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Abstract
Deepfakes pose severe threats of visual misinformation to
our society. One representative deepfake application is face
manipulation that modifies a victim’s facial attributes in an im-
age, e.g., changing her age or hair color. The state-of-the-art
face manipulation techniques rely on Generative Adversar-
ial Networks (GANs). In this paper, we propose the first
defense system, namely UnGANable, against GAN-inversion-
based face manipulation. In specific, UnGANable focuses on
defending GAN inversion, an essential step for face manipu-
lation. Its core technique is to search for alternative images
(called cloaked images) around the original images (called
target images) in image space. When posted online, these
cloaked images can jeopardize the GAN inversion process.
We consider two state-of-the-art inversion techniques includ-
ing optimization-based inversion and hybrid inversion, and
design five different defenses under five scenarios depending
on the defender’s background knowledge. Extensive exper-
iments on four popular GAN models trained on two bench-
mark face datasets show that UnGANable achieves remarkable
effectiveness and utility performance, and outperforms mul-
tiple baseline methods. We further investigate four adaptive
adversaries to bypass UnGANable and show that some of them
are slightly effective.1

1 Introduction

Nowadays, machine learning (ML) models have become a
core component for many real-world applications, ranging
from image classification [18, 29] to recommendation sys-
tems [19, 53]. One major advancement of ML techniques
in the image domain is deep generative models. The reso-
lution and quality of generated images have been improved
exponentially since the introduction of Generative Adver-
sarial Networks (GANs) [15]. Although realistic synthetic
images can be used for various applications, e.g., virtual re-
ality, avatars, and games, and detrimental uses also emerge,

1See our code at https://github.com/zhenglisec/UnGANable.
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Figure 1: An illustration of GAN inversion and latent code
manipulation, as well as a high-level overview of UnGANable.

such as deepfakes.
One major example of deepfakes is face manipulation with

GANs, which has been an emerging topic in very recent
years [9, 10, 12, 14, 17, 24, 36, 38, 44, 45, 47, 49, 54, 56, 57, 63].
As face manipulation systems can change the target face
with respect to certain attributes, such as hairstyle or facial
expression, and considering that the manipulated results be-
come increasingly more realistic, these techniques can easily
be misused for malicious purposes, such as misinformation
generation. In detail, the malicious manipulator may edit
the portrait image of any person without his/her permission.
Moreover, the manipulator is able to forge the expression (e.g.
lip shape) of political figure’s speech video, which might seri-
ously mislead the public. Therefore, heavy concerns on such
risks are raised, and we believe that individuals need tools to
protect their facial images from being misused by malicious
manipulators.

To leverage GANs to manipulate facial images, the manip-
ulator/adversary needs to perform a two-step operation. The
first step is GAN inversion [3, 4, 7, 52, 60, 61] which inverts
a victim’s facial image to a latent code. The second step is
latent code manipulation [9, 14, 17, 24, 36, 44, 45, 54, 57, 63]
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which manipulates the latent code to get the modified image,
such as adding a pair of glasses on the victim’s face. See
Figure 1 for an illustration of the two-step operation.

1.1 Our Contributions
In this paper, we propose the first defense system, namely
UnGANable, against GANs-inversion-based face manipula-
tion. In particular, UnGANable focuses on defending against
GAN inversion. Once an image is successfully inverted to its
accurate latent code, it is extremely hard (if not possible) to
defend the following manipulation step as the adversary can
perform any operation on the latent code. Therefore, we be-
lieve the most effective defense is to reduce the performance
of GAN inversion - the adversary can only obtain an inac-
curate latent code that is far from the accurate one, thus the
following latent code manipulation step will not achieve the
ideal result. See Figure 1 for an illustration of our defense.
UnGANable searches for cloaked images in the image space

which are indistinguishable from the target images but can
cause the adversary’s GAN inversion to obtain an inaccurate
latent code. In this way, any individual can use UnGANable
to protect their images by sharing only the cloaked images
online. Further, we focus on two state-of-the-art GAN in-
version techniques, i.e., optimization-based inversion [3, 4]
and hybrid inversion [52, 60, 61], and consider five scenarios
to characterize the defender’s background knowledge along
multiple dimensions. By considering what knowledge the
defender has, we obtain a taxonomy of five different types of
methods (called “cloaks” throughout the paper) to disenable
GAN inversion. More concretely, two cloaks are designed
against optimization-based inversion, while the other three
cloaks are designed against hybrid inversion.

We evaluate all our five cloaks on four popular GAN mod-
els that are constructed on two benchmark face datasets of
different sizes and complexity. Extensive experiments show
that UnGANable in general achieves remarkable performance
with respect to both effectiveness and utility. We also conduct
a comparison of our UnGANable with thirteen baseline image
distortion methods. The results show that our defenses can
outperform all these methods. We also explore four adaptive
adversaries to bypass UnGANable and conduct sophisticated
studies. Empirical results show that Spatial Smoothing [1]
and more iterations of inversion are slightly effective.

In summary, we make the following contributions.

• We take the first step towards defending against ma-
licious face manipulation by proposing UnGANable, a
system that can jeopardize the process of GAN inver-
sion.

• We consider five scenarios to comprehensively character-
ize a defender’s background knowledge along multiple
dimensions, and propose five different defenses for each
scenario. Extensive evaluations on four popular GAN

models show that UnGANable can achieve remarkable
performance with respect to both effectiveness and util-
ity.

• We conduct a comparison of our defenses with thirteen
baseline image distortion methods. The results show that
our defenses can outperform all these methods.

• We further explore four adaptive adversaries to bypass
UnGANable and show that some of them are slightly
effective.

2 Background and Related Work

In this section, we first introduce the two-step of GAN-based
face manipulation, namely GAN inversion and latent code
manipulation. Then we discuss other face manipulation tech-
niques and existing defenses. For presentation purposes, we
summarize the notation throughout the paper in Appendix
Table 9. In particular, we emphasize that the adversary-
controlled generator is marked as the target generator Gt
and the adversary-controlled encoder is marked as the target
encoder Et.

2.1 GAN Inversion
In this paper, we consider two representative and most widely-
used techniques of GAN inversion, i.e., optimization and
hybrid formulations, as shown in Figure 2. The algorithms
can be found in our technical report [32].2

Optimization-based Inversion. Existing optimization-based
inversions [3, 4] typically reconstruct a target image by opti-
mizing the latent vector

z∗ = argmin
z

Lrec
(
x,Gt(z)

)
(1)

where x is the target image and Gt is the target generator.
Starting from a Gaussian initialization z, we search for an
optimized vector z∗ to minimize the reconstruction loss Lrec
which measures the similarity between the given image x and
the image generated from z∗. Lrec is a weighted combination
of the perceptual loss [25] and MSE loss:

Lrec = Lpercept
(
Gt(z),x

)
+Lmse

(
Gt(z),x

)
where Lpercept measures the similarity of features extracted
from a pretrained neural network, such as VGG-16 [46], and
Lmse measures the pixel-wise similarity.
Hybrid Inversion. An important issue for optimization-based
inversion is initialization. Since Equation 1 is highly non-
convex, the reconstruction quality strongly relies on a good
initialization of z. Consequently, researchers [48, 52, 61, 61]

2Due to space limitation, we defer most of the appendices to our technical
report [32].
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Figure 2: Illustration of GAN inversion methods. The upper
is the optimization-based inversion. The bottom is the hybrid
inversion.

propose to use an encoder to provide better initialization z for
optimization, namely hybrid inversion.

