
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

PolyFuzz: Holistic Greybox Fuzzing
of Multi-Language Systems

Wen Li, Jinyang Ruan, and Guangbei Yi, Washington State University;
Long Cheng, Clemson University; Xiapu Luo, The Hong Kong Polytechnic University;

Haipeng Cai, Washington State University
https://www.usenix.org/conference/usenixsecurity23/presentation/li-wen

POLYFUZZ: Holistic Greybox Fuzzing of Multi-Language Systems

Wen Li1, Jinyang Ruan1, Guangbei Yi1, Long Cheng2, Xiapu Luo3, and Haipeng Cai1
∗

1Washington State University 2Clemson University 3The Hong Kong Polytechnic University
{li.wen,jinyang.ruan,guangbei.yi,haipeng.cai}@wsu.edu

lcheng2@clemson.edu csxluo@comp.polyu.edu.hk

Abstract
While offering many advantages during software process, the
practice of using multiple programming languages in con-
structing one software system also introduces additional se-
curity vulnerabilities in the resulting code. As this practice
becomes increasingly prevalent, securing multi-language sys-
tems is of pressing criticality. Fuzzing has been a powerful
security testing technique, yet existing fuzzers are commonly
limited to single-language software.

In this paper, we present POLYFUZZ, a greybox fuzzer that
holistically fuzzes a given multi-language system through
cross-language coverage feedback and explicit modeling
of the semantic relationships between (various segments
of) program inputs and branch predicates across languages.
POLYFUZZ is extensible for supporting multilingual code
written in different language combinations and has been im-
plemented for C, Python, Java, and their combinations. We
evaluated POLYFUZZ versus state-of-the-art single-language
fuzzers for these languages as baselines against 15 real-world
multi-language systems and 15 single-language benchmarks.
POLYFUZZ achieved 25.3–52.3% higher code coverage and
found 1–10 more bugs than the baselines against the multi-
lingual programs, and even 10-20% higher coverage against
the single-language benchmarks. In total, POLYFUZZ has en-
abled the discovery of 12 previously unknown multilingual
vulnerabilities and 2 single-language ones, with 5 CVEs as-
signed. Our results show great promises of POLYFUZZ for
cross-language fuzzing, while justifying the strong need for
holistic fuzzing against trivially applying single-language
fuzzers to multi-language software.

1 Introduction
Constructing one software system using multiple program-
ming languages at the same time (i.e., multi-language con-
struction) enables combining the best of different languages
(e.g., efficiency of C and programmability of Python) hence
brings many benefits (e.g., greater productivity of develop-
ment process, higher performance of resulting software) si-
multaneously. In fact, multi-language construction has long
been a normal real-world software practice and sustained its
∗Haipeng Cai is the corresponding author.

growing momentum for decades [39]. Yet this practice also
brings additional threats to cybersecurity. That the use of mul-
tiple languages introduces more security vulnerabilities in
the resulting multilingual code [24] is not just a statistical
finding—recent work [40] has demonstrated the prevalence
and criticality of those vulnerabilities (e.g., CVE-2021-41497,
CVE-2021-41500, and 6 other CVEs, all with high severity
scores), mainly induced by cross-language information flow.

Statically analyzing the information flow would suffer an
excessive rate of false positives, in addition to the question-
able feasibility of doing so—such analyses would be heavily
language-specific hence hardly extensible to support diverse
(e.g., heterogeneous semantics of different languages, varia-
tions in cross-language interfacing mechanisms) multilingual
code. Dynamic information flow analysis [40, 73] largely
overcomes these limitations, but its vulnerability discovering
capabilities are bounded by the typically quite limited cover-
age of available test inputs. This weakness could be further
mitigated by test input generation techniques like fuzzing,
which in fact has been the de facto standard technique for
software vulnerability discovery [46].

However, existing fuzzing techniques (e.g., [11, 16, 20, 22,
41,65]) are exclusively aimed at single-language software and
predominantly focused on C/C++, including recent ones [13,
42] that seemingly fuzz across different language units (i.e.,
code written in one language) but actually one language unit
still. We may trivially apply these single-language fuzzers to
multilingual code (e.g., by simply fuzzing the entry language
unit). Yet that would essentially treat other language units as
black boxes in entirety, dismissing cross-language interactions
hence largely compromising the potential of fuzzing.

In this paper, we propose to holistically fuzz multilingual
code to empower systematical vulnerability discovery in real-
world multi-language systems. To strike a good balance be-
tween scalability and effectiveness, we focus on greybox
fuzzing as most prior peer works did [46]. In light of the
aforementioned limitations of extant solutions, we aim to (1)
offer significantly greater cost-effectiveness (i.e., achieving
higher code coverage and finding more bugs within a given
amount of time) and (2) offer practical extensibility to support
multilingual code with different language combinations and
interfacing mechanisms. Fulfilling both aims would justify

USENIX Association 32nd USENIX Security Symposium 1379

the need of holistic fuzzing for multi-language software, but
it also faces two major challenges accordingly.

First (Challenge-1), earlier findings revealed that the ad-
ditional vulnerabilities of multilingual code (beyond those
within each language unit) are a result of cross-language in-
formation flow [40]. With greybox fuzzing, we do not want
to explicitly analyze language interfacing (which would not
only compromise fuzzing efficiency but also impede language
extensibility). However, there is no prior knowledge on how
to generate inputs that effectively exercise information flow
across heterogeneous language units with a random testing
technique like greybox fuzzing.

Second (Challenge-2), it is known that multi-language soft-
ware can be highly diverse, using a large variety of languages
combined [39]. Developing a separate fuzzer dedicated to
each particular language combination is clearly undesirable
and may not even be feasible. Meanwhile, greybox fuzzing
does require some knowledge about program internals—thus,
downgrading to blackbox fuzzing hence achieving trivial ex-
tensibility is not an option. However, acquiring such knowl-
edge necessitates language-specific analyses, which poten-
tially compromises the extensibility.

To address these challenges, we developed POLYFUZZ, a
novel greybox fuzzer that achieves holistic fuzzing of multilin-
gual code. POLYFUZZ realizes whole-system code coverage
measurement and feedback to guide seed scheduling in a
systematic fashion. More importantly, it starts with a seed
generation phase to overcome the common scarcity of initial
seeds (especially in multi-language systems as we found).
During this phase, POLYFUZZ exploits a sensitivity analy-
sis to explicitly model the semantic relationships between
(various segments of) inputs and branch predicates based on
regression. It then proceeds to conventional fuzzing and adap-
tively switches back to seed generation when necessary. In
this way, POLYFUZZ achieves holistic fuzzing while being
aware of cross-language information flow, hence addressing
Challenge-1. To maximally support different language com-
binations, POLYFUZZ employs a minimal language-specific
analysis for holistic coverage measurement and harvesting
only the variable values necessary for learning the regres-
sion model. This is enabled by a custom intermediate rep-
resentation (IR) that unifies run-time value probing across
heterogeneous languages, which makes the rest (and most) of
POLYFUZZ language-agnostic, addressing Challenge-2.

We have implemented POLYFUZZ based on AFL++ [16]
and applied it to 15 real-world multi-language systems, in-
cluding both Java-C and Python-C benchmarks to demon-
strate its extensibility to support different language combi-
nations. Without existing multi-language fuzzers available,
we compare POLYFUZZ against three state-of-the-art single-
language fuzzers (Honggfuzz [65] for C, Jazzer [11] for Java,
and Atheris [22] for Python) as baselines. Our results show
that, with the same 24-hour time budget and same initial seeds,
POLYFUZZ achieved 25.3% and 52.3% higher block coverage

and found 1, 10 more bugs than Jazzer and Atheris, respec-
tively, which justifies the necessity of holistic fuzzing and
insufficiency of trivially applying single-language fuzzing
against multilingual code. Notably, POLYFUZZ enabled dis-
covery of 12 new multilingual vulnerabilities and 2 new
single-language vulnerabilities with 5 CVEs assigned, of
which 2 have been fixed by developers by the time of paper
writing. We also demonstrated comparable or even greater
cost-effectiveness of POLYFUZZ over the three baseline
fuzzers against commonly used single-language benchmarks,
and validated the significant contribution of its sensitivity-
analysis-based seed generation module to its overall perfor-
mance superiority. On these single-language benchmarks,
POLYFUZZ achieved 11.0%, 20.1% and 10.1% higher block
coverage than Jazzer, Atheris, and Honggfuzz, respectively;
POLYFUZZ also achieved 7.6% and 11.4% higher block and
path coverage, respectively, than AFL++.

To the best of our knowledge, POLYFUZZ is the first holis-
tic multi-language fuzzer. Its open-source, extensible de-
sign also facilitates the development of greybox fuzzing of
other language combinations beyond those among Java, C,
and Python. Importantly, we note that the lack of multilin-
gual fuzzing benchmarks was a tremendous barrier to our
evaluation—in contrast, there are standard single-language
fuzzing benchmarks available for existing fuzzers to use.
Thus, we also contribute to the community with the first bench-
mark suite for multilingual fuzzing. The POLYFUZZ source
code and this suite have been made available at Figshare.

2 Background and Motivation

In this section, we give a brief background of greybox fuzzing
and discuss various challenges to fuzzing multi-language soft-
ware, hence motivating our work with a real-world example.

2.1 Greybox Fuzzing
Greybox fuzzing [6, 16, 46, 49, 61] perform lightweight static
or dynamic analysis on the targets and/or gather execution
feedback (e.g., coverage) to guide seed selection and/or mu-
tation [20, 45]. The general workflow of greybox fuzzing is
a loop as follows. The fuzzer (1) maintains a seed queue Q,
which can be updated during fuzzing; (2) selects some seeds
from Q following a certain policy; (3) mutates the seeds in
various ways (e.g., bit/byte flips, simple arithmetics, stacked
tweaks and splicing [45]); (4) run the target program with
the newly generated test cases, and reports vulnerabilities or
updates Q if necessary; and (5) goes back to step (2).

Although greybox fuzzing has become quite popular with
its high efficiency, the latest research indicates that more than
91.7% executions in the state-of-art fuzzing process are redun-
dant due to the unreachable inputs [79]. Various techniques,
such as data-flow-sensitive fuzzing and deep-learning guided
mutation, have been proposed to remedy the problem.

1380 32nd USENIX Security Symposium USENIX Association

https://figshare.com/s/8ba4650e3248197fd756

GifImageFile

PyImagingNew

PyImaging_XbmDecoderNew

PyImaging_GifDecoderNew

……

Image.Parser

ImageDraw.Draw……

Image.save

Image.fromaryPython
28 APIs

C
117 APIs

p1 GifImageFile -> decode:
p2 s = self.fp.read(1)
p3 if s[0] == 249: proc1 ()
p4 elif s[0] == 254: proc2 ()
p5 elif s[0] == 255:
p6 s = self.fp.read(9)
p7 x1, y1 = i16(s, 4), i16(s, 6)
p8 if (x1 > 65536 or y1 > 256) :
p9 bomb_check()
p10 decode (s, x1, y1)
p11 …….

c1 ImagingNewDIB(char* mode,int x, int y) {
c2 if (x > (INT_MAX / 4) - 1) { …… }
c3 if (mode[0] == ‘1’) { …….}
c4 else if (mode[0] == ‘P’) { …… }
c5 else if (mode[0] == ‘L’) { …… }
c6 else if (mode[0] == ‘F’) { …… }
c7 else if (mode[0] == ‘I’) { …… }
c8 else { …… }
c9 image = calloc(x*y);
c10 …….
c11 }python C

Pillow

60%

39%

Figure 1: Motivating example: a real-world multilingual program Pillow.

2.2 Fuzzing Multi-Language Systems
Greybox fuzzing has demonstrated high effectiveness in ex-
posing vulnerabilities in real-world programs [46]. Excel-
lent fuzzers such as AFL [49] and libFuzzer [43] have suc-
ceeded in detecting more than 16K vulnerabilities in various
projects [45]. However, to the best of our knowledge, state-
of-the-art fuzzers target single-language code [46]; while in
modern software development, the status is that 80%+ of the
studied projects are programmed in multiple languages [1].
Applying these single-language fuzzers to multilingual code
suffers various limitations as follows, among others:

• Feasibility for different languages. In general, the interfaces
between different languages in multi-language software are
complex and diverse. Thus, run-time input formats vary
across language units and APIs. As a result, it is not always
feasible in practice to construct proper calling contexts and
fuzzing instances for all APIs. As an example shown in
Figure 1, after analyzing 28 Python APIs and 117 C APIs
in Pillow [56], we found that the input format and calling
context of these APIs are diverse. Thus, to fuzz the language
units separately in Pillow, we need to develop 28 fuzzing
drivers for the Python unit and 117 for C. These drivers are
expensive to develop and maintain, and require substantial
computing resources to run them.

