A
meson_encoder_hdmi_init memory leak A
tegra_smmu_find memory leak A
tegra_dsi_ganged_probe memory leak A
sun8i_hdmi_phy_get memory leak A
qmp_get memory leak A
of_get_ocmem memory leak A
msm_hdmi_get_phy memory leak A
ingenic_ecc_get memory leak A
imx_hdmi_probe memory leak A
fman_port_probe memory leak A
emc_ensure_emc_driver memory leak A
dsi_get_phy memory leak A
coda_get_vdoa_data memory leak A
imx_sgtl5000_probe refcount leak A
vc4_dsi_encoder_enable refcount leak A
rti_wdt_probe reliability A
omap4_keypad_probe reliability A
imx_clk_scu_probe reliability A
ssc_probe reliability A
wkup_m3_ipc_probe reliability A
sni_82596_probe reliability A
qcom_slim_probe reliability A
mpc8xxx_probe reliability A
meson_spicc_probe reliability A
idt_gpio_probe reliability A
dwc2_hcd_init memory leak A
tw686x_video_init memory leak A

USENIX Association 32nd USENIX Security Symposium 3725

Table 10: List of 50 API pairs identified by APHP. Each row displays the program name, target API, post-operation API, whether
the API pair is documented, and the number of corresponding new bugs identified by APHP.

Program Target API Post-operation API InDoc? #New bugs
Kernel of_parse_phandle of_node_put ! 82
Kernel of_find_compatible_node of_node_put ! 40
Kernel of_find_device_by_node put_device % 26
Kernel kobject_init_and_add kobject_put ! 11
Kernel of_get_child_by_name of_node_put ! 17
Kernel clk_prepare_enable clk_disable_unprepare % 39
Kernel of_find_node_by_path of_node_put % 19
Kernel of_find_node_by_name of_node_put ! 4
Kernel of_find_matching_node of_node_put % 25
Kernel pm_runtime_enable pm_runtime_disable % 44
Kernel pm_runtime_get_sync pm_runtime_put_sync % 6
Kernel ioremap iounmap % 4
Kernel opendir closedir % 4
Kernel strdup free ! 2
Kernel of_get_next_parent of_node_put ! 2
Kernel argv_split argv_free % 2
Kernel of_find_node_by_phandle of_node_put ! 3
Kernel of_graph_get_remote_node of_node_put ! 3
Kernel of_find_matching_node_and_match of_node_put ! 6
Kernel platform_device_alloc platform_device_put % 8
Kernel of_iomap iounmap % 8
Kernel edac_mc_alloc edac_mc_free ! 1
Kernel of_graph_get_remote_port_parent of_node_put ! 1
Kernel of_cpu_device_node_get of_node_put % 1
Kernel crypto_alloc_shash crypto_free_shash ! 1
Kernel of_phy_find_device put_device % 1
Kernel device_register put_device ! 1
Kernel of_get_next_child of_node_put ! 1
Kernel device_initialize put_device ! 1
Kernel usb_create_hcd usb_put_hcd % 1
Kernel video_device_alloc video_device_release % 1
Kernel sp_get_irqs sp_free_irqs % 1
QEMU opendir closedir % 2
QEMU g_strdup_printf g_free ! 1
QEMU g_new0 g_free % 1
QEMU qtest_qmp qobject_unref % 1
QEMU asprintf free ! 1
Git opendir closedir % 1
Git parse_pathspec clear_pathspec % 1
Redis streamIteratorStart streamIteratorStop ! 1
Kernel kmalloc kfree % -
Kernel pci_enable_pcie_error_reporting pci_disable_pcie_error_reporting % -
Kernel nand_scan nand_cleanup % -
Kernel clk_get clk_put % -
Kernel class_find_device put_device ! -
Kernel pci_get_slot pci_dev_put ! -
Kernel regulator_enable regulator_disable ! -
Kernel d_find_alias dput % -
Kernel kstrdup kfree % -
Kernel kasprintf kfree % -

3726 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	API Post-Handling
	API Documents and Specifications
	Security Patches

	Overview
	APH Specification Extraction
	Preprocessing
	Post-Operation Identification
	Target API Identification
	Critical Variable Extraction
	Path Conditions Collection

	Bug Detection
	Implementation
	Evaluation
	Effectiveness on Bug Findings
	Comparison with the State-of-the-Art
	Effectiveness of Specification Extraction.
	Ablation Study
	Findings and Suggestions

	Discussion
	Related Work
	Conclusion
	Appendix: Details of Path Difference-Based Identification
	Appendix: Implementation Details