Hybrid inversion first predicts z of a given image x by
training a separate encoder, then uses the obtained z as the
initialization for optimization. The learned predictive encoder
serves as a fast bottom-up initialization for the non-convex
optimization problem Equation 1.

2.2 Latent Code Manipulation

Considering that a given image has been successfully inverted
into the latent space, the editing of the image can be easily
executed. There are multiple methods [9, 14, 17, 24, 36, 44,
45, 54, 57, 63] to manipulate the latent code, most of them are
based on algebraic operations on the latent code. For instance,
in InterFaceGAN [44], the authors move the latent code z
along a certain semantic direction n to edit the corresponding
attribute of the image (z+n). As the adversary has full control
over the manipulation step, it is extremely difficult (if not
possible) to defend this step. Therefore, we only focus on
defending against the GAN inversion step - the adversary can
only obtain a misleading latent code that is already far from
its exact one. In this way, the latent code manipulation step
will not achieve its ideal result.

2.3 Other Related Work

Image-Translation-Based Face Manipulation. This face
manipulation [10,23,38,47,56,58,62], also known as Image-
to-Image Translations (I2I), represented by StarGANv2 [11]
and AttGAN [20], has received increasing attention in recent
years. More concretely, I2I builds an end-to-end neural net-
work as the backbone, to translate source images into the
target domain with many aligned image pairs for training.
When editing images, I2I uses the backbone network to ac-
cept the target image and output a new style of it without
GAN-inversion process. Considering that the defense against
I2I has been well studied [21, 31, 41, 55], the defense against
GAN-inversion-based is still an open research problem. Our
work is therefore well-motivated to complete this puzzle map.

We also provide a more in-depth discussion of I2I in Sec-
tion 8.
Existing Defenses Against Face Manipulation. As face ma-
nipulation causes a great threaten to individual privacy even
political security, it is of paramount importance to develop
countermeasures against it. To mitigate this risk, many de-
fenses have been proposed, and these defenses can be broadly
divided into two categories: detection [5, 30, 34, 35, 40, 59]
and disrupting I2I [21, 31, 41, 55]. However, the former de-
fense is designed in a passive manner to detect whether face
images have been tampered with after wide propagation. The
latter defense can only mitigate image-translation-based face
manipulation by spoofing the backbone network. However,
there is still no approach to defend against GAN-inversion-
based face manipulation in a proactive manner. In this paper,
we propose UnGANable of initiative defense to degrade the
performance of GAN inversion, which is an essential step
for subsequent face manipulation. See more discussion about
limitations of existing defenses in our technical report [32].

3 Overview of UnGANable

In this section, we provide an overview of UnGANable.

3.1 Intuition
We derive the intuition behind our UnGANable from the basic
pipeline of how inversion works. Since the optimization-
based inversion is part of the hybrid inversion, here we focus
only on the former. As described in Section 2.1, the inversion
employs a loss function that is a weighted combination of the
perceptual loss [25] and the pixel-wise MSE loss, to guide
the optimization into the correct region of the latent space.
This methodology leads to the following observations.

• The pixel-wise MSE loss works in the pixel space, i.e.,
the image space.

• The perceptual loss measures the similarity of features
extracted from different images using a pretrained model,
which works in the feature space.

• The optimization aims to search for the optimal latent
code, which works in the latent space.

Thus, GAN inversion actually works in at least three spaces,
i.e., the image space, the feature space, and the latent space.
These observations motivate our UnGANable, which aims to
maximize deviations in both latent and feature spaces with
the cloaked images, meanwhile maintain the image indistin-
guishable in the image space.

3.2 Threat Model
The goal of the face manipulator (i.e., adversary) is to manip-
ulate the face without any authorization from the owner of
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Table 1: An overview of assumptions. “✓” means the defender needs the knowledge and “-” indicates the knowledge is not
necessary. “Target” means the adversary-controlled entities, and “Shadow” means the defender-built entities locally.

Inversion Category Cloaks Target Shadow Target Shadow Feature Inversion
Generator Generator Encoder Encoder Extractor Technique

Optimization-based White-box ✓ - - ✓ ✓ ✓

Black-box - - - - ✓ -

Hybrid
White-box - - ✓ - ✓ -

Gray-box - ✓ - ✓ ✓ -

Black-box - - - - ✓ -

the face image to serve its own purposes, such as violating
individual privacy or even misleading political opinions, The
face manipulator could be a commercial company or even an
individual. We assume the face manipulator has access to ad-
vanced GANs (e.g., via GitHub), and can apply two advanced
GAN inversion techniques, namely optimization-based inver-
sion and hybrid inversion, to invert the images into the latent
space. These two inversion methods are shown in Figure 2.

3.3 System Model
Any user (also called defender) can use UnGANable to search
for cloaked images, which are around the target images in the
image space. The design goals for these cloaks are:

• cloaked images should be indistinguishable from the
target images;

• when inverting the cloaked image, the adversary can
only get a misleading latent code, which is far from its
accurate one in the latent space (see Equation 2).

Generally, UnGANable aims to maximize the deviations in
the latent space and feature space, while keeping the images
indistinguishable in image space. Therefore, the challenge
for UnGANable is to obtain the representation in each space.
To this end, we make different assumptions for UnGANable
in different scenarios where UnGANable can use different
methods to search for invisible images. The overview of
background knowledge is introduced in Table 1

4 UnGANableAgainst Optimization-based In-
version

In this section, we present UnGANable against the first type
of GAN inversion, i.e., optimization-based inversion.

4.1 Defender’s Knowledge
For optimization-based inversion, we consider two different
scenarios to characterize a defender’s background knowledge.
See more detailed explanation about background knowledge
in our technical report [32].
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Figure 3: An illustration of white-box (Cloak v0) and black-
box (Cloak v1) defenses against optimization-based inversion.

White-Box (Cloak v0). To maximize the deviation in the
latent space, a defender has white-box access to the target
generator Gt, and knows the adversary’s inversion techniques
Io, thus he/she can obtain the accurate latent code of the
original image. Besides, the defender trains a shadow encoder
Es to embed interim cloaked images to obtain the cloaked
latent code. Then, the adversary can maximize the deviation
between them. To maximize deviation in the feature space,
we further assume that the defender has access to a feature
extractor F , which can map both original image and cloaked
image to feature space. Here, the feature extractor can be
different from feature extractor used in perceptual loss.
Black-Box (Cloak v1). In this scenario, we assume the
defender has no knowledge of the target generator or inversion
techniques. Here, the defender only has access to a feature
extractor F .