• Inefficiency due to incomplete feedback. When fuzzing a
multilingual program, single-language fuzzers can fail to
evolve the fuzzing process due to the lack of holistic cov-
erage feedback. For example, when fuzzing Pillow of Fig-
ure 1, a Python fuzzer would treat the C units (which ac-
count for 39% of the system in code size) as black boxes,
failing to perceive the coverage changes in these units. With-
out the holistic feedback, the fuzzer suffers inefficiency.

• Reproducibility of vulnerabilities. Simply fuzzing language
units separately may lead to semantic loss between units
due to the looser constraints than the whole system execu-
tion. For example, as shown in Figure 1, when a C fuzzer
fuzzes the API ImagingNewDIB, since only variable x is
validated at line c2, an Out of Memory (OOM) can happen
at line c9 if the value of x×y is large enough during fuzzing
mutation. However, this report is a false positive since a

bomb check exists at line p9 in Python on the complete data
flow path. Hence, vulnerabilities detected by such fuzzers
may fail to be triggered in actual executions.

These drawbacks of single-language fuzzers motivate us to
develop a cross-language fuzzing technique, achieving holis-
tic, whole-system fuzzing (WSF). However, although WSF
can solve the problems discussed above, it faces another in-
efficiency challenge. As shown in Figure 1, compared with
either a Python or C fuzzer, the WSF fuzzer spends more
time on executions due to the whole-system instrumentation
(both Python and C units); moreover, per our experience, the
scarcity of initial seeds (for exercising cross-language behav-
iors) is a peculiar barrier to multilingual greybox fuzzing,
albeit quality seeds are essential for both multilingual and
single-language fuzzing. Prior work shows that random mu-
tation guided by control flow coverage causes over 91.7%
redundant inputs [79]—this ratio was up to 95% in our exper-
iments with multilingual fuzzing due to the much higher code
complexity. For the code snippets in Figure 1, three variables
(i.e., s[0], x1 and y1) control all the branches in Python and
two variables (i.e., mode[0] and x) in C. These variables are
reachable during the runtime executions, but it is hard to mu-
tate them to expected values (e.g., let input[0]=249) randomly.
To hit or reverse these branches, WSF needs more precise
guidance to mutate specific positions (where) in the inputs. In
this example, we may first identify that s[0] is the first byte
of input, and x1 is extracted from the 1st to 4th byte. Then,
we can mutate these positions into specific values (how) (e.g.,
let input[0]=249,254 or 255) to cover all the blocks quickly.
Some form of cross-language information flow analysis is
necessary to support this kind of precise mutation.

Based on all the observations above, we propose a cross-
language fuzzing framework POLYFUZZ to enable efficient,
holistic fuzzing of multi-language systems.

3 The POLYFUZZ Framework

In this section, we present the design of our multilingual
fuzzing framework, starting with an overview (§3.1) of
POLYFUZZ followed by the details of its three main mod-

USENIX Association 32nd USENIX Security Symposium 1381

https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow

Phase 3: Core fuzzing

Phase 2: Sensitivity analysis & seed generation

POLYFuzz
Inputs

Phase 1: Static analyses & instrumentation

Instrumentation guidance computation

mode
switching

Potential
vulnerabilities

POLYFuzz
Outputs

1.1

1.2

1.3IR translation Static/dynamic instrumentation

constant branch constraints instrumentation guidance

the only
language-specific

analysis

per-function IR

initial
seeds for P

Dynamic event monitoring

Instrumented multilingual
program P’

shadow

event

queue
Seeds

branch variables covered

Seed partitioning and sampling

Conventional
fuzzing

Multilingual program P
…C unit Python unit Java unit

branch variable values

Branch-input
regression modeling

for training

for prediction

seed block
values

Seed
generation

Fuzzing mode

Learning mode m
u

ta
te

d
 s

ee
d

s

2.1

2.2 2.3 2.4
(seed block, branch variable)

Figure 2: An overview of POLYFUZZ’s architecture, including its inputs, three working phases and per-phase steps, and outputs.

ules/phases: static analysis&instrumentation (§3.2), sensitiv-
ity analysis&seed generation (§3.3), and core fuzzing (§3.4).

3.1 Framework Overview
As depicted in Figure 2, the framework takes two POLYFUZZ
Inputs: (1) the multilingual program P under testing, includ-
ing various language units, and (2) the set of existing test
inputs for P used as the initial seeds for fuzzing.

With these inputs, POLYFUZZ works in three key phases.
In Phase 1, it translates each language unit of P to a custom,
language-independent intermediate representation for each
function (per-function IR). During this translation, constant
branch constraints (i.e., constants in a branch predicate) are
also extracted to support seed generation later on. Based on
such per-function IRs, basic blocks and branches therein if
any (together noted as instrumentation guidance) to probe for
are computed to guide the instrumentation of P. The main
goals of this phase are to (1) enable whole-system coverage
measurement hence lay the basis for holistic fuzzing, while
minimizing the probing scope hence instrumentation-induced
overhead, and (2) minimize language-specific analysis hence
maximize the language extensibility of multilingual fuzzing.
As marked, only the IR translation and instrumentation are
language-specific, making the rest of the framework language-
independent—the purpose of the IR and the translation.

With the instrumentation program P′, POLYFUZZ focuses
on generating more seed inputs in Phase 2, working between
two modes. It starts in the Fuzzing mode, in which it informs
the core fuzzing (Phase 3) to run P′ against the initial seeds.
Meanwhile, it monitors the dynamic events (i.e., coverage info
and values of covered branch variables) that are pushed to a

shadow-memory based queue (noted as shadow event queue)
by probes inserted in Phase 1. From these events, if it finds
newly covered branch variables, it pauses the core fuzzing and
switches to Learning mode. In this mode, POLYFUZZ learns
a regression model that captures the semantic relationship
between branches and inputs via a sensitivity analysis. This is
done by retrieving the mutated seeds (from the core fuzzing)
that led to the new coverage and partitioning each seed into
seed blocks (a sequence of bytes of a specified length), fol-
lowed by (randomly) sampling (i.e., via mutation) possible
values of each seed block. Meanwhile, it invokes the same dy-
namic event monitoring step to harvest branch variable values
observed during the seed sampling.

Once the sampling is done, the core fuzzing is informed
to resume and POLYFUZZ switches back to Fuzzing mode
while continuing in the Learning mode (in parallel). On
the resulting values for each (seed block, branch variable)
pair, a regression model is trained. At the model inference
time, new branch variable values are sampled (to cover both
outcomes of each related branch) by expanding the related
constant branch constraints, and used as model test inputs to
predict respective seed block values. These predicted values
are then used to generate new seeds, which are added to the
seed corpus feeding the core fuzzing. Any seeds covering
new branch variables during the (parallel) Fuzzing mode
while the current Learning mode is ongoing are cached for
later/queued processing.

In Phase 3 (core fuzzing), the fuzzer core of POLYFUZZ
runs a path-coverage guided conventional fuzzing algorithm.
When triggered, potential vulnerabilities, along with the trig-
gering seeds, are reported as POLYFUZZ Outputs for bug
confirmation and reproduction.

1382 32nd USENIX Security Symposium USENIX Association

3.2 Static Analysis & Instrumentation (Phase 1)
To fulfill its two main goals (§3.1), this phase works in three
technical steps as described in the following three subsections.

3.2.1 IR Translation (Step 1.1)
Per its overall workings, POLYFUZZ requires sufficient but
minimal probing for (1) the coverage of basic blocks hence
that of distinct program paths, as the basis of holistic fuzzing,
and (2) the definitions of branch variables, as needed for the
sensitivity analysis. To that end, both control and data flow
analyses are necessary, which are heavily specific to different
languages hence compromising the framework’s extensibil-
ity to support other languages. To overcome this challenge,
we propose a new custom IR to enable unified (language-
independent) analyses to meet both probing requirements.
Since it is particularly needed for making the sensitivity anal-
ysis (SA) extensible, we refer to the IR as SAIR.

SAIR Definition. Unlike a typical IR (e.g., as used by a com-
piler), SAIR is an IR specialized for only capturing the most
essential information for fuzzing, rather than representing the
entire program. As per the two requirements above, SAIR
focuses just on basic blocks and the definitions of branch
variables. Accordingly, the formal syntax of SAIR is:

P ::= F∗

F ::= τ f (x∗)S∗

S ::= [x =]e∗ | [cmp]e∗,e∗

e ::= τx |C | ε
τ ::= I | O

A program P is a sequence F∗ of function definitions. A func-
tion F has the return type τ, function name f , a sequence x∗ of
parameters, and a sequence S∗ of statements. The return type
τ of f is one of two kinds: integer (I) and other (O)—because
our current sensitivity analysis only fits regression models
for integer variables; learning such models for other types of
values are left for future work. Thus, we only differentiate
integer or not as value types. A statement S is one of two
kinds: line ([x =]e∗) formulates all non-comparison (e.g., as-
signment, call, and return) statements; and cmp ([cmp]e∗,e∗)
defines a predicate (i.e., the comparison between two vari-
ables). An expression e is one of three kinds: a variable x with
type τ, a constant C, and ε (empty string). All our control/data
flow analyses based on SAIR are intraprocedural. Thus, SAIR
treats all line statements as assignments.

Translation. Based on the definition, a language unit is trans-
lated to its SAIR via simple syntactic parsing of the unit, one
function at a time, as outlined in Algorithm 1. For a given
function, it first translates the declaration (line 2), followed by
traversing all of its basic blocks (lines 4-15). For each basic
block, the translator records the information of all its ances-
tors and descendants for control flow graph construction. In a
basic-block, the translator parses one statement after another
(lines 6-15). For a predicate statement (line 9), it decodes the

Algorithm 1: Translate a given function to SAIR
Input: F: a given source function
Output: Fsair : the SAIR of F

1 Function translate2SAIR (F)
2 Ssair ← getFDeclaration (F); //translate function declaration

3 Fsair .append (Ssair);
4 foreach Bi in F do
5 Bsair ← initBlock (Fsair , Bi) ; //initialize current basic-block

6 foreach Si in Bi do
7 if is_cmp (Si) then
8 _, Uses = getDefUse (Si);
9 Ssair ← getCmpSAIR (Uses[0], Uses[1]);

10 if hasIntConstant (Si) then
11 dumpBrVariable (Si);//dump branch variables with int const

12 else
13 Def, Use = getDefUse (Si);
14 Ssair ← getLineSAIR (Def, Use);
15 Bsair .append (Ssair); //insert Ssair to current basic-block

16 return Fsair

uses and constructs a cmp statement in SAIR; if this predicate
has an integer constant, the branch variable information (i.e.,
its unique identifier, operator type such as ’less than’, and the
constant value) is recorded (line 11). Other source statements
are translated to line statements. Since other code constructs
are not needed for either of the two probing requirements,
which SAIR serves, they are dropped during the translation.

1 int func(int argc){
2 char *T;
3 int x = argc;
4 if (x == 1){
5 T = “1”;
6 } else {
7 if (x > 2) {
8 T = “2”;
9 else {
10 T = “0”;
11 }
12 }
13 return atoi(T);
14 }

1 I func (I arg){
2 O T;
3 I x = argc;
4 cmp eq: x, 1
5 { T = “1” }
7 cmp gt: x, 2
8 { T = “2” }
10 { T = “0” }
13 atoi (T)

SAIR

B1
3 O T;
4 I x = argc;
5 cmp eq: x, 1

B2
5 T = “1”

B3
7 cmp gt: x, 2

B6
13 atoi (T)

B-CFGsource

B4
8 T = “2”

B5
10 T = “0”

Figure 3: An illustration of translating a language unit source
to its SAIR and then to the block-level CFG (B-CFG).

As an example, Figure 3 shows the translation of a source
program to its SAIR, and then to its block-level control flow
graph (B-CFG). At line 2, the (non-integer) type of variable
T is translated to type O. At line 4, the predicate statement is
translated to a cmp statement with the operator type eq and
two parameters x and 1. The original return statement at line
13 is translated to a line statement without left value; so on and
so forth. During the translation, the basic-block information is
saved; hence SAIR can be easily further translated to B-CFG,
as exemplified in the rightmost of Figure 3.

3.2.2 Instrumentation Guidance Computation (Step 1.2)
Based on the SAIR for each function, the next step is to com-
pute instrumentation guidance (i.e., which basic blocks and
branch variables should be probed for) through intraprocedu-
ral control and data flow analysis.

