
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Efficient 3PC for Binary Circuits with Application
to Maliciously-Secure DNN Inference

Yun Li, Tsinghua University, Ant Group; Yufei Duan, Tsinghua University;
Zhicong Huang, Alibaba Group; Cheng Hong, Ant Group; Chao Zhang

and Yifan Song, Tsinghua University
https://www.usenix.org/conference/usenixsecurity23/presentation/li-yun

Efficient 3PC for Binary Circuits with Application to
Maliciously-Secure DNN Inference

Yun Li∗‡, Yufei Duan∗, Zhicong Huang†, Cheng Hong‡, Chao Zhang∗, Yifan Song∗�

∗Tsinghua University, †Alibaba Group, ‡Ant Group

liyun19@mails.tsinghua.edu.cn, duanyufi@foxmail.com, zhicong.hzc@alibaba-inc.com,
vince.hc@antgroup.com, chaoz@tsinghua.edu.cn, yfsong@mail.tsinghua.edu.cn

Abstract
In this work, we focus on maliciously secure 3PC for bi-

nary circuits with honest majority. While the state-of-the-art
(Boyle et al. CCS 2019) has already achieved the same amor-
tized communication as the best-known semi-honest protocol
(Araki et al. CCS 2016), they suffer from a large computation
overhead: when comparing with the best-known implementa-
tion result (Furukawa et al. Eurocrypt 2017) which requires
9× communication cost of Araki et al., the protocol by Boyle
et al. is around 4.5× slower than that of Furukawa et al.

In this paper, we design a maliciously secure 3PC protocol
that matches the same communication as Araki et al. with
comparable concrete efficiency as Furukawa et al. To obtain
our result, we manage to apply the distributed zero-knowledge
proofs (Boneh et al. Crypto 2019) for verifying computations
over F2 by using prime fields and explore the algebraic struc-
ture of prime fields to make the computation of our protocol
friendly for native CPU computation.

Experiment results show that our protocol is around 3.5×
faster for AES circuits than Boyle et al. We also applied our
protocol to the binary part (e.g. comparison and truncation) of
secure deep neural network inference, and results show that
we could reduce the time cost of achieving malicious security
in the binary part by more than 67%.

Besides our main contribution, we also find a hidden se-
curity issue in many of the current probabilistic truncation
protocols, which may be of independent interest.

1 Introduction

Secure multiparty computation(MPC) has been an appealing
and blooming field of research. Informally, MPC protocols
allow distrustful parties jointly computing a function without
leaking any information about their inputs (except that can be
inferred from the output of this function).

Yao’s work [48] is a seminal research of secure compu-
tation, on which many cryptographic primitives thrive for
building MPC protocols, such as garbled circuits [5,31,37,39,
41, 48–50] and secret sharing [2, 3, 14, 22, 27, 32, 38, 44, 47].

Among them, three party computation against one cor-
rupted party (i.e., in an honest majority) is particularly promis-
ing due to its potential of being highly efficient and practical.
However, in malicious setting where the corrupted party can
arbitrarily deviate from the protocol, achieving high concrete
efficiency becomes much more challenging, especially for
those computing binary circuits.

Prior works have explored efficient three party computa-
tions on binary circuits against malicious adversaries in the
honest majority setting. Representative works [2,21], based on
the replicated secret sharing scheme, follow the Beaver mul-
tiplication triple method [4] and rely on the cut-and-choose
paradigm [13] to generate verified AND triples. The protocol
in [21] needs to communicate 10 bits per party to compute an
AND gate1, and [2] further reduces the number to 7 bits per
party by taking a smaller bucket size but requires an additional
shuffle process.

Despite the progress achieved in [2, 21], the maliciously
secure protocol still requires 7 times of the communication
complexity compared with the best-known semi-honest pro-
tocol [3], which only needs to communicate 1 bit per AND
gate per party. In a beautiful work [7], Boyle et al. explore a
different way to achieve malicious security by utilizing dis-
tributed zero-knowledge proofs [6]. As a result, their protocol
achieves 1 bit per AND gate per party in an amortized way,
matching the communication complexity of [3]. However, the
distributed-zero knowledge proofs [6] require the size of the
underlying field to be large enough so that the achieved sound-
ness error, which is proportional to the inverse of the field
size, is negligible. For the particular case of binary circuits,
the protocol in [7] has to lift the data from the binary field F2
to an extension field F2κ (where κ is the security parameter).
The large computational overhead due to the distributed-zero
knowledge proofs (especially due to the need of doing arith-
metic operations over extension fields) significantly hurts the
concrete efficiency of the protocol in [7]. Compared with [21]

1The implementation in MP-SPDZ [28] improves the cost of [21] to 9
bits per party per AND gate.

USENIX Association 32nd USENIX Security Symposium 5377

where most of computation is done over F2
2, the saving in

the communication leads to 4.5× slow down in the running
time in the LAN setting. On the other hand, the saving in
the communication indeed benefits the WAN setting where
network resources are limited.

This leads to our following question: Can we build efficient
3 party computation for binary circuits with malicious security
that matches the communication complexity of the best-known
semi-honest protocol [3] while enjoys a comparable concrete
efficiency as the cut-and-choose based approach [2, 21]?

1.1 Our Contributions
Efficient 3PC for Binary Circuits with Malicious Security.
In this work, we answer the above question affirmatively
by constructing a concretely efficient three-party computa-
tion protocol for binary circuits that is secure (with abort)
against malicious adversaries in the honest majority setting.
Our protocol can be viewed as a variant of [7] tailored for
binary circuits by designing an efficient verification protocol
on the binary field F2 using the distributed zero-knowledge
proofs [6]. Our verification protocol features sub-linear com-
munication cost and round complexity, as well as lower com-
putational cost compared with the approach based on exten-
sion fields [6, 7].

At a high level, the improvement comes from the following
two techniques.

• First, we initiate the approach of using a prime field Fp
(In our experiment, we set p = 261−1) in the distributed
zero-knowledge proof to verify binary computation in-
stead of using the binary extension field as [7].

This is motivated by the fact that arithmetic operations over
a binary extension field are less efficient than those over a
prime field with comparable size. Our experiments show that
arithmetic operations over the 64-bit extension field F264 is
about 7.6× slower than those over the 61-bit Mersenne prime
field F261−1. (The experimental results can be found in the full
version of our paper 3 .) However transforming the verification
of binary computation to prime fields is not straightforward.
We show how to mitigate the cost during the transformation so
that the number of multiplications we need to verify in prime
fields is only 2× of that in the binary fields. See Section 3.2
for more details.

• Second, we exploit the algebraic structure of prime fields
to further improve the computation complexity of the
distributed zero-knowledge proof technique.

In the standard distributed zero-knowledge technique [6,7],
to check m multiplication triples over Fp, the computation

2We choose to compare with [21] rather than the optimized version [2]
because in MP-SPDZ, the implementation of [21] is faster than that of [2].
And the work [2] does not open the source of their implementation.

3https://eprint.iacr.org/2023/909

complexity is O(m) operations over Fp. Since in our case,
we transform AND triples to multiplication triples over Fp,
we show how to reduce most of the computation from Fp to
the binary field F2. Furthermore, by exploiting the algebraic
structure of prime fields, we can batch the computation using
bit-wise XOR and AND operations, which are very efficient
and friendly for native CPU computation. See Section 4.2 for
more details.

We put everything together and test the AES circuits using
the MP-SPDZ framework [28]. The results show that our
protocol is at least 3.5× faster in computation than [7] with
comparable communication complexity. Our computation
time is only 1.25× of the cut-and-choose based approach [21]
whose communication is around 9× of ours.

Applications to Maliciously Secure DNN Inference.
Nowadays Privacy-Preserving Machine Learning (PPML)
has attracted a surge of interests from researchers. Plenty of
works [12, 16, 17, 32, 35, 36, 38, 43, 45, 46] have built secure
computation frameworks that are customized for machine
learning primitives. It is established in previous works [17,35]
that computing non-linear functions (e.g., comparison, trun-
cation) is more efficient using binary circuits. As non-linear
operations are pervasively used in machine learning tasks, the
protocol for securely computing binary circuits significantly
influences the overall performance (see Section 5 for more
details).

We have implemented a mixed protocol for maliciously
secure three-party DNN inference using the MP-SPDZ [28]
framework. Our experiment results show that our protocol re-
duces the overhead for obtaining malicious security in binary
part by more than 67% compared to [7]. When comparing
with the cut-and-choose based approach [21], our protocol
not only reduces the communication complexity by 9×, but
also achieves a faster running time.

A Security Issue in Probabilistic Truncation Protocols.
As an extra contribution, we have found, as far as we know,
for the first time a hidden security issue in many of the cur-
rent probabilistic truncation protocols [11, 17, 32, 35, 36, 38].
Briefly put, the root cause of the security issue is that the same
randomness is used for both protecting the privacy of the se-
cret value to be truncated, and sampling the 1-bit rounding
error for the truncated value probabilistically. This is prob-
lematic when considering the joint distribution of the mes-
sages exchanged by the parties and the output of the protocol
(which is required according to the well accepted definition
of MPC [9]). As a result, much more binary gates have to be
introduced due to the need of using exact truncation protocols.
We refer the readers to Section 5.2 for more discussion.

1.2 Related Work
A classical way of securely computing binary circuits against
malicious adversaries is compiling Yao’s semi-honest garbled

5378 32nd USENIX Security Symposium USENIX Association

circuit protocol [48] with the cut-and-choose paradigm [13,
30, 33, 34]. It requires the garbler sending many independent
garbled version of the same circuit for the evaluator to ran-
domly check. These garbled circuit based approaches have a
constant number of rounds, which is an inherited benefit, but
they also inevitably have high communication cost.

Kikuchi et al. [29] propose the idea of dynamically chang-
ing the underlying fields to improve efficiency. Their con-
struction allows the parties to use a field of small size for
efficient (semi-honest) computation, and switch to a field of
large size for verification to ensure the desired statistical error.
However, their approach also relies on extension fields and
simply maps shares over a base field to its extension field for
field transformation. Our protocol, unlike theirs, transforms
computations over binary fields to (Mersenne) prime fields
rather than extension fields, and thus allows more efficient
constructions due to faster arithmetic operations.

The work of Polychroniadou and Song [40] first achieves
unconditional security (with abort) against a malicious adver-
sary in the n-party honest majority setting for binary circuits.
They rely on Reverse Multiplication-Friendly Embeddings
(RMFE) [10] and conceive a new way to authenticate secrets
to detect malicious behaviors with an amortized communi-
cation complexity of O(n) bits per gate. However, their con-
struction only focuses on asymptotic performance and its
concrete efficiency is worse than [7], and the RMFE scheme
still requires extension fields, which introduces heavier com-
putational overhead compared with prime fields.

Other representative works [25, 26] explore Shamir secret
sharing [44] for arithmetic circuits in the n-party setting. They
offer a construction with an amortized communication com-
plexity of O(n) field elements per multiplication gate. The
main technique [25] they rely on to achieve malicious security
can be viewed as a variant of [6, 7]. However, when using
their construction for binary circuits, they still have to raise
the verification to the binary extension field as [7].

2 Preliminaries

2.1 Notations
Let P = {P0,P1,P2} be a set of three parties. We use Pi, i ∈
{0,1,2} to denote a certain party in this set, and Pi±1 denotes
the next (+) or previous (−) party with wrap around.