4.2 Methodologies
From a high-level overview, the defense can be divided into
three simultaneous components, namely maximizing latent
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deviation, maximizing feature deviation, and searching for
cloaked images in the image space. The algorithms can be
found in Appendix A.
White-Box (Cloak v0). The defender first leverages
optimization-based inversion Io to invert a target image x
to obtain its exact latent code Io(x).3 For maximizing latent
deviation, the defender needs to build an end-to-end model,
namely shadow encoder Es, to invert the cloaked image x̂ of
each step to obtain its latent code.4 To train Es, as shown in
the pink part of Figure 3, the defender leverages the target
generator Gt to create a dataset of generated images Gt(z) and
their latent codes z, then minimize a similarity reconstruction
loss Lrec between these latent codes Es

(
Gt(z)

)
and z.

Lrec =−Lcos

(
Es
(
Gt(z)

)
,z
)
+Lmse

(
Es
(
Gt(z)

)
,z
)

(2)

where both Lcos and Lmse measure the element-wise similarity
of latent codes. Here, Lcos is cosine similarity loss, and Lmse
is MSE similarity loss.

For maximizing feature deviation, the defender uses a third-
party pre-trained model (e.g., via GitHub) as the feature ex-
tractor F to obtain the features F(x) and F(x̂). Once the
defender obtains Io(x), Es and F , the defender iteratively
searches for x̂ in the image space by modifying x, to maxi-
mize the latent and feature deviations between x and x̂.

maxx̂ κ

(
Lrec

(
Es(x̂), Io(x)

))
+(1−κ)

(
Lrec

(
F(x̂),F(x)

))
s.t. |x̂−x|∞ < ε

κ ∈ [0,1]

where Lrec(.) introduced in Equation 2 measures the element-
wise similarity of two feature vectors or latent vectors, |x̂−
x|∞ measures the distance between x̂ and x, ε is the distance
budget in image space, and κ is a trade-off hyper-parameter
between latent and feature spaces.
Black-Box (Cloak v1). The defender can only produce sig-
nificant alterations to images’ feature space, i.e., searching
for x̂ in the image space by modifying x, to maximize the
feature deviation between x̂ and x.

maxx̂ Lrec(F(x̂),F(x))
s.t. |x̂−x|∞ < ε

4.3 Experimental Setup
GAN Models and Datasets. Without losing representative-
ness, we focus on four generative applications in recent years

3This process requires white-box access to the target generator Gt, as
shown in Figure 2.

4The reason is that when iteratively searching in the image space, the
defender needs to compute the cloaked image’s gradient of each step with
respect to the latent deviation by backpropagation, which is intractable
through optimization-based inversion. The optimization-based inversion is
just an inverted process, not an end-to-end model.

Table 2: Target GANs, datasets and resolutions used to evalu-
ate defense performance.

Model Zoo Z dims Dataset Resolution

DCGAN (2016) [39] 100 CelebA [33] 64×64

WGAN (2017) [16] 128 CelebA [33] 128×128

StyleGANv1 (2019) [27] 512 FFHQ [27, 28] 256×256

StyleGANv2 (2020) [28] 512 FFHQ [27, 28] 256×256

- DCGAN [39], WGAN [16], StyleGANv1 [27], and Style-
GANv2 [28]. These GAN models are built with different
architectures, losses and training schemes. Each generation
application benchmarks its own dataset. As summarized in Ta-
ble 2, we considered two benchmark datasets of different sizes
and complexities, including CelebA [33] and FFHQ [27, 28],
to construct different GAN models. Details of GAN models
and datasets can be found in Appendix B.
Manipulator/Adversary. For face manipulator/adversary,
we follow the original configurations of optimization-based
inversion (Image2StyleGAN [3]). More specifically, we set
up 500 iterations for the optimization step of inversion. In
addition, we use perceptual loss and pixel-level MSE loss to
reconstruct the target image in the optimization step. Though
StyleGANv1 [27] and StyleGANv2 [28] also work on w
space that is converted from z space, z space is applicable to
all GAN models, thus we only consider z space in this work.
Defender. For the defender, we use a random initialized
ResNet-18 [18] as the shadow encoder Es in the white-box
scenario (Cloak v0). Besides, for both white- and black-
box scenarios (Cloak v0/v1), we adopt the easy-to-download,
widely-used, and pre-trained ResNet-18 as the feature extrac-
tor. Further, we set up 500 iterations to iteratively search for
the cloaked image in the image space by modifying the target
image.
Target Samples. We first evaluate UnGANable on gener-
ated images from each GAN model. The reason is that, as
stated in previous works [3, 4, 60], and also shown in our
experimental results, the generated images are more easily
inverted into accurate latent codes. In other words, in the
competition between attackers and defenders, we actually
make a very strong advantageous assumption for the former.
We investigate whether UnGANable can achieve acceptable
or even superior performance in such a worst-case scenario.
Thus, for each GAN model, we evaluate the performance of
UnGANable on 500 randomly selected generated images that
can be successfully reconstructed.
Evaluation Metrics. For evaluation metrics, we consider
two perspectives: effectiveness and utility. Effectiveness mea-
sures the extent to which UnGANable jeopardizes the GAN
inversion process. Given a target image, the sign of successful
defense is a change in the identity of the reconstructed image,
as shown in Figure 1. The reason is that once the identity of
the reconstructed image changes, the defender no longer cares
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Table 3: Some visual examples of reconstructed images based on StyleGANv2. The defense method is Cloak v1.
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Figure 4: The effectiveness performance of Cloak v0 and
Cloak v1.

about the manipulation of the reconstructed image because
the reconstructed image does not belong to the defender. To
this end, we use Matching Rate to evaluate effectiveness:

Matching Rate =
#successful reconstructed images

#total images

Therefore, the lower the matching rate is, which means the
more reconstructed images with changed identity, the better
effectiveness UnGANable achieves. In our implementation,
we utilize a popular open-source face verification/comparison
tool FaceNet [42] to compute the defense success rate. Given
the embedding distance of a pair of two face images, a pre-
calibrated threshold is used to determine the classification
of same and different, i.e., the two face images belong to
the same person if the embedding distance is less than the
threshold, otherwise different person. See more details on
threshold selection in our technical report [32].

Utility measures whether the cloaked images searched by
UnGANable is indistinguishable from the target images. To
measure the utility, we use a variety of most widely-used simi-
larity metrics, including mean squared error (MSE), structural
similarity (SSIM) [51], and peak signal-to-noise ratio (PSNR).
Here, the lower the MSE is, the higher the SSIM and PSNR

Table 4: The utility performance of UnGANable against
optimization-based inversion.

