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Abstract
Global variables in the Linux kernel have been a common tar-
get of memory corruption attacks to achieve privilege escala-
tion. Several potential defense mechanisms can be employed
to safeguard global variables. One approach involves placing
global variables in read-only pages after kernel initialization
(ro_after_init), while another involves employing software
fault isolation (SFI) to dynamically block unintended writes
to these variables. To deploy such solutions in practice, a key
building block is a sound, precise, and scalable alias analysis
that is capable of identifying all the pointer aliases of global
variables, as any pointer alias may be used for intended writes
to a global variable. Unfortunately, the two existing styles of
data-flow-based (e.g., Andersen-style) alias analysis and type-
based alias analysis have serious limitations in scalability and
precision when applied to the Linux kernel.

This paper proposes a novel and general hybrid alias anal-
ysis that unifies the two complementary approaches in a
graph reachability framework using context-free-language,
also known as CFL-reachability. We show our hybrid alias
analysis is extremely effective, significantly and simultane-
ously outperforming the data-flow-based alias analysis in
scalability and the type-based alias analysis in precision. Un-
der the same time budget, our hybrid analysis finds 42% of the
Linux kernel global variables protectable as ro_after_init,
whereas the two separate analyses find a combined 16% only.

1 Introduction

Kernel exploits of memory corruption vulnerabilities have
evolved over time together with defenses. Today exploits gen-
erally target important kernel data in the form of either control
or non-control data. Control data can be function pointers and
return addresses whereas non-control data can be various vari-
ables that have specific OS semantics [58] (uid [13, 33, 44],
modprobe_path [24, 53, 66], selinux_enforcing [7, 27]).

Global data are common targets for two reasons among all
kernel data. First, the addresses of global data are determined

at compile time and usually have fixed runtime addresses.
Kernel Address Space Layout Randomization (KASLR) will
randomize the base address of all global data, but it is unfor-
tunately easy to bypass because of the prevalence of kernel
information leak vulnerabilities [14] and recent architectural
side-channel attacks [18, 22, 23, 29, 31].

Second, many valuable memory corruption targets exist
in global data, including both control and non-control data.
These global variables are in read/write data sections, which
can be easily corrupted by memory corruption bugs. For
example, function pointers fsync and check_flags within
ptmx_fops have been commonly exploited in real-world ex-
ploits [6,7]. As examples of non-control data, modprobe_path
is commonly corrupted by real-world exploits to execute
an attacker-specified executable as a root user [24, 53, 66];
selinux_enforcing is corrupted to disable SELinux [7].

To minimize exploitable global variables, a few candidate
solutions are available, e.g., marking global variables as read-
only (see §2 for details) when appropriate. However, to utilize
them widely in the Linux kernel, one needs to generate a
sound security policy automatically, necessitating a sound
alias analysis — determining which pointers can point to a
given global variable. This is non-trivial because a global
variable can be accessed indirectly through pointers that are
propagated throughout the kernel via complex procedures
involving multiple syscalls. Failing to find pointer aliases to
global variables can result in intended writes being misclassi-
fied as unintended, leading to runtime errors.

In the literature, two styles of alias analysis exist: (1) data-
flow-based alias analysis (e.g., Andersen-style [10]), and (2)
type-based alias analysis [17, 37]. However, while precise,
the former suffers from scalability issues when analyzing
programs as complex as the Linux kernel. On the other hand,
the latter is much more scalable but suffers from significant
precision losses.

In this paper, we propose a novel and general hybrid alias
analysis that unifies the data-flow-based and type-based alias
analysis. Similar to a branch of data-flow-based alias analy-
sis [49, 65], we formulate the problem as a graph reachability
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problem, following a context-free-language, also known as
CFL-reachability problem [46]. However, rather than con-
fining ourselves to a singular analysis approach (e.g., data-
flow-based) and hoping it is one-size-fits-all, we propose a
tailored approach that treats each global variable as distinct.
By integrating complementary analysis approaches, we can
harness their respective strengths while mitigating their inher-
ent limitations. This allows for flexible tuning of precision and
scalability on a per-object basis, more easily meeting specific
requirements. Applying our hybrid analysis to the problem of
global variable protection, we find about 42% of the global
variables protectable by ro_after_init. In contrast, the result
is only 16% using the combined results of the two approaches
applied separately, under the same time budget.

In summary, we make the following contributions:

• Breakthrough: We design and formalize a novel, tunable,
and general alias analysis that unifies the data-flow-based
and type-based alias analysis, for improved scalability and
precision, setting a new standard in alias analysis.

• Impact: The hybrid alias analysis is suitable for a wide
range of applications in the Linux kernel where it is neces-
sary to track the pointer aliases of global or heap objects
across the entire kernel in a sound manner.

• Application: Our solution is highly effective, finding not
only 42% of global variables protectable by ro_after_init

but also all recently-exploited global variables protectable
via either ro_after_init or software fault isolation.

2 Background and Motivation

In this section, we elaborate on the significance of global
variables and the mechanisms available to safeguard them.
Global variables as exploit targets. Unlike dynamically al-
located objects on heap and stack, global variables are located
at fixed locations determined statically after compilation (bar-
ring KASLR). The Linux kernel uses global variables to main-
tain various states of the whole system. Some global variables
are considered switches, which can turn on and off certain
critical features. For example, selinux_enforcing is used to
turn on/off the entire SELinux system. Also, there are many
function pointers in global variables, which have important
implications as they can lead to control flow hijacking.

These global variables are desirable to attackers due to
the relative ease of locating them. As long as KASLR is
bypassed (e.g., through an info leak), an exploit with an arbi-
trary write primitive can corrupt global variables straightfor-
wardly. As an example, in Blackhat 2017, security researchers
demonstrated a root exploit against the security-enhanced
Samsung Knox kernel by using 3 global variables, ptmx_fops,
poweroff_cmd, ss_initialized, even when the kernel code
injection defenses are enabled and kernel credentials are
marked as read-only in the kernel and protected by hyper-
visor [45]. More recently, the global variable modprobe_path

1 static struct fops ptmx_fops __ro_after_init;
2 void tty_default_fops(struct fops *fops) {
3 *fops = tty_fops;
4 }
5 static void __init unix98_pty_init(void){
6 tty_default_fops(&ptmx_fops); // initialize
7 }

Figure 1: ro_after_init example in C

is frequently leveraged to achieve privilege escalation [12,54].
Opportunities to protect global variables. Currently, there
are two main candidate solutions to protect global variables.

First, it is possible to statically mark global variables as
const (read-only throughout its lifetime) or ro_after_init
(read-only after kernel initialization) [2]. In both cases,
after the kernel is initialized, the global variable will be
placed in read-only memory pages, which are generally dif-
ficult to alter [16, 64]). For instance, the global variable
ptmx_fops, which was previously exploited, is now designated
as ro_after_init (refer to Figure 1). This variable is initial-
ized exclusively in unix98_pty_init and remains unmodified
thereafter. In response to a Samsung Knox exploit [7] that
targeted ptmx_fops, kernel developers have subsequently des-
ignated it as ro_after_init. However, it is unclear whether
there are other similarly protectable global variables.

Second, by leveraging software fault isolation (SFI) mecha-
nisms [9,36,47], we can allow write accesses to a global vari-
able from only “authorized” pointers, i.e., those that intend to
write to the variable. Any other write accesses, including those
made through erroneously directed (e.g., corrupted) pointers,
should be considered unauthorized and prevented. For global
variables that are indeed modified after initialization, SFI is
a promising fine-grained extension to protect them by lim-
iting write instructions to those intended ones. However, it
is unclear which instructions are intended for a given global
variable, as the writes can occur through pointers.
Limitations of existing mechanisms. The solutions above
require developers to track the reachability of global vari-
ables through the Linux kernel. Due to the sheer scale, it is
extremely challenging to systematically analyze every single
global variable manually, given that there are tens of thou-
sands of them. More specifically, global variables may be
referenced indirectly through pointer aliases which may prop-
agate throughout the kernel (even across multiple syscalls).
Any of the pointer aliases may be used to perform either read
access or write access to a global variable. Out of tens of
thousands of global variables in Linux kernel v5.14, we find
four thousand global variables manually marked as const and
only 531 global variables manually marked as ro_after_init.
We suspect the latter number is substantially lower than the
actual number in reality, indicating the lack of a robust and
automated solution to track pointer aliases of global variables.
Assumptions. We assume an attacker can successfully corrupt
the heap or stack memory of the Linux kernel, e.g., via an out-
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1 struct G{ int* fd; };
2 int gv1;
3 struct G gv2;
4 op_on_int(int* num_ptr){
5 *num_ptr = 0; // potentially modify gv1
6 }
7 syscall1(){
8 gv2.fd = &gv1; // gv1 address taken
9 }
10 syscall2(){
11 op_on_int(gv2.fd);
12 }

Figure 2: challenge example in C

of-bound write and a use-after-free write. However, when they
leverage such vulnerabilities to perform an arbitrary write to
a protected global variable, we assume the protections offered
by read-only pages or SFI-based solutions are not bypassable.