We use Z2k to denote the ring of modulus 2k. We use F2
to refer to the binary field, and Fp to denote a finite field of
prime order p having bit length σ = log p. For simplicity, we
write [n] to denote the set {1,2, . . . ,n}. We use u⃗ to denote a
vector and u j the j-th element of the vector.

Let κ be a security parameter. We use F = {FK | K ∈
{0,1}κ,FK : {0,1}κ → R} for a family of pseudo-random
functions [24]. Given a key K ∈ {0,1}κ, the pseudo-random
function FK takes as input a string x ∈ {0,1}κ and outputs a
pseudo-random string y ∈ R where R is Z2k ,F2, or Fp.

2.2 Secret Sharing
2.2.1 Additive Secret Sharing

Additive secret sharing is a basic cryptographic primitive in
many secure computation protocols. In an additive secret
sharing scheme over ring Z2k for n parties, a secret x ∈ Z2k is
split into n random values x0, · · · ,xn−1 ∈ Z2k s.t. x = ∑

n−1
i=0 xi,

and each party Pi for i∈ {0, · · · ,n−1} holds an additive share
xi. Clearly, the secret x can be reconstructed iff all these n
parties reveal their share xi and then sum them up. Thus, the
additive secret sharing scheme has perfect secrecy against
n−1 corrupted parties.

2.2.2 Replicated Secret Sharing

Replicated secret sharing (RSS) [27] is an extension of ad-
ditive secret sharing. We focus on the RSS scheme for three
parties, where the secret x ∈ Z2k is split into three random
values x0,x1,x2 ∈ Z2k s.t. x = x0 + x1 + x2, and each party Pi
for i ∈ {0,1,2} now holds two additive shares (xi,xi−1) as its
share of x. We denote the RSS scheme over ring Z2k as [[·]]R.
For simplicity, we sometimes write the sharing of x ∈ Z2k as
[[x]]R = (x0,x1,x2).

Reconstruction and Opening. To reconstruct a secret x
to some party Pi, the other two parties Pi+1,Pi−1 both send
xi+1 to Pi. Then Pi checks if the values received from the two
parties are consistent. If the consistency holds, Pi reconstructs
x by computing x := x0 + x1 + x2. Otherwise Pi aborts. We
define this procedure as reconstruct([[x]]R, i).

To reveal a secret x to all, the parties can simply run
reconstruct([[x]]R, i) for each i ∈ {0,1,2} respectively.

It is clear that in the above RSS scheme, no single party can
learn any information about the secret x, but any two parties
can reconstruct the secret x. Therefore the RSS scheme is
secure against one corrupted party.

RSS over Binary Field and Finite Field. Besides the ring
Z2k , the RSS scheme applies to the binary field F2 and the
finite field Fp naturally. In this case, the elements come from
F2 or Fp; the addition and multiplication operations are the
ones defined on F2 and Fp respectively. We use [[·]]B, [[·]]F to
explicitly denote the RSS schemes over F2 and Fp. Some-
times we may use ⊕ to denote the addition operation over F2
explicitly.

2.3 Distributed Zero-Knowledge Proofs
Zero-knowledge proofs on secret-shared data [6] are another
key ingredient of our protocols for achieving malicious secu-
rity. As shown in a fundamental work of Goldreich, Micali,
and Wigderson [22], a standard way to compile a semi-honest
secure computation protocol into a maliciously secure one is

USENIX Association 32nd USENIX Security Symposium 5379

to enforce semi-honest behaviors via zero-knowledge proofs,
i.e., requiring each party to provide a zero-knowledge proof
along with its message to argue that the message is faith-
fully computed according to the semi-honest protocol. For
secret sharing based protocols, such a statement is distributed
among the parties, i.e., the input (e.g., the message) of the
statement is secret-shared among the parties. We follow pre-
vious works [6–8,32,38] to adopt distributed zero-knowledge
proofs [6] to achieve malicious security.

The distributed zero-knowledge techniques [6] are built on
fully linear proofs [6]. The main underlying technique we rely
on is the fully linear interactive oracle proof (FLIOP) which is
based on a fully linear probabilistic checkable proof (FLPCP)
construction. This proof system works over a finite field and
requires the field size to be large enough (since the soundness
error is proportional to the inverse of the field size). It adopts
a recursive method to halve circuit size in each round, and
delegates the evaluation of the halved circuit to the prover
again in the next round. After a logarithmic number of rounds,
the circuit size is reduced to minimum, and the verifiers can
directly evaluate the circuit to finish checking.

As a result, FLIOP achieves logarithmic proof size and
round complexity. Our work will use FLIOP to reduce the
verification cost of binary computation.

2.4 Ideal Functionalities
We use the standard security model based on the real/ideal
paradigm [9, 23] in this work. We focus on three party setting
and consider security with abort in an honest majority against
malicious adversaries, i.e., at most one out of the three parties
can be corrupted by a malicious adversary.

We rely on some functionalities used as building blocks for
our protocols, i.e., Frand for generating random shares, Fcoin
for generating random coins, and Finput for secure sharing of
inputs. We give the formal definition of these functionalities
in Appendix A.

3 Maliciously Secure 3PC for Binary Circuits

At a very high level, the overall maliciously secure 3PC pro-
tocol works as in [7] by (1) first running the semi-honest
protocol based on replicated secret sharing, then (2) checking
correctness of the semi-honest computations by invoking a
functionality Fvrfy. The functionality is formulated for verify-
ing correctness of messages sent by the parties for computing
multiplication gates. In this work, we re-use this functionality
from [7] on binary circuits for checking correctness of AND
computations conducted by the parties. Due to page limit, we
present the overall protocol in the full version of our paper.

Recall that in [7], to instantiate the functionality Fvrfy for
binary circuits, the data involved in semi-honest computa-
tions over F2 is lifted into a binary extension field whose
size is large enough (to achieve negligible soundness error)

and then directly applied to the FLIOP based distributed zero-
knowledge proofs [6]. We observe that this is computationally
expensive, and thus try to seek for an efficient way to trans-
form the semi-honest computations over F2 into prime fields
(of comparable size to achieve negligible soundness error).
Below we first give a brief review of the semi-honest protocol,
then present our verification protocol for instantiating Fvrfy
in detail.

3.1 The Overall Protocol
3.1.1 Review: RSS based Semi-Honest Protocol

Our starting point is the RSS based semi-honest protocol over
the binary field F2 from [3]. We briefly review this protocol
in the following.

Linear Gates. Linear gates in binary circuit like XOR and
AND-by-a-constant, can be locally computed without interac-
tions utilizing the linearity of the RSS scheme. Specifically,
given two sharings [[x]]B = (x0,x1,x2) and [[y]]B = (y0,y1,y2)
where x,y ∈ F2, the parties can obtain a sharing of z := x⊕ y
by each party Pi locally computing (zi,zi−1) := (xi⊕yi,xi−1⊕
yi−1). Also, given a sharing [[x]]B and a constant c ∈ F2, the
parties can obtain a sharing of z := c ·x by each party Pi locally
setting (zi,zi−1) := (c · xi,c · xi−1).

AND Gates. Suppose the parties wish to compute z := x ·y
given input sharings [[x]]B, [[y]]B. First observe that, holding
sharings (xi,xi−1) and (yi,yi−1), each party Pi can locally
compute zi := xiyi⊕xiyi−1⊕xi−1yi s.t. z = z0⊕z1⊕z2, which
constructs an additive sharing of z. To turn it into a replicated
secret sharing, each party needs to pass around its share to
the next party, making sure that everyone owns two additive
shares of z. To protect privacy of the inputs, each share zi
should be masked before passing around.

To mask the shares {zi}2
i=0, the parties can generate an

additive sharing of 0, i.e., each party Pi holds a random value
αi ∈ F2 s.t. α0 ⊕α1 ⊕α2 = 0. Then the parties can use the
randomness αi to mask the share zi, by re-defining

zi := xi · yi ⊕ xi · yi−1 ⊕ xi−1 · yi ⊕αi. (1)

Clearly the new masked values {zi}2
i=0 still construct an addi-

tive sharing of z, and thus the parties can obtain a replicated
sharing of z by each party Pi sending its masked share zi to
party Pi+1, and setting (zi,zi−1) as its share of z.

The random values α0,α1,α2 are referred as correlated
randomnesses in [3], and can be generated in either an
information-theoretically secure or computationally secure
way. Here we review the latter approach, which is more con-
cretely efficient in communication.

• Each party Pi picks a random key Ki ∈ {0,1}κ and sends
it to Pi+1.

• Each party Pi sets ρi := FKi(cnt),ρi−1 := FKi−1(cnt),
and αi := ρi⊕ρi−1, where F is an agreed pseudo-random

5380 32nd USENIX Security Symposium USENIX Association

function from the family F = {FK|K ∈ {0,1}κ,FK :
{0,1}κ → F2}, and cnt is an agreed public counter that
increments each time.

By using a pseudo-random function F with shared keys,
each party Pi can locally obtain two (pseudo-)random val-
ues ρi,ρi−1. Clearly their differences {αi}2

i=0 construct an
additive sharing of 0, and can be used as random masks for
computing AND gates.

3.1.2 Achieving Malicious Security

To lift the above semi-honest protocol up to a maliciously
secure protocol, prior work [7] has shown that it is sufficient
to verify honest behaviours of the parties conducted in the
semi-honest computations. They abstract a functionality Fvrfy
to check correctness of messages sent by the parties for com-
puting multiplication gates. When working on binary circuits,
Fvrfy checks correctness of messages of the parties for com-
puting AND gates. We introduce Fvrfy from [7] in Function-
ality 3.1.1, and elaborate on how it works on binary circuits
in the following.

As reviewed in Section 3.1.1, to compute an AND gate
with two input sharings [[x]]B, [[y]]B, each party Pi holds a ran-
domness αi = ρi ⊕ρi−1, where ρi,ρi−1 are generated using a
pseudo-random function and shared keys, then Pi computes
zi by Equation 1 and sends the share zi to Pi+1.

We rewrite Equation 1 as

zi = xi · yi ⊕ xi · yi−1 ⊕ xi−1 · yi ⊕ρi ⊕ρi−1. (2)

To verify honest behaviors of Pi, the functionality Fvrfy
needs to check Equation 1 on every AND gate in this circuit.

Given the functionality Fvrfy, we follow [7] to construct
the protocol for securely computing binary circuits with abort
against malicious adversaries. More specifically, in the veri-
fication phase after the semi-honest computation, each party
acts as a prover and the other parties act as verifiers to in-
voke Fvrfy to check correctness of the messages of the prover.
Due to page limit, we refer the readers to the full version of
our paper for the description of the overall protocol and the
corresponding theorem.

3.2 Instantiating Fvrfy - Verifying AND Com-
putations

In this section we show our techniques for securely instan-
tiating Fvrfy. Due to page limit, the full description of our
protocol is provided in Appendix B.0.1.

Recall that to verify honest behaviours of some party Pi
for computing AND gates, the parties need to check Equa-
tion 2 for each AND gate in this circuit: where the prover Pi
holds input shares (xi,xi−1),(yi,yi−1), the output share zi, and
(ρi,ρi−1) used to generate correlated randomness.