Budget Metric Cloak v0 Cloak v1 Budget Metric Cloak v0 Cloak v1

ε-1
MSE 7.3e-05 7.2e-05

ε-7
MSE 0.0010 0.0014

SSIM 0.9889 0.9891 SSIM 0.8802 0.8431
PSNR 41.376 41.408 PSNR 30.118 28.532

ε-3
MSE 0.0003 0.0003

ε-9
MSE 0.0014 0.0022

SSIM 0.9612 0.962 SSIM 0.8347 0.7820
PSNR 35.684 35.716 PSNR 28.423 26.637

ε-5
MSE 0.0006 0.0006
SSIM 0.9228 0.9245
PSNR 32.419 32.455

are, then the better utility UnGANable achieves. More details
about these metrics are presented in our technical report [32].

4.4 Results
Effectiveness Performance. In our UnGANable, we adopt
a budget ε to limit distance between the cloaked and target
image, aiming to ensure that the cloaked image is indistin-
guishable from the target image. Here, we first investigate the
effectiveness of UnGANable by reporting matching rate under
the effects of the distance budget ε. More concretely, we set
10 different distance budgets ε-0, ε-1, ... , ε-9 (uniformly
ranging from 0.01 to 0.07 for DCGAN and WGAN, and from
0.01 to 0.1 for StyleGANv1 and StyleGANv2.5). Under each
distance budgets, we perform grid search to find the optimum
trade-off hyper-parameter κ. The exact settings for ε and κ

can be found in our technical report [32].
Figure 4 depicts the effectiveness performance of Cloak v0

and Cloak v1 (see more results on DCGAN and WGAN in
our technical report [32]). As we can see, with the increase
of the budget ε, both Cloak v0 and Cloak v1 can significantly
reduce matching rate. For example, in Figure 4 (Cloak v0,

5We conducted a pre-experiment and showed that only a small distance
can jeopardize DCGAN and WGAN inversions, so we set the maximum
magnitude of the distance budget to 0.07 for DCGAN and WGAN, and 0.1
for StyleGANv1/v2.
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Table 5: Some visual examples of cloaked images searched
by Cloak v1 performed on StyleGANv2 under different per-
turbation budgets.

Target Image ε-1 ε-5 ε-9

StyleGANv2), the matching rate of ε-0 is 0.86, and that of
ε-9 is 0.156, which drops sharply. These results imply that
if we set a relatively high distance budget, UnGANable can
achieve significant effectiveness against optimization-based
inversion.

Besides above quantitative results, we further provide ran-
dom qualitative examples to demonstrate the effectiveness of
UnGANable performed on StyleGANv2. As shown in Table 3,
we can observe that as ε increases, more and more facial
attributes cannot be successfully reconstructed. The differ-
ence between the reconstructed image and the target image
becomes more extensive, which implies the effectiveness is
getting better.
Utility Performance. To evaluate the utility performance,
we first quantitatively report a variety of similarity metrics
(MSE/SSIM/PSNR) in Table 4. Typically, a SSIM value
greater than 0.9 or a PSNR greater than 35 means a good
quality of cloaked images. To elaborate more on utility per-
formance, we show in Table 5 some qualitative samples of
cloaked images searched by UnGANable performed on Style-
GANv2. We can observe that when distance budget is set
as ε-1 (0.02) and ε-3 (0.04), which represents a completely
imperceptible perturbation, UnGANable can achieve accept-
able effectiveness performance (see qualitative reconstructed
examples in Table 3). In addition, we acknowledge that some
perturbations are perceptible to our naked eye when the dis-
tance budget is set to ε-7 (0.08) or ε-9 (0.1). But note that
these visual results are performed on the images generated
by their corresponding GAN models. In the following Sec-
tion 6, we further conduct experiments on real images. It is
encouraging that UnGANable can apply a much lower distance
budget to obtain excellent effectiveness performance while
guaranteeing the visual quality of the cloaked image.
The Effect of Latent/Feature Deviation. We further in-
vestigate the effect of latent/feature deviation on the perfor-
mance of UnGANable. In the white-box scenario (Cloak v0),
UnGANable search for the cloaked images which can maxi-
mize both latent and feature deviations, while in the black-box

scenario (Cloak v1) only feature deviations are maximized.
As shown in Figure 4, we can obverse that Cloak v0 achieve
better effectiveness performance than Cloak v1 under each
distance budget. However, we cannot prematurely claim that
Cloak v0 is better because we need to consider whether Cloak
v0 is at least as good as Cloak v1 in terms of utility perfor-
mance. Table 4 reports the utility performance of UnGANable
on the StyleGANv2. First, we can observe that Cloak v0 per-
forms at least on-par with Cloak v1 under budget ε-1, ε-3, and
ε-5. More encouragingly, under budget ε-7 and ε-9, Cloak
v0 achieves better utility performance than Cloak v1. These
results show that Cloak v0 outperforms Cloak v1 in terms of
both effectiveness and utility, and convincingly demonstrate
that the additional latent deviation we introduce for Cloak v0
does improve performance.
Comparison with Baselines. To elaborate on UnGANable’s
performance in a more convincing manner, we compare
UnGANable extensively with thirteen baseline distortion meth-
ods, as shown in Table 6. For each baseline method, we eval-
uate both effectiveness and utility performance with a wide
variety of different magnitude of the budget. More detailed
descriptions of each method are presented in our technical
report [32]. Figure 5 displays the relationship between each
baseline method’s matching rate and MSE/SSIM/PSNR score
(see more results in our technical report [32]). Thus, we can
make the following observations.

First, as the budget increases (i.e., MSE becomes larger
and SSIM/PSNR becomes smaller), all baseline methods can
significantly reduce the matching rate, meaning that baseline
methods that work only in image space can also achieve good
effectiveness performance.

More encouragingly, the plot also clearly indicates the
benefits of latent and feature deviations: among baseline
methods with similar utility performance levels (similar
MSE/SSIM/PSNR), our Cloak v0 and Cloak v1 consistently
achieve better effectiveness (lower matching rate), as they
benefit from maximizing latent and feature deviations. In
other words, searching for cloaked images to maximize latent
and feature deviations can further disenable GAN inversions
at nearly no cost in utility. Another interesting finding is that
when UnGANable is not an option, GaussianNoise, Gaussian-
Bulr, and JPEGCompression appear to perform better.

5 UnGANable Against Hybrid Inversion

We now present UnGANable against the second GAN inver-
sion technique, i.e., hybrid inversion.

5.1 Defender’s Knowledge
For hybrid inversion, we consider three different scenarios
to characterize a defender’s background knowledge. See
more detailed explanation about background knowledge in
our technical report [32].
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Table 6: Visual examples of different baseline distortion methods.
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Figure 5: Comparison between all baseline methods and Cloak v0/v1 on generated images and StyleGANv2. The different
points of each method represent different budgets.