3 Overview

In this section, we describe the high-level goals and challenges
of an automated solution to protect global variables. To this
end, we develop a novel alias analysis technique packaged in
a static analysis called Unias.

3.1 Goals
The goal of Unias is to identify pointer aliases of global vari-
ables and their write dereferences. This enables precise track-
ing of the pointers that can be utilized to modify specific
global variables and identifies the exact program points where
such modifications can occur. This is helpful in determining
how to protect a global variable: (1) whether a global variable
should be classified as ro_after_init, i.e., if no write deref-
erences occur after kernel initialization, or (2) which write
instructions should be authorized by SFI. Therefore, the key
problem we address in Unias is to identify all pointer aliases
that may reference a given global variable. It is crucial to note
that such an alias analysis must be sound. This is because
failing to identify any alias used to write to a global variable
can result in an error or a crash. On the other hand, the alias
analysis needs to be precise enough to be useful – protecting
as many global variables as possible and as tightly as possible.
Finally, the kernel is extremely large and the analysis needs
to be scalable.

3.2 Challenges
We use a simplified example in Figure 2 to illustrate the
complexity and difficulty of alias analyses for global variables
in the Linux kernel. There are 2 global variables gv1, gv2 and
2 syscalls syscall1(), syscall2(). Specifically, syscall1()
simply assigns the address of gv1 to gv2.fd. On the other
hand, syscall2() passes gv2.fd (a data pointer) to another
function op_on_int() which writes a zero to the address.

Multi-entry and soundness challenge. OS kernels are state-
ful by design where user-space programs can interact with
them through syscall entries. User-space programs can invoke
syscalls in arbitrary sequences. For example, if syscall1()
is executed before syscall2(), we can see that gv1 will be
modified since the address of gv1 is “leaked” at line 10 and its
value is modified at line 7. On the other hand, if syscall1() is
not invoked before syscall2(), then gv1 may not be modified.

The Linux kernel comprises hundreds of syscalls, and their
possible sequences (e.g., permutations) are infinite. Achieving
a precise analysis of these infinite sequences is infeasible. The
multi-entry challenge highlights the difficulty of analyzing
the Linux kernel, as we must make sound approximations.

Not all alias analysis methods prioritize soundness, particu-
larly when analyzing the Linux kernel for bug detection. Many
alias analysis approaches [20, 35, 39, 62] in the Linux kernel
use heuristic strategies that sacrifice soundness, as soundness
is desirable but not always necessary, depending on the ap-
plications. However, Unias must be sound by design, as a
false negative (i.e., missing a pointer alias) can lead to falsely
protecting a global variable, resulting in a memory error when
it attempts to modify a protected (read-only) global variable.
Therefore, it is best to start with classic and well-reasoned
alias analysis algorithms that have been proven sound, such
as Andersen-style alias analysis [46].
Limitation of state-of-art solutions in precision and scala-
bility. General data-flow-based approaches such as Andersen-
style [10] and Steensgaard-style [51] are widely used for
achieving sound and precise alias analysis. However, neither
is sufficient to handle global variables in the Linux kernel.
This is because, unlike local variables that have a limited
scope and lifetime, global variables are potentially accessible
anywhere in the Linux kernel. As a result, the scope of anal-
ysis becomes extensive and unscalable for Andersen-style
analysis, while Steensgaard-style analysis will imprecisely
over-approximate the alias results under such a large scope
(since Steensgaard-style analysis sacrifices precision for im-
proved scalability by design). As shown in Figure 2, the def-
use chain from where gv1’s address is taken to where its value
is modified can be complex, potentially involving multiple
syscalls and thousands of intermediate variables (including
other global variables).

Type-based solutions are known as an alternative to data-
flow-based alias analysis [17, 30, 37]. The basic idea is to
consider pointers that share compatible types to be potential
aliases. For example, pointers pointing to the same struct type
are considered aliases. However, type-based solutions are too
limited in the context of global variables in the Linux kernel.
This is because many global variables are defined as primitive
types, e.g., int. Applying a type-based solution will cause
too many pointer aliases, most of which are false positives.
Furthermore, struct global variables can still have fields of
primitive types that are referenced by address. For example, a
field can be address-taken and accessed through a pointer later
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Figure 3: Precision and Scalability Tradeoff Space

on, independent of its base struct type. As a result, applying
the type-based solution naively can only work for a limited
set of global variables, as shown in §6.1.

3.3 Insights

In summary, although both approaches are sound by design,
the data-flow-based approach has better precision but worse
scalability, while the type-based approach is the opposite. In
other words, there is a tradeoff between data-flow-based and
type-based approaches in terms of precision and scalability.

Indeed, by evaluating these two approaches individually
(see §6), their results are far from satisfactory. We hypothe-
size that there is a new design space in which we can achieve
a much better tradeoff by principally combining the advan-
tages of both approaches, as shown in Figure 3. The idea
is to move away from a singular analysis approach and the
reliance on a one-size-fits-all solution, we propose a tailored
approach that treats each global variable as distinct. Through
the integration of complementary approaches, we can lever-
age their respective strengths while mitigating their inherent
limitations, i.e., simultaneously achieving precision close to
the Andersen-style approach and scalability close to the type-
based approach. This allows for flexible tuning of precision
and scalability on a per-variable basis, more easily satisfying
specific requirements.

4 Pointer-To-Global Analysis

In this section, we introduce details about the novel design
of our pointer-to-global alias analysis that is sound, precise,
and scalable. In §4.1, we provide foundational knowledge
and terminology that will aid in a better understanding of our
design. In §4.2, we introduce our demand-driven alias anal-
ysis for global variables based on a CFL graph reachability
framework. In §4.3, we integrate type-based shortcuts into
the framework to complement the demand-driven analysis, in
a tunable fashion, which significantly improves the scalability.
In §4.3.3, We give the soundness proof of our design.

4.1 Foundation
Program Assignment Graph (PAG) is a widely used ab-
stract and directed representation of a program that is specifi-
cally designed for alias and pointer analysis [4, 52], and it is
generated from parsing LLVM IR [3]. It is used to represent
the pointer manipulation in a given program and capture the
points-to relationship.

By design, each node in the PAG represents a variable in
the static single assignment (SSA) form. These variables can
be memory objects or pointers. Each edge in PAG represents
an instruction that manipulates its corresponding nodes and
is directional, representing the direction of data flow. In the
scope of our analysis, there are five types of edges in PAG:
Addr (Address-Taken), Assign, Load, and Store are four crit-
ical edges that represent a program, and Fieldt,i,o edge is for
field-sensitive analysis, which represents field access in an
object, where t refers to the base object type, i refers to the
field index, and o refers to the relative byte offset which will
be further detailed in §4.2.1. We use Assign to represent a

reverse edge of Assign. A base
Fieldt,i,o−−−−−→ f ield edge represents

the pointer arithmetic during struct field accessing, where
base is the source pointer (of type t*) that points to the base
of a struct (of type t) and f ield is the destination pointer that
points to the ith field in the struct. PAG also includes addi-
tional information for better analysis, such as variable (node)
type, field byte offset, etc.

Since PAG is essentially a form of a data-flow graph captur-
ing relationships between pointers and variables, it is worth
noting that PAG retains limited control-flow information (no
ordering of edges). It also does not retain the notion of func-
tions. Instead, the graph simply connects actual arguments (at
function call sites) to formal arguments (in function defini-
tions) with Assign edges; conversely, output variables (e.g.,
return value from a callee) are connected to the corresponding
variable at the caller’s callsite. As a result, PAG-based static
analysis is by default flow- and context-insensitive.
Alias analysis via CFL-reachability. Andersen-style alias
analysis has been formulated as context-free-language (CFL)
reachability problems [49,65]. It is essentially a form of graph
reachability in which legal paths must be labeled with a string
in a specified context-free language; more specifically, in the
context of PAG where each edge is labeled (e.g., Assign), a
legal path would need to have a sequence of edge types that
match the language we design. To find whether a pointer
may point to a given object (e.g., a global variable) via CFL-
reachability, the idea is to check if there exists a path between
the pointer node and the object node, such that the path’s
label is in the CFL which ensures the corresponding program
statements (edges) can cause the pointer to point to the object.
Benefits of CFL reachability. Compared to a whole-program
alias analysis [10, 37], it is worth noting that the CFL reach-
ability problem formulation lends itself naturally to a per-
object alias analysis. We leverage this advantage to offer a
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tailored analysis approach for each object.