Algorithm 2 shows the procedure for computing minimal
instrumentation sites for a given SAIR function F. First, the

USENIX Association 32nd USENIX Security Symposium 1383

Algorithm 2: Compute instrumentation guidance
Input: F: a given function in SAIR
Output: Sinstr : a set of (SAIR) statements to be instrumented

1 Function instrguideComputation (F)
2 CFG← getFCfg (F); //get function CFG

3 DomBB← calDomofBB (CFG); //compute dominance on CFG

4 PDomBB← calPostDomofBB (CFG); //compute post-dominance on CFG

5 SBB ← φ;
6 foreach basic block Bi in F do
7 if isEntry (Bi, F) then
8 SBB.append (Bi) ; //the entry block should always be instrumented

9 else
10 if isFullDominator (Bi, DomBB) ||

isFullPostDominator (Bi, PDomBB) then
11 continue;
12 SBB.append (Bi) ; // non-(post)dominators should be instrumented

13 SBV ← calReachability (CFG);//calculate instrumentation sites for branch variables

14 Sinstr ← merge (SBB, SBV);
15 return Sinstr

control flow graph (CFG) of F is constructed (line 2). Next,
dominance and post-dominance relationships between basic
blocks in the CFG are computed (lines 3-4). For each basic
block (lines 6-12), whether it should be instrumented (added
to SBB) depends on whether it affects control-flow-path dis-
tinction. As per this rationale, the entry block of CFG must be
instrumented hence added to SBB. Otherwise, if a block dom-
inates all its immediate descendants (i.e., a full dominator),
it does not need be instrumented as it would not affect path
distinction on the CFG; same if it is a full post-dominator.
Then, a definition set of all branch variables (SBV) is computed
via a data flow (reachability) analysis [26]. Finally, Sinstr is
obtained by merging SBB and SBV , and returned as output.

To illustrate Algorithm 2, Figure 3 (rightmost) marks with
a red boundary the blocks (Sinstr) that should be instrumented.
To compute Sinstr, we first compute SBB (lines 6-12). Specif-
ically, (1) B1 is the entry block, hence SBB = [B1]; (2) B2
is not a full (post-) dominator, hence SBB = [B1,B2]; (3) B3
dominates both B4 and B5 (i.e., full dominator) thus it needs
no instrumentation; so SBB = [B1,B2]; (4) both B4 and B5
are not full (post-) dominators, hence SBB = [B1,B2,B4,B5];
(5) B6 post-dominates all its ancestors B2, B4, B5 (i.e., a
full post-dominator); so now SBB = [B1,B2,B4,B5]; To val-
idate SBB, we traverse the CFG to obtain all three paths
{B1B2B6,B1B3B4B6,B1B3B5B6}. Now we remove the two
full (post-) dominators (B3, B6) from these paths and get
{B1B2,B1B4,B1B5}, which still distinguishes the same three
paths. Thus, SBB is validated. Then, we compute SBV =
[B1@s4] where s4 is the definition of branch variable x used
in {B1@s5, B3@s7}. Lastly, by merging SBv and SBB, we
have Sinstr = [B1@s4,B2,B4,B5] to guide instrumentation.

3.2.3 Static/Dynamic Instrumentation (Step 1.3)

In this step, POLYFUZZ instruments at the basic blocks in the
instrumentation guidance and probes for values of branch vari-
ables in those blocks. This is done via static instrumentation
for each compiled-language (e.g., C) unit, and dynamic in-
strumentation for an interpreted-language (e.g., Python) unit.

3.3 Sensitivity Analysis & Seed Generation
(Phase 2)

A general challenge to greybox fuzzing lies in the lack of
sufficient and quality seeds [8, 71, 77]. Our experience is that
this challenge is even greater with real-world multi-language
systems in the wild. POLYFUZZ addresses this challenge via
Phase 2, which works in four steps as elaborated below.

3.3.1 Dynamic Event Monitoring (Step 2.1)
Per its overall working (§3.1), Phase 2 starts with the Fuzzing
mode. While in this mode, the core fuzzing runs the instru-
mented program P′, producing dynamic events as probed in
P′ and placing them in the shadow event queue. Specifically,
each dynamic event consists of the identifier and value of a
branch variable covered during the fuzzed execution of P′.
The dynamic event monitor here first fetches events from the
queue and put them to a memory database; then, it determines
newly covered branch variables by checking any change of
the database. If a change is identified, the framework switches
to Learning mode, performing the following three steps.

The rationale for this switch is as follows. As illustrated in
our motivating example (§2), a branch variable can be used at
different branches. When a current (mutated) seed has (newly)
covered a branch variable, we want to take the opportunity to
exercise as many branches that use the variable as possible by
satisfying the branch constraints. The goal of the Learning
mode is to find new seeds that satisfy those constraints.

3.3.2 Seed Partitioning and Sampling (Step 2.2)
To better find new seeds, we need a finer control of where
and how to change the current ones (i.e., the mutated seeds
that just covered new branch variables). Thus, instead of just
treating a seed as one single-byte stream [20], we propose to
partition it into a stream of seed blocks, each being a sequence
of bytes of equal lengths. In particular, we select block sizes
such that typical lengths of an integer (1, 2, 4, 8, 16-byte) are
all covered. This partitioning also increases the chance of
making more meaningful changes to the seed in spawning new
ones. The rationale is that an (e.g., integer) branch variable
may influence the branch outcome more likely via a block
(of various sizes) than via a single byte of the (seed) input.
Our empirical results validated this design: on average over
our studied benchmarks, the dominating portion (68.3%) of
the seeds generated by POLYFUZZ was learned with the seed
block size of 4-byte, 9.1% with 1-byte, and 22.6% with 2-
or 8-byte. That is, different seed-block sizes have different
impact on seed quality; thus, considering multiple common
sizes is justifiable and useful.

After the seed partitioning, POLYFUZZ samples the value
space of each seed block (given its potentially infinite size)
by (1) randomly mutating its current value, (2) executing P′

against the mutated value—not via the core fuzzing, and (3)
observing the values of branch variables—again via the dy-
namic event monitoring (Step 2.1). This sensitivity analysis

1384 32nd USENIX Security Symposium USENIX Association

Algorithm 3: Seed partitioning and sampling
Input: P: the instrumented program
Input: S: a seed that has triggered new coverage of branch variables
Input: L: list of preset values of block length, e,g, {1, 2, 4, 8}
Input: N: the target number of samples for each seed block
Output: SBPlists: lists of (seed block, branch variable) values, one list per SBP

1 Function seedPtSampling (P, S, L, N)
2 SBPlists ← φ;
3 foreach Li in L do
4 Pos← 0;
5 while Pos+Li <length (S) do
6 SBi ← S [Pos : Pos+Li]; //extract a block with length Li
7 Ns ← 0;
8 while Ns <N do
9 S

′ ← randMutate (S, SBi); //mutate SBi and spawn a new seed S
′

10 execute (P, S
′
); //execute P with new seed S

′

11 BVlist ← collectBrValues ();
12 updateSbBvPairs (SBPlists, SBi, BVlist);
13 Ns ← Ns +1;
14 Pos← Pos+Li;
15 return SBPlists

Algorithm 4: Branch-input regression modeling
Input: PC: preset parameter combinations of candidate types of models
Input: SBPvals: a list of values of the given SBP
Input: BVset : a set of constraint constants for the branch variable (in the SBP)
Output: Ssb: a set of values of the seed block in the given SBP

1 Function regressionModeling (PC, SBPvals, BVset)
2 RMlist ← {rb f , polynomial, linear}; //initialize regression model list

3 Accopt ← 0; //initialize the accuracy as 0

4 Rmopt ← φ;
5 Train, Test ← split (SBPvals); //80% for training and 20% for testing/inference

6 foreach RM[i] in RMlist do
7 Rmi, Acci ← getModel (PC, RM[i], Train, Test);
8 if Acci > Accopt then
9 Accopt ← Acci;

10 Rmopt ← Rm; //selected the optimal RM

11 Ssb ← predict (Rmopt , BVset)
12 return Ssb

13 Function getModel (PC, RM[i], Train, Test)
14 Acci ← 0;
15 Rmi ← φ;
16 foreach pc in PC[i] do
17 rm← trainModel (RM[i], pc, Train); //train a model for each pc

18 res← predict (rm, Test);
19 acc← calAccuracy (res, Test);
20 if acc > Acci then
21 Acci ← acc;
22 Rmi ← rm
23 return Rmi, Acci

results in a list of (seed block, branch variable) pair (SBP) val-
ues, which are stored in the aforementioned memory database.

Algorithm 3 shows the procedure for seed partitioning and
SBP sampling. It takes 4 inputs: the instrumented program P,
a seed S, a preset list L of partition lengths, and the number N
of samples targeted per seed block. For each partition length Li
(line 3), the seed is randomly mutated N times, block by block
(lines 5-14). Specifically, when sampling for each block SBi
(lines 9-12), a new seed S

′
is spawned by randomly mutating

S at SBi; after executing P with the resulting seed S
′
, all branch

variables covered in the execution are collected and put into
BVlist ; then the output lists SBPlists of SBP values are updated
to include the (SBi, BVlist) values.

3.3.3 Branch-Input Regression Modeling (Step 2.3)
To generate effective new seeds that immediately feed the core
fuzzing, we fit a function approximating the semantic compu-

tation between program inputs and branch variables, followed
by inferring the input values that are needed for exercising the
branches in both directions according to the fitted function.
This is done by, for each SBP (sbi,bri), first training a regres-
sion model on all the values (in the current memory database)
of this SBP to capture the association between bri and sbi.
Then, new fuzzing seeds are generated from the values of sbi
predicted by the trained model, against new values of bri sam-
pled by expanding the constraint constants (extracted during
Phase 1) at the branches that use bri. Algorithm 4 shows the
regression modeling process, including model training, model
selection, and model prediction/inference, for each SBP.

The algorithm takes preset parameter combinations of can-
didate types of regression models (e.g., rbf, linear), values of
a given SBP, and expanded constraint constants for the branch
variable in the SBP. Given a branch predicate bv op c that uses
a branch variable bv and a constraint constant c, where op is
the operator, the constant expansion is done by sampling two
bv values such that one satisfies the constraint (i.e., making
the predicate true) and the other failing the constraint hence
falsifying the predicate, according to what op is.

First, the list of three model types considered is initialized
as RMlist (line 2). Next, all the current values of the SBP are
split (line 5) such that 80% are used as training data (Train)
and the remaining 20% as test data (Test). For each candidate
type, multiple models with the preset parameter combinations
are trained on Train. Then, the model of the best accuracy
against Test is selected for the current type (lines 13-23).
Further, an optimal model Rmopt is selected also by accuracy
among the three model types (line 10). Finally, new values
of the SBP’s seed block are predicted by Rmopt against the
relevant constraint constants.

Given the diversity of program behaviors, the semantic
relationships between the branch variables and seed blocks
may follow a single pattern. Thus, we consider the three com-
monly used types of regression models and for each model
explore different model parameter settings, so as to learn the
best (most-accurate) model particularly for each program un-
der test. Nevertheless, the learning can still fail (e.g., when
the semantic relationships cannot be captured by a regression
model indeed). In such failure cases, the predicted values, and
the subsequently generated new seeds, will not be fruitful.

3.3.4 Seed Generation (Step 2.4)
In the last step of Phase 2, POLYFUZZ generates new fuzzing
seeds by assembling the seed blocks that now have new values
returned by the regression modeling (Step 2.3).

Consider a seed SD that consists of n seed blocks sb0,
sb1, ..., sbn each having a possibly large number x, y, ...,
and z of values, respectively, as illustrated in Figure 4. The
block without any predicted values just carries the single
original seed value at that block. Then, each assembled
value of SD can be formulated as a seed-block sequence
SD = {sb0[k]sb1[m]...sbn[o]}, where k, m, o are value indices.

USENIX Association 32nd USENIX Security Symposium 1385

V00

V01

V0x

V0...

V10

V11

V1y

V1...

Vn0

Vn1

Vnz

Vn...
...

sb0 sb1 ... sbn

S E

Figure 4: The graph representation of a seed.

Generally, the combinatorial space could be vast (a size of
x×y× ...× z); thus, efficiently assembling seeds is not trivial.