White-Box (Cloak v2). Hybrid inversion actually adopts
an encoder to provide a better initialization z for the follow-
ing optimization step. Here, we assume that a defender has
complete knowledge of the target encoder Et to mislead the
encoder, i.e., provide a worse initialization latent code z for
the optimization. We give a quantitative illustration of this
intuition in Section 5.2. Besides that, we also assume that the
defender has access to a feature extractor F . Note that the
defender does not need to have white-box access to the target
generator Gt due to the design of this defense (see Section 5.2
more details).

Grey-Box (Cloak v3). Here, we relax the assumption that
the defender has complete knowledge of the target encoder
Et. In particular, we assume that the defender can send many
queries to the target encoder Et and train a shadow encoder Es
to mimic the behavior of the target encoder Et, and relies on
the shadow encoder to act as the target encoder. Besides that,
we assume that the defender has access to a feature extractor
F for feature deviation.

Black-Box (Cloak v4). Here, we assume the defender has no
knowledge of the adversary’s generator or encoder. Here, the
defender only has access to a feature extractor F .

5.2 Methodologies

Here the defenses are also divided into three simultaneous
components, namely maximizing latent deviation, maximiz-
ing feature deviation, and searching for cloaked images in
the image space. In particular, we introduce a new novel
method to maximize the latent deviation. The algorithms can
be found in Appendix A.
New Perspective of Latent Deviation. As aforementioned in
Section 2.1, an important issue for optimization-based inver-
sion is initialization. Recent research [8,26,27,39] shows that
using different initializations leads to a significant perceptual
difference in generated images. Here, we conduct a pre-
experiment on using different initializations to perform the
optimization-based inversion, including Gaussian, zeros, etc
(see [2] for each distribution). In particular, hybrid inversion
adopts an encoder to provide initialization for optimization.

Figure 6 shows the trend of perceptual and MSE loss, re-
spectively. First, the encoder indeed provides better initial-
ization, which leads to better initial and final performance.
Second, the trend of loss remains constant when the initializa-
tion is set to zero, which means it is quite difficult to invert
the target image into the latent space. This observation sug-
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Figure 6: The loss trend under the effect of different initial-
ization for optimization.

gests a new perspective on the latent deviation – misleading
the encoder to provide zero initialization, or close to zero.
In other words, our defense’s goal against hybrid inversion
should be to force the output of the encoder to zero. This is
actually a special case of maximizing latent deviation, which
provides the movement direction of the cloaked image in the
latent space, i.e., towards zero.

White-Box (Cloak v2). In this scenario, we assume that the
defender has full knowledge of the target encoder Et, as well
as an additional feature extractor F . As shown in the green
part of Figure 7, the defender iteratively searches for x̂ in the
image space by modify x, in order to minimize the deviation
between Et(x̂) and zero, and maximize the deviation between
F(x̂) and F(x).

maxx̂ κ

(
−Lrec

(
Et(x̂),0

))
+(1−κ)

(
Lrec

(
F(x̂),F (x)

))
s.t. |x̂−x|∞ < ε

κ ∈ [0,1]

Grey-Box (Cloak v3). Here, we relax the assumption that
the defender has complete knowledge of the target encoder Et.
The defender needs to build a shadow encoder Es to match the
predictions of Et, i.e., find the shadow encoder’s parameters
that minimize the probability of errors between the shadow
and target predictions.

As shown in the pink part of Figure 7, the defender builds
a shadow generator Gs which is responsible for crafting some
input images, and Es serves as a discriminator while being
trained to match target encoder’s predictions on these images.
In this setting, the two adversaries are Es and Gs, which try to
minimize and maximize the deviation between Es and Et re-
spectively. Then, shadow encoder Es becomes a functionally
equivalent copy of target encoder Et.

Finally, the defender iteratively searches for x̂ in the image
space by modify x, in order to minimize the deviation between
Es(x̂) and zero, and maximize the deviation between F(x̂)

𝐹
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Figure 7: An illustration of white-box (Cloak v2), grey-box
(Cloak v3) and black-box (Cloak v4).

and F(x).

maxx̂ κ

(
−Lrec

(
Es(x̂),0

))
+(1−κ)

(
Lrec

(
F(x̂),F (x)

))
s.t. |x̂−x|∞ < ε

κ ∈ [0,1]

Black-Box (Cloak v4). In this scenario, the defender has
no knowledge of the target generator or target encoder or
inversion techniques. The defender can only search for x̂ in
the image space by modifying x, to maximize the feature
deviation between x̂ and x.

maxx̂ Lrec(F(x̂),F(x))
s.t. |x̂−x|∞ < ε

5.3 Experimental Setup

For the manipulator/adversary, we follow the configurations
of hybrid inversion (Zhu et al. [60]). Here, we again only
consider the z space for all GAN models. We set up 100
iterations for the optimization step of inversion, and use per-
ceptual loss and pixel-level MSE loss to reconstruct the target
image in the optimization step.

As a defender, for Cloak v3, we build the shadow gen-
erator by using 1 linear layer to accept Gaussian noise, fol-
lowed by five convolutional layers and five Batch Normal-
ization [22] layers. Furthermore, we again use a random
initialized ResNet-18 as the shadow encoder. For all Cloaks
(v2/v3/v4), we again use a pretrained ResNet-18 [18] as the
feature extractor. Besides, we fix the number of iterations
as 500, to search for cloaked images. In addition, all other
experimental settings are the same as described in Section 4.3.

USENIX Association 32nd USENIX Security Symposium    7221



0.000 0.005 0.010 0.015 0.020
MSE

0.0

0.2

0.4

0.6

0.8

1.0
M

at
ch

in
g

R
at

e

Better Performance

0.5 0.6 0.7 0.8 0.9 1.0
SSIM

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
R

at
e

Better Performance

20 30 40 50
PSNR

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
R

at
e

Better Performance

Cloak v2

Cloak v3

Cloak v4

ShareX

ShareY

TranslateX

TranslateY

Rotate

Brightness

Color

Contrast

Solarize

CenterCrop

GaussianBlur

GaussianNoise

JPEGcompression

Figure 8: Comparison between all baseline methods and Cloak v2/v3/v4 on generated images and StyleGANv2. The different
points of each method represent different budgets.
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Figure 9: The effectiveness performance of Cloak v2, Cloak
v3 and Cloak v4.