4.2 Demand-Driven Graph Traversal

In this section, we introduce a demand-driven alias analysis
naturally formulated as a CFL-reachability problem to iden-
tify pointer aliases of global variables through graph traversal
on top of PAG (§4.1). In particular, we follow a progressive de-
sign: first introducing the initial rules, and then the enhanced
rules to model more complex pointer manipulations.
Sensitivity of analysis. As mentioned earlier, analyses built
on top of PAG are by default flow- and context- insensi-
tive, which is, in fact, desirable in our problem. Recall the
multi-entry and soundness challenge described in §3.2, which
requires a flow-insensitive alias analysis that achieves a
conservative and sound approximation of infinitely possi-
ble sequences of syscall invocations. Besides, being context-
sensitive will significantly bloat the graph as multiple copies
of callees will be created. Finally, our analysis still attempts
to be field-sensitive.

4.2.1 Initial Rules

Given a context-free language LR (which consists of a set
of productions), a PAG G of a C Program P, and a global
variable node gv, if gv’s address can flow to variable var (e.g.,
a pointer), through LR during the execution of P, then var is
considered “LR reachable” from gv in G. The pointer alias set
of a global variable gv is defined as pas(gv) = {n ∈G ∧ n ∈
LR(gv)}, where every node n in pas(gv) is a pointer that “may”
point to gv. Hence, determining the pointer aliases of gv is
equivalent to computing LR reachable nodes from gv.

We define the grammar of LR with the following initial set
of productions:

F→ ( Assign | Store I-Alias Load )∗ (1)

F→ ( Assign | Load I-Alias Store )∗ (2)

I-Alias→ F I-Alias F (3)

I-Alias→ Load I-Alias Load (4)
I-Alias→ ε (5)

I-Alias→ Fieldt1,i1,o I-Alias Fieldt2,i2,o (6)

The first production F refers to the flows-to relationship that
determines which nodes are reachable from a given source
node. In LLVM, every global variable is initially accessed
through its address in the form of @gv (equivalent to &gv in C),
which is translated to a node agv in PAG that represents its
address. To determine whether a node p is a pointer alias of
gv, we evaluate whether agv can reach p through F; if so, we
write F(agv, p). Production F basically looks for sequences
of assignments or intermediate memory aliases (e.g., through

store and load). For example, agv
Assign−−−→n1

Assign−−−→n2 can derive
F(agv,n1) and F(agv,n2), as n1 and n2 may point to gv.

1 int gv;
2 struct T1{ char[4] f0; int* f1; };
3 struct T2{ int f2; int* f3; };
4 void func(struct T1* b;){
5 b->f1 = &gv; // gv address taken
6 struct T1* b1 = b;
7 struct T2* b2 = (struct T2*) b1; // cast
8 int* n = b2->f3; // n points to gv
9 }

Figure 4: pointer casting example in C

The second production on F describes the inverse relation-
ship of F (i.e., F(a,b)≡ F(b,a)).

Productions 3, 4, 5, and 6 are I-Alias, which represent in-
termediate memory aliases that are encountered during the
analysis. For instance, assume a and b are aliases (i.e., they
might point to the same object), which implies I-Alias(a,b),
then for m Load←−−−a and b Load−−−→n we can derive I-Alias(m,n)
through production 4, i.e., m and n are also aliases.

Note that I-Alias is reflexive, i.e., from I-Alias(a,b), we
can also derive I-Alias(b,a) when we traverse the graph from
b. In contrast, productions on F and F are not. For example,
deriving F(agv,n1) represents a directional relationship where
agv can flow to n1 (and not the opposite direction).

To summarize, productions in LR try to identify and match
symmetric edges, e.g., Store to Load, Load to Load, Fieldt,i,o
to Fieldt,i,o (Be aware that there is no Store to Store or Store

to Store since a Store−−−→n Store←−−−b doesn’t imply I-Alias(a,b)).
More examples are prepared in Appendix A for reference.

4.2.2 Pointer Casting Handling

Pointer casting, as known as type casting, is a feature ignored
by previous demand-driven alias analysis of C [59, 65], and
yet it is critical to handle it properly to ensure soundness in a
field-sensitive analysis.

All pointer casts are represented as Assign edges in PAG
since pointer casting only changes the type instead the value
of the source pointer. For convenience, we use CastT1,T2 to
represent an Assign edge that casts a variable with T1 type to
a variable with T2 type.

Consider an example in Figure 4 and its corresponding
simplified PAG G1:

agv
Store
←− f1

FieldT1 ,1,4

←−−− b
Assign
−→ b1

CastT1 ,T2
−→ b2

FieldT2 ,1,4

−−−→ f3
Load
−→ n

G1: pointer casting

In Figure 4, it’s easy to infer that the local pointer t points to
gv since b->f1 and b2->f3 share the same memory object and
field offset through struct T1* and struct T2* respectively.

In G1, such pointer casting happens at the CastT1,T2

edge. Correspondingly, there are two different Field edges:
FieldT1,1,4 and FieldT2,1,4, before and after the cast. Instead
of requiring the pair of Field edges to have the same type and
field index, we model pointer casting by checking if they are
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accessing the same relative offset (e.g., o in Fieldt,i,o), regard-
less of their base types. For example, in Figure 4, f1 and f3

both have a 4-byte offset, relative to b and b2, respectively.
Such normalization is sound because (1) all pointer casts

are explicitly captured on PAG as Cast edges, (2) demand-
driven rules in LR already ensure variable-instance-level track-
ing so that the two base pointers are naturally pointing to the
same object, e.g., b1 and b2 in G1, regardless of their types.
It’s worth mentioning that this strategy also naturally handles
the union type and the void* type, as byte offset is consistent
in an object no matter what type of pointers point to it.

4.2.3 Pointer Arithmetic Handling

Pointer arithmetic is performed by either pointer addition
(+), pointer subtraction (-), array index ([]) (similar to ad-
dition and subtraction), or field access (->). All of them are
represented as Fieldt,i,o edges in PAG. So far, LR has not
considered pointer subtraction and non-constant pointer
arithmetic, which do occur frequently in Linux kernel. We
describe our sound modeling below.
Pointer subtraction. So far, our productions on I-Alias as-
sumed all Field edges are supposed to define field node f d1
from a base node base1. This is obviously the case for struct
field accesses, as shown below:

...←− f d1

FieldT,1,4
←−−− base1

FieldT,1,4
−−−→ f d2 −→ ...

G2: regular Field pair
We can see that from either direction we traverse the PAG,

FieldT,1,4 pair in G2 will match and I-Alias( f d1, f d2) or I-
Alias( f d2, f d1) will be derived through production 6.

However, we note that there are pointer subtractions
in the Linux kernel also, most commonly seen in
container_of() [5], which was encountered 8,684 times dur-
ing our analysis of Linux kernel v5.14. It is a construct that is
not well modeled yet in the state-of-art alias analysis [36, 37].
Effectively, it inverts the “define” relationship such that a base
node is defined through a field node. See the example below:

...←− f d3

FieldT,1,4
←−−− base2

FieldT,−1,−4
←−−− f d4←− ...

G3: pointer subtraction Field pair
In particular, f d4 now defines base2 through a Field edge.

However, it is worth noting that it is accessed through a neg-
ative index (indicating a pointer subtraction). If we apply
the original I-Alias in either direction, it is obvious that nei-
ther I-Alias( f d3, f d4) nor I-Alias( f d4, f d3) will be derived.
Intuitively though, f d3 and f d4 should be considered aliases.

By observing the definition direction and pointer arithmetic
nature, we introduce two new productions to LR:

I-Alias→ Fieldt1,i1,−o I-Alias Fieldt2,i2,o (7)

I-Alias→ Fieldt1,i1,o I-Alias Fieldt2,i2,−o I-Alias (8)
These rules basically allow I-Alias to match two Field

edges flowing in the same direction on the graph, provided
that they share the same offset. Note that the first rule looks

slightly different from the second, as the second has an
additional non-terminal I-Alias at the end. It is necessary
because (1) the overall graph traversal is by design direc-
tional, following the “define” directions, the last Field edge
is a reverse edge that will effectively block the traversal;
(2) the extra non-terminal I-Alias is essential for further
tracking the aliases of the node to its left. For instance in
G3, besides I-Alias( f d3, f d4), we shall further derive more
aliases of f d3 through incoming “define” edges of f d4, e.g.,

I-Alias( f d3, f d5) through an extra edge of f d4
Assign←−−− f d5.

Non-constant pointer arithmetic. Another exception is non-
constant pointer arithmetic, as follows:

...←− f d6

FieldT,1,4
←−−− base3

FieldT,v,ov
−−−→ f d7 −→ ...

G4: non-constant Field pair
As shown in G4, there’s no concrete field index for the

FieldT,v,ov edge, as it’s potentially matching any previous
or subsequent Field edges such as the FieldT,1,4. Thus, for
soundness, we conservatively fall back to field-insensitive for
such non-constant Field pairs, which intuitively means f d7
may point to any fields of T .

More specifically, we always derive field pair productions
6, 7, 8 as long as either i1 or i2 is a non-constant index (or
both are non-constants). In the interest of space, we put these
productions (in total 4) to Appendix B and collectively refer
to them as the non-constant I-Alias productions.