To address this issue, we reformulate the seed generation
as a path construction problem. For a given seed, we first
represent the seed blocks with values as a directed graph,
where the (dummy) entry and exit nodes S and E are added for
convenience (see Figure 4). Every value at a seed-block slot
is a graph node, and the edges connect the blocks following
the order in which they are originally located in the seed.
Then, a seed-block sequence for an assembled seed value
is equivalent to a graph path between S to E (with these
two dummy nodes excluded). Based on these formulations,
efficient seed generation works in the following two sub-steps.
Weighted sampling. Instead of exhaustively considering all
possible C combinations of seed-block values, we propose
weighted sampling a subset of values for each seed block, with
the weight assigned as the number of branch variables covered
by (any value of) the block. The rationale is straightforward—
given a limited budget number M (<C) of combinations (i.e.,
generated seeds), it is desirable to prioritize the ones that
led to higher coverage of branch variables (hence potentially
higher branch/path coverage) by sampling more values for
higher-coverage blocks. Specifically, for a seed block sbi, the
number SNi of values to be sampled is calculated as follows:

(1) SNavg = power(M, 1
N′
)

(2) Wi = Nbvi / ∑
n
j=1 Nbv j

(3) SNi =

{
SNavg +(Nbvi−SNavg)×Wi Nbvi ̸= 0
1 Nbvi = 0

where Nbv j denotes the number of branch variables that a
seed block sb j covers. Let N

′
be the number of seed blocks

that cover at least one branch variable (i.e., Nbv ̸= 0). First,
an average sampling size SNavg is calculated in (1). Then in
(2), the block sbi’s weight Wi is computed as the proportion
of branch variables covered by any value of this block to
those covered by any value of any block. Finally in (3), SNi
is calculated by either increasing or decreasing the average
(SNavg) sampling size according to the weight when Nbvi ̸= 0.
When Nbvi = 0, as we discussed above, we assign the block
with the original seed value at that block hence setting SNi
always as 1. Then, SNi values are randomly selected for sbi.
Of course, when M ≥C, this sub-step is skipped.
Path construction. Now with under-sampled (when neces-
sary) values for each seed block, seed assembling is achieved
via depth-first traversal on the seed graph, by invoking the

Algorithm 5: Path construction for seed assembling
Input: SBL: the list of seed blocks to be assembled
Input: SNL: the list of weighted sampling sizes for SBL
Input: p: current path in construction
Input: d: current depth of the path p
Output: PL: the list of resulting paths (assembled seeds)

1 Function getPathByDF (SBL, SNL, p, d)
2 SNd ← SNL[d]; //get weighted sampling number for block d

3 SBV ← randomSampling (SBL[d], SNd); //sampling SNd seed block values

4 foreach v in SBV do
5 p[d]← v; //insert v to the position d of p

6 if d == SBL.size then
7 insert (PL, p); //a full path generated

8 else
9 getPathByDF (SBL, SNL, p, d +1); //recursively process to depth d+1

10 return PL

1 void demo(byte in[16]){
2 int do = in[0]
3 instrument (do)
4 if (do < 16) {
5 do_onething (in)
6 }
7 else {
8 int sn = in[2]*2
9 instrument (sn)
10 if (sn == 256) {
11 do_other (in)
12 }}}

31 0 16 ... 84 ...

branch variables
& related constraint

constants

original seed

do:lt:16
sn:eq:256

do:0,32
sn:256,0

constant expansion

in[0] ← do
in[2] ← sn/2

seed sampling +
regression modeling

0,32 0 128,0 ... 84 ...
1-byte

seed block
sequence

0 0 128 ... 84 ...
0 0 0 ... 84 ...

32 0 128 ... 84 ...
32 0 0 ... 84 ...

prediction

new
fuzzing
seeds

generated

seed generation

seed
partitioning

Figure 5: An example illustrating Phase 2.

procedure of Algorithm 5 (with d = 1,p={}). For the cur-
rent depth d, the algorithm first obtains the pre-calculated
weighted sampling size (SNd), followed by randomly sam-
pling SNd seed-block values (SBV) (line 3). Then, it iterates
all the values in SBV (lines 4-9). Specifically, for each value
v, it is inserted to the current path p at slot d; if the itera-
tion reaches the exit node (at the max depth SBL.size), a new
full path is generated and added to PL (line 7); otherwise it
recursively runs the procedure to the next depth d +1(line 9).

To illustrate Phase 2 as a whole, consider the example
of Figure 5. Two branch variables (i.e., do and sn) are in-
strumented at their definition sites. After seed partitioning
(for block size=1) and sampling, the regression modeling
learns models each for one SBP, of which two are shown here:
in[0]← do and in[2]← sn/2—each model approximates a
function mapping a branch variable to a seed block in an SBP.
Then, the constraint constants for the two branch variables
are expanded according to the operator type (e.g., less than
(lt), equal (eq)). In particular, the constant 16 for the branch
variable do is expanded to two values of do: 0 which satisfies
the constraint hence makes the branch predicate true and 32
in the other direction. Similarly, sn also obtains two values
(i.e., 256, 0). Next, the learned functions take the values of do
to predict values of seed block in[0] while using the values of
sn to predict values of the seed block in[2]. Finally, applying
Algorithm 5 on the block sequence leads to four new seeds.

1386 32nd USENIX Security Symposium USENIX Association

IGC DynTrace SASG

Language specific analysis and Instrumentor

Language Interfacing AFL++

SAIR Parser

Figure 6: An overview of POLYFUZZ’s implementation.

3.4 Core Fuzzing (Phase 3)
In this phase, when the fuzzing is activated (i.e., the Fuzzing
mode of Phase 2 is alive), POLYFUZZ runs the conventional
fuzzing (including seed selection, mutation, and bug report-
ing) algorithm. With all the basic block information of dif-
ferent language units mapped to the same shared memory
byte-map, POLYFUZZ calculates the block and path coverage
without knowing about the languages used in the program
under test, making the core fuzzing language-agnostic.

To coordinate between Phase 2 and Phase 3, POLYFUZZ
includes a submodule in the core fuzzing module to control
the fuzzing to start, to either become/stay idle or active, or to
load new seeds for the next fuzzing iteration.

4 Implementations and Limitations

We have implemented POLYFUZZ to support programs devel-
oped in one or more of three popular languages: Python, Java,
and C. Figure 6 shows the key components of POLYFUZZ.
It has a common C component for static analysis and in-
strumentation, including three basic libraries: SAIR parser,
instrumentation guidance computation (IGC), and DynTrace.
The language-specific analysis layer can use these libraries
through the wrapper in the language interfacing layer. It also
has a component for sensitivity analysis and seed genera-
tion (SASG) which realizes Phase 2. For the core fuzzing
(Phase 3), POLYFUZZ uses AFL++ [16] as its fuzzing core.
The entire implementation includes 12KLoC (0.6 KLoCfor
Java, 1.2 KLoCfor Python, and 0.3KLoC for C). Further de-
tails on the implementation can be found in Appendix A.

4.1 Supporting Other Languages
The lighter-weight, fuzzing-specific custom IR (i.e., SAIR),
which only requires minimal language-specific analysis and
instrumentation, makes the rest of POLYFUZZ language-
independent, hence allowing for the meritorious extensibility
of POLYFUZZ in terms of supporting other languages and
language combinations. In particular, given a new language to
support, only the language-specific analysis and instrumentor
as shown in Figure 6 need to be added, as elaborated below.
Language-specific analysis. The goal of this analysis is
SAIR translation for the new language. Based on its def-
inition (§3.2), the translator summarizes the type of each
variable (Integer vs. Other) on each statement while par-
ticularly identifying branching statements and branch vari-

ables. Thus, programs of imperative languages (e.g., Ruby
and Javascript) can be readily translated to SAIR hence sup-
ported by POLYFUZZ with the support of a respective parser
(e.g., tree-sitter-ruby [67], tree-sitter-javascript [66]), while
declarative languages (e.g., SQL, HTML) may not. As a ref-
erence, for the implementation of POLYFUZZ we use around
150 lines of code to translate Java to SAIR.
Language-specific instrumentor. With the instrumentation
guidance computed by the (language-independent) IGC mod-
ule based on the SAIR translation, the language-specific in-
strumentor for the new language probes for basic blocks and
branch variables. As a reference, in POLYFUZZ the instru-
mentor for Java is implemented in around 80 lines of code.

4.2 Limitations
To ensure a pure run-time environment for each execution of
the fuzzing target, POLYFUZZ always works in non-persistent
mode [16], in which POLYFUZZ forks a new process for
each fuzz execution. This kind of implementation makes
POLYFUZZ easy to use and stable, since users need not con-
sider whether the target is stateless and POLYFUZZ would not
stop when a bug is triggered during fuzzing. However, this
implementation also has a drawback: the process of forking
can affect the target execution hence fuzzing efficiency.

In addition, POLYFUZZ is currently implemented under
an assumption that the fuzzing target runs in a single pro-
cess; otherwise, the coverage collected may be misleading
since interprocess information flow [7] will be missing in
the coverage feedback. According, cross-process bugs [18]
may be difficult for POLYFUZZ to trigger. This limitation
would potentially render POLYFUZZ insufficient for fuzzing
multilingual code with an entry language unit written in C, be-
cause handling such code would often involve multi-process
fuzzing (e.g., C unit would invoke other language units via
separate processes). Meanwhile, during our experiments with
POLYFUZZ, we tried hard but failed to find much of multi-
language systems with C entries—we did not find any from
GitHub when collecting evaluation benchmarks (S5.1). Such
a rare presence suggests a relatively minor impact of this limi-
tation of POLYFUZZ on systems using C as a main language.

We offer (in §6) further insights into several decisions and
tradeoffs in our design and implementation of POLYFUZZ.

5 Evaluation
We evaluated POLYFUZZ through answering the following
three research questions:

RQ1 How effective is POLYFUZZ on real-world multilingual
programs vs state-of-the-art single-language fuzzers? (§5.2)
RQ2 How effective is POLYFUZZ on single-language pro-
grams vs state-of-the-art single-language fuzzers? (§5.3)
RQ3 How important is the sensitivity analysis based seed
generation (SASG) in POLYFUZZ? (§5.4)

USENIX Association 32nd USENIX Security Symposium 1387

Table 1: Profiles of 15 real-world multi-language systems
used as our subjects (Size in KLOC, BV: branch variable, BV-
IntConst: branch variable with constant integer constraints)

Benchmark Size Languages #BV #BV-IntConst
Libsmbios [12] 8.3 Python:30.4% C:64.2% 6866 3269 (47.6%)

Tink [21] 257.7 Python:7.2% C++:33.5% 66282 27962 (42.2%)

Pillow [56] 75.8 Python:60.0% C:38.6% 15628 9090 (58.2%)

Ultrajson [69] 5.1 Python:34.3% C:64.8% 1361 903 (66.1%)

Aubio [4] 42.9 Python:25.4% C:73.3% 3445 2232 (64.8%)

Bottleneck [59] 16.9 Python:49.5% C:48.6% 3384 1814 (53.6%)

Pycurl [58] 14.6 Python:54.8% C:40.7% 433 264 (61.1%)

Simplejson [63] 6.2 Python:61.4% C:38.6% 858 544 (63.4%)

Msgpack [48] 15.1 Python:48.7% C:50.1% 2322 1056 (45.5%)

Pycryptodome [36] 65.5 Python:43.5% C:56.1% 2842 1595 (56.1%)

Jep [51] 18.9 Java:25.4% C:56.6% 2856 1454 (50.9%)

Jansi [19] 5.2 Java:66.6% C:22.7% 386 121 (31.3%)

Jna [32] 129.4 Java:76.9% C:16.1% 3017 941 (31.2%)

One-nio [52] 29.1 Java:86.0% C:14.0% 4371 1132 (25.9%)

Zstd-jni [44] 47.9 Java:6.8% C:88.7% 47803 20384 (42.6%)

5.1 Experiment Setup

Experiment Environment. All experiments were conducted
on a machine running 64-bit Ubuntu 18.04 with a 32-core
CPU (AMD Ryzen Threadripper 3970X) and 256 GB mem-
ory. We ran each fuzzer against each target application with
identical configurations on one CPU core for 24 hours. All
experiments were repeated 5 times.

Baseline Fuzzers for Comparison. POLYFUZZ was com-
pared to three state-of-the-art single-language fuzzers used
in Google OSS-Fuzz framework [23], i.e., Honggfuzz [65]
for C, Jazzer [11] for Java, and Atheris [22] for Python. Since
Jazzer and Atheris are not originally designed for fuzzing
multi-language systems, coverage of C (e.g., native) code
in such systems is not automatically probed for and mea-
sured. Yet comparing POLYFUZZ with the extended versions
of these baselines (i.e., with C code coverage probed for and
measured) can help better evaluate the design of POLYFUZZ.
Thus, we also developed and compared POLYFUZZ to the
extended versions of Jazzer and Atheris with any covered
C code measured, referred to as Jazzer-C-ext and Atheris-C-
ext, respectively. Moreover, to evaluate the effectiveness of
SASG, we compared POLYFUZZ to a downgraded version of
POLYFUZZ with SASG disabled (noted as POLYFUZZ-NSA)
on multilingual benchmarks and to AFL++ on C benchmarks.

Benchmarks and Initial Input Seeds. We evaluated
POLYFUZZ against 15 real-world multilingual systems, in-
cluding 10 Python-C and 5 Java-C programs. Table 1 summa-
rizes these systems as our subjects (1st column), including the
code size (2nd column), language distribution (3rd column),
the number of branch variables (4th column), and the number
and percentage of integer-constant-constrained branch vari-
ables (last column). All of these 15 systems were downloaded
from GitHub with high popularity and frequent updates.