5.4 Results

Effectiveness Performance. To evaluate the effectiveness
performance quantitatively, we use the same evaluation setup
as presented in Section 4.4. Figure 9 depicts the effectiveness
performance of Cloak v2/v3/v4 (See more results on DCGAN
and WGAN in our technical report [32]). First, we again
observe that as the budget increases, all Cloak v2/v3/v4 can
significantly reduce the matching rate. These results indeed
imply that UnGANable can achieve significant effectiveness
against hybrid inversion. For qualitative results, the same
perturbation budget will lead to similar reconstructed results,
as shown in Table 3.
Utility Performance. Similarly, since we set the same dis-
tance budgets as adopted against optimization-based inver-
sion, thus for the same perturbation budget will lead to similar
quantitative and qualitative utility performance, as shown in
Table 3 and Table 4.
The Effect of Latent/Feature Deviation. In Figure 9a and
Figure 9b, we can observe that searching for cloaked im-
ages to mislead the target encoder controlled by adversary
(Cloak v2) leads to much better effectiveness performance.
Furthermore, the larger the distance budget, the larger the gap

between Cloak v2 and both Cloak v3 and Cloak v4, reflecting
the fact that zero initialization can significantly jeopardize
the process of GAN inversion. This convincingly verifies
our new perspective of latent deviation–misleading the ad-
versary’s encoder to provide zero initialization, or close to
zero.
Comparison with Baselines. We compare UnGANable ex-
tensively with thirteen baseline methods, as shown in Table 6.
We use the same experimental setup as described in Sec-
tion 4.4, such as the perturbation budget setting strategy and
the result reporting metrics. We report comparisons between
baseline methods and UnGANable in Figure 8, and we can
make the similar observations as mentioned in Section 4.4.
See more results on DCGAN/WGAN/StyleGANv1 in our
technical report [32]. Here, we again emphasize that Cloak
v2/v3/v4 achieves consistently better effectiveness (lower
matching rate) and utility (lower MSE, higher SSIM and
PSNR) performance than all baselines.

6 Evaluation on Real Images

To elaborate on UnGANable’s performance, here we inves-
tigate the performance of UnGANable on real facial images.
Concretely, we consider the strictest setting in which the
defender has no knowledge of the adversary-controlled enti-
ties. Thus, we only consider the black-box scenario against
optimization-based and hybrid inversion, i.e., Cloak v1 and
Cloak v4. In addition, the adversary-controlled GAN model is
the state-of-the-art deepfake generative model StyleGANv2.
We collect 200 real images from the FFHQ dataset, and these
images are the most successfully inverted into the latent space
among the whole FFHQ dataset.
Effectiveness Performance. We first present the effective-
ness performance of UnGANable. We use the same evaluation
setup as presented in Section 4.4. We set 5 different distance
budgets ε-0/1/2/3/4, the same as adopted in previous evalu-
ations. Figure 10 depicts the effectiveness performance of
Cloak v1 and Cloak v4. First, we again observe that as the
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Figure 10: The effectiveness performance of Cloak v1/v4 on
generated and real images, respectively.

budget ε increases, both Cloak v1 and Cloak v4 can signif-
icantly reduce the matching rate. Then we can see that the
matching rate of Cloak v4 is clearly higher than that of Cloak
v1, which verifies that the encoder of hybrid inversion indeed
leads to better reconstruction performance.

What is more encouraging is that UnGANable can achieve
better effectiveness performance compared to that on gener-
ated images. For example, when the distance budget is set as
ε-4 (0.05), the matching rate of Cloak v1/v4 on the real image
is about 0.072/0.191, while that on the generated image is
about 0.474/0.606. The results clearly show that UnGANable
can apply a much lower perturbation budget to obtain better
effectiveness performance, and this lower distance budget
further benefits utility performance.
Utility Performance. For utility performance, we con-
duct the evaluations both quantitatively and qualitatively.
we first quantitatively report a variety of similarity metrics
(MSE/SSIM/PSNR) in Table 7. Generally, SSIM values of
0.97, 0.98, and 0.99 imply the excellent visual quality of the
cloaked images. We then show in Table 8 some qualitative
samples of cloaked images. We can observe that when the
distance budget is set as ε-4 (0.05), which represents a com-
pletely imperceptible perturbation, UnGANable can achieve
remarkable effectiveness performance (see matching rate in
Figure 10b). Therefore, we claim that UnGANable provides
acceptable protection for real images by much lower distance
budgets and still yields good effectiveness and utility perfor-
mance.
Comparison with Baselines. We then compare UnGANable
extensively with thirteen baseline distortion methods, as
shown in Table 6. For each baseline method, we evaluate
both effectiveness and utility performance with a wide vari-
ety of different magnitude of the budget. Figure 12 displays
the compassion between baseline methods and Cloak v1/v4,
respectively (see more results of MSE/SSIM in our technical
report [32]). Thus, we can make the same observations as
UnGANable on generated images, i.e., our Cloak v1/v4 of
UnGANable achieves consistently better effectiveness (lower

Table 7: The quantitative utility performance of UnGANable
under Cloak v1 and v4 settings.

Budget Metric Cloak v1 Cloak v4 Budget Metric Cloak v1 Cloak v4

ε-0
MSE 1.9e-05 1.9e-05

ε-3
MSE 0.0003 0.0002

SSIM 0.9968 0.9969 SSIM 0.9606 0.967
PSNR 47.205 47.210 PSNR 35.783 35.783

ε-1
MSE 7.1e-05 7.2e-05

ε-4
MSE 0.0004 0.0004

SSIM 0.9887 0.9887 SSIM 0.9422 0.9423
PSNR 41.473 41.473 PSNR 33.983 33.982

ε-2
MSE 0.0002 0.0002
SSIM 0.9764 0.9764
PSNR 38.144 38.145

Table 8: Some visual examples of cloaked real images
searched by Cloak v4 performed on StyleGANv2.

Target Image ε-0 ε-2 ε-4

matching rate) and utility (lower MSE, higher SSIM, and
PSNR) performance compared to all baseline methods.

7 Possible Adaptive Adversary

Here, we explore four possible adaptive adversaries and em-
pirically evaluate the performance of UnGANable on real fa-
cial images. We conduct extensive experiments under the
black-box scenario against optimization-based and hybrid in-
version, i.e., Cloak v1 and Cloak v4. Note that for the purpose
of straightforward comparisons, we average the performance
of UnGANable with a varying number of distance budgets, i.e.,
ε-0/1/2/3.
Cloak Overwriting. This adaptive adversary aims to disturb
the cloaks, i.e., the imperceptible perturbation searched by
UnGANable. The adversary samples random noise from a
Gaussian distribution N (µ,σ2) to overwrite the cloaks.