It is worth mentioning that such a conservative partial field-
insensitive strategy will only slightly over-approximate field
aliases on the derivation of the current I-Alias, representing
a single pair of Field edges on the graph. There are many
other constant field edge pairs on the graph, for which we
still preserve the field sensitivity if matched. In practice, this
means that we most likely still achieve reasonable precision
from end to end.

In summary, we present additional productions in this sec-
tion to formally and systematically handle pointer subtraction
and non-constant pointer arithmetic, supporting widely used C
features in the Linux kernel that are not previously supported
in CFL-reachability-based alias analysis [59, 65].

4.3 Graph Traversal By Type Shortcuts
Even though the enhanced demand-drive analysis (DDA) is
precise, we find it is not scalable for most global variables
(see §6.1). In this section, we describe a novel solution to
integrate the spirit of type-based analysis into DDA (which are
by design complementary), by introducing two type-based
shortcuts on the graph to address the scalability challenge,
while still preserving soundness. It is worth noting that the
solution is designed to allow for flexible adjustment to balance
scalability and precision.

Recalling type-based alias analysis (TBA), which has
the advantage of being more scalable by directly over-
approximating the aliases based on types. In the context of
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PAG graph traversal, TBA avoids the expensive edge-by-edge
traversal. However, the downside of TBA is its imprecision.
In particular, we find that the traditional TBA is extremely
imprecise for most global variables because they are of prim-
itive types, have been converted to primitive types, or their
primitive type fields have been address-taken (see §6.1).

However, we realize that TBA can in fact be generalized
and integrated elegantly into DDA. We show that such a hy-
brid approach achieves much better scalability than DDA-only
and much better precision than TBA-only. This indicates that
the two approaches can be highly complementary when com-
bined in the right way.
Insights. Our solution is based on two insights: First, when
integrating TBA into DDA, we have the flexibility to switch
between TBA and DDA back and forth. This means that we
can combine the benefits of both approaches, retaining some
precision of DDA and improving scalability by resorting to
TBA on demand. Second, because of the flexibility, we no
longer need to find pointer aliases directly based on the type
of the global variable itself (which is what traditional TBA
did [17, 30]. In such cases, if agv is a primitive pointer type,
say int*, all int* pointers will be aliases of agv.) Instead, we
can anchor the TBA on a much less common type (e.g., a
composite type) by seeking an opportunity during DDA, i.e.,
when propagates to the field of a composite type (via a Store).

4.3.1 Type-based Field-To-Field Shortcut

To illustrate the above insights more clearly, consider the
following PAG G5:

agv
Store
−→ f1

FieldT,1,4
←−−− base1−→...−→base2

FieldT,1,4
−−−→ f2

Load
−→ n

G5: PAG of a long propagation chain

In G5, agv may flow to many nodes through base1 and
base2. Such propagation may go across many function calls
and even syscalls (due to the flow-insensitive nature of the
graph). Thus, it can be costly to derive I-Alias(base1,base2).
On the other hand, traditional TBA is not precise as agv may be
a common pointer type, say int*, such that all int* pointers
will be aliases with agv.

As a result, instead of edge-by-edge graph traversal with
DDA, we assume I-Alias( f1, f2) can be directly derived as
they share the same base type and field index. For now, we
assume there is no pointer casting and the type is t accord-
ing to the Fieldt,i,o edge; later we relax this assumption in
§4.3.2. More generally, for Field related productions 6, 7, 8
and their non-constant versions (in Appendix B), we consider
the I-Alias between Field edge pairs can be directly derived;
again, we assume t1 = t2 and i1 = i2 on those edge pairs in
productions 6, 7, 8 for now.
PAG transformation. To implement the above strategy, we
will need to transform a PAG by creating explicit short-
cut edges according to corresponding productions to enable
traversing such edges.

For example, upon seeing a f ds
Fieldt,i,o←−−−−−bases edge, which

matches the first Field edge in production 6 and 8, we will
search globally on the graph for the second Field edge accord-
ing to these two productions and their non-constant versions.
Specifically, we would
(1) create a type shortcut f ds

Shortcut f−−−−−→ f dx for a match-

ing basex
Fieldt,i,o−−−−−→ f dx (required in production 6) or

basex
Fieldt,v,ov−−−−−→ f dx (required in the non-constant version of

production 6).

(2) create a type shortcut f ds
Shortcutb−−−−−→ f dx for a match-

ing basex
Fieldt,i,−o←−−−−− f dx (required in production 8) or

basex
Fieldt,v,ov←−−−−− f dx (required in the non-constant version of

production 8).
(3) disconnect all involved Field and Field edges. This final
step is to ensure that the choice of DDA and TBA is mutually
exclusive (i.e., redundant to follow both). The transformation
of G5 will result in G6 as follows:

agv
Store
−→ f d1

Shortcut f

−−−→ f d2
Load
−→ n

G6: Creating a type shortcut edge in G5

Now we simply connect f d1 to f d2 with a “field-to-field
shortcut” edge. This way, we can successfully derive F(agv,n),
by taking the initial Store (DDA), the Shortcut f (TBA), and
then the Load edge (DDA).
Rule changes to incorporate TBA into DDA. Together with
the graph transformation, we introduce two additional pro-
ductions to LR:
I-Alias→ Shortcut f (9)
I-Alias→ Shortcutb I-Alias (10)
These productions simply allow a field-to-field shortcut

edge to be treated as an edge that connects two intermediate
aliases (fields) as in production 6 and 8 respectively (and
their non-constant versions). This is basically all we need to
cleanly integrate the TBA fully into DDA.
Soundness consideration. We describe two considerations
for soundness. First, for PAG transformation, when we meet a
Field edge, we either create shortcut edges to all eligible tar-
get nodes or none. This is because by creating and following
a selected few shortcut edges, we might lose aliases. Second,
in addition to applying the shortcut rules, we also will apply
other non-shortcut rules (i.e., DDA) for the same f d node. For

example, in G6, if there is an additional edge f d1
Assign−−−→ f d3,

it must also be traversed to ensure that no potential aliases are
missed. This is naturally followed by the definition of CFL-
reachability where all encountered edges will be evaluated
against all productions.
Tunable design. Second, we do have the flexibility to choose
whether to perform PAG transformation whenever we meet
a Fieldt,i,o edge. In some circumstances, even though our
analysis is anchored on a composite type, it may still be a
popular type used widely (e.g., struct list_node), leading
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pasTruth(gv) = {agv , a1 , a2}   pasUnias(gv) = {agv , a1 , a2} or {agv , a1 , a2 , a3}
pasDDA(gv) = {agv , a2}         pasTBA(gv) = {agv , a1 , a2 , a3 , …}

Figure 5: An example PAG illustrating how TBA into DDA
are integrated, dashes are potential shortcut edges

to too many corresponding shortcut edges if we decide to
transform the PAG. For such cases, we can choose DDA
instead. In other words, our design is tunable and can cover
a wide range of DDA+TBA strategies. In the extreme case,
if we never decide to create any shortcuts, the analysis falls
back to DDA-only. Note that there does not exist any fallback
to traditional TBA-only analysis, since shortcuts are based on
field edges as opposed to arbitrary pointer nodes.
An example. We use a slightly more complex example in
Figure 5 to better illustrate the above aspects. Assuming there
are no shortcut edges initially. If we apply TBA directly, all
nodes that share the same type with agv will be imprecisely
considered as pointer aliases. If we apply DDA directly from
agv, it will run into scalability issues when exploring the tons
of edges between b2 and b3. When attempting to create short-
cuts by transforming the PAG, we are presented with the first

opportunity when DDA encounters f d1
FieldT1 ,2,8←−−−−−−b1 edge. If

we decide to transform PAG for this edge, it will create three
shortcut edges, as there are three corresponding FieldT1,2,8
edges. According to the productions, all three edges should
be traversed as they all can potentially be aliases.

Alternatively, we can choose to forgo the first opportu-
nity and continue DDA until it meets the second opportunity:

f d2
FieldT2 ,1,4←−−−−−−b2. In that case, we see only one shortcut edge

will be created, which indicates that T2 is a less common type.
However, if decide to switch to TBA and create a shortcut
edge, it means we can skip only the edges between FieldT2,1,4
and FieldT2,1,4 (they are disconnected after PAG transforma-
tion); there exists another branch from b1 to b5 (i.e., an Assign
edge), which we still need to explore using DDA. This ensures
that we do not miss any potential alias.

Note that taking different opportunities will result in differ-
ent precision and scalability tradeoffs, as different decisions
will result in different pointer alias set pas results shown in
Figure 5. We will evaluate such tradeoffs in §6.1.

Generally speaking, taking shortcuts may reduce precision.
However, our analysis must follow DDA before and after
taking shortcuts, which naturally alleviates such precision re-
duction. For example, even if we made an over-approximation
by taking the shortcut between f d1 and f d4, it still requires

that the edges between agv- f d1 and those between f d4-a1 to
match the DDA rules. Otherwise, a1 will not be considered a
pointer alias of gv, as the end-to-end path traversal fails.