The key here is that, in the above relation, the data is not
exclusively owned by the prover Pi, but shared between the
prover and the two verifiers Pi−1,Pi+1. More specifically, each
variable involved in this relation is held by either Pi and Pi+1
or Pi and Pi−1. The two verifiers need to check the relation
described in Equation 2 using their own partial data shared
with the prover.

Distributed zero-knowledge proofs [6] are naturally fit for
this kind of proving tasks where data is shared between a
single prover and multiple verifiers. However, the proof sys-
tems in [6] require the size of the underlying field to be large
enough to achieve negligible soundness error, and are not
applicable to relations defined on the binary field F2. While
they [6, 7] proposed to lift the data into an extension field to
verify relations defined on F2, the computational cost of such
proof systems in extension fields is expensive. Our idea is to
transform the verification task to a prime field to reduce the
computation overhead of distributed zero-knowledge proofs.

Step 1: Reduce the Relation. We first consider the case
of one AND gate. Starting from Equation 2, we define some
new variables as follows. Let

a := xi,c := yi,e := xi · yi ⊕ zi ⊕ρi,

b := yi−1,d := xi−1, f := ρi−1.
(3)

Note that a,c,e are known by both Pi and Pi+1, and b,d, f are
known by both Pi and Pi−1. Now the verification of Equation 2
is reduced to check

a ·b⊕ c ·d ⊕ e⊕ f = 0. (4)

Step 2: Transform to Prime Fields. We next transform
the relation in Equation 4 from the binary field F2 to a prime
field Fp, rather than lifting it into an extension field. This is
mainly motivated by the fact that computing multiplications
over an extension field is much more expensive than that
over a prime field with comparable size, since the latter only
involves integer computations with modular operations (see
more discussion in the full version of our paper).

The insight is to view each value in F2 as a value in Fp and
then use field operations to simulate XOR and multiplications
over F2. A key formula we utilize here is that, for any a,b ∈
{0,1} and p ≥ 3, a⊕ b = a+ b− 2ab mod p = a(1− 2b)+
b mod p. Then for Equation 4, we have

a ·b⊕ c ·d ⊕ e⊕ f

= (a ·b⊕ e)⊕ (c ·d ⊕ f)

= (a ·b · (1−2e)+ e)⊕ (c ·d · (1−2 f)+ f)

= (a ·b · (1−2e)+ e)+(c ·d · (1−2 f)+ f)

−2(a ·b · (1−2e)+ e) · (c ·d · (1−2 f)+ f) mod p

= −2(a · c · (1−2e)) · (b ·d · (1−2 f))

+(c · (1−2e)) · (d · (1−2 f))+(a · (1−2e)) ·

(b · (1−2 f))− 1
2
((1−2e) · (1−2 f))+

1
2

mod p,

USENIX Association 32nd USENIX Security Symposium 5381

FUNCTIONALITY 3.1.1 (Fvrfy - Verifying AND Computations).

Let S be the ideal world adversary and Pi the corrupted party controlled by S . Fvrfy receives an index j of the prover party
and a parameter m ∈ F from the honest parties. Then

• If the prover party Pj is honest:

– Fvrfy receives from Pj its input (x(ℓ)j ,x(ℓ)j−1,y
(ℓ)
j ,y(ℓ)j−1,ρ

(ℓ)
j ,ρ

(ℓ)
j−1,z

(ℓ)
j) for ℓ ∈ [m].

– If i = j+1, then Fvrfy hands S the index j, the input of Pi, i.e., (x(ℓ)j ,y(ℓ)j ,ρ
(ℓ)
j ,z(ℓ)j) for ℓ ∈ [m].

– If i = j−1, then Fvrfy hands S the index j, the input of Pi, i.e., (x(ℓ)j−1,y
(ℓ)
j−1,ρ

(ℓ)
j−1) for ℓ ∈ [m].

– Fvrfy receives a command abort or accept from S , and then hands the command to the honest parties.

• If the prover party Pj is corrupted (i.e., i = j):

– Fvrfy receives (x(ℓ)i ,y(ℓ)i ,ρ
(ℓ)
i ,z(ℓ)i) from Pi+1 and (x(ℓ)i−1,y

(ℓ)
i−1,ρ

(ℓ)
i−1) from Pi−1 for each ℓ ∈ [m].

– Fvrfy hands S the index i, the input of Pi, i.e., (x(ℓ)i ,x(ℓ)i−1,y
(ℓ)
i ,y(ℓ)i−1,ρ

(ℓ)
i ,ρ

(ℓ)
i−1,z

(ℓ)
i) for ℓ ∈ [m].

– Fvrfy checks if for each ℓ ∈ [m], z(ℓ)i = x(ℓ)i · y(ℓ)i + x(ℓ)i · y(ℓ)
i−1

+ x(ℓ)i−1 · y
(ℓ)
i +ρ

(ℓ)
i −ρ

(ℓ)
i−1. If the equation doesn’t hold

for any ℓ ∈ [m], Fvrfy sends abort to the parties; otherwise it receives a command abort or accept from S , hands
the command to the honest parties, and then halts.

where 1
2 denotes the inverse of 2 in Fp.

Now the relation has been transformed to the prime field Fp.
In the following we omit “mod p” for simplicity. Similarly
to Step 1, we reduce the relation again by categorizing the
variables and merging some immediate results that can be
computed locally by each party. Recall that a,c,e are known
by both Pi,Pi+1, and b,d, f are known by both Pi,Pi−1.

• Pi,Pi+1 locally compute g1 := −2a · c · (1− 2e),g2 :=
c · (1−2e),g3 := a · (1−2e),g4 :=−(1−2e)/2 in Fp.

• Pi,Pi−1 locally compute h1 := b · d · (1− 2 f),h2 := d ·
(1−2 f),h3 := b · (1−2 f),h4 := 1−2 f in Fp.

Now the relation we want to verify becomes

4

∑
k=1

gk ·hk +1/2 = 0, (5)

which is a length-4 inner product relation defined on the prime
field Fp.

Step 3: Batch Verifying Multiple AND Gates. Up to now
we have transformed the verification of one AND compu-
tation of Pi from the binary field to the prime field Fp. (In
our experiment, we choose to use p = 261 −1.) Starting from
this point, we can verify correctness of Pi’s behaviors by di-
rectly applying the FLIOP based distributed zero-knowledge
proof system [6] to all AND computation it conducted when
evaluating the whole circuit.

However, in [6, 7], the first step is to transform the m
inner-product relations to a single length-4m inner-product
relation by multiplying random coefficients. This is to re-
duce the check to a single inner-product relation and the
random coefficients guarantee that if one of the original
inner-product relation is incorrect, then the resulting inner-
product relation is also incorrect with overwhelming prob-
ability. We note that in our case, multiplying random coef-
ficients is not necessary. This is because if for some AND
triple, Equation 2 does not hold (meaning that Pi deviates
from the protocol when computing this AND gate), then
∑

4
k=1 gk ·hk +1/2 = a ·b⊕ c ·d ⊕ e⊕ f = 1 by construction.

Now suppose we have m AND triples to verify, say,

{[[x(ℓ)]]B, [[y(ℓ)]]B, [[z(ℓ)]]B}m
ℓ=1.

For all ℓ∈ [m], if Pi follows the protocol, then ∑
4
k=1 g(ℓ)k ·h(ℓ)k +

1/2 = 0. Otherwise, ∑
4
k=1 g(ℓ)k ·h(ℓ)k +1/2 = 1. Now consider

the summation in Fp,

m

∑
ℓ=1

(
4

∑
k=1

g(ℓ)k ·h(ℓ)k +1/2),

which is equal to the number of AND gates where Pi does
not follow the protocol modulo p. When m < p, if there is
one AND gate where Pi does not follow the protocol, then
∑

m
ℓ=1(∑

4
k=1 g(ℓ)k ·h(ℓ)k +1/2) ̸= 0, which is what we need. Note

that the same trick does not work for the binary extension field
since the addition over F2κ is bit-wise XOR and the errors

5382 32nd USENIX Security Symposium USENIX Association

will be cancelled out as long as a even number of AND triples
are incorrect.

Thus, we will choose a prime field Fp such that p > m (The
choice of p also depends on the desired soundness error. See
Theorem 3.2.1) and simply verify that

m

∑
ℓ=1

(
4

∑
k=1

g(ℓ)k ·h(ℓ)k +1/2) = 0. (6)

Now we rearrange the variables and define two vectors as
follows.

• u⃗ := (g(1)1 ,g(1)2 ,g(1)3 ,g(1)4 , · · · · · · ,g(m)
1 ,g(m)

2 ,g(m)
3 ,g(m)

4).

• v⃗ := (h(1)1 ,h(1)2 ,h(1)3 ,h(1)4 , · · · · · · ,h(m)
1 ,h(m)

2 ,h(m)
3 ,h(m)

4).

Both the two vectors are of length 4m. And Equation 6 now
turns to

4m

∑
k=1

uk · vk =−m
2
. (7)

Rather than verifying m length-4 inner-product relations,
we have turned to verify one length-4m inner-product relation
over Fp.

In Step 4, we directly follow the FLIOP based distributed
zero-knowledge proofs [6] to let the parties check the single
one batched inner-product relation over Fp. We slightly ex-
tend the techniques [6] to allow more general compression
parameters. Due to page limit, we refer the readers to the full
version of our paper for the detailed description of this step.
We have the following theorem. The proof can be found in
the full version of our paper.

Theorem 3.2.1 Assume that the prime field Fp is sufficiently
large, and in Setup step the randomnesses are generated us-
ing pseudo-random functions. Then Protocol B.0.1 computes
Fvrfy with (computational) security with abort in the pres-
ence of one malicious party in the Fcoin-hybrid model, with
statistical error bounded by 2λ(logλ m+1)+1

p−λ−1 .

4 Optimizations: Saving Computational Cost

In this section, we show how our protocol can take advantage
of the algebraic structure of prime fields to improve the com-
putation complexity in the distributed zero-knowledge proof
technique [6, 7]. We note that the most expensive step of this
technique is in its first round of the recursion, where given a
compression parameter λ (which is usually a small constant),
we reduce the length of the inner-product relation from 4m to
4m/λ. We first review the computation task in the first round
of the recursion of the distributed zero-knowledge proof con-
struction [6, 7]. We refer the readers to the full version of our
paper for the overview of the whole technique in [6, 7].

4.1 Computation Task of First Round of Re-
cursion

An Overview of First Round of Recursion. Recall that
we want to verify the inner-product ⟨⃗u, v⃗⟩=−m

2 , where m is
the number of AND gates, and u⃗, v⃗ are vectors of size 4m. In
particular, u⃗ is known by Pi,Pi+1 and v⃗ is known by Pi,Pi−1

To reduce the length of the inner-product relation, we first
separate u⃗, v⃗ into λ sub-vectors of size 4m/λ:

u⃗ = (⃗u1, . . . , u⃗λ), v⃗ = (⃗v1, . . . , v⃗λ).