Table 2: The 15 single-language systems randomly selected
from Oss-Fuzz (Size in KLOC, BV: branch variable, BV-
IntConst: branch variable with constant integer constraints))

Benchmark Size Languages #BV #BV-IntConst
Bleach [47] 14.4 Python 1035 119 (11.5%)

Sqlalchemy [64] 391.9 Python 30637 2187 (7.1%)

Urllib3 [70] 18.5 Python 1948 121 (6.2%)

Pyyaml [74] 24.3 Python 2196 107 (4.9%)

Pygments [60] 96.6 Python 4993 381 (7.6%)

Json-sanitizer [53] 2.3 Java 326 237 (72.7%)

Commons-compress [2] 73.7 Java 8563 5771 (67.4%)

Zxing [80] 47.1 Java 4453 3059 (68.7%)

Jsoup [30] 25.3 Java 2109 1101 (52.2%)

Javaparser [29] 183.9 Java 7743 4683 (60.5%)

E2fsprogs [68] 118.4 C 19439 13279 (68.3%)

Bind9 [28] 275.4 C 56428 33538 (58.8%)

Civetweb [10] 521.7 C 6615 4080 (61.7%)

Cyclonedds [14] 225.9 C 22551 14286 (63.3%)

Igraph [27] 212.1 C 63013 35043 (55.6%)

Moreover, to evaluate POLYFUZZ’s performance on single-
language projects, we randomly selected 5 real-world bench-
marks from Google Oss-Fuzz for C, Python, and Java, respec-
tively, as shown in Table 2 in a similar format to Table 1.

Regarding fuzzing drivers and initial seeds, we developed
new drivers for POLYFUZZ on all the 15 multilingual systems,
while for Atheris on the 10 Python-C programs and for Jazzer
on the 5 Java-C programs. We did use the same drivers (in
terms of targeted APIs/code) across all of the fuzzers con-
sidered in order to ensure fair comparisons; we had to adapt
the drivers for different fuzzers given POLYFUZZ’s different
test-input interface from other fuzzers. As C units in these
projects are all internal libraries, we did not develop drivers
for C APIs for reasons discussed in §2. For all the 15 single-
language projects, we reused the drivers in Oss-Fuzz for all
the single-language fuzzers, and developed new drivers for
POLYFUZZ. To ensure the fairness in evaluation, we ran all
fuzzers on the same benchmark with the same initial inputs.

Performance Metrics. We considered two common fuzzing
metrics: #basic blocks covered and #bugs triggered. The three
baseline single-language fuzzers all support using basic block
coverage as feedback, hence we used the #basic blocks as a
main performance evaluation indicator. As POLYFUZZ uses
AFL++ [16] as the core fuzzing agent, we also reported the
#paths identified by AFL++’s algorithm as reference. For the
comparison between POLYFUZZ and POLYFUZZ-NSA, we
used the #paths found as the third metric. The coverage results
were averaged based on 5 repetitions of 24-hour running.

Another important metric is the #bugs detected. Since the
number of unique crashes reported by different fuzzers may be
inaccurate, we manually validated all reported issues. Specifi-
cally, we developed a PoC to reproduce each issue with the

1388 32nd USENIX Security Symposium USENIX Association

https://github.com/dell/libsmbios
https://github.com/google/tink
https://github.com/python-pillow/Pillow
https://github.com/ultrajson/ultrajson
https://github.com/aubio/aubio
https://github.com/pydata/bottleneck
https://github.com/pycurl/pycurl
https://github.com/simplejson/simplejson
https://github.com/msgpack/msgpack-python
https://github.com/Legrandin/pycryptodome
https://github.com/ninia/jep
https://github.com/fusesource/jansi
https://github.com/java-native-access/jna
https://github.com/odnoklassniki/one-nio
https://github.com/luben/zstd-jni
https://github.com/google/honggfuzz
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/google/oss-fuzz
https://github.com/mozilla/bleach
https://github.com/sqlalchemy/sqlalchemy
https://github.com/urllib3/urllib3
https://github.com/yaml/pyyaml
https://github.com/pygments/pygments
https://github.com/OWASP/json-sanitizer
https://github.com/apache/commons-compress
https://github.com/zxing/zxing
https://github.com/jhy/jsoup
https://github.com/javaparser/javaparser
https://github.com/tytso/e2fsprogs
https://gitlab.isc.org/isc-projects/bind9
https://github.com/civetweb/civetweb
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/igraph/igraph
https://github.com/google/oss-fuzz
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/oss-fuzz

crash-triggering inputs. If the crash can be reproduced, then
we consider a crash as a new bug only when its call stack
differs from all other bugs that have been confirmed.

5.2 RQ1: Effectiveness of POLYFUZZ on Mul-
tilingual Programs

Table 3 shows the results of POLYFUZZ versus Atheris
and Atheris-C-ext on the 10 Python-C benchmarks. For a
fair comparison, we report both the total #basic blocks cov-
ered (#Block) and #basic blocks covered in the Python unit
(#PythonBlk) by POLYFUZZ. With Atheris, only Python code
coverage (#PythonBlk) is measured and used as feedback,
while with Atheris-C-ext the coverage (#Block) additionally
includes any C code covered. Similarly, Table 4 presents the
comparison results among POLYFUZZ, Jazzer, and Jazzer-C-
ext on the 5 Java-C benchmarks, except for #PythonBlk being
changed to #JavaBlk to indicate #basic blocks covered in the
Java unit. Since none of the multilingual benchmarks have
its entry in their C units, we could not run POLYFUZZ and
Honggfuzz for comparison for this RQ.

Coverage. POLYFUZZ covers 36.7% more basic blocks in
the whole system than Atheris-C-ext, and 52.3% more basic
blocks in the Python units than Atheris, as shown in Table 3.
Compared to Jazzer, these two numbers are 25.3% and 29.1%,
respectively, as shown in Table 4. These results reveal that
POLYFUZZ substantially improves the code coverage both in
the whole system and in the comparable language units.

Among the multilingual benchmarks, the C code accounts
for 38.6% (Simplejson) to 73.3% (Aubio) of the Python-C
program sizes, and 14.0% (One-nio) to 88.7% (Zstd-jni) of the
Java-C programs sizes, as per Table 1. However, both Atheris
and Jazzer treat the C units as black boxes. Therefore, they
are not sensitive to the coverage changes in these units during
fuzzing. The incomplete coverage guidance makes it difficult
for the two single-language fuzzers to evolve and leads them
to soon get stuck, as we observed in the experiments. With C
code coverage measured/used, both Atheris-C-ext and Jazzer-
C-ext intuitively have more code blocks covered in total.

By contrast, POLYFUZZ utilizes the whole-system cover-
age as feedback; hence it can identify more favored seeds
that may be ignored in the single-language fuzzers when the
coverage change occurs in C units. Furthermore, by mutating
these seeds, POLYFUZZ can evolve more efficiently and pro-
motes the coverage of the whole system. Hence, it achieved
much higher coverage than Atheris and Jazzer. Moreover, by
learning the regression models to capture semantic relation-
ships between branch variables and seed blocks, POLYFUZZ
is capable of generating more effective seeds to exercise the
related branch predicates in both directions, further facili-
tating the exploration of more branches hence that of more
program paths. And because of that, POLYFUZZ can cover
more blocks than both Atheris-C-ext and Jazzer-C-ext also.

Table 3: Performance comparison among POLYFUZZ,
Atheris, and Atheris-C-ext against the Python-C benchmarks.

Benchmark
POLYFUZZ Atheris Atheris-C-ext

#Block #PythonBlk #Path #Bug #PythonBlk #Bug #Block #Bug

Libsmbios 198 51 35 1 24 0 149 0

Tink 2139 97 755 0 33 0 1891 0

Pillow 1363 1034 233 1 706 1 915 1

Ultrajson 377 126 151 1 39 0 238 0

Aubio 453 187 91 1 126 0 160 0

Bottleneck 1359 25 634 7 14 0 886 2

Pycurl 239 38 19 0 26 0 205 0

Simplejson 374 97 86 0 82 0 197 0

Msgpack 245 48 78 0 43 0 223 0

Pycryptodome 572 243 64 0 185 0 493 0

Total 7319 1946 2147 11 1278 1 5357 3

Improve - 52.3% ↑ 10 ↑ 36.7% ↑ 8 ↑

Bug triggering. As shown in Table 3 and Table 4, Atheris
triggered 1 bug in project Pillow and Atheris-C-ext further
triggered 2 in Bottleneck while Jazzer and Jazzer-C-ext failed
to find any bugs. Remarkably, POLYFUZZ succeeded in trig-
gering 12 bugs in 6 projects, including 11 in Python-C and
1 in Java-C programs. For all the 12 bugs, we have man-
ually confirmed and developed proof-of-the-concept (PoC)
for reproduction. The whole-system coverage awareness in
POLYFUZZ not only promotes the evolution of fuzzing pro-
cess to gain high code coverage but also increases the possibil-
ity of discovering bugs in real-world multi-language projects.

Table 4: Performance comparison among POLYFUZZ, Jazzer,
and Jazzer-C-ext against the Java-C benchmarks.

Benchmark
POLYFUZZ Jazzer Jazzer-C-ext

#Block #JavaBlk #Path #Bug #JavaBlk #Bug #Block #Bug

Jep 418 145 59 0 90 0 354 0

Jansi 332 309 244 1 242 0 261 0

Jna 711 476 189 0 362 0 579 0

One-nio 364 316 131 0 289 0 312 0

Zstd-jni 151 84 21 0 47 0 71 0

Total 1976 1330 644 1 1030 0 1577 0

Improve - 29.1% ↑ 1 ↑ 25.3% ↑ 1 ↑

POLYFUZZ achieved 25.3%–52.3% higher block cover-
age and discovered 1–10 more bugs than state-of-the-art
single-language fuzzers against real-world multi-language
systems, for all the languages the current POLYFUZZ im-
plementation supports (i.e., Java, C, Python).

5.3 RQ2: Effectiveness of POLYFUZZ on
Single-Language Programs

Next, we compare POLYFUZZ with Atheris, Jazzer and Hong-
gfuzz against the 15 real-world single-language benchmarks.
Coverage. As shown in Tables 5-7, POLYFUZZ covered
20.1%, 11.0% and 10.1% more basic blocks than Atheris,
Jazzer and Honggfuzz on these single-language benchmarks,
respectively. Unlike against the multi-language benchmarks,

USENIX Association 32nd USENIX Security Symposium 1389

https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/honggfuzz
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/simplejson/simplejson
https://github.com/aubio/aubio
https://github.com/odnoklassniki/one-nio
https://github.com/luben/zstd-jni
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/dell/libsmbios
https://github.com/google/tink
https://github.com/python-pillow/Pillow
https://github.com/ultrajson/ultrajson
https://github.com/aubio/aubio
https://github.com/pydata/bottleneck
https://github.com/pycurl/pycurl
https://github.com/simplejson/simplejson
https://github.com/msgpack/msgpack-python
https://github.com/Legrandin/pycryptodome
https://github.com/google/atheris
https://github.com/python-pillow/Pillow
https://github.com/google/atheris
https://github.com/pydata/bottleneck
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/ninia/jep
https://github.com/fusesource/jansi
https://github.com/java-native-access/jna
https://github.com/odnoklassniki/one-nio
https://github.com/luben/zstd-jni
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/honggfuzz

Table 5: Performance comparison between POLYFUZZ and
Atheris on the Python benchmarks.

Benchmark
POLYFUZZ Atheris

#Block #Path #Bug #Block #Bug

Pyyaml 853 703 1 826 1

Bleach 1023 353 0 796 0

Sqlalchemy 1096 18 0 1047 0

Pygments 1276 229 0 799 0

Urllib3 534 71 0 496 0

Total 4782 1474 1 3964 1

Improve - 20.1% ↑ 0 −

Table 6: Performance comparison between POLYFUZZ and
Jazzer on the Java benchmarks.

Benchmark
POLYFUZZ Jazzer

#Block #Path #Bug #Block #Bug

Zxing 4604 1923 0 4575 0

Jsoup 3408 1082 0 3261 0

Javaparser 4729 377 1 3821 1

Commons-compress 339 453 0 296 0

Json-sanitizer 595 309 0 547 0

Total 13675 4144 1 12319 1

Improve - 11.0% ↑ 0 −

all fuzzers can use the complete, whole-system coverage as
feedback here. Nevertheless, POLYFUZZ still exhibited bet-
ter performance than all the 3 baseline fuzzers. As shown
in Table 2, all of these benchmarks have a notable portion
(ranging from 4.9% in Pyyaml to 72.7% in Json-sanitizer)
of branch variables with constant integer constraints (5th col-
umn). POLYFUZZ’s SASG module enables effective seed gen-
eration from these constant branch constraints. Further, with
the generated seeds as inputs, POLYFUZZ can cover more
blocks with fewer random mutations. Overall, POLYFUZZ
was able to discover more favored seeds by further mutating
these seeds, which are generated with seed blocks that have a
strong association with branch variables.