4.3.2 Precise Field-To-Castsite Shortcut

In the last section, we introduced how type-based field-to-
field shortcut works without considering pointer casting. In
this section, we relax this assumption with a novel strategy by
creating and following “Field-To-Castsite” shortcut edges. We
will show how the solution is much more precise than state-
of-art type-based solutions and still preserves soundness.

Type-based solutions like TYPM [36] and MLTA [37] ad-
dress pointer casting by collecting a “cast map” for every
pointer type that has been cast to/from another type. For ex-
ample in MLTA, during its pre-processing stage, it collects
all pointer castings, and conservatively considers all pointers
of T2* as aliases with pointers of T1*. Such a cast map will
significantly over-approximate the real aliases as it applies
globally to all pointers. The problem is exacerbated when the
type “escapes” to a primitive type, e.g., void*. This is because
the cast map relationship is transitive. If T1* has been cast
from/to void*, and void* has been cast from/to T2* and T3*,
then pointers with T1*, T2*, T3*, and void* will all be aliased.

To incorporate TBA into DDA, one obvious method is to
create shortcut edges when we find a pair of Field edges
where (1) their types are “compatible” according to the cast
map [36, 37], and (2) the two Field edges have matching
normalized offsets. Unfortunately, this significantly over-
approximates aliases as explained before.

Next, we describe our novel solution that is much more
precise and sound at the same time.
Insights. Different from cast-map-based approaches, which
simply consider all “compatible” types of pointers (i.e., nodes
on PAG) as aliases, we propose to consider only the pointers
that have actually encountered cast instructions to be aliases.
For instance, if we observed only a single cast edge between

type T1* and T2*, e.g., n1
CastT1 ,T2−−−−−→ n2 on PAG, we will not

consider all nodes with types T1* or T2* as aliases like in
cast-map-based approaches. Instead, we only consider n1 and
n2 as aliases. Fundamentally, we are able to make such a
differentiation because of the data-flow capability provided
by DDA. In other words, we have more information (from
PAG) that can inform a much more precise TBA decision.

Figure 6 illustrates the insight more clearly. Using the state-
of-art cast-map-based approach [36, 37], all nodes, from f1 to
f5, are considered aliases. In our newly proposed approach,
only f1, f2, and f3 are considered aliases because only they
are attached to base nodes that have experienced type casts
between T1* and T2*. Ideally, we should connect these field
nodes directly. However, as we see in the figure, a matching
FieldT2,1,4 edge may not follow immediately after the type
cast (see n3 and f3). Therefore, for soundness, instead of cre-
ating a “field-to-field” edge as we did before, we choose to
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Figure 6: An example PAG illustrating how castsite-based
aliases are more precise than castmap-based

create a special “field-to-castsite” shortcut edge, which re-
tains the type, index, and offset information of the original
FieldT1,1,4 edge, denoted as Shortcutc−T1,1,4.
PAG transformation. Similar to §4.3.1, we aim to transform
a PAG such that the original Field related DDA productions
6, 7, and 8 and their non-constant versions can go through
shortcuts instead. Intuitively, the shortcut edge replaces the
first Field edge in an original DDA production and keeps
searching for the second matching Field edge. More gener-
ally, when encountering a Fieldt,i,o edge or a Fieldt,i,−o edge,
we shall create a Shortcutc−T1,i,o edge (note that we normalize
the direction of the edge and the positive/negative sign of its
offset). The edge is between “the field node of the first Field
edge” ( f1 in Figure 6) to “the nodes of type T2 attached to
CastT1,T2 or CastT2,T1 edges” (n2). This way, we effectively
allow the Shortcutc to reach castsites and use DDA to explore
all potential aliases of the original node. Note that if we decide
to perform the PAG transformation, we will also disconnect
the Field edge (e.g., FieldT1,1,4 in the example) to ensure the
choice of DDA and TBA is mutually exclusive.
Rule changes to incorporate TBA into DDA. To accommo-
date the above changes, we introduce two additional produc-
tions to LR:

I-Alias→ Shortcutc−t1,i1,o I-Alias Fieldt2,i2,o (11)

I-Alias→ Shortcutc−t1,i1,o I-Alias Fieldt2,i2,o I-Alias (12)
These two productions are effectively pointer-casting-

aware versions of productions 9 and 10. In both produc-
tions 11 and 12, we can see the I-Alias non-terminal after
Shortcutc−t1,i1,o representing the query of aliases of the des-
tination node (e.g., n2 in Figure 6) at castsite. In production
12, we see an extra I-Alias non-terminal at the end similar
to production 10. This is for the same reason to account for
pointer subtraction cases.

Note that we omit the non-constant versions of the pro-
ductions for brevity. Basically, we would allow the above
productions to directly derive if the offset in the shortcut edge
or the one in the Field edge is non-constant.

4.3.3 Soundness

As our enhanced demand-driven graph traversal follows the
principle of Andersen-style alias analysis, by conservatively
modeling advanced pointer manipulation features in C, we

will show that the shortcut design over-approximates DDA
and is therefore also sound.
Assumptions. (1) We assume all global variables are always
initially used through their names in the source code; for
example, there should not be intended or unintended out-of-
bound writes to the global variables. (2) We assume all pointer
operations are captured as edges (e.g., Field edges) on PAG.
Proof. Under the DDA grammar (without shortcuts), given
a PAG G and arbitrary nodes a, b such that F(a,b) holds
through path p.

For any derivation of production 6 (which we use as an
example) on p, w.l.o.g. the PAG will take the form as below:

a−→...−→ f di

Fieldt1 ,i1 ,o

←−−− bi
I-Alias
←→ bk

Fieldt2 ,i2 ,o

−−−→ f dk−→...−→b
First, according to the definition of shortcuts, with a match-

ing pair of Fieldt1,i1,o and Fieldt2,i2,o edges, we will always
connect f di to f dk directly, if t1 is the same as t2. In such a
case, we simply skip over the intermediate I-Alias edges on
the graph and still derive I-Alias( f di, f dk) as DDA would.

If t1 is different from t2, it is not hard to see that there must
exist a Castt1,t2 edge (or multiple cast edges with intermediate
types) between bi and bk. According to the production 11, we
will jump to the castsite (i.e., destination node of the Castt1,t2
edge). Further, the production will continue to search for an I-
Alias before ultimately finding the matching Fieldt2,i2,o edge,
and successfully derive I-Alias( f di, f dk) as well.

Second, since we only disconnect involved Field edges
after PAG transformation, if there are other edges connected
to f di or f dk, they will still be explored, just as in DDA.

Together, we show that the shortcut strategy will always
over-approximate and never create side effects that prevent
certain edges from being traversed. Note that the example
we gave assumes production 6 is the one that matches the
PAG. However, we note that the logic applies similarly to
productions 7 and 8, as well as the non-constant versions.

5 Implementation

We implement Unias based on LLVM-13.0.1 and SVF-2.1,
with 2,500 lines of C++ code. We also implement auxiliary
components which are specific to the application of global
variable protection, with 400 additional lines of C++ code.
Algorithm. To implement Unias, we give a worklist algorithm
after PAG transformation in Algorithm 1. This algorithm en-
compasses productions 1 to 6 and also includes corresponding
shortcuts for production 6. Due to the space constraints, we
omit the pointer arithmetic productions and shortcuts in the
algorithm as they share similar insights as production 6. In
our actual implementation, we do handle all productions from
1 and 12 and the non-constant versions of them.

In the algorithm, Propagate is used to maintain the work-
list, and the recursive function ComputeAlias can be used
for both F query and I-Alias query. The state represents the
state of the alias analysis. There are two possible states, S f
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Algorithm 1: Algorithm of Unias

1 Propagate(worklist, cur, src, state):
2 if < cur,state > /∈ Reach(src)
3 Reach(src)← Reach(src)∪{< n,state >}
4 worklist← worklist ∪< cur,src,state >
5 ComputeAlias(node, state):
6 Alias(node) ←∅
7 w←{< node,node,state >}
8 while w ̸=∅ do
9 remove < c,s,state > f rom w

10 Alias(s)← Alias(s)∪{c}
11 Alias(c)← Alias(c)∪{s}
12 if state == Sb

13 for each c
Assign←−−− n

14 Propagate(w, n, s, Sb)

15 for each c Load←−−− n
16 ComputeAlias(n, Sb)
17 for each a ∈ Alias(n)

18 for each a Store←−−− m
19 Propagate(w, m, s, Sb)

20 for each a Load−−−→ m
21 Propagate(w, m, s, S f )

22 for each c
Fieldt,i,o1←−−−−− p

23 ComputeAlias(p, Sb)
24 for each a ∈ Alias(p)

25 for each a
Fieldt,i,o2−−−−−→ f d

26 if o1 == o2
27 Propagate(w, f d, s, S f )

28 for each c
Shortcut f−−−−−→ f d

29 Propagate(w, f d, s, S f )

30 for each c
Shortcutb−−−−−→ f d

31 ComputeAlias ( f d, Sb)
32 for each a ∈ Alias( f d)
33 Propagate(w, f d, s, S f )

34 for each c
Shortcutc−t,i,o1−−−−−−−−→ castnode

35 ComputeAlias (castnode, Sb)
36 for each a ∈ Alias(castnode)

37 for each a
Fieldt,i,o2−−−−−→ f d

38 if o1 == o2
39 Propagate(w, a, s, S f )

40 for each c
Assign−−−→ n

41 Propagate(w, n, s, S f )

42 for each c Store−−−→ n
43 ComputeAlias(n, Sb)
44 for each a ∈ Alias(n)

45 for each a Load−−−→ m
46 Propagate(w, m, s, S f )

and Sb, which represent the algorithm is to match forward
edges (e.g., F) and backward edges (e.g., F and the beginning
of I-Alias) respectively.