(Note that here the indices {1, · · · ,λ} are pointed to the sub-
vectors, rather than vector elements.) Then the prover Pi de-
fines two vectors of degree-(λ−1) polynomials p⃗(X), q⃗(X)
such that p⃗(i) = u⃗i, q⃗(i) = v⃗i for all i ∈ [λ]. Next Pi computes
a degree-2(λ− 1) polynomial G(X) = ⟨p⃗(X), q⃗(X)⟩. Note
that ⟨⃗u, v⃗⟩ = ∑

λ
i=1 G(i). Now Pi uses RSS to share the coef-

ficients of G(X) to the other two parties. Note that Pi+1 can
locally compute p⃗(X) while Pi−1 can locally compute q⃗(X).
So the verification check becomes to check:

• G(X) = ⟨p⃗(X), q⃗(X)⟩,

• ∑
λ
i=1 G(i) =−m

2 .

For the first item, according to the Schwartz–Zippel Lemma,
it is sufficient to sample a random evaluation point r and
check whether G(r) = ⟨p⃗(r), q⃗(r)⟩. Observe that this reduces
the check to an inner-product relation of size 4m/λ since p⃗(r)
and q⃗(r) are two vectors of size 4m/λ.

For the second item, all parties can locally compute a RSS
of ∑

λ
i=1 G(i)+ m

2 and then check whether it is a RSS of 0.

Computation Task of First Round of the Recursion. The
most expensive task in Step 1 is to compute the coeffi-
cients of G(X). A straightforward way would be first com-
puting p⃗(X), q⃗(X) and then computing G(X) = ⟨p⃗(X), q⃗(X)⟩.
However, interpolating a degree-(λ−1) polynomial requires
around λ2 multiplication operations. The computation com-
plexity of computing each of p⃗(X), q⃗(X) is about 4m/λ ·λ2 =
4mλ. As a result, computing G(X) would require 8mλ multi-
plication operations4.

We note that a degree-2(λ−1) polynomial can be fully de-
termined by 2λ−1 evaluation points. Thus, instead of sharing
coefficients of G(X), we change to share {G(i)}2λ−1

i=1 , which
is sufficient for parties to compute G(r) at a later point. For
every i ∈ [2λ− 1], G(i) = ⟨p⃗(i), q⃗(i)⟩. We note that by the
property of polynomials, p⃗(i) can be expressed as a linear
combination of {p⃗(j) = u⃗ j}λ

j=1. Similarly, q⃗(i) can be ex-
pressed as a linear combination of {⃗q(j) = v⃗ j}λ

j=1. Thus, G(i)
can be computed as a linear combination of

{⟨p⃗(j1), q⃗(j2)⟩} j1, j2∈[λ] = {⟨⃗u j1 , v⃗ j2⟩} j1, j2∈[λ].

4We do not consider to use FFT for interpolation since (1) λ is usually
very small and (2) our experiment uses p = 261 − 1 for the field size and
there is no suitable sub-group in F261−1 to use FFT.

USENIX Association 32nd USENIX Security Symposium 5383

Here j1, j2 ∈ [λ] are indices of the sub-vectors. The main ob-
servation is that, computing {⟨⃗u j1 , v⃗ j2⟩} j1, j2∈[λ] only requires
4mλ multiplication operations, which saves the computation
complexity by a factor of 2. Thus, our implementation uses
this idea to compute G(X). And our optimization highly relies
on this observation.

In summary, the main computation task in the first round is
to compute {⟨⃗u j1 , v⃗ j2⟩} j1, j2∈[λ].

4.2 Main Optimizations

1. Computing ⟨⃗u j1 , v⃗ j2⟩ Using Binary Operations. A
straightforward way of computing {⟨⃗u j1 , v⃗ j2⟩} j1, j2∈[λ] is to
transform the AND triples to the sub-vectors {⃗u j, v⃗ j} j∈[λ] over
Fp and compute each inner-product ⟨⃗u j1 , v⃗ j2⟩ of these sub-
vectors. However, during the transformation, for each AND
triple, we transform from checking a · b⊕ c · d ⊕ e⊕ f = 0,
where each value is a single bit, to checking ∑

4
k=1 gk · hk +

1/2 = 0, where each value is an element in Fp. Given that we
have to deal with a large amount of AND triples, the blowing
up in the storage leads to a large overhead in the running time.

Our first improvement is to compute ⟨⃗u j1 , v⃗ j2⟩ using the
original data without transforming them to u⃗ j1 , v⃗ j2 over Fp
explicitly. For simplicity, we set λ = 4. The following idea
naturally extends to the case where λ is a multiple of 4. Now
suppose the AND triples we need to verify are denoted by

{[[x(i)]]B, [[y(i)]]B, [[z(i)]]B}m
i=1.

For all i ∈ [m], we want to verify

a(i) ·b(i)⊕ c(i) ·d(i)⊕ e(i)⊕ f (i) =
4

∑
k=1

g(i)k ·h(i)k +
1
2
= 0.

In the case of λ = 4, we set u⃗ j = (g(i)j)m
i=1 and v⃗ j = (h(i)j)m

i=1
for j ∈ [4].

We observe that ⟨⃗u j1 , v⃗ j2⟩= ∑
m
i=1 g(i)j1 ·h

(i)
j2 . Recall that each

of g(i)j1 ,h
(i)
j2 is computed from a(i),b(i), . . . , f (i). Thus, we may

use the original data to compute each g(i)j1 ·h
(i)
j2 . This allows us

to save the cost of transforming bit values to field elements.

2. Batching Computation for g(i)j1 ·h
(i)
j2 . Naturally, a batch

of 64 AND triples are stored using the uint64 datatype. To
be more concrete, for every 64 AND triples, a value aaa ∈ Z264

is used to store a(1), . . . ,a(64), and similar for bbb,ccc,ddd,eee, fff .
Our second improvement is to batch the computation of

g(i)j1 ·h
(i)
j2 using aaa,bbb, . . . , fff . We take j1 = j2 = 1 as an example.

Other cases follow naturally. When j1 = j2 = 1, we have
g(i)1 =−2a(i)c(i)(1−2e(i)) and h(i)1 = b(i)d(i)(1−2 f (i)). Then

g(i)1 ·h(i)1 = −2a(i)b(i)c(i)d(i)+4a(i)b(i)c(i)d(i)e(i)

+ 4a(i)b(i)c(i)d(i) f (i)−8a(i)b(i)c(i)d(i)e(i) f (i).

Observe that we can compute aaabbbcccddd via bit-wise AND op-
erations and then split the result bit by bit. Similarly, we first
compute aaabbbcccdddeee,aaabbbcccddd fff ,aaabbbcccdddeee fff and then split the results bit
by bit. This improvement allows us to speed up the computa-
tion of each g(i)j1 ·h

(i)
j2 .

We note that a similar improvement also applies to [7]
except that after splitting the result bit by bit, they also need
to multiply each bit by a random coefficient in F264 . Our
experiment has implemented this improvement in [7].

3. Further Optimization with Carefully Chosen Coeffi-
cients. Recall that we do not have to multiply random coef-
ficients when transforming the m inner-product relations to a
single length-4m inner-product relation. Instead, we simply
sum up all m inner-product relations.

When computing ⟨⃗u j1 , v⃗ j2⟩= ∑
m
i=1 g(i)j1 ·h

(i)
j2 , while we can

compute {g(i)j1 · h(i)j2 }
m
i=1 in a batch way, we have to split the

result bit by bit and then add all bits together.
Our third improvement is to multiply a suitable constant

with each of the m inner-product relation so that we can
avoid bit splitting. Again, we take j1 = j2 = 1 as an ex-
ample and focus on the first 32 AND triples. In this case,
we want to compute ∑

32
i=1 g(i)1 ·h(i)1 . This requires us to com-

pute ∑
32
i=1 a(i)b(i)c(i)d(i). Then after computing aaabbbcccddd, we have

to compute the summation of the least-significant 32 bits
of aaabbbcccddd. We observe that, if our goal becomes to compute
∑

32
i=1 2i−1a(i)b(i)c(i)d(i), then we can simply take the least-

significant 32 bit as the result!
To make this idea work, instead of checking

∑
m
i=1(∑

4
k=1 g(i)k ·h(i)k +1/2) = 0, we change to check

m

∑
i=1

2(i−1) mod 32(
4

∑
k=1

g(i)k ·h(i)k +1/2) = 0.

In addition, we have to ensure that the accumulated error is
bounded by the field size p so that if ∑

4
k=1 g(i)k ·h(i)k +1/2 ̸=

0 mod p for some i, then ∑
m
i=1 2(i−1) mod 32(∑4

k=1 g(i)k · h(i)k +

1/2) ̸= 0 mod p. Recall that each ∑
4
k=1 g(i)k ·h(i)k +1/2 is either

0 or 1. Thus

m

∑
i=1

2(i−1) mod 32(
4

∑
k=1

g(i)k ·h(i)k +1/2)≤
m

∑
i=1

2(i−1) mod 32 < 227m.

In our experiment, we choose p = 261 −1. It is sufficient to
verify 233 AND gates.

We remark that this improvement is exclusive for our ap-
proach and does not work for [7].

4.3 Other Optimizations
Using Mersenne Fields for Fast Arithmetic Computation.
Our experiment chooses to use Fp where p = 261 −1, which

5384 32nd USENIX Security Symposium USENIX Association

is known as a Mersenne prime. The major bottleneck of doing
arithmetic operations over Fp is to do modular operations.
By using a Mersenne prime, we can speed up the modular
operations by using left/right shifts and additions. In the full
version of our paper, we show that multiplication operations
over F261−1 are about 7.6× faster than those over F264 .

Speeding Up Inner-product Operations. The distributed
zero-knowledge proofs [6,7] require to do many inner-product
operations locally. To speed up inner-product operations, we
can first compute the integer result and then apply the modular
operation of p once at the end. Similar tricks also apply when
we need to compute addition of many values: we first compute
the integer result and only apply once the modular operation
of p = 261 −1.

A similar optimization also works for inner-product oper-
ations over F264 . This is because an multiplication over F264

corresponds to multiplying two degree-63 polynomials and
then applying a modular operation of a degree-64 irreducible
polynomial. For inner-product operations, it suffices to only
apply the modular operation at the end. Our experiment has
taken this optimization for [7] into consideration.

Lookup Table for Computing p⃗(r), q⃗(r). After resolving
the computation of the coefficients of G(X), the computa-
tion bottleneck becomes to computing p⃗(r), q⃗(r). Recall that
p⃗(X), q⃗(X) are vectors of degree-(λ− 1) polynomials and
the vector size is 4m/λ. To demonstrate our idea, we take
λ = 4 as an example and the same idea generalizes to the case
where λ is a multiple of 4. In this case, p⃗(X), q⃗(X) are of size
4m/λ = m.

Let p⃗(X) = (p1(X), . . . , pm(X)). Then the goal is to com-
pute pi(r) for all i ∈ [m]. For each pi(r), it can be expressed as
a fixed linear combination of {pi(k)}4

k=1 = {g(i)k }4
k=1. We note

that {g(i)k }4
k=1 are determined by {a(i),c(i),e(i)}. Then there

exists a map M : {0,1}3 → Fp such that M(a(i),b(i),c(i)) =
pi(r) for all i ∈ [m]. Thus, we establish a lookup table of size
23 = 8 for M and each time pi(r) is computed by checking
the lookup table with input a(i),b(i),c(i).