Bug triggering. POLYFUZZ successfully triggered 2 new
bugs, including 1 Recursion error in the Python bench-
mark Pyyaml and 1 JVM hung in the Java benchmark Java-
parser, and did not trigger any bugs in the C benchmarks. For
the bug in Pyyaml, Atheris also reported a similar issue with
a different seed input. We developed PoC for and reproduced
the bug with both seeds. Through manually validating the
call stacks, we confirmed POLYFUZZ and Atheris triggered
the same bug. Similarly, the bug discovered by Jazzer was
confirmed as the same as triggered by POLYFUZZ. Although
POLYFUZZ did not show an overwhelming advantage when
compared with these single-language fuzzers in terms of bug
triggering in our experiments, POLYFUZZ still has more po-
tential for bug discovery due to the higher code coverage.

Table 7: Performance comparison between POLYFUZZ and
Honggfuzz on the C benchmarks.

Benchmark
POLYFUZZ Honggfuzz

#Block #Path #Bug #Block #Bug

E2fsprogs 1173 302 0 1049 0

Bind9 4154 2982 0 3955 0

Civetweb 232 157 0 195 0

Cyclonedds 1091 592 0 1003 0

Igraph 431 454 0 228 0

Total 7081 4457 0 6430 0

Improve - 10.1% ↑ 0 −

Table 8: Performance comparison between POLYFUZZ and
POLYFUZZ-NSA on 15 multilingual programs.

Benchmark
POLYFUZZ POLYFUZZ-NSA

#Block #Path #Bug #Block #Path #Bug

Libsmbios 198 35 1 174 30 1

Tink 2139 755 0 1771 627 0

Pillow 1363 233 1 1043 147 1

Ultrajson 377 151 1 318 120 0

Aubio 453 92 1 349 85 0

Bottleneck 1359 634 7 1321 516 2

Pycurl 239 19 0 198 18 0

Simplejson 374 86 0 239 54 0

Msgpack 245 78 0 201 67 0

Pycryptodome 572 64 0 469 50 0

Jep 418 59 0 364 51 0

Jansi 332 244 1 313 211 0

Jna 711 189 0 671 181 0

One-nio 364 131 0 343 119 0

Zstd-jni 151 21 0 145 19 0

Total 9295 2791 12 7853 2292 4

Improve - 17.4% ↑ 21.8% ↑ 8 ↑

Despite not aiming at single-language fuzzing, POLYFUZZ
still covered 10.1-20.1% more basic blocks than, and trig-
gered the same #bugs as, the three studied state-of-the-art
single-language fuzzers.

5.4 RQ3: Importance of SASG in POLYFUZZ
Both POLYFUZZ and POLYFUZZ-NSA support cross-
language fuzzing, albeit POLYFUZZ-NSA only benefits from
holistic coverage feedback. So we compared the two fuzzers
on the 15 real-world multilingual programs in terms of three
performance metrics: #basic blocks (#Block), #paths (#Path),
and #bugs triggered (#Bug). The results are shown in Table 8.
To assess the merits of SASG for single-language fuzzing, we
also compared POLYFUZZ and AFL++ on the five C bench-
marks, with results summarized in Table 9.

Coverage. In terms of both basic block and path coverage,
POLYFUZZ has a clear advantage over POLYFUZZ-NSA. For

1390 32nd USENIX Security Symposium USENIX Association

https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/yaml/pyyaml
https://github.com/mozilla/bleach
https://github.com/sqlalchemy/sqlalchemy
https://github.com/pygments/pygments
https://github.com/urllib3/urllib3
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/zxing/zxing
https://github.com/jhy/jsoup
https://github.com/javaparser/javaparser
https://github.com/apache/commons-compress
https://github.com/OWASP/json-sanitizer
https://github.com/yaml/pyyaml
https://github.com/OWASP/json-sanitizer
https://github.com/yaml/pyyaml
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://github.com/yaml/pyyaml
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/tytso/e2fsprogs
https://gitlab.isc.org/isc-projects/bind9
https://github.com/civetweb/civetweb
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/igraph/igraph
https://github.com/dell/libsmbios
https://github.com/google/tink
https://github.com/python-pillow/Pillow
https://github.com/ultrajson/ultrajson
https://github.com/aubio/aubio
https://github.com/pydata/bottleneck
https://github.com/pycurl/pycurl
https://github.com/simplejson/simplejson
https://github.com/msgpack/msgpack-python
https://github.com/Legrandin/pycryptodome
https://github.com/ninia/jep
https://github.com/fusesource/jansi
https://github.com/java-native-access/jna
https://github.com/odnoklassniki/one-nio
https://github.com/luben/zstd-jni

Table 9: Performance comparison between POLYFUZZ and
AFL++ on the C benchmarks.

Benchmark
POLYFUZZ AFL++

#Block #Path #Bug #Block #Path #Bug

E2fsprogs 1173 302 0 1066 217 0

Bind9 4154 2982 0 3996 2813 0

Civetweb 232 157 0 198 145 0

Cyclonedds 1091 592 0 1016 531 0

Igraph 431 454 0 308 322 0

Total 7081 4457 0 6584 4028 0

Improve - 7.6% ↑ 11.4% ↑ 0 −

instance, against Pillow, POLYFUZZ exercised 320 (30.7%
↑) more basic blocks and 86 (58.5% ↑) more paths than
POLYFUZZ-NSA. Overall, POLYFUZZ covered 17.4% more
basic blocks and 21.8% more paths. These results indicate that
the novel sensitivity analysis and seed generation techniques
in POLYFUZZ contributed significantly to its overall cost-
effectiveness and superiority over the baselines. Nonetheless,
POLYFUZZ-NSA was still capable of covering more basic
blocks than the single-language fuzzers, due to the holistic
coverage awareness. Specifically, POLYFUZZ-NSA covered
30.5% (versus 52.3% by POLYFUZZ) more Python blocks
than Atheris and 19.5% (versus 29.1% by POLYFUZZ) more
Java blocks than Jazzer. When compared to AFL++ on the
C benchmarks, POLYFUZZ covered 7.6% more basic blocks
and 11.4% more paths under the same coverage feedback
mechanism. As POLYFUZZ uses AFL++ as the core fuzzer,
this comparison indicates the general merits of SASG in
POLYFUZZ beyond multilingual fuzzing (i.e., the merits ap-
ply to single-language fuzzing as well). Thus, our SASG
could be incorporated into existing single-language fuzzers
to significantly improve their performance as well.

Bug triggering. POLYFUZZ-NSA only triggered 4 of the
12 bugs detected by POLYFUZZ. Thus, the SASG brought
a strong improvement in bug-finding power to POLYFUZZ.
On the other hand, POLYFUZZ-NSA still triggered more bugs
than single-language fuzzers, per Table 8 vs Tables 3 and 4.
Between AFL++ and POLYFUZZ, both failed to detect any
bugs within the given time, as did Honggfuzz—after all, code
coverage does not always lead to bug discovery.

A case study on coverage growth. Figure 7 depicts the trend
of growth in #basic blocks and #paths covered over the 5 runs
of 24-hour experiments on Pillow. POLYFUZZ performed a
little weaker initially, since SASG can quickly run into the
Learning mode when observing new branch variables cov-
ered, at the moment, any branch variables are new to SASG.
It will take a while for SASG to do seed partitioning and
sampling for these branch variables, during which the core
fuzzing must stay idle. Once the first regression learning pass
is over, the number of basic blocks and paths can quickly grow
based on the learned seeds. Moreover, the learning keeps go-
ing during the fuzzing campaign, promoting the coverage to

Figure 7: The growing trend of the average number of basic
blocks and paths covered during the 5 24-hour runs on Pillow.

Table 10: Vulnerabilities detected by POLYFUZZ.

Benchmark #Bug Status PoC Symptom #CVE

Libsmbios 1 pending ✓ segment fault 0

Pillow 1 fixed ✓ out of memory 1

Ultrajson 1 fixed ✓ segment fault 1

Aubio 1 pending ✓ memory leak 0

Bottleneck 7 pending ✓ segment fault 1

Jansi 1 pending ✓ out of memory 1

Pyyaml 1 pending ✓ recursion error 0

Javaparser 1 confirmed ✓ JVM hung 1

Total 14 - 5

keep its sustained growth. By contrast, POLYFUZZ-NSA ran
into a stalemate after running for 12 hours.

SASG contributed significantly to POLYFUZZ’s perfor-
mance in terms of both coverage and bug triggering; it
also has general merits for both multilingual and single-
language greybox fuzzing.

5.5 Regarding the Vulnerabilities Discovered
Table 10 summarizes the total of 14 new vulnerabilities dis-
covered by POLYFUZZ during our evaluation. We have devel-
oped PoCs for these vulnerabilities to ensure reproducibility
and contacted the respective developers. By the time of the pa-
per submission, all of these have been reported to the system
vendors, and two of them have been confirmed and fixed. The
details on each of these 14 vulnerabilities are documented in
NewVulnerabilities.pdf within our artifact package.

As an example of these new vulnerabilities, Figure 8 shows
a NULL pointer dereference in Ultrajson. In the Python unit,
the input is read into the variable data and then passed to
the ujson API ujson.dump. Then, the value of data flows
forward into the C function SortedDict_iterNext wrapped
in the JSON object obj. After the variable key is decoded
from obj and passes the unicode check (line 8), function
PyUnicode_AsEncodeString tries to encode it. However,
this function can return NULL with a specific input and fur-
ther causes NULL pointer access at line 12. This can be ex-
ploited to enable Denial of Service (DoS) attacks constantly
crashing the program with carefully crafted inputs.

USENIX Association 32nd USENIX Security Symposium 1391

https://github.com/tytso/e2fsprogs
https://gitlab.isc.org/isc-projects/bind9
https://github.com/civetweb/civetweb
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/igraph/igraph
https://github.com/python-pillow/Pillow
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/google/honggfuzz
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/dell/libsmbios
https://github.com/python-pillow/Pillow
https://github.com/ultrajson/ultrajson
https://github.com/aubio/aubio
https://github.com/pydata/bottleneck
https://github.com/fusesource/jansi
https://github.com/yaml/pyyaml
https://github.com/javaparser/javaparser
https://github.com/ultrajson/ultrajson

Figure 8: New vulnerability case: NULL pointer dereference.

6 Discussion

The first, intuitive contributing element in the design of
POLYFUZZ is holistic coverage measurement and feedback.
In this regard, one may wonder the multilingual fuzzing prob-
lem dealt with by POLYFUZZ could have been addressed
by combining single-language fuzzers for all the languages
used by the multi-language system in question. However,
applying the combination of single-language fuzzers would
suffer feasibility/reproducibility challenges (§2.2) and hence
be insufficient for discovering cross-language bugs. Also, for
non-entry language units, developing good drivers can be as
hard as library fuzzing while requiring cross-language calling
relationship analysis.

As the other major contributor to its superior capabilities,
POLYFUZZ utilizes sensitivity analysis to model the relation-
ships between inputs and integer branch variables; then with
the expanded constant branch constraint as inputs, it generates
new seeds to hit or reverse respective branches effectively. The
newly covered code, in turn, can trigger a new round of seed
learning, empowering continuous coverage growth during
fuzzing. In our evaluation, POLYFUZZ demonstrated exem-
plary performance and effectiveness in fuzzing both multi-
and single-language programs.

Meanwhile, several factors may limit POLYFUZZ in prac-
tice. First, there are still significant proportions of non-integer
branch variables in real-world programs (see Tables 1 and 2),
for which POLYFUZZ currently would not work as effectively.
Second, The correlation between inputs and branch variables
may be too complicated to model by a regression model of
any types, or even does not exist. In those cases, SASG may
not help. Third, in the seed partitioning and sampling phase,
the execution paths may vary during the random mutation,
affecting the branch variable coverage, which may cause fail-
ures to collect enough data for training the regression models.
Finally, long seeds can limit the fuzzing performance since
it can make POLYFUZZ stay in seed sampling for too long,
during which the core fuzzing is disabled.

POLYFUZZ mitigates part of the above limitations in its
implementation. Specifically, when new paths are covered
during the sensitivity analysis, POLYFUZZ doubles the sam-
pling size (i.e., N taken by Algorithm 3) trying to harvest

enough branch variable values. Of course, this drills down
to a tradeoff between core fuzzing time and model learning
effectiveness—since the fuzzing is suspended during the sam-
pling. To mitigate the effects of long seeds, POLYFUZZ limits
the length for sampling to 2K bytes, as our empirical study
found that over 90% of the successful seed learning happened
in the first 2k bytes of the inputs over the tested benchmarks.

Dealing with non-integer branch variables can be much
more complicated, since data representation is different over
various languages, e.g., a Python object (e.g., a list) or a
Java object (e.g., a hashtable). Two key challenges hinder
the SASG on these variables: (1) how do we unify the data
representation among different languages? Differences in
data representation can prevent effective instrumentation of
programs. (2) what kind of data storage is efficient? The data
size of a non-integer variable can be huge (e.g., a Python list).

For the cases in which no correlation between branch vari-
ables and seed blocks can be learned, we sampled some
branch variables for a manual validation. We found that such
variables fall mainly into two categories: (1) the return value
of functions, where only specific values are taken (e.g., 0 or
-1); (2) the value fetched from configurations (e.g., read from
environment variables or configuration files). How fuzzing
may automatically incorporate the change of these config-
urations is a topic worthy of study; Such solutions could
significantly improve code coverage and bug discovery.