Thus, given a global variable address agv, querying its
flows-to is equal to invoke ComputeAlias (agv, S f ), and for
those intermediate aliases introduced during the query, we
recursively invoke ComputeAlias for them with state Sb, as
line 16, 23, 31, 35 and 43 show, and change the state to S f
when about to match forward edges, e.g., Load at line 20.
Call graph generation. We apply the state-of-the-art solution
MLTA [37] due to its sound and precise nature.
Init function recovery. We find that only a subset of ker-
nel initialization functions are labeled properly (e.g., __init,
__exit, or module_init). This means that there are missing
labels for many other functions that are invoked only once dur-
ing kernel initialization. This will cause us to under-estimate
the ro_after_init global variables. To identify the “missing”
init functions, we conduct a conservative fixed-point analysis
on the call graph generated by MLTA. The analysis will la-
bel new init functions based on the existing init function set.
Specifically, if a function is called by only init functions, it
will be put in the init function set. This results in 629 more init
functions compared to the 2,064 labeled in the Linux kernel
v5.14 with defconfig [1].
Annotating global variables. Once we identify read-only and
ro_after_init global variables, we implement an LLVM pass
to set the attributes of such global variables directly to protect
them, i.e., gv->setSection(".data..ro_after_init");

6 Evaluation

To demonstrate Unias’s contribution to safeguarding global
variables, we analyze all global variables in a specific Linux
kernel to identify those qualified as ro_after_init, then we
verify the results and show their accuracy. In addition, we
conduct a case study to show how most recent kernel ex-
ploits that targeted global variables can be mitigated by either
ro_after_init or SFI. More specifically, we aim to answer
the following questions: (1) How does Unias achieve a better
tradeoff between precision and scalability compared to pure
DDA and pure TBA for the purpose of protecting global vari-
ables? (§6.1) (2) Is the result truly sound? (§6.2) (3) Does the
result help with real-world attacks? (§6.3)
Dataset. For alias analysis, we qualify global variables in
our scope by following rules, (1) the global variable is in a
write-able section (e.g., not exist in read-only section) (2) the
global variable is not used in assembly code files (e.g., files
with suffix .S or .s) – 92 global variables are excluded here.
Finally, we have 12,089 global variables in our analysis scope.

There are 69,285 fields in these global variables, where
65,960 fields belong to 8,764 composite global variables, and
3,325 fields belong to non-composite (pointer and primitive
types) global variables. Note that arrays are considered as one
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Table 1: Overall ro_after_init Results Comparison

Unias DDA Steensgaard TBA

#finish-gv 12,089 100.0% 2,911 24.1% 12,089 100.0% 12,089 100.0%
#ro_a_i1 5,091 42.1% 1,639 13.6% 1,243 10.3% 917 7.6%
#finish-fd 69,285 100.0% 12,934 18.7% 69,285 100.0% 69,285 100.0%
#field 60,903 87.9% 10,483 15.1% 4,639 6.7% 4,290 6.2%
#funcptr 13,796 97.0% 5,642 39.7% 2,492 17.5% 3,875 27.2%
#data-fd 47,107 85.6% 4,841 8.8% 2,147 3.9% 415 0.8%
total time2 560 > 9,716 46 < 1
1 #ro_a_i: # of global variables determined to be ro_after_init
2 The unit of measurement for the total time is the CPU hour

element. Among the 69,285 fields, there are 14,224 control
data (e.g., function pointers) fields and 55,061 non-control
data (e.g., integers, data pointers) fields.
Experiment setup. All experiments are conducted on a ma-
chine with an AMD EPYC 7542 32-Core CPU and 2TB of
RAM, running Ubuntu 20.04.5 LTS. The version of LLVM
is 13.0.1. And the target Linux kernel version is v5.14. The
kernel LLVM IR is compiled by Clang 13.0.1 with defconfig

and optimization level “-O0”.
To demonstrate the effectiveness of Unias, we compare it

against the state-of-art sound alias analysis (§3.2), namely
Andersen-style demand-driven alias analysis (DDA), whole-
program type-based alias analysis (TBA), and whole-program
Steensgaard’s alias analysis (Steensgaard). To be fair, all
analyses are field-sensitive, flow-insensitive, and context-
insensitive. Besides, we use the same time limit for Unias
and DDA since they both start with a demand-driven strategy.
Specifically, each global variable is analyzed separately with
a time limit of one hour. If the analysis does not complete
in time, we conservatively view the variable as not eligible
for protection. As for TBA and Steensgaard, there is no time
limit since both of them are scalable whole-program analyses
that will finish much quicker than Unias and DDA.

Note that Unias is tunable, as mentioned in §4.3.1, and we
must choose a configuration to run it. Specifically, whenever
we encounter a Fieldt,i,o edge, we have the choice of either
creating and taking the shortcut edges or continuing DDA.
We choose the following simple configuration for our main
results: if the number of shortcut edges we need to create in
meeting a a Fieldt,i,o edge is less than 200 (threshold), we
will choose to create and take these shortcuts. Otherwise, we
continue with DDA. One can obtain the number of Shortcut f
and Shorcutc edges for a given Fieldt,i,o edge before the de-
cision. Generally speaking, a higher threshold means taking
shortcuts more aggressively and will result in more scalability
but less precision. Later on, we also evaluate other thresholds.

6.1 Results

Table 1 shows the results with respect to ro_after_init. We
can see Unias clearly performs much better than the other
methods. First, it achieves a comprehensive analysis of 100%
of global variables. Second, it finds 5,091 (#ROAI) global

Table 2: Scalability Results of pure DDA

< 30m < 1h < 2h < 4h < 8h

#finished-gv 15.4% 24.1% 34.2% 41.1% 50.2%
#ro_a_i 9.0% 13.6% 19.4% 24.0% 27.7%
#finished-fd 11.5% 18.7% 29.7% 39.9% 48.6%
#field 9.1% 15.1% 25.7% 33.4% 41.9%
#funcptr 20.7% 39.7% 55.9% 61.4% 65.0%
#data-fd 6.1% 8.8% 18.1% 26.1% 36.0%

variables protectable as ro_after_init at the object granular-
ity (42.1% of all global variables) and 60,903 (#field) at the
field granularity (87.9%). If we look at the function pointer
(#func-ptr) and data pointer fields (#data-fd), which are com-
mon targets of exploits, Unias finds 97.0% and 85.6% of them
protectable. Note that the current ro_after_init mechanism
operates only at the object level. However, the field-level re-
sults can still be used in other fine-grained integrity protection
mechanisms (which we discuss in §6.3).
Unias vs pure DDA. As shown in Table 1, Unias can finish
analyzing all of the 12,089 global variables whereas DDA
can finish only 2,911 (24.1%), both under the same one-hour
time limit for each global variable. Since those unfinished
global variables are considered unprotectable, Unias identifies
significantly more protectable global variables — about 2
times more object-wise and 5 times more field-wise.

Interestingly, we find 144 global variables that are consid-
ered protectable by pure DDA but considered unprotectable
by Unias with the same 1-hour budget. This is expected be-
cause DDA is the most precise, provided that it can finish the
analysis within the time limit. Unfortunately, we cannot pre-
dict whether DDA can finish within an hour beforehand. It is
an interesting future work to tune Unias automatically by tak-
ing into account the time budget and history of performance.
One might think it is possible to perform a two-phase analysis,
i.e., pure DDA first to see which global variables are difficult
to finish and then run Unias on those. However, under such a
strategy, the time taken by the initial run of DDA-only should
still count towards the overall analysis time and therefore this
overall may not always be the better strategy.