In general, when λ ≥ 4, the lookup table is of size 23λ/4. In
our experiment, we choose λ = 32 for the first round of the
recursion (to maximally take advantage of the fast computa-
tion for the first round due to the above optimizations). In this
case the lookup table would have size 224. To reduce the size
of the lookup table, we construct two lookup tables, one for
the linear combinations of {pi(k)}16

k=1, and one for the linear
combinations of {pi(k)}32

k=17. In this way, each lookup table
is of size 212 and pi(r) can be computed by summing up the
results from the two lookup tables.

A similar optimization also works for [7], for a fair com-
parison, our experiment has taken this optimization for [7]
into consideration.

4.4 Parameter Setup

Instead of checking all AND triples at the end of the protocol,
we divide the AND triples into batches and apply our veri-
fication protocol for each batch in parallel. We note that the
batch size slightly affects the running time and we choose to
use the batch size bs= 640,000 to achieve the best possible
running time for our protocol.

Since the first round computation has been significantly im-
proved, our protocol uses the compression parameter λ = 32
in the first round and λ′ = 8 for the rest of rounds. In this case,
by following the same argument as that for Theorem 3.2.1,
the soundness error achieved in our protocol is

2λ

p−λ
+

2λ′(logλ′(bs/λ)+1)+1
p−λ′−1

≤ 2−53,

which is sufficiently small for most of applications.

5 Application: Secure DNN Inference

Privacy-preserving machine learning (PPML) has been an
increasingly popular line of research for guaranteeing privacy
of sensitive data involved in machine learning tasks. Plenty
of works [12, 16, 17, 32, 35, 36, 38, 43, 45, 46] have worked
on building secure computation protocols over fixed-point
arithmetic for machine learning primitives, including linear
functions such as convolution, matrix multiplication, and non-
linear functions such as ReLU, Max Pooling, Sigmoid, etc.
These in turn are built on lower-level primitives, such as mul-
tiplication, dot product, truncation and comparison, etc.

A generic approach of supporting non-linear operations
like truncation and comparison is to design specific protocols
based on binary computation. Our protocol can be used as an
efficient primitive to improve this part. In the following, we
demonstrate why the non-linear operations are so costly in
the current state-of-the-art. We only focus on the setting of
3-party computation with honest majority.

5.1 Fixed-point Arithmetic

At a high level, the idea of fixed-point arithmetic is to simulate
the computation over real numbers on finite rings/fields. In
the fixed-point representation, a k-bit signed fixed-point x̃
is composed of two parts, an e-bit integer part and a d-bit
decimal part s.t. k = e+d. We can map the fixed-point number
x̃ into an element x in ring Z2k by setting x := 2d · x̃.

The addition and multiplication operations over fixed-point
numbers can be mapped to the ones over ring elements. Note
that after multiplying two fixed-point numbers, the length
of the decimal part doubles. To continue the computation,
the multiplication result requires a proper adjustment to the
decimal part by truncating the least-significant d bits so that
the decimal part remains d bits.

USENIX Association 32nd USENIX Security Symposium 5385

5.1.1 Comparison

Comparison is a basic primitive in machine learning tasks.
The activation function ReLU and Max Pooling layers in
neural networks all can be decomposed into comparison oper-
ations. As we will discuss below, exact truncation protocols
also require secure comparisons.

A secure comparison protocol over ring Z2k takes as input
two sharings [[x]]R, [[y]]R, and outputs [[z]]R where z = 0 when
x ≥ y and z= 1 otherwise. In the literature, secure comparison
is usually transformed to the MSB (Most Significant Bit)
extraction problem. Shares are first transformed from the
arithmetic domain to the binary field; then the parties securely
compute some designed binary circuits (such as full adder or
parallel prefix adder) to extract the MSB of the difference of
the two secrets. In current state-of-the-art solutions [32,35], a
secure comparison of two elements in Z2k requires computing
a binary circuit of 3k AND gates.

5.1.2 Truncation

A truncation protocol over rings takes as input a sharing [[x]]R

of integer x ∈ Z2k , and outputs a sharing of x′ where x′ =
[x/2d], and d is bit length of the decimal part in the fixed-
point representation.

Truncation operations are intensively used in a secure com-
putation protocol for Machine Learning since it is invoked
after every arithmetic multiplication operation or arithmetic
dot product operation. There are two trends in designing pro-
tocols for truncation: achieving the exact truncation result or
a probabilistic truncation result with one-bit error.

Exact Truncation. An exact truncation protocol always
rounds x/2d down and abandons the least d significant bits of
x, i.e., x′ = ⌊x/2d⌋. Achieving the exact truncation requires
to compute comparison [11, 18].

Probabilistic Truncation. A probabilistic truncation proto-
col rounds x/2d to x′ = ⌊x/2d⌋+w where w = 1 with prob-
ability γ := x mod 2d

2d and w = 0 with probability 1− γ. Here
γ is the distance between the decimal part of x/2d and 0.
While the starting point of using probabilistic truncation is
to avoid secure comparisons required for exact truncation,
we notice that the known efficient protocols for probabilistic
truncation based on [11] (including but not limited to proto-
cols in [17, 18, 32, 35]) do not securely compute the desired
functionality. As a result, we have to use the expensive exact
truncation, and this greatly increasing the number of AND
gates. In Table 1, we use the MP-SPDZ [28] framework to
compile three neural networks with the option trunc_pr
enabled and disabled respectively, to count the amount of bi-
nary AND gates needed when using probabilistic truncation
and exact truncation in the two cases. As we can see, exact
truncation requires much more AND gates than probabilistic
truncation.

In the following, we formally describe this security issue.

of AND Gates with # of AND Gates with
Probabilistic Trunc. Exact Trunc.

ResNet-50 1,220,520,760 4,339,682,635
DenseNet 1,986,520,005 5,511,885,885
SqeezeNet 615,161,565 1,026,065,325

Table 1: Number of AND gates in ResNet-50, DenseNet, and
SqeezeNet, with probabilistic truncation and exact truncation.

We show that this security issue even appears in the semi-
honest security.

5.2 On the Security Issue of Probabilistic Trun-
cation Protocols

We first review the definition of multiparty computation for
semi-honest security from [9].

Security Definition. Let Π be an n-party protocol and let F :
{0,1}I1 × . . .×{0,1}In → {0,1}O1 × . . .×{0,1}On be an n-
ary function. We consider static semi-honest security against
t corrupted parties. Let C denote the set of corrupted parties,
and H the set of honest parties. Let x⃗ = (x1, . . . ,xn) denote
the inputs of all parties.

We say a protocol Π is t-private for F with error ε if there
exists an ideal adversary S s.t. for all set C of at most t cor-
rupted parties and for all inputs x⃗, the following two distribu-
tions are statistically close with distance ε

(OutputΠ(⃗x),ViewC (⃗x))≈ε (F (⃗x),S(C , x⃗C ,FC (⃗x))).

Here OutputΠ(⃗x) denotes the protocol outputs of all par-
ties when the inputs are x⃗, ViewC (⃗x) denotes the views of
corrupted parties when the inputs are x⃗, and x⃗C denotes the
sub-vector (xi)Pi∈C , FC (⃗x) denotes the function outputs of
corrupted parties.

To simplify the expression, we adapt the hybrid model
defined in [9]. We refer the readers to [9] for more details
about this model.

Overview of the Approach in [11]. We give an overview
of the approach by Catrina and Hoogh. We consider a general
linear secret sharing scheme Σ over Z2k and use [x] to denote
a Σ-sharing of x. In the beginning, we assume all parties hold
a secret sharing of x, denoted by [x]. We further assume that x
is much smaller than 2k in the sense that x < 2k−τ where τ is
the security parameter.

Suppose the goal is to truncate the least-significant d bits of
x. Let xd denote the value after truncating the least-significant
d bits of x. Then the goal is to compute a secret sharing
[xd]. We describe the approach in [11] in the FtruncPair-hybrid
model in Protocol 1. Concretely FtruncPair samples a random
r, generates ([r], [rd]), and distributes the shares to all parties.

5386 32nd USENIX Security Symposium USENIX Association

Protocol 1: TRUNCPR

1. All parties hold [x] with the guarantee that x < 2k−τ.

2. All parties invoke FtruncPair and receive ([r], [rd]).

3. All parties locally compute [x+ r] = [x] + [r] and
reconstruct x+ r to P1.

4. P1 computes and sends (x+ r)d to all parties.

5. All parties locally compute [x′] = (x+ r)d − [rd].

Let xd denote the least-significant d bits of x. In the case
that x+ r < 2k, which happens with probability x/2k < 2−τ,
the resulting sharing of the above protocol satisfies that, with
probability xd/2d , x′ = xd +1, and with probability 1−xd/2d ,
x′ = xd . To see why this is the case, note that when x+ r < 2k,

• If xd + rd < 2d , then x+ r = xd + rd +2d(xd + rd). Thus
(x+ r)d = xd + rd , and x′ = (x+ r)d − rd = xd .

• If xd +rd ≥ 2d , then x+r = (xd +rd −2d)+2d(xd +rd +
1). Thus (x+ r)d = xd + rd +1, and x′ = (x+ r)d − rd =
xd +1.

At a first glance, the value that is revealed to P1 is x+ r,
which is masked by a random value r. Thus, P1 learns no
information about the secret x. However, for a fixed input
[x], whether the output x′ is rounding up or down is solely
determined by r since this is the only randomness introduced
in the protocol. This means that x′ is fixed given the view of
P1. On the other hand, for semi-honest security, we would
expect that x′ is truncated by an ideal functionality which
should be independent of the view of P1.

Security Issue. To demonstrate the security issue of the
approach in [11], we first need to define the ideal functionality
for it. Consider FtruncPr in Functionality 2.

Functionality 2: FtruncPr

1. FtruncPr receives the shares of [x] from all parties.

2. FtruncPr reconstructs x and define xd to be the least-
significant d bits of x, and xd to be the result after
truncating the least-significant d bits of x. Then
FtruncPr randomly samples x′ s.t.

• With probability xd/2d , x′ = xd +1.

• With probability 1− xd/2d , x′ = xd .

3. FtruncPr generates a random Σ-sharing of x′ and dis-
tributes [x′] to all parties.

We show the following theorem.

Theorem 5.2.1 Suppose Σ is a linear secret sharing scheme
over Z2k s.t. any t shares reveal no information about the se-
cret. Let τ denote the security parameter. For all ε = negl(τ),
the protocol TRUNCPR is not t-private for FtruncPr with sta-
tistical error ε according to the semi-honest security in [9].

Proof 5.2.1 For the sake of contradiction, let’s assume that
TRUNCPR is t-private for FtruncPr. By definition, there exists
an ideal adversary S s.t. for all input sharing [x] s.t. x < 2k−τ,

([x̃′],ViewC ([x]))≈ε ([x′],S(C , [x]C , [x′]C)),

where [x̃′] denotes the output sharing in the real world, [x′]
denotes the output sharing in the ideal world, and [x′]C de-
notes the shares of [x′] of corrupted parties. This implies that

(x̃′,ViewC ([x]))≈ε (x′,S(C , [x]C , [x′]C)). (8)

Consider the case where x = 2d−1 and P1 is corrupted.
We first claim that in the real world, x̃′ is determined by
ViewC ([x]). Note that in the real world, x̃′ = (x+ r)d − rd .
Thus x̃′ is determined by x and r. Since we have fixed the input
sharing [x] and x+ r is learnt by P1, which is corrupted, x̃′ is
fixed given the views of corrupted parties. As a result, for the
distribution of (x̃′,ViewC ([x])), x̃′ is fixed given ViewC ([x]).