We report the matching rate by varying the standard de-
viation σ (set µ as 0 for simplicity) in Figure 11a (see more
results of Cloak v1 in our technical report [32]). We can
observe that as the standard deviation increases, the matching
rate of cloak overwriting is significantly reduced. The reason
is that the cloak overwriting actually introduces more noise in
the image space on top of the imperceptible noise searched by
the UnGANable, which further jeopardizes the GAN inversion
process. These results indicate that cloak overwriting is not
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Figure 11: The effectiveness performance of UnGANable on real images under the effect of four possible adaptive adversaries.
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Figure 12: Comparison between all baseline methods and
Cloak v1/v4 on real images. The different points of each
method represent different budgets.

an applicable adaptive strategy for adversaries.
Cloak Purification. This adaptive adversary aims to remove
or purify the cloaks searched by UnGANable. As aforemen-
tioned, these cloaks actually are the imperceptible noise added
to the images. Thus, we consider one of the most wide-used
and easy-to-apply image noise reduction mechanisms, i.e.,
Spatial Smoothing [1]. Spatial Smoothing means that pixel
values are averaged with their neighboring pixel values with
a low-pass filter, leading to the sharp "edges" of the image
becoming blurred and the spatial correlation within the data
becoming more apparent.

We report the matching rate by varying the filter widths
of Spatial Spatial in Figure 11b (see more results of Cloak
v1 in our technical report [32]). We can clearly observe that
the matching rate increases at first and then decreases. These
results indicate that Spatial Smoothing indeed can purify the
imperceptible noise added by UnGANable to some extent. We
should also note that even the optimal setting for Spatial
Smoothing can only lead to a slightly increased matching
rate, and they all drop further sharply when the filter width is
very large, as the Spatial Smoothing destroys the pixel space
of the original image. This observation implies that Spatial

Smoothing is only a slightly effective adaptive strategy to
reduce the jeopardy of UnGANable to GAN inversions.
More Iterations of Inversion. This adaptive adversary has
significant computational resources to perform a huge num-
ber of optimization iterations to increase the matching rate.
More specifically, we vary the number of optimization itera-
tions from 0 to 5000 for both optimization-based and hybrid
inversions. Note that the default settings for the number of
iterations are 500 and 100 for optimization-based inversion
and hybrid inversion, respectively.

Figure 11c shows the matching rate of UnGANable under
the effect of numbers of iterations. As expected, we can
find that the matching rate increases with the number of opti-
mization iterations. Specifically, the matching rate increases
sharply up to 1000/100 iterations and continues to increase
slowly afterward. These results clearly demonstrate that more
iterations of inversion indeed can reduce the jeopardy of
UnGANable to GAN inversions. We should also note that a
larger number of iterations (even up to 5000) does not lead to
great effects, but is a huge cost in terms of resource usage.
Encoder Enhancement. We further consider another adap-
tive adversary where the adversary retrains the encoder to be
more robust to imperceptible noise searched by UnGANable.
More concretely, we assume that the adversary can collect
a large number of cloaked images from crawler-accessible
websites or social media. We consider various numbers of
cloaked images from 5k to 35k that an adversary can collect.
Note that the number of images in the full FFHQ dataset
used to train StyleGANv2 is only 70k. Then the adversary
retrains the encoder by a mixed set of original clean images
and collected cloaked images.

Since the encoder is only employed for hybrid inversion,
we only consider here Cloak v4, the black-box setting against
hybrid inversion, for evaluation. Figure 11d reports the match-
ing rate under the effect of the different numbers of cloaked
images collected by the adversary. We can observe that the
matching rate decreases slightly with increasing cloaked im-
ages, which means that retraining the encoder increases the
jeopardy of UnGANable to GAN inversion. In a nutshell, en-
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Figure 13: Comparison between Fawkes and Cloak v1/v4 on
real images. The different points of each method represent
different budgets.

coder enhancement is not an applicable adaptive strategy for
adversaries to reduce the jeopardy of UnGANable to GAN
inversions.

8 Discussion

Comparison with Fawkes. Recently, the countermeasures
which aim to protect faces from being stolen by recognition
systems have been studied. Fawkes [43], one of the represen-
tative works, adds pixel-level perturbations to users’ photos
by altering the feature space before uploading them to the
Internet. The functionality of unauthorized facial recognition
models trained on these photos with perturbations will be
deteriorated seriously.

For a convincing evaluation, we leverage the original im-
plementation of Fawkes to protect the same real facial images
as used in above evaluation.6 We set multiple different pertur-
bation budgets to perturb these real images and evaluate the
performance of Fawkes against both optimization-based and
hybrid inversions. Figure 13 displays the comparison between
Fawkes and Cloak v1/v4. First, we can observe that Fawkes
indeed can jeopardize the process of GAN inversions. Further,
we can also see that Fawkes provides worse protection against
optimization-based inversion, and similar or slightly better
protection against hybrid inversion, compared to UnGANable.

Here, we emphasize that except for the special black-box
settings, we also propose white-box and gray-box settings,
i.e., Cloak v0/v2/3. The extensive evaluation in Figure 4 and
Figure 9 shows that Cloak v0/v2/3 actually achieves better
performance than Cloak v1/v4, especially in Hybrid inversion,
which is naturally better than Fawkes. That is, UnGANable
performs better than Fawkes in most cases. More importantly,
we should note that the goals of Fawkes and UnGANable are
totally different: Fawkes aims to mislead the face recognition
classifiers while UnGANable misleads the GAN inversion to
prevent malicious face manipulation.

6https://github.com/Shawn-Shan/fawkes

Limitation. There are two major paradigms for image manip-
ulation: GAN-inversion-based and image-translation-based.
The latter, represented by StarGANv2 [11] and AttGAN [20],
transforms an image from the source domain to the target
domain without the GAN-inversion process. Therefore, our
proposed UnGANable is not applicable to image-translation-
based manipulation, as the key idea of UnGANable is to jeopar-
dize the process of GAN inversion. Moreover, we emphasize
here that GAN-inversion-based and image-translation-based
are two orthogonal image manipulation techniques. Consid-
ering that the defense against the latter has been well stud-
ied [21, 31, 41, 55], the defense against GAN-inversion-based
is still an open research problem. Our work is therefore well-
motivated to complete this puzzle map.

Moreover, except for z space we consider in this work,
recent works [3, 4, 6, 13, 28, 37, 48, 50, 60] also works on w
space, which is transformed from z space, leading to a better
inversion performance. We leave the in-depth exploration of
more efficient UnGANable against w space for future work.

9 Conclusion

In this paper, we take the first step towards defending
against GAN-inversion-based face manipulation by propos-
ing UnGANable, a system that can jeopardize the process of
GAN inversion. We consider two advanced GAN inversions:
optimization-based and hybrid inversions, as well as five sce-
narios to comprehensively characterize the defender’s back-
ground knowledge in multiple dimensions. We extensively
evaluate UnGANable on four popular GAN models built on
two benchmark face datasets of different sizes and complex-
ity. The results show that UnGANable can achieve remarkable
performance with respect to both effectiveness and utility.
We further conduct a comparison of UnGANable with thir-
teen image distortion methods as well as Fawkes, and the
results show that UnGANable generally outperforms all these
methods. In addition, we explore four possible adaptive ad-
versaries against UnGANable, and empirical evaluation shows
that Spatial Smoothing and more iterations of inversion are
slightly effective.
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A Algorithms of UnGANable

Algorithm 1 is for Cloak-0. Algorithm 2 is for Cloak-1. Al-
gorithm 3 is for Cloak-2. Algorithm 4 is for Cloak-3. Algo-
rithm 2 is for Cloak-4.