One common design concern in cross-language analyses is
language independence hence extensibility [40] in terms of
the ability and ease to support other languages, language com-
binations, and corresponding interfacing mechanisms [38].
Accordingly, in multilingual fuzzing, there is a tradeoff be-
tween the extensibility and the ability/efficiency for exercising
bugs right at cross-language interfaces. For instance, assum-
ing and utilizing knowledge about specific interface layers
and any additional checks (e.g., predicates guarding against a
native/foreign function call) therein may help improve fuzzing
efficiency, but it would also compromise the fuzzer’s extensi-
bility. For POLYFUZZ, our design favors extensibility hence
assumes no such knowledge. As a result, our core fuzzing pro-
cess is language-agnostic and treats those checks transparently
as any other such language constructs within individual lan-
guage units. On the other hand, analysis of specific language
interface layers may be implemented on top of POLYFUZZ.

7 Related Work

Single-language fuzzing. Most existing fuzzers target
C/C++ [46]. Particularly for greybox fuzzing, MOPT [45]
optimizes mutation operator selection using a particle swarm
optimization algorithm; GREYONE [20] and REDQUEEN [3]
use dynamic taint analysis to guide where and how to mutate;
PROFUZZER [76] probes for critical bytes in the input to adapt
the mutation strategy. PATA [41] also identifies critical input

1392 32nd USENIX Security Symposium USENIX Association

bytes, but for approximating the relationships between input
and constraint variables hence enabling path-aware mutation.

In addition to seed mutation, other fuzzers focus more on
efficient seed generation [8, 71, 77] and seed selection/priori-
tization [5,54,78]. Also, beyond program analysis, alternative
approaches have been explored to improve these key algorith-
mic components of fuzzing (e.g., using reinforcement learning
for seed scheduling [72], transforming code to remove input
sanity checks that the fuzzer gets stuck with [55]). In sum-
mary, POLYFUZZ differs from prior seed-generation works in
four aspects: (1) peer prior works treat input as byte-stream,
versus seed-block stream in POLYFUZZ; (2) prior works gain
more seeds after mutation, versus POLYFUZZ predicting seed-
block values via regression modeling followed by assembling
them to form new seeds; (3) our seed generation is based
on sensitivity analysis with regression modeling at its core,
different from taint analysis guided seed generation/mutation;
and (4) our regression model is selected adaptively on the fly,
not necessarily linear (see Algorithm 4) as in Eclipser [9].

There have been only a very few fuzzers for other languages
in the literature. Both based on libFuzzer [43], Jazzer [11]
works for Java and Atheris [22] for Python. Also working
for Java applications, KELINCI [33] feeds AFL [49] with
instrumented Java bytecode and DIFFUZZ [50] directly adopts
AFL for differential testing. RUST-FUZZ [62] and RULF [31]
adapt AFL/AFL++ for fuzzing Rust application/libraries.

In comparison, while (naturally) also supporting fuzzing
single-language programs, POLYFUZZ uniquely addresses
fuzzing multi-language software in a holistic manner. In ad-
dition to its coverage monitoring and feedback mechanism
across languages, it also differs from peer techniques in ex-
plicitly modeling the semantic relationship between (different
segments of) inputs and branch predicates. Eclipser [9] also
models such relationships, but it only addresses those that are
linear or monotonic, while our regression model is selected
adaptively and optimally on the fly, from among linear, rbf,
and polynomial models—not necessarily linear or monotonic.
Moreover, when generating new inputs, Eclipser only consid-
ers one input field, ignoring the effects of various combina-
tions of different fields, as opposed to POLYFUZZ modeling
the effects of seed input blocks of varying sizes. Finally, the
seed generation in POLYFUZZ is based on sensitivity analysis,
of which seed partitioning and sampling, constant expansion,
and seed-block assembling are all integral parts in addition to
regression modeling, unlike Eclipser generating new inputs
by solving linear equations/inequalities and binary search.
Multi-language testing. AMLETO [15] is an embedded soft-
ware testing platform that supports both VHDL and SystemC
by translating both to a custom internal intermediate repre-
sentation (IR). Similarly, GILLIAN [17] provides a frame-
work for multi-language symbolic execution also based on
an IR (named GIL). It was implemented for JavaScript and
C, which are converted to the GIL for symbolic testing. The
language-specific analysis and memory model can be cus-

tomized by users for a particular target language. The muta-
tion testing tool in [25] supports mutant generation for differ-
ent languages through regular-expression-based source code
transformations. None of these tools actually target programs
each consisting of code units in multiple languages at the
same time, hence clearly different from POLYFUZZ support-
ing the testing of multilingual code.

FANS [42] offers the capability of fuzzing Android na-
tive system services (mainly written in C++) which may in-
voke Java code. While it indirectly triggered a number of
Java exceptions, FANS itself works as a single-language
(C++) fuzzer without dealing with cross-language code. FAV-
OCADO [13] aims to fuzz JavaScript engines particularly fo-
cusing on their binding layer, which translates data between
JavaScript and low-level languages like C/C++. Yet the bind-
ing code itself is still written in C/C++. Thus, like FANS,
FAVOCADO is a single-language fuzzer, rather than fuzzing
JavaScript code interfaced with C/C++.

We are not aware of prior work explicitly addressing holis-
tic fuzzing of multilingual code as POLYFUZZ does.
Cross-language security analysis. NDROID [73] provides
a QEMU-based dynamic taint analysis (DTA) for JNI code
(i.e., in Java and C) in Android apps, which enabled discov-
ery of cross-language information leakage. More recently,
Li et al. developed POLYCRUISE [40], a purely application-
level dynamic information flow analysis (DIFA) which has
helped detect a number of vulnerabilities at language interfac-
ing between Python and C/C++ units. Despite their (demon-
strated) potential for finding security vulnerabilities, these
cross-language analyses rely on existing run-time inputs that
trigger the executions underlying the dynamic analysis. Also,
given their design, it would take considerable effort to extend
these tools to support other language combinations.

In contrast, POLYFUZZ lifts such limitations by generating
the inputs that are needed to trigger vulnerabilities in multi-
language software, while offering better extensibility. On the
other hand, cross-language DTA/DIFA as presented in the
above prior works may be leveraged to guide holistic multi-
language fuzzing like POLYFUZZ.
Program intermediate representation (IR). Traditional IRs
(e.g., LLVM-IR [35], Soot/Jimple [34]) serve whole-program
translation fully covering the original code semantics, which
is too heavyweight and even impractical for various languages
when targeting a unified IR. The custom IR in PolyCruise [40]
is a symbolic representation serving data-flow analysis [37],
which is also unnecessarily heavyweight for greybox fuzzing.
In contrast, our new custom IR is a much simpler/lighter-
weight, fuzzing-specific IR just capturing fuzzing-relevant
information such as control-flow/branching and value types—
which are not considered in the PolyCruise IR.

On a related note, this new custom IR in POLYFUZZ is mo-
tivated and justified by its ability to maximally support differ-
ent language combinations hence offering the extensibility to
support other languages [75]. POLYFUZZ employs a minimal

USENIX Association 32nd USENIX Security Symposium 1393

language-specific analysis for holistic coverage measurement
and harvesting only the variable values necessary for learning
the regression model. This is enabled by this new custom
IR that unifies run-time value probing across heterogeneous
languages, which makes the rest (and most) of POLYFUZZ
language-agnostic, hence addressing the Challenge-2 (§1).

8 Conclusion

We presented POLYFUZZ, a novel framework for holistic grey-
box fuzzing of multi-language software. POLYFUZZ mea-
sures whole-system block and path coverage in a language-
agnostic as enabled by a custom intermediate representation
particularly designed for fuzzing. Beyond the holistic cov-
erage feedback, it also generates new seeds effectively via
regression modeling the semantic relationships between seeds
and branch variables. Our results reveal significant merits of
POLYFUZZ over state-of-the-art single-language fuzzers.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
effective guidance and constructive comments. This work
was supported in part by National Science Foundation (NSF)
under Grant CCF-2146233 and in part by Office of Naval
Research (ONR) under Grant N000142212111.

References

[1] SourceForge: The Complete Open-Source and Business Soft-
ware Platform. https://sourceforge.net, 2020.

[2] Apache. Apache Commons Compress. https://github.
com/apache/commons-compress, 2022.

[3] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing with
input-to-state correspondence. In NDSS, volume 19, pages
1–15, 2019.

[4] aubio. A library to label music and sounds. https://github.
com/aubio/aubio.git, 2019.

[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and
Abhik Roychoudhury. Directed greybox fuzzing. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2329–2344, 2017.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. IEEE Trans-
actions on Software Engineering, 45(5):489–506, 2017.

[7] Haipeng Cai and Xiaoqin Fu. D2ABS: A framework for dy-
namic dependence analysis of distributed programs. IEEE
Transactions on Software Engineering, 2021.

[8] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xi-
aofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye: Towards a
desired directed grey-box fuzzer. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, pages 2095–2108, 2018.

[9] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil
Cha. Grey-box concolic testing on binary code. In 2019
IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE), pages 736–747. IEEE, 2019.

[10] civetweb. An embeddable web server with optional CGI,
SSL and Lua support. https://github.com/civetweb/
civetweb, 2022.

[11] Code-Intelligence. Coverage-guided, in-process fuzzing for the
JVM. https://github.com/CodeIntelligenceTesting/
jazzer, 2022.

[12] dell. A library to interface with the SMBIOS tables. https:
//github.com/dell/libsmbios, 2007.

[13] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle
Zeng, Alexandros Kapravelos, Gail-Joon Ahn, Tiffany Bao,
Ruoyu Wang, Adam Doupé, et al. Favocado: Fuzzing the
binding code of javascript engines using semantically correct
test cases. In NDSS, 2021.

[14] Eclipse Cyclone DDS. An open-source implementation
of the OMG DDS specification. https://github.com/
eclipse-cyclonedds/cyclonedds, 2022.

[15] Alessandro Fin, Franco Fummi, and Graziano Pravadelli. Am-
leto: A multi-language environment for functional test gener-
ation. In Proceedings International Test Conference, pages
821–829. IEEE, 2001.

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc
Heuse. Afl++: Combining incremental steps of fuzzing re-
search. In 14th {USENIX}Workshop on Offensive Technolo-
gies ({WOOT} 20), 2020.

[17] José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun,
and Philippa Gardner. Gillian, part i: a multi-language plat-
form for symbolic execution. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 927–942, 2020.

[18] Xiaoqin Fu and Haipeng Cai. FlowDist: Multi-staged
refinement-based dynamic information flow analysis for dis-
tributed software systems. In 30th USENIX Security Sympo-
sium (USENIX Security), pages 2093–2110, 2021.

[19] fusesource. A java library for using ANSI escape codes to for-
mat the console output. https://github.com/fusesource/
jansi, 2021.

[20] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun
Qin, Dong Wu, and Zuoning Chen. {GREYONE}: Data flow
sensitive fuzzing. In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 2577–2594, 2020.

[21] google. A multi-language, cross-platform library of crypto-
graphic APIs. https://github.com/google/tink, 2021.

[22] google. A Coverage-Guided, Native Python Fuzzer. https:
//github.com/google/atheris, 2022.

[23] google. Continuous Fuzzing Framework for Open Source
Software. https://github.com/google/oss-fuzz, 2022.

[24] Manel Grichi, Mouna Abidi, Fehmi Jaafar, Ellis E Eghan, and
Bram Adams. On the impact of interlanguage dependencies
in multilanguage systems empirical case study on java native
interface applications (jni). IEEE Transactions on Reliability,
70(1):428–440, 2020.

1394 32nd USENIX Security Symposium USENIX Association

https://sourceforge.net
https://github.com/apache/commons-compress
https://github.com/apache/commons-compress
https://github.com/aubio/aubio.git
https://github.com/aubio/aubio.git
https://github.com/civetweb/civetweb
https://github.com/civetweb/civetweb
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/dell/libsmbios
https://github.com/dell/libsmbios
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/fusesource/jansi
https://github.com/fusesource/jansi
https://github.com/google/tink
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/google/oss-fuzz

[25] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and
Lingming Zhang. An extensible, regular-expression-based tool
for multi-language mutant generation. In 2018 IEEE/ACM
40th International Conference on Software Engineering: Com-
panion (ICSE-Companion), pages 25–28. IEEE, 2018.

[26] Mary Jean Harrold, Gregg Rothermel, and Alex Orso. Repre-
sentation and analysis of software. Lecture Notes, 2005.

[27] igraph. A C library for creating, manipulating and analysing
graphs. https://github.com/igraph/igraph, 2022.

[28] ISC. A Classic, full-featured and mostly standards-compliant
DNS. https://gitlab.isc.org/isc-projects/bind9,
2022.