Now we analyze the distribution of (x′,S(C , [x]C , [x′]C)).
Since Σ is a linear secret sharing scheme s.t. any t shares
reveal no information about the secret, the shares of [x′] of
corrupted parties are independent of the secret x′. Since x =
2d−1, FtruncPr will set x′ = xd = 0 or x′ = xd + 1 = 1 with
probability 1/2. And the randomness used to determine x′ is
independent of the shares of [x] and [x′] of corrupted parties.
Thus, given S(C , [x]C , [x′]C), x′ is a random bit. As a result, for
the distribution (x′,S(C , [x]C , [x′]C)), given S(C , [x]C , [x′]C),
x′ is a random bit.

This implies Equation 8 does not hold (as given the second
part of the distribution, x̃′ in the LHS is fixed while x′ in the
RHS is a random bit). Thus, such an ideal adversary S cannot
exist. The protocol TRUNCPR is not t-private for FtruncPr.

6 Evaluation

In this section, we show the implementation of our protocol
and its application to DNN inference, as well as benchmark
results compared with the best of previous works. Our code is
available at https://github.com/AntCPLab/malicious_
3pc_binary.

6.1 Implementation
Our implementation is based on MP-SPDZ [28], a popular and
versatile framework for a variety of MPC protocols. We im-
plemented the 61-bit Mersenne field as the underlying prime
field, and adopted the Fiat-Shamir transformation [20] to ob-
tain a constant-round proof system.

USENIX Association 32nd USENIX Security Symposium 5387

https://github.com/AntCPLab/malicious_3pc_binary
https://github.com/AntCPLab/malicious_3pc_binary

Depth Semi Ours BGIN19 FLNW17

1 LAN Time 0.12 1.15 3.42 0.95
WAN Time 2.97 3.31 5.67 11.74

10 LAN Time 0.12 1.14 3.78 0.90
WAN Time 2.18 2.58 4.61 11.41

100 LAN Time 0.12 1.14 3.84 0.91
WAN Time 5.18 5.85 6.78 14.94

1000 LAN Time 0.18 1.16 3.87 0.96
WAN Time 41.05 41.83 42.76 51.05

10000 LAN Time 0.70 1.36 4.05 1.50
WAN Time 401.60 402.47 403.35 412.35

Comm. 24.00 24.80 24.57 224.16

Table 2: Time (s), communication (MB) for computing
circuits of 64 million AND gates with different depths.

Semi Ours BGIN19 FLNW17

LAN Time 0.04 1.08 3.83 0.86
WAN Time 3.86 4.77 5.75 14.98

Comm. 24.00 24.81 24.57 224.39

Table 3: Time (s), communication (MB) for computing
AES-128 circuits 10,000 times in parallel (with totally

64,000,000 AND gates).

To comprehensively evaluate our protocol, we additionally
implement the FLIOP based verification protocol BGIN19
in [7] using the binary extension field F264 in MP-SPDZ,
including all the optimization techniques5 described in Sec-
tion 4.3 (as well as fast Intel instructionsfor multiplications
over binary extension fields). We also compare with the cut-
and-choose based protocol FLNW17 [21] that has been imple-
mented in MP-SPDZ. (As we mentioned above, we choose
to compare with [21] rather than the optimized version [2]
because in MP-SPDZ, the implementation of [21] is faster
than that of [2]. And the work [2] does not open the source
of their implementation.) In addition, we also test the best-
known semi-honest protocol Semi [3] to understand the cost
of achieving malicious security for binary computation.

To support DNN inference which involves mixed-circuit
computations, we integrate our protocol with the state-of-the-
art RSS based maliciously secure 3PC protocol, SpdzWise [1]
(denoted by SW in the following), for arithmetic circuits, and
dabits techniques [42] for transforming between arithmetic
and binary worlds. We remark that, our experiment is mainly
to understand the advantage of using our protocol for the

5We also implement the non-recursive version of the verification protocol
in [7]; however it performs much worse than the recursive version, so we
choose the recursive version of [7] as our main baseline.

binary computation in DNN compared with using [7, 21]
rather than building a new protocol for the DNN reference. In
Appendix C, we compare our choice for DNN inference and
the state-of-the-art 3PC for DNN [17, 32].

We test four variants of DNN inference protocols by us-
ing Semi, our protocol, BGIN19, and FLNW17 for binary com-
putation respectively. (The corresponding integrated proto-
cols are denoted by SW+Semi,SW+Ours,SW+BGIN19 and
SW+FLNW17.) We also report the cost of running the entirely
semi-honest protocol (denoted by Semi+Semi) on DNN in-
ference.

6.2 Experimental Setup
To thoroughly evaluate our protocol, we conduct two kinds
of experiments: (1) benchmarks for running pure binary cir-
cuits, including large binary circuits of varied depths and AES
circuits, and (2) secure inference for three large-scale DNN
models.

All the experiments were run on three Alibaba Cloud
g7.8xlarge instances running Ubuntu 20.04, each equipped
with 32-core Intel(R) Xeon(R) Platinum 8369B CPU
@2.70GHz and 128GB of RAM. The machines are in a LAN
with about 23Gbps bandwidth and 30µs (one-way) latency.
As for WAN setting, we use the linux tc command to set the
bandwidth at 80Mbps and latency at 40ms, which could sim-
ulate an actual network condition between two very distant
machines. We run all programs with a single thread, but run
the NN inference under WAN with 32 threads because single
thread might be too slow for that setting.

6.3 Benchmarks for Binary Circuits
Binary Circuits with Different Depths. We construct pure
binary circuits of different depths ranging from 1 to 10,000,
each of which computes 64 million AND gates with random
inputs. We report the running time and the (global) communi-
cation cost of the protocols in Table 2.

For the communication complexity, we can see that both
our protocol and BGIN19 only add a sub-linear cost to Semi

(which communicates 1 bit per AND gate per party), while
the implementation of FLNW17 in MP-SPDZ communicates
around 9 bit per AND gate per party.

For the running time under LAN, our protocol is 3 ∼ 3.4×
faster than BGIN19 and is close to FLNW17 (with 1 ∼ 1.3×
slow down). This is as expected given that arithmetic oper-
ations over prime fields are more efficient than those over
binary extension fields, and given the optimizations we intro-
duced in Section 4.3.

In the WAN setting, our protocol is 1 ∼ 1.8× faster than
BGIN19. The gap is smaller than LAN, because in the WAN
setting, the communication complexity becomes the major
bottleneck and the communication complexity of ours and
BGIN19 are very close. Our protocol is 2.6 ∼ 4.2× faster

5388 32nd USENIX Security Symposium USENIX Association

Model # of Threads Semi+Semi SW+Semi1 SW+Ours SW+BGIN19 SW+FLNW17

ResNet-50

1 LAN Time 89.68 336.71 372.97 582.55 391.23
32 LAN Time 18.66 56.64 63.33 81.48 87.48
32 WAN Time 544.15 1969.48 2048.89 2096.17 2786.22

Comm. 7537.86 27791.9 27846.10 27830.40 41114.30

DenseNet

1 LAN Time 63.42 305.89 375.72 622.83 371.124
32 LAN Time 12.98 57.07 66.13 84.60 94.39
32 WAN Time 713.42 1994.98 2070.69 2096.17 2842.19

Comm. 8919.85 31924.50 31993.40 31973.5 48709.60

SqueezeNet

1 LAN Time 13.61 49.13 58.89 106.20 63.09
32 LAN Time 2.23 9.93 11.28 14.17 15.70
32 WAN Time 200.19 432.05 448.96 455.29 674.26

Comm. 1403.22 4803.36 4816.58 4812.76 8047.35

1 The setting SW+Semi does not correspond to a meaningful security notion. Our intention is to report the best possibility
one can achieve by only improving the binary computation part.

Table 4: Time (s), communication (MB) for secure inference on different neural networks.

than FLNW17 under depths of 1 ∼ 100 due to the saving in
the communication complexity. For the circuits of depths
1000 ∼ 10000, all the protocols perform close because the
network latency cost becomes dominating.

AES Circuit. We utilize the AES-128 circuit file provided
by MP-SPDZ and run 10,000 times in parallel. Each AES-128
circuit consists of 6,400 AND gates, 28,176 XOR gates and
2,087 INV gates with a depth of 60. The result is shown in
Table 3.

In the LAN setting, our protocol is 3.5× faster than
BGIN19, and 1.25× slower than FLNW17. In the WAN set-
ting, our protocol is about 1.2× faster than BGIN19, and 3.1×
faster than FLNW17. These experiment results are consistent
with Table 2. As a conclusion, our protocol is 3× faster than
BGIN19 and is close to FLNW17 under LAN, and our protocol
achieves 9× saving in the communication compared with
FLNW17 (as BGIN19 does).

6.4 Maliciously Secure DNN Inference
We run three deep neural networks: ResNet-50, DenseNet,
and SqeezeNet which are commonly used in industry.

For the total communication, both SW+Ours and
SW+BGIN19 are similar to the baseline SW+Semi as ex-
pected. On the other hand, SW+FLNW17 needs 1.5 ∼ 1.7×
more communication than SW+Ours and SW+BGIN19. The
additional communication cost of SW+FLNW17 is due to the
protocol FLNW17 for the binary part.

In the LAN setting, SW+Ours is 1.3 ∼ 1.8× faster than
SW+BGIN19, while 1 ∼ 1.4× faster than SW+FLNW17. In
the WAN setting, SW+Ours has almost the same speed with
SW+BGIN19 (which is as expected as the communication

cost becomes the bottleneck in WAN), while 1.4∼ 1.5× faster
than SW+FLNW17.

The end-to-end improvement is not as large as in 6.3, be-
cause all the protocols use the same protocol SpdzWise [1] to
compute the arithmetic part of NNs. However, the difference
of SW+Ours (w.r.t. SW+BGIN19 or SW+FLNW17) and the
SW+Semi can be viewed as the cost of achieving malicious
security for the binary computation. We note that our such
cost is only 7% ∼ 10% of SW+FLNW17’s under WAN and
15% ∼ 33% of SW+BGIN19’s under LAN.

Comparison With the Fully Semi-honest Protocol. We
also report the communication and runtime of the fully semi-
honest protocol for the DNN inference in Table 4. Our purpose
is to understand the real overhead of achieving malicious
security for the DNN inference.

For the communication complexity, compared with the
fully semi-honest protocol Semi+Semi, both SW+Ours

and SW+BGIN19 cost 3.4 ∼ 3.7× more communication
for achieving malicious security, while SW+FLNW17 costs
6.1 ∼ 6.5× more communication. From the comparison with
SW+Semi, we can see that the main additional communica-
tion cost of SW+Ours and SW+BGIN19 comes from achiev-
ing malicious security for computation other than the binary
part in the DNN inference, which includes the use of SW for
arithmetic computation, the use of dabits techniques [42]
for transforming between arithmetic and binary worlds and so
on. On the other hand, for SW+FLNW17, the additional cost
also comes from the binary part due to the use of FLNW17 for
binary computation.