To comprehensively evaluate the result of pure DDA, we
also measure the results with other time budgets, including 30
mins, 2 hours, 4 hours, and 8 hours, for each global variable.
The results are shown in Table 2. While we do see improve-
ments as the time budget increases, we see still about half of
the global variables unfinished even after 8 hours. This clearly
represents a significant scalability challenge to pure DDA.
Unias vs Steensgaard. In Table 1, we see Steensgaard fin-
ishes analyzing all global variables in 46 hours, which is fairly
quick and only slower than TBA. However, we find that only
10% global variables are considered protectable due to the
significant over-approximation by design. We can see that it is
still much less precise compared to Unias and Andersen-style
DDA. It only protects 2.7% more global variables and 0.5%
more fields compared to TBA.
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Table 3: Tunablility Result of Unias

threshold* <1000 <200 <50

#finished 12,089 12,089 11,381
#ro_a_i 4,672 5,091 4,912

#field 54,911 60,903 59,034
min time <1s <1s <1s
max time 16m32s 45m57s 59m20s
avg time 1m15s 2m47s 4m39s

* threshold < 1000 means creating and taking shortcut when the
corresponding shortcut edges number is less than 1000

Unias vs pure TBA. As expected, TBA has excellent scala-
bility, finishing the analysis of all global variables in only 10
minutes. However, when it comes to precision, TBA’s results
are extremely poor, as only 917 (7.6%) of global variables and
4,290 (6.2%) fields are considered protectable. We find all
protectable ones share the same attributes: (1) are composite
types, (2) never have their fields address-taken, (3) never cast
from/to non-composite types. However, the majority of global
variables do not share these attributes (e.g., a large fraction
of global variables are primitive types). Because of the se-
vere limitation of TBA, we find no new protectable global
variables compared with Unias.
Tunability. To demonstrate the tunable design of Unias, we
run Unias with different thresholds following the simple strat-
egy described earlier. As shown in Table 3, a higher threshold
means that we will choose to take more shortcuts, which
will result in generally better scalability but lower precision
since we spend less time on DDA. On the other hand, a lower
threshold means that we will choose to take fewer shortcuts
and result in generally worse scalability and higher precision.
Notably, choosing a threshold of “50” leads to 708 unfinished
global variables in 1 hour, and subsequently, fewer protectable
global variables compared to results with a threshold of “200”.

6.2 Accuracy

In this section, we compare Unias against two types of ground
truth to understand the accuracy of Unias. We may miss the
opportunity to protect a global variable if we have false posi-
tives (FP) in alias analysis, i.e., false pointer aliases that lead to
store operations. Conversely, we may falsely protect a global
variable if we have false negatives (FN) in alias analysis, i.e.,
miss pointer aliases that lead to store operations.
Missing protections (FP of alias analysis). As mentioned
in §3.2, kernel developers have manually labeled 127 global
variables as the ro_after_init (defconfig in v5.14 Linux
kernel). We treat them as ground truth and perform a separate
run on these 127 global variables to check whether Unias
missed any. Note that the ones we miss will not lead to error;
instead, we simply lose a few protectable global variables.

Overall, 14 global variables were found unprotectable. It
means we successfully identified the rest 113 (89%) pro-
tectable global variables, showing good coverage. Interest-

ingly, 7 of them are due to the over-approximation of pointer
aliases. The remaining 7 are due to missing labels of init func-
tions, which prevent us from excluding the write operations
that occurred in such functions.
False protections (FN of alias analysis). Since we do
not have pre-existing ground truth about global variables
in writable sections of the Linux kernel, we rely on dy-
namic traces of load/store instructions generated from fuzzing.
Specifically, we run the compiled kernel with all 5,091 global
variables labeled as ro_after_init in QEMU. We then in-
strument all load/store instructions to trace their operations
on the 12,089 global variables. Specifically, we log both the
global variable and its field (according to the target address
of the load/store instructions). In addition, we log the binary
address of the load/store instruction itself (EIP).

To fuzz the kernel, we use the state-of-art Linux kernel
fuzzer Syzkaller [21], with its built-in syscall descriptions
as well as descriptions generated by SyzDescribe [25] to get
as much coverage as we could. With 2 weeks of fuzzing (2
cores × 8 vms). We find 645 global variables are stored and
3,142 global variables are loaded at least once after kernel
initialization, which shows a considerable coverage (out of
12,089 global variables in total).

Encouragingly, our result finds no false protection if we use
the Unias results at the object granularity. In other words, the
kernel never raised an error by mislabeled “read-only” global
variables. However, when we inspect the results at the field
granularity, we realize that there are actually 34 fields from
29 global variables that experienced write instructions. The
reason that the 29 global variables did not cause any trouble
during fuzzing is that there are writes to other fields of them
which are also captured by Unias before.

Through our manual investigation of a sampled set of 13
global variables (out of the 29), we found all of the correspond-
ing missing store-to-field cases are due to missing pointer
information in LLVM or PAG. As we mentioned in §4.3.3,
Unias is sound by design and is based on the assumption that
the PAG captures all the pointer operations. Specifically, we
divide the reasons into two major categories: assembly code
and pointer-to-integer.

(1) Assembly code. We found 9 global variables’ fields
are mistakenly considered protectable because their addresses
leaked into the assembly code, causing our analysis to miss
their propagation. Unfortunately, assembly code does not get
compiled into LLVM IR and therefore is missed in PAG as
well. One potential strategy to handle assembly code is to treat
any global variables whose addresses propagate to assembly
code as unprotectable. This strategy is conservative and sound.
However, it may increase false positives substantially. One
other strategy is to model the caller of assembly code or lift
them systematically into LLVM. We plan to explore such
options in future work.

(2) Pointer-to-integer. We found 4 global variables’ fields
are mistakenly considered protectable because of this reason.
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Table 4: Case Study

CVE global variable protection

mmap_min_addr SFI
CVE-2017-5123

dac_mmap_min_addr SFI
CVE-2019-2215 SFI
CVE-2022-22057

selinux_enforcing
SFI

CVE-2021-27365 iscsi_iser_transport ro_after_init
CVE-2022-1786 misc_format ro_after_init
CVE-2021-42008 SFI
CVE-2021-43267 SFI
CVE-2022-0185 SFI
CVE-2022-27666 SFI
CVE-2022-32250 SFI
CVE-2022-34918 SFI
CVE-2023-0179 SFI
CVE-2023-32233

modprobe_path

SFI

This is due to the Linux kernel sometimes casting pointers
to long integers and further performing pointer arithmetic
on those integers [15] and later cast them back to pointer
types (evident by the use of ptrtoint/inttoptr LLVM IR).
Even though this is permitted in C, it is considered risky – a
quote from the C standards: “the result is implementation-
defined” [8]. By design, PAG captures only pointer-related
operations and not integer arithmetic. To handle these cases,
we need to extend the PAG so that we can keep track of such
integer arithmetic. At a minimum, we would need to connect
the source node before it is cast to an integer and the des-
tination node after it is cast back to a pointer type, without
keeping track of the integer arithmetic in between. In essence,
we can create a special Field edge connecting the source
and destination node (which may or may not be the same
type). This will allow DDA to track the flows-to relationship
at least with some precision. We envision a simple analysis
that can ensure soundness: (1) allowing the source and des-
tination node to be matched even if their types differ, and
(2) conservatively considering all fields that the destination
pointer points to as aliases with the source pointer. We leave
a detailed implementation and analysis to future work.

6.3 Case Study

To show how results of Unias can be beneficial, we col-
lect 37 publicly available Linux kernel exploits [12, 54, 57]
from 2017 to 2023. As shown in Table 4, we find 13 ex-
ploits against 13 CVEs (35% of all CVEs) targeting 6 unique
global variables. This suggests a significant focus on exploit-
ing kernel vulnerabilities through global variables. Out of
these 6 global variables, Unias finds that misc_format and
iscsi_iser_transport1 should not be modified (i.e., no in-
tended store instruction) after kernel initialization. We manu-
ally verify the results to be correct, and thus it can be safely

1Note that we need to add CONFIG_INFINIBAND_ISER=y to the ker-
nel config in order for the variable to be included.

labeled as ro_after_init. On the other hand, Unias did find
intended store instructions for the remaining 4 global vari-
ables and our manual confirmation verified their correctness.
This implies that these variables are not eligible for protection
ro_after_init. Nevertheless, these 4 global variables are still
protectable via SFI. Specifically, we discovered that none of
the store instructions used in the exploit were part of the in-
tended set identified by Unias, implying that the exploit can be
successfully mitigated by denying such write instructions at
runtime via SFI. Furthermore, Unias accurately identified all
intended store instructions, resulting in zero missed cases. As
a result, we can confidently assert that we will not encounter
any errors caused by mistakenly denying legitimate access.
Take modprobe_path as an example, we find 19 intended store
instructions in total, all stemming from the SYSCTL feature.
Besides SFI, developers can choose to disable the feature
so that modprobe_path becomes ro_after_init. Indeed, we
find that on some Samsung Android devices, this feature is
disabled (likely for security reasons).