[29] javaparser. A set of libraries implementing a Java 1.0 - Java
15 Parser. https://github.com/javaparser/javaparser,
2022.

[30] jhy. Java HTML Parser. https://github.com/jhy/jsoup,
2022.

[31] Jianfeng Jiang, Hui Xu, and Yangfan Zhou. Rulf: Rust library
fuzzing via api dependency graph traversal. In 2021 36th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 581–592. IEEE, 2021.

[32] jna. Java Native Access. https://github.com/
java-native-access/jna, 2020.

[33] Rody Kersten, Kasper Luckow, and Corina S Păsăreanu. Poster:
Afl-based fuzzing for java with kelinci. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2511–2513, 2017.

[34] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren.
The soot framework for java program analysis: a retrospective.
In Cetus Users and Compiler Infastructure Workshop (CETUS
2011), volume 15, 2011.

[35] Chris Lattner and Vikram Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation. In In-
ternational Symposium on Code Generation and Optimization,
2004. CGO 2004., pages 75–86. IEEE, 2004.

[36] Legrandin. An self-contained Python package of low-
level cryptographic primitives. https://github.com/
Legrandin/pycryptodome, 2018.

[37] Wen Li, Haipeng Cai, Yulei Sui, and David Manz. PCA: Mem-
ory leak detection using partial call-path analysis. In ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering
(ESEC/FSE), Tool track, pages 1621–1625, 2020.

[38] Wen Li, Li Li, and Haipeng Cai. On the vulnerability prone-
ness of multilingual code. In ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), 2022.

[39] Wen Li, Na Meng, Li Li, and Haipeng Cai. Understanding lan-
guage selection in multi-language software projects on github.
In IEEE/ACM 43rd International Conference on Software En-
gineering: Companion Proceedings, pages 256–257, 2021.

[40] Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. PolyCruise:
A cross-language dynamic information flow analysis. In 31st
USENIX Security Symposium, pages 2513–2530, 2022.

[41] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang,
Jianzhong Liu, Zhe Liu, and Jiaguang Sun. PATA: Fuzzing
with path aware taint analysis. In IEEE Symposium on Security
and Privacy (SP), pages 154–170, 2022.

[42] Baozheng Liu, Chao Zhang, Guang Gong, Yishun Zeng,
Haifeng Ruan, and Jianwei Zhuge. {FANS}: Fuzzing android
native system services via automated interface analysis. In
29th USENIX Security Symposium, pages 307–323, 2020.

[43] LLVM. LibFuzzer: A library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html, 2020.

[44] luben. JNI bindings for Zstd native library. https://github.
com/luben/zstd-jni, 2021.

[45] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han
Lee, Yu Song, and Raheem Beyah. {MOPT}: Optimized mu-
tation scheduling for fuzzers. In 28th {USENIX} Security
Symposium ({USENIX} Security 19), pages 1949–1966, 2019.

[46] Valentin JM Manes, HyungSeok Han, Choongwoo Han,
Sang Kil Cha, Manuel Egele, Edward J Schwartz, and Mav-
erick Woo. Fuzzing: Art, science, and engineering. arXiv
preprint arXiv:1812.00140, 2018.

[47] mozilla. An allowed-list-based HTML sanitizing library.
https://github.com/mozilla/bleach, 2022.

[48] msgpack. An efficient binary serialization format. https:
//github.com/msgpack/msgpack-python, 2021.

[49] M.Zalewski. Technical "whitepaper" for afl-fuzz. https:
//lcamtuf.coredump.cx/afl/technical_details.txt,
2014.

[50] Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu. Dif-
fuzz: differential fuzzing for side-channel analysis. In 2019
IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE), pages 176–187. IEEE, 2019.

[51] ninia. Java Embedded Python. https://github.com/
ninia/jep, 2018.

[52] OK.ru. A library for building high performance Java servers.
https://github.com/odnoklassniki/one-nio, 2020.

[53] OWASP. A JSON encoder in Java. https://github.com/
OWASP/json-sanitizer, 2017.

[54] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine:
Optimizing {OS} fuzzer seed selection with trace distillation.
In 27th {USENIX} Security Symposium, pages 729–743, 2018.

[55] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz:
fuzzing by program transformation. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 697–710. IEEE, 2018.

[56] pillow. Python Imaging Library. https://github.com/
python-pillow/Pillow, 2019.

[57] pybind. Seamless operability between C++11 and Python.
https://github.com/pybind/pybind11, 2022.

[58] pycurl. A Python Interface To The cURL library. https:
//github.com/pycurl/pycurl, 2022.

[59] pydata. A a collection of fast NumPy array functions. https:
//github.com/pydata/bottleneck, 2020.

[60] pygments. A generic syntax highlighter written in Python .
https://github.com/pygments/pygments, 2022.

USENIX Association 32nd USENIX Security Symposium 1395

https://github.com/igraph/igraph
https://gitlab.isc.org/isc-projects/bind9
https://github.com/javaparser/javaparser
https://github.com/jhy/jsoup
https://github.com/java-native-access/jna
https://github.com/java-native-access/jna
https://github.com/Legrandin/pycryptodome
https://github.com/Legrandin/pycryptodome
https://llvm.org/docs/LibFuzzer.html
https://github.com/luben/zstd-jni
https://github.com/luben/zstd-jni
https://github.com/mozilla/bleach
https://github.com/msgpack/msgpack-python
https://github.com/msgpack/msgpack-python
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/ninia/jep
https://github.com/ninia/jep
https://github.com/odnoklassniki/one-nio
https://github.com/OWASP/json-sanitizer
https://github.com/OWASP/json-sanitizer
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/pybind/pybind11
https://github.com/pycurl/pycurl
https://github.com/pycurl/pycurl
https://github.com/pydata/bottleneck
https://github.com/pydata/bottleneck
https://github.com/pygments/pygments

[61] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cris-
tiano Giuffrida, and Herbert Bos. Vuzzer: Application-aware
evolutionary fuzzing. In NDSS, volume 17, pages 1–14, 2017.

[62] Rust Fuzzing Authority. Rust-fuzz. Available online at:
https://github.com/rust-fuzz, 2020.

[63] simplejson. A simple, fast, complete, correct and extensible
JSON. https://github.com/simplejson/simplejson,
2022.

[64] SQLAlchemy. The Python SQL Toolkit and Object Relational
Mapper. https://github.com/sqlalchemy/sqlalchemy,
2022.

[65] Robert Swiecki. Honggfuzz. Available online at:
http://code.google.com/p/honggfuzz, 2016.

[66] tree-sitter. JavaScript and JSX grammar for tree-sitter. https:
//github.com/tree-sitter/tree-sitter-javascript,
2022.

[67] tree-sitter. Ruby grammar for tree-sitter. https://github.
com/tree-sitter/tree-sitter-ruby, 2022.

[68] tytso. The filesystem utilities for use with the ext2 filesystem.
https://github.com/tytso/e2fsprogs, 2022.

[69] ultrajson. An ultra fast JSON encoder and decoder. https:
//github.com/ultrajson/ultrajson, 2020.

[70] urllib3. A HTTP client for Python. https://github.com/
urllib3/urllib3, 2022.

[71] Vasudev Vikram, Rohan Padhye, and Koushik Sen. Growing a
test corpus with bonsai fuzzing. In Proceedings of IEEE/ACM
International Conference on Software Engineering, 2021.

[72] Jinghan Wang, Chengyu Song, and Heng Yin. Reinforce-
ment learning-based hierarchical seed scheduling for greybox
fuzzing. In NDSS, 2021.

[73] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin Zhou,
Yuru Shao, and Alvin TS Chan. Ndroid: Toward tracking
information flows across multiple android contexts. IEEE
Transactions on Information Forensics and Security, 14(3):814–
828, 2018.

[74] yaml. A full-featured YAML processing framework for Python.
https://github.com/yaml/pyyaml, 2022.

[75] Haoran Yang, Wen Li, and Haipeng Cai. Language-agnostic
dynamic analysis of multilingual code: Promises, pitfalls, and
prospects. In ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), Ideas, Visions and Reflec-
tions, 2022.

[76] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xi-
angyu Zhang, XiaoFeng Wang, and Bin Liang. Profuzzer:
On-the-fly input type probing for better zero-day vulnerability
discovery. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 769–786. IEEE, 2019.

[77] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing
Liao, Pan Bian, and Bin Liang. Semfuzz: Semantics-based
automatic generation of proof-of-concept exploits. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2139–2154, 2017.

[78] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai
Lu, and Xu Zhou. Ecofuzz: Adaptive energy-saving greybox
fuzzing as a variant of the adversarial multi-armed bandit. In
29th {USENIX} Security Symposium, pages 2307–2324, 2020.

[79] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang
Liang, and Kai Chen. Fuzzguard: Filtering out unreachable
inputs in directed grey-box fuzzing through deep learning. In
29th {USENIX} Security Symposium, pages 2255–2269, 2020.

[80] zxing. A multi-format 1D/2D barcode image processing library.
https://github.com/zxing/zxing, 2022.

A More on POLYFUZZ Implementation
Language-specific analysis and instrumentor. For each lan-
guage, we implemented an SAIR translator and an instrumen-
tor. Specifically, the implementation for C works in three pri-
mary steps in one LLVM pass [35]: (1) Translates the LLVM
intermediate representation to SAIR following the syntax de-
scribed in §3.2.1. (2) Use IGC to compute instrumentation
guidance based on the SAIR. (3) Instruments the dynamic
tracing APIs defined in the DynTrace library according to the
guidance computed. The implementation for Java is similar,
but on top of Soot [34] with JNI wrappers of DynTrace and
IGC. For Python, the SAIR translator and instrumentor are im-
plemented separately: we developed a static parser and SAIR
translator based on AST, and a dynamic instrumentor using
Pybind [57]. Overall, adding support for a new language is
lightweight, as all complex algorithmic implementations are
already provided in the three common C libraries mentioned.

IGC. In IGC, we implemented intraprocedural control and
data flow analysis [26] based on the SAIR of the given pro-
gram. As the output of IGC, each instrumentation guidance
is a value pair <block-id, statement-id> for a given function.
Moreover, the implementation of IGC is thread-safe to support
parallel running of compiler or program analysis frameworks
(e.g., LLVM [35] and Soot [34]).

Dynamic tracing (DynTrace). We implemented this library
in C with three primary functionalities: (1) an API for initial-
izing the shared-memory byte map for coverage computation
in AFL++; (2) an API for initializing the shadow event queue
for caching covered branch variables during SASG. (3) APIs
for tracing dynamic events (e.g., block information, branch
variables). All these APIs can be invoked by the language
instrumentors directly or through a wrapper of corresponding
language interfaces (e.g., a JNI wrapper for Java) and then
inserted into the fuzzing targets.

SASG and AFL++. For better fuzzing efficiency, SASG and
AFL++ run in parallel most of the time; also, SASG does not
generate seeds all at once—instead, every time it generates 8K
seeds, it informs AFL++ to load and fuzz. During the adaptive
model selection, the regression accuracy is measured (during
model validation) as the mean distance between predicted and
ground-truth seed-block values. When this accuracy drops
below 80%, the regression is considered a failure.

1396 32nd USENIX Security Symposium USENIX Association

https://github.com/simplejson/simplejson
https://github.com/sqlalchemy/sqlalchemy
https://github.com/tree-sitter/tree-sitter-javascript
https://github.com/tree-sitter/tree-sitter-javascript
https://github.com/tree-sitter/tree-sitter-ruby
https://github.com/tree-sitter/tree-sitter-ruby
https://github.com/tytso/e2fsprogs
https://github.com/ultrajson/ultrajson
https://github.com/ultrajson/ultrajson
https://github.com/urllib3/urllib3
https://github.com/urllib3/urllib3
https://github.com/yaml/pyyaml
https://github.com/zxing/zxing

	Introduction
	Background and Motivation
	Greybox Fuzzing
	Fuzzing Multi-Language Systems

	The PolyFuzz Framework
	Framework Overview
	 Static Analysis & Instrumentation (Phase red1)
	IR Translation (Step red1.1)
	Instrumentation Guidance Computation (Step red1.2)
	Static/Dynamic Instrumentation (Step red1.3)

	Sensitivity Analysis & Seed Generation (Phase red2)
	Dynamic Event Monitoring (Step red2.1)
	Seed Partitioning and Sampling (Step red2.2)
	Branch-Input Regression Modeling (Step red2.3)
	Seed Generation (Step red2.4)

	Core Fuzzing (Phase red3)

	Implementations and Limitations
	Supporting Other Languages
	Limitations

	Evaluation
	Experiment Setup
	RQ1: Effectiveness of PolyFuzz on Multilingual Programs
	RQ2: Effectiveness of PolyFuzz on Single-Language Programs
	RQ3: Importance of SASG in PolyFuzz
	Regarding the Vulnerabilities Discovered

	Discussion
	Related Work
	Conclusion
	More on PolyFuzz Implementation