For the running time, compared with the fully semi-honest
protocol, in the LAN setting SW+Ours is 3.4 ∼ 5.9× slower,
while SW+BGIN19 and SW+FLNW17 are 4.2 ∼ 9.8× and

USENIX Association 32nd USENIX Security Symposium 5389

3.7 ∼ 6.2× slower respectively. In the WAN setting, the
gaps become smaller: SW+Ours is 2.2 ∼ 3.8× slower,
SW+BGIN19 and SW+FLNW17 are 2.3 ∼ 3.9× and 4.2 ∼
5.4× slower. This mainly arises from the network latency
cost in the WAN setting.

As we can see, with our efficient protocol for binary com-
putation, the major bottleneck becomes to achieve malicious
security for arithmetic computation, which we believe is an
interesting research question.

7 Conclusion

In this work we studied maliciously secure 3PC protocol
for binary circuits in an honest majority. Following previ-
ous work [7], we use distributed zero-knowledge proofs to
verify semi-honest computations conducted over the binary
field F2. But differently, we transform the verification of the
semi-honest computations over F2 into prime fields, and take
advantage of the algebraic structure of prime fields to accel-
erate computations. As a result, we can achieve sub-linear
additional communication cost at much lower computational
cost than the extension field based approach in [7].

We did experiments and proved that our protocol can
achieve more than 3× speed-up over [7] in LAN and more
than 4× speed-up over [21] in WAN for computing binary
circuits. When applied to secure DNN inference, we could
reduce the overhead for obtaining malicious security in binary
part by more than 67%.

Acknowledgments

We sincerely thank all the anonymous reviewers and the shep-
herd for their valuable comments and suggestions to help us
improve this work. The authors Yun Li, Yufei Duan, and Chao
Zhang are supported in part by the National Key Research
and Development Program of China (2021YFB2701000), Na-
tional Natural Science Foundation of China (61972224), and
China Postdoctoral Science Foundation 2021M701942.

References

[1] Mark Abspoel, Anders Dalskov, Daniel Escudero, and
Ariel Nof. An efficient passive-to-active compiler for
honest-majority mpc over rings. In International Con-
ference on Applied Cryptography and Network Security,
pages 122–152. Springer, 2021.

[2] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar
Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi
Watzman, and Or Weinstein. Optimized honest-majority
mpc for malicious adversaries — breaking the 1 billion-
gate per second barrier. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 843–862, 2017.

[3] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel
Nof, and Kazuma Ohara. High-throughput semi-honest
secure three-party computation with an honest majority.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors,
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 805–817. ACM, 2016.

[4] Donald Beaver. Efficient multiparty protocols using cir-
cuit randomization. In Annual International Cryptology
Conference, pages 420–432. Springer, 1991.

[5] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols (extended ab-
stract). In Harriet Ortiz, editor, Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 503–513.
ACM, 1990.

[6] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Zero-knowledge proofs on
secret-shared data via fully linear pcps. In Annual Inter-
national Cryptology Conference, pages 67–97. Springer,
2019.

[7] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof.
Practical fully secure three-party computation via sub-
linear distributed zero-knowledge proofs. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 869–886, 2019.

[8] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof.
Efficient fully secure computation via distributed zero-
knowledge proofs. In International Conference on the
Theory and Application of Cryptology and Information
Security, pages 244–276. Springer, 2020.

[9] Ran Canetti. Security and composition of multiparty
cryptographic protocols. Journal of CRYPTOLOGY,
13(1):143–202, 2000.

[10] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and
Chen Yuan. Amortized complexity of information-
theoretically secure MPC revisited. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptol-
ogy - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part III, volume 10993 of Lecture
Notes in Computer Science, pages 395–426. Springer,
2018.

[11] Octavian Catrina and Sebastiaan de Hoogh. Improved
primitives for secure multiparty integer computation. In
International Conference on Security and Cryptography
for Networks, pages 182–199. Springer, 2010.

5390 32nd USENIX Security Symposium USENIX Association

[12] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Tri-
dent: Efficient 4pc framework for privacy preserving
machine learning. In 27th Annual Network and Dis-
tributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The In-
ternet Society, 2020.

[13] David Chaum. Blind signature system. In Advances in
cryptology, pages 153–153. Springer, 1984.

[14] David Chaum, Claude Crépeau, and Ivan Damgard. Mul-
tiparty unconditionally secure protocols. In Proceedings
of the twentieth annual ACM symposium on Theory of
computing, pages 11–19, 1988.

[15] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority MPC for malicious adversaries.
In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part III,
volume 10993 of Lecture Notes in Computer Science,
pages 34–64. Springer, 2018.

[16] Anders Dalskov, Daniel Escudero, and Marcel Keller.
Secure evaluation of quantized neural networks. Pro-
ceedings on Privacy Enhancing Technologies, 4:355–
375, 2020.

[17] Anders P. K. Dalskov, Daniel Escudero, and Marcel
Keller. Fantastic four: Honest-majority four-party secure
computation with malicious security. In Michael Bailey
and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021,
pages 2183–2200. USENIX Association, 2021.

[18] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for mpc
over mixed arithmetic-binary circuits. In Annual Interna-
tional Cryptology conference, pages 823–852. Springer,
2020.

[19] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for mpc
over mixed arithmetic-binary circuits. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, pages 823–852, Cham,
2020. Springer International Publishing.

[20] Amos Fiat and Adi Shamir. How to prove yourself:
Practical solutions to identification and signature prob-
lems. In Conference on the Theory and Application
of Cryptographic Techniques, pages 186–194. Springer,
1986.

[21] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Wein-
stein. High-throughput secure three-party computation
for malicious adversaries and an honest majority. In
Annual international conference on the theory and ap-
plications of cryptographic techniques, pages 225–255.
Springer, 2017.

[22] O Goldreich, S Micali, and A Wigderson. How to play
any mental game. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages
218–229, 1987.

[23] Oded Goldreich. The Foundations of Cryptography -
Volume 2: Basic Applications. Cambridge University
Press, 2004.

[24] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to construct random functions. Journal of the ACM
(JACM), 33(4):792–807, 1986.

[25] Vipul Goyal and Yifan Song. Malicious security comes
free in honest-majority MPC. IACR Cryptol. ePrint
Arch., page 134, 2020.

[26] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaran-
teed output delivery comes free in honest majority MPC.
In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceed-
ings, Part II, volume 12171 of Lecture Notes in Com-
puter Science, pages 618–646. Springer, 2020.

[27] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret
sharing scheme realizing general access structure. Elec-
tronics and Communications in Japan (Part III: Funda-
mental Electronic Science), 72(9):56–64, 1989.

[28] Marcel Keller. Mp-spdz: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’20, page 1575–1590, New York,
NY, USA, 2020. Association for Computing Machinery.

[29] Ryo Kikuchi, Nuttapong Attrapadung, Koki Hamada,
Dai Ikarashi, Ai Ishida, Takahiro Matsuda, Yusuke Sakai,
and Jacob C. N. Schuldt. Field extension in secret-
shared form and its applications to efficient secure com-
putation. In Julian Jang-Jaccard and Fuchun Guo,
editors, Information Security and Privacy - 24th Aus-
tralasian Conference, ACISP 2019, Christchurch, New
Zealand, July 3-5, 2019, Proceedings, volume 11547
of Lecture Notes in Computer Science, pages 343–361.
Springer, 2019.

[30] Mehmet Kiraz and Berry Schoenmakers. A protocol
issue for the malicious case of yao’s garbled circuit

USENIX Association 32nd USENIX Security Symposium 5391

construction. In 27th Symposium on Information Theory
in the Benelux, volume 39, 2006.

[31] Vladimir Kolesnikov and Thomas Schneider. Improved
garbled circuit: Free xor gates and applications. In In-
ternational Colloquium on Automata, Languages, and
Programming, pages 486–498. Springer, 2008.

[32] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. {SWIFT}: Super-fast and robust {Privacy-
Preserving} machine learning. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2651–2668,
2021.

[33] Yehuda Lindell and Benny Pinkas. An efficient proto-
col for secure two-party computation in the presence of
malicious adversaries. In Annual international confer-
ence on the theory and applications of cryptographic
techniques, pages 52–78. Springer, 2007.

[34] Payman Mohassel and Matthew Franklin. Efficiency
tradeoffs for malicious two-party computation. In Inter-
national Workshop on Public Key Cryptography, pages
458–473. Springer, 2006.

[35] Payman Mohassel and Peter Rindal. Aby3: A mixed
protocol framework for machine learning. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 35–52. ACM, 2018.

[36] Payman Mohassel and Yupeng Zhang. Secureml: A
system for scalable privacy-preserving machine learning.
In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pages 19–
38. IEEE Computer Society, 2017.

[37] Moni Naor, Benny Pinkas, and Reuban Sumner. Pri-
vacy preserving auctions and mechanism design. In
Proceedings of the 1st ACM Conference on Electronic
Commerce, pages 129–139, 1999.

[38] Arpita Patra and Ajith Suresh. BLAZE: blazing fast
privacy-preserving machine learning. In 27th Annual
Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-
26, 2020. The Internet Society, 2020.

[39] Benny Pinkas, Thomas Schneider, Nigel P Smart, and
Stephen C Williams. Secure two-party computation
is practical. In International conference on the theory
and application of cryptology and information security,
pages 250–267. Springer, 2009.

[40] Antigoni Polychroniadou and Yifan Song. Constant-
overhead unconditionally secure multiparty computa-
tion over binary fields. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EU-
ROCRYPT 2021 - 40th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17-21, 2021, Pro-
ceedings, Part II, volume 12697 of Lecture Notes in
Computer Science, pages 812–841. Springer, 2021.

[41] Mike Rosulek and Lawrence Roy. Three halves make a
whole? beating the half-gates lower bound for garbled
circuits. In Annual International Cryptology Conference,
pages 94–124. Springer, 2021.

[42] Dragos Rotaru and Tim Wood. Marbled circuits: Mixing
arithmetic and boolean circuits with active security. In
Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors,
Progress in Cryptology – INDOCRYPT 2019, pages 227–
249, Cham, 2019. Springer International Publishing.

[43] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz
Koushanfar. Deepsecure: scalable provably-secure deep
learning. In Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA,
USA, June 24-29, 2018, pages 2:1–2:6. ACM, 2018.

[44] Adi Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[45] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
curenn: 3-party secure computation for neural network
training. Proceedings on Privacy Enhancing Technolo-
gies, 3:26–49, 2019.

[46] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. Falcon:
Honest-majority maliciously secure framework for pri-
vate deep learning. Proceedings on Privacy Enhancing
Technologies, 1:188–208, 2021.

[47] Avi Wigderson, MB Or, and S Goldwasser. Com-
pleteness theorems for noncryptographic fault-tolerant
distributed computations. In Proceedings of the
20th Annual Symposium on the Theory of Computing
(STOC’88), pages 1–10, 1988.

[48] Andrew C Yao. Protocols for secure computations. In
23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160–164. IEEE, 1982.

[49] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986), pages 162–167. IEEE,
1986.

5392 32nd USENIX Security Symposium USENIX Association

[50] Samee Zahur, Mike Rosulek, and David Evans. Two
halves make a whole. In Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, pages 220–250. Springer, 2015.