Table 9: List of notations.

Notation Description

z Latent code
x Target image (uncloaked)
x̂ Cloaked version of the target image x
δ Cloak (or perturbation) between x and x̂
ε Perturbation budget
κ Trade-off hyperparameter
I GAN inversion technique
G Generator
E Encoder for the latent space
F Feature extractor for the feature space
L Loss function
Gt Target generator controlled by the adversary
Gs Shadow generator controlled by the defender
Et Target encoder controlled by the adversary
Es Shadow encoder controlled by the defender
Io Optimization-based inversion
Ih Hybrid inversion

Lrec Reconstruction loss
Lpercept Perceptual loss

Lcos Cosine similarity loss
Lmse MSE similarity loss

B GAN Models and Datasets

DCGAN. DCGAN [39] uses convolutions in the discrimina-
tor and fractional-strided convolutions in the generator.
WGAN. WGAN [16] minimizes the Wasserste in distance be-
tween the generated and real data distributions, which offers
more model stability and makes the training process easier.
StyleGANv1/v2. StyleGANv1 [27] implicitly learns hierar-
chical latent styles for image generation. It takes per-block
incorporation of style vectors and stochastic variation as in-
puts to generate a synthetic image. The StyleGANv2 [28]
further improves the image quality by proposing weight de-
modulation, path length regularization, redesigning generator,
and removing progressive growing.

CelebA. CelebA [33] is a face dataset consisting of 200K
celebrity images with 40 attribute annotations each.
FFHQ. Flickr-Faces-HQ (FFHQ) [27, 28] is a high-quality
image dataset of human faces crawled from Flickr, which
consists pixels and contains considerable variation in terms
of age, of 70,000 high-quality human face images of 1024 ×
1024 ethnicity, and image background.

Algorithm 1: Cloaking Facial Image of Cloak-0
Input: A target image x to cloak; a pre-trained target

generator Gt(·); a shadow encoder Es(·); a
pre-trained ResNet feature extractor F ; cosine
similarity Lcos(·, ·); MSE similarity Lmse(·, ·);
minibatch m; perturbation budget ε; trade-off
κ.

Output: The trained shadow encoder Es and the
cloaked image x̂.

1 Initialize Lrec(·, ·) =−Lcos(·, ·)+Lmse(·, ·);
2 for number of training iterations do
3 sample a minibatch of latent codes z′ ∈ N (0,1);

4 minΘEs
Lrec

(
Es
(
Gt(z

′
))
)
,z′

)
5 end
6 Initialize xt = optimization-based inversion(x);
7 Initialize δ ∈ N (0,1) and |δ|∞ < ε;
8 Initialize κ;
9 for number of optimized iterations do

10 maxδ κ

(
Lrec

(
Es(x+δ),xt

))
+(1−

κ)
(

Lrec
(
F(x+δ),F(x)

))
;

11 clip δ for |δ|∞ < ε;
12 clip x+δ for x+δ ∈ [0,1];
13 end
14 x̂ = x+δ;
15 return Es, x̂

Algorithm 2: Cloaking Facial Image of Cloak-1/4
Input: A target image x to cloak; a pre-trained ResNet

feature extractor F ; cosine similarity Lcos(·, ·);
MSE similarity Lmse(·, ·); perturbation budget
ε.

Output: The cloaked image x̂.
1 Initialize Lrec(·, ·) =−Lcos(·, ·)+Lmse(·, ·);
2 Initialize δ ∈ N (0,1) and |δ|∞ < ε;
3 for number of optimized iterations do
4 maxδ Lrec

(
F(x+δ),F(x)

)
;

5 clip δ for |δ|∞ < ε;
6 clip x+δ for x+δ ∈ [0,1];
7 end
8 x̂ = x+δ;
9 return x̂
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Algorithm 3: Cloaking Facial Image of Cloak-2
Input: A target image x to cloak; a pre-trained target

encoder Et(·); a pre-trained ResNet feature
extractor F ; cosine similarity Lcos(·, ·); MSE
similarity Lmse(·, ·); perturbation budget ε;
trade-off κ.

Output: The cloaked image x̂.
1 Initialize Lrec(·, ·) =−Lcos(·, ·)+Lmse(·, ·);
2 Initialize δ ∈ N (0,1) and |δ|∞ < ε;
3 Initialize κ;
4 for number of optimized iterations do
5 maxδ κ

(
−Lrec

(
Et(x+δ),0

))
+(1−

κ)
(

Lrec
(
F(x+δ),F(x)

))
;

6 clip δ for |δ|∞ < ε;
7 clip x+δ for x+δ ∈ [0,1];
8 end
9 x̂ = x+δ;

10 return x̂

Algorithm 4: Cloaking Facial Image of Cloak-3
Input: A target image x to cloak; a pre-trained target

encoder Et(·); a shadow encoder Es; a shadow
generator Gs; a pre-trained ResNet feature
extractor F ; cosine similarity Lcos(·, ·); MSE
similarity Lmse(·, ·); perturbation budget ε;
trade-off κ.

Output: The trained shadow encoder Es, the trained
shadow generator Gs and the cloaked image
x̂.

1 Initialize Lrec(·, ·) =−Lcos(·, ·)+Lmse(·, ·);
2 for number of training iterations do
3 sample a minibatch of latent codes z′ ∈ N (0,1);

4 minΘEs
Lrec

(
Es
(
Gs(z

′
))
)
,z′

)
;

5 maxΘGs
Lrec

(
Es
(
Gs(z

′
))
)
,z′

)
;

6 end
7 Initialize δ ∈ N (0,1) and |δ|∞ < ε;
8 Initialize κ;
9 for number of optimized iterations do

10 maxδ κ

(
−Lrec

(
Es(x+δ),0

))
+(1−

κ)
(

Lrec
(
F(x+δ),F(x)

))
;

11 clip δ for |δ|∞ < ε;
12 clip x+δ for x+δ ∈ [0,1];
13 end
14 x̂ = x+δ;
15 return Es,Gs, x̂

7230    32nd USENIX Security Symposium USENIX Association


	Introduction
	Our Contributions

	Background and Related Work
	GAN Inversion
	Latent Code Manipulation
	Other Related Work

	Overview of UnGANable
	Intuition
	Threat Model
	System Model

	UnGANable Against Optimization-based Inversion
	Defender’s Knowledge
	Methodologies
	Experimental Setup
	Results

	UnGANable Against Hybrid Inversion
	Defender’s Knowledge
	Methodologies
	Experimental Setup
	Results

	Evaluation on Real Images
	Possible Adaptive Adversary
	Discussion
	Conclusion
	Algorithms of UnGANable
	GAN Models and Datasets