A Building Block Functionalities

A.1 Frand - Generating Random Shares.
We define a functionality Frand to generate a replicated sharing
of a random secret value r ∈ R where R denotes Z2k ,F2 or Fp.
We refer the readers to previous work [7] for the instantiation
of Frand.

FUNCTIONALITY A.1.1 (Frand - Generating Ran-
dom Shares).

Let S be the ideal world adversary and Pi be the corrupted
party controlled by S .

• Frand receives ri,ri−1 from S .

• Frand picks a random r ∈ R, sets ri+1 := r−ri−ri−1.

• Frand hands the honest parties Pi+1,Pi−1 the shares
(ri+1,ri) and (ri−1,ri+1) respectively.

A.2 Fcoin - Generating Random Coins.
We define a functionality Fcoin for generating a random value
r ∈R and handing it to all parties. It can be simply instantiated
by calling Frand to generate a sharing of a random secret value
r ∈ R then opening r to all parties.

A.3 Finput - Secure Sharing of Inputs.
We define a functionality Finput for securely share the parties’
inputs over F2 in Functionality A.3.1. We refer the readers
to [7, 15] for the instantiation of the functionality Finput.

FUNCTIONALITY A.3.1 (Finput - Secure Sharing of
Inputs).

Let S be the ideal world adversary and Pi the corrupted
party controlled by S .

• Finput receives inputs x(1), · · · ,x(q) ∈ F2 from the
parties, and the shares (x(ℓ)i ,x(ℓ)i−1) of the corrupted
party from S for ℓ ∈ [q].

• Finput computes x(ℓ)i+1 := x(ℓ)⊕x(ℓ)i ⊕x(ℓ)i−1 for ℓ ∈ [q].

• Finput hands the honest parties Pi+1,Pi−1 the shares
(x(ℓ)i+1,x

(ℓ)
i) and (x(ℓ)i−1,x

(ℓ)
i+1) for ℓ ∈ [q] respectively.

B Our Verification Protocol

We describe the full protocol for verification in Protocol B.0.1.

C Implementation of secure NN in MP-SPDZ
and Choices of Protocols for NN Inference

C.1 Implementation of secure NN Inference
As our contribution is a practically efficient 3PC for binary
circuits, together with existing techniques for arithmetic com-
putation and A2B, B2A techniques, we can evaluate mixed
circuits that contain both arithmetic computation and binary
computation. We first show how secure NN inference is im-
plemented in MP-SPDZ framework.

The MP-SPDZ framework evaluates secure NN in two
steps. First, it decomposes the circuit that contains trunca-
tion/comparison to mixed circuits with arithmetic operations,
binary operations, and A2B, B2A operations. Then these op-
erations are evaluated by suitable protocols. The framework
provides several options for both steps. For the first step, we
use the option from ABY3 [35] for exact truncation and com-
parison. These are known to be the best choices to the best
of our knowledge. (E.g., the same comparison protocol is
used in SWIFT [32].) For the second step, we also choose
the most practical protocol for arithmetic operations [1] and
A2B, B2A operations [19, 42]. Note that our improvement is
in the computation of binary gates. Using other protocols for
arithmetic operations or A2B, B2A operations does not affect
our improvement.

C.2 Comparison with Other Protocols for NN
Inference

Comparison with SWIFT [32]. In the line of research
on secure DNN inference, the state-of-the-art 3PC protocols
SWIFT [32] uses probabilistic truncation based on [11] and
ABY3 [35]-style comparison, and apply the distributed zero-
knowledge proofs [7] to both arithmetic and binary operations.
As we argued in Section 5.2, the probabilistic truncation pro-
tocol is insecure. Also, the recent work [17] has argued that
using [7] to verify arithmetic operations over rings are not
practical. Besides, the implementation of [32] is not public.
Due to these reasons, we do not compare with SWIFT.

Comparison with Fantastic Four [17]. The 3PC protocol
of [17] also uses probabilistic truncation based on [11], and
applies [1] for arithmetic operations as we do and uses the
follow-up work [2] of [21] for binary operations. Therefore,
our baseline SW+FLNW17 is very similar to the 3PC protocol
of [17] except that we change to use exact truncation protocols
and we use [21] rather than [2] for binary computation. As we
mentioned above, we notice that in the MP-SPDZ framework,
the implementation of [21] is faster than the implementation
of [2]. Thus, we choose [21] as our baseline rather than [2].

USENIX Association 32nd USENIX Security Symposium 5393

PROTOCOL B.0.1 (Securely Computing Fvrfy).

• Inputs: Prover Pi holds input (x(ℓ)i ,x(ℓ)i−1,y
(ℓ)
i ,y(ℓ)i−1,ρ

(ℓ)
i ,ρ

(ℓ)
i−1,zi) for ℓ ∈ [m].

Verifiers Pi+1,Pi−1 hold input (x(ℓ)i ,y(ℓ)i ,ρ
(ℓ)
i ,zi) and (x(ℓ)i−1,y

(ℓ)
i−1,ρ

(ℓ)
i−1) for ℓ ∈ [m] respectively.

• Auxiliary Inputs: The parties hold a public parameter λ.

• Setup:

1. Each party Pj for j ∈ {0,1,2} chooses a random key K j ∈ {0,1}κ and sends it to Pj+1.

2. Pi,Pi+1 compute η := FKi(cnt), and Pi,Pi−1 compute τ := FKi−1(cnt) where F is an agreed pseudo-random
function F from the family F = {FK|K ∈ {0,1}κ,FK : {0,1}κ → Fp}, and cnt is an agreed public counter that
increments each time.

• Protocol:

1. Preparation.

(a) For ℓ∈ [m], Pi sets a(ℓ) := x(ℓ)i ,c(ℓ) := y(ℓ)i ,e(ℓ) := x(ℓ)i ·y(ℓ)i ⊕z(ℓ)i ⊕ρ
(ℓ)
i ,b(ℓ) := y(ℓ)i−1,d

(ℓ) := x(ℓ)i−1, f (ℓ) := ρ
(ℓ)
i−1,

g(ℓ)1 :=−2a(ℓ) ·c(ℓ) ·(1−2e(ℓ)),g(ℓ)2 := c(ℓ) ·(1−2e(ℓ)),g(ℓ)3 := a(ℓ) ·(1−2e(ℓ)),g(ℓ)4 :=−(1−2e(ℓ))/2,h(ℓ)1 :=

b(ℓ) ·d(ℓ) · (1−2 f (ℓ)),h(ℓ)2 := d(ℓ) · (1−2 f (ℓ)),h(ℓ)3 := b(ℓ) · (1−2 f (ℓ)),h(ℓ)4 := 1−2 f (ℓ), and defines vectors

u⃗ := (g(1)1 , · · · ,g(1)4 , · · · · · · ,g(m)
1 , · · · ,g(m)

4), v⃗ := (h(1)1 , · · · ,h(1)4 , · · · · · · ,h(m)
1 , · · · ,h(m)

4) of length 4m.
(b) Pi+1,Pi−1 compute vector u⃗ and v⃗ respectively as Pi does.

2. Recursion.
Let out :=−m

2 ,m
′ := 4m,s := ⌈m′/λ⌉. Pi+1,Pi−1 define outi+1 := out and outi−1 := 0 respectively.

(a) For k ∈ [λ], if (s−1)λ+ k > m′, the parties define u(s−1)λ+k := 0,v(s−1)λ+k := 0.
(b) Pi defines polynomials p1(X), · · · , ps(X) and q1(X), · · · ,qs(X) of degree λ − 1 s.t. for t ∈ [s],k ∈ [λ],

pt(k) := u(t−1)λ+k,qt(k) := v(t−1)λ+k. If s = 1, Pi additionally sets p1(0) := η,q1(0) := τ, and the degree of
p1(X),q1(X) turns to λ.

(c) Pi+1 computes p1(X), · · · , ps(X) and Pi−1 computes q1(X), · · · ,qs(X) respectively as Pi does.
(d) Pi computes polynomial G(X) s.t. G(X) = ∑

s
t=1 pt(X) ·qt(X).

(e) Let c⃗ be the coefficients of polynomial G(X). Pi additively shares c⃗ by choosing a random vector c⃗i+1 of the
same length with c⃗ and sets c⃗i−1 := c⃗− c⃗i+1. Pi hands shares c⃗i−1, c⃗i+1 to Pi+1,Pi−1 respectively.

(f) The parties call Fcoin to receive a random r ∈ Fp\[λ]. If s = 1, the parties call Fcoin to pick r from Fp\[0,λ].
(g) Pi+1,Pi−1 evaluate Gi+1(r),Gi−1(r) where Gi+1(X),Gi−1(X) are polynomials defined by coefficient shares

c⃗i−1, c⃗i+1, and compute sumi+1 := ∑
λ

k=1 Gi+1(k),sumi−1 := ∑
λ

k=1 Gi−1(k) respectively.
(h) Pi+1,Pi−1 compute bi+1 := sumi+1 −outi+1 and bi−1 := sumi−1 −outi−1 respectively.
(i) Pi+1,Pi−1 reveal bi+1,bi−1 to each other, reconstruct b := bi+1+bi−1, and check if b = 0. If the check doesn’t

pass, Pi+1,Pi−1 send abort to the other parties and halts.
(j) If s = 1, the parties go to Step 3; otherwise for t ∈ [s], the parties define ut := pt(r),vt := qt(r), m′ := s,s :=

⌈m′/λ⌉, and Pi+1,Pi−1 define outi+1 := Gi+1(r), outi−1 := Gi−1(r), and then they go back to Step 2a.

3. Final Check.
(a) Pi+1,Pi−1 compute outi+1 := Gi+1(r),u := p1(r) and outi−1 := Gi−1(r),v := q1(r) respectively, and reveal

outi+1,u and outi−1,v to each other.
(b) Pi+1,Pi−1 reconstruct out := outi+1 +outi−1, and check if u · v = out. If the check doesn’t pass, Pi+1,Pi−1

send abort to the other parties and halts.

4. If a party received abort in any of the previous steps, then it outputs abort and halts.

• Output: If a party didn’t output abort, then it outputs accept.

5394 32nd USENIX Security Symposium USENIX Association

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Notations
	Secret Sharing
	Additive Secret Sharing
	Replicated Secret Sharing

	Distributed Zero-Knowledge Proofs
	Ideal Functionalities

	Maliciously Secure 3PC for Binary Circuits
	The Overall Protocol
	Review: RSS based Semi-Honest Protocol
	Achieving Malicious Security

	Instantiating Fvrfy - Verifying AND Computations

	Optimizations: Saving Computational Cost
	Computation Task of First Round of Recursion
	Main Optimizations
	Other Optimizations
	Parameter Setup

	Application: Secure DNN Inference
	Fixed-point Arithmetic
	Comparison
	Truncation

	On the Security Issue of Probabilistic Truncation Protocols

	Evaluation
	Implementation
	Experimental Setup
	Benchmarks for Binary Circuits
	Maliciously Secure DNN Inference

	Conclusion
	Building Block Functionalities
	Frand - Generating Random Shares.
	Fcoin - Generating Random Coins.
	Finput - Secure Sharing of Inputs.

	Our Verification Protocol
	Implementation of secure NN in MP-SPDZ and Choices of Protocols for NN Inference
	Implementation of secure NN Inference
	Comparison with Other Protocols for NN Inference