7 Discussion

Further precision improvements. There are two main
sources of precision losses: (1) flow-insensitive and context-
insensitive in DDA, and (2) type-based shortcuts through
TBA. For (1), while flow-insensitivity is a necessity to ensure
soundness, context-insensitivity is not and can be potentially
incorporated in Unias, e.g., by duplicating copies of the same
function at each call site on PAG. However, the tradeoff is
decreased scalability. For (2), we can investigate other strate-
gies to decide when to take shortcuts. For example, instead
of using a fixed threshold at every decision point, we can
vary it depending on more precise estimates, e.g., by looking
ahead and summarizing future edges in some way. We can
even evaluate multiple “choices” in parallel to make more
informed decisions.
Further scalability improvements. First, since there are
many intermediate aliases that are repeatedly computed for
different global variables, we can cache such intermediate
results across queries. Second, we envision our solution can
be applied incrementally for Linux kernel releases (similar
to [61]). This means even more caching can be done across
different kernel versions.
General alias analysis for other applications. Even though
Unias is applied to finding pointer aliases of global variables,
the nature of our solution generalizes beyond it. For example,
we can find pointer aliases of stack and heap objects that
are allocated in one module but may propagate to another
module. This can be applied to program modularization and
isolation [11, 28, 32, 36, 40–43]. We hinted in §6.3 that we
can use our technique to precisely restrict write accesses to
sensitive data [9, 19, 47, 48] (e.g., uid field (since our analysis
is field-sensitive) in struct cred [50]).
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Another potential application is to apply our analysis to
resolve indirect calls in the Linux kernel – instead of tracking
how the addresses of global variables propagate, we would
track how the addresses of functions propagate. We believe
our analysis can potentially outperform or complement the
state-of-the-art [37]. We leave these interesting applications
for future exploration.

8 Related Work

Points-to and alias analysis. As described throughout the
paper, there exists a large body of alias analysis work, which
can be broadly classified into data-flow-based [10, 55, 59, 65]
and type-based [17, 37]. We discussed their advantages and
disadvantages in the paper and how they can be combined ex-
tensively. We now discuss a few key related works on demand-
driven alias analyses of C, and show how they differ from our
demand-drive version. Many demand-driven alias analyses
of C have achieved limited precision and soundness guar-
antees due to the modeling of a subset of features of the C
language [26, 65]. Specifically, the analysis in [65] is field-
insensitive without considering pointer types and pointer arith-
metic hence is much less precise than ours. Wang et al. [55]
proposed a solution to transform the Linux kernel program
into graphs that are amendable to existing graph systems.
Such systems offer scalable processing of large graphs. We
regard their solution as orthogonal to ours as they do not
fundamentally change the complexity of an alias analysis,
but graph systems’ performant implementations can poten-
tially further improve the speed of our hybrid alias analysis.
The analysis in [26] is field-sensitive but may not sound due
to ignoring pointer casting and pointer arithmetic. Later, a
more precise demand-driven pointer analysis [59] is proposed
with field-, flow-, context- and even partial path-sensitivity.
However, the analysis cannot be soundly scaled to analyze
the Linux kernel, because achieving both flow-sensitivity and
soundness given a multi-entry program is hard (see §3.2).
Static analysis of the Linux kernel. A large body of work
has applied static analysis on the Linux kernel for various
purposes, such as bug finding and security enforcement [20,
34, 37–39, 56, 60–62]. The majority include some form of
data-flow-based alias analysis and do not provide soundness
guarantees. This is because they do not track soundly all the
pointer aliases of a given object, irrespective of whether the
object is a stack-allocated, heap-allocated, or globally-defined
object. The key difficulty is that the addresses of these objects
can propagate to global objects across syscalls. The difficulty
is exactly what we address in this paper. SUTURE [62] is the
only work that attempts to reason about aliases across syscalls.
However, its flow-sensitive analysis will have to consider all
possible sequences of syscall invocations to be sound. In
addition, it does not handle the case where the address of
one global object propagates to another global object, leading

to unsound results. Lastly, we have seen some recent work
on improving the precision of type-based alias analysis by
considering multiple layers of types [37, 63]. However, both
focused on function pointers instead of data pointers.
Protection and attack of global variables. A few prior works
have proposed defenses to protect the integrity of global vari-
ables in the Linux kernel. Xiao et al. [58] studies a variety of
global variables that control important security mechanisms
in the Linux kernel, such as auditing framework, AppArmor,
and NULL pointer dereference mitigation. They subsequently
classify these variables into different types for protection, e.g.,
read-only. However, the work simply assumed the labels given
in the kernel without inferring any additional global variables,
which would require a proper alias analysis. Song et al. [47]
proposes a principled defense to enforce data flow integrity on
critical data in the Linux kernel, by mediating write accesses
to such data (including 1,490 global variables). However, in
order to identify all the write instructions, a sound alias anal-
ysis is required. Otherwise, legitimate writes through pointer
aliases may be mistakenly blocked.

9 Conclusion

This paper presents a novel and general hybrid alias analysis
based on formalized algorithms. Our solution elegantly unifies
the data-flow-based and type-based strategies elegantly, which
are complementary by nature. We show that it is effective
against an extremely challenging target, i.e., the Linux kernel,
using the application of global variable protection.
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6 }o_base;
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8 store_load(){
9 int* n3 = &o_gv;
10 int** n4 = &n3;
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12 int* n6 = *n5;
13 }
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15 field(struct T* base1){
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A More Examples on Applying Basic Produc-
tion Rules

To better understand how the production rules introduced in
§4.2.1 work, we give examples for different edges in Figure 7.

Recalling §4.2.1, any global variable (e.g., o_gv) will only
be used through its address, denoted as agv. To simplify the
following PAGs, we have S as Store, L as Load, A as Assign,
and Fdt,i,o as Fieldt,i,o.

For Store and Load edges, consider codes in function
store_load(), which PAG will be:

agv
A1
−→ n3

S
−→ n4

A2
−→ n5

L
−→ n6

G7: PAG of field()
In function store_load(), n3 and n6 are both pointer aliases

of o_gv, as F(agv,n3) and F(agv,n6) should both hold on G7.
The derivation will be:

agv (F)
→ agv (A1 n3 F)
→ agv A1 n3 (S n4 I-Alias1 L)
→ agv A1 n3 S n4 (F I-Alias2 F) L
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→ agv A1 n3 S n4 (ε ε F) L
→ agv A1 n3 S n4 (A2) n5 L
→ agv A1 n3 S n4 A2 n5 L n6

During the derivation, as I-Alias1(n4,n5) holds, it means
n5 is an alias of n4, which is also easily observed as int**

n5 = n4 in store_load(). This truth shows the intuition of
production 4, i.e., if agv or its alias (e.g., n3) is stored to
somewhere (e.g., n4), we should find all somewhere’s aliases
(e.g., n5), then load from them and get all agv’s aliases (e.g.,
n6). This procedure could perform recursively like multiple
layers of intermediate alias I-Aliasn as there might be multiple
times of store and correspondingly load, and for each I-Aliasn
layer caused by store, we should find all the aliases of this
layer, then continue analysis through their load edges.

Finally we have derived that n3 and n6 are pointer aliases
of o_gv, as F(agv,n3) and F(agv,n6) hold.

I-Alias1(n4,n5) shown in G7 describes one kind of deriva-
tions (ε ε F) of I-Alias. To better understand other productions
of I-Alias, we give function field() in Figure 7 and its PAG
G8, which shows the derivation of field edges:

agv
S
−→ f d11

FdT,1,4
←− base1

A
−→ base2

FdT,1,4
−→ f d12

L
−→ n7

G8: PAG of field()
In field(), it’s intuitive to figure out the global variable

address &o_gv will finally flow to local pointer n7 in function
func, which means n7 will point to o_gv, as F(agv,n7) should
hold on G8.

First we could easily derive I-Alias(base1,base2) in G8
just as I-Alias1(n4,n5) in G7. Then we could derive I-
Alias( f d11, f d12) through production 6 since f d11 and f d12
are defined through the same FieldT,1,4 edges from base1 and
base2 respectively. As base1 and base2 are aliases for each
other, f d11 and f d12 should also be aliases for each other. Fi-
nally we can derive F(agv,n7), as we have I-Alias( f d11, f d12)
with production 4.

Notice that f d11 is not an alias of base1, while they both
point to the same object obase but with different field indexes.
We decouple such field/base alias relationship of an object.
Such separation reflects the nature of field-sensitive, i.e., dif-
ferentiate every field of struct objects.

B Non-Constant Pointer Arithmetic Rules

I-Alias→ (Fieldt1,v,ov | Fieldt1,v,ov) I-Alias Fieldt2,i2,o

I-Alias→ (Fieldt1,v,ov | Fieldt1,v,ov) I-Alias Fieldt2,i2,o I-Alias
I-Alias→ (Fieldt1,i1,o | Fieldt1,i1,o) I-Alias Fieldt2,v,ov

I-Alias→ (Fieldt1,i1,o | Fieldt1,i1,o) I-Alias Fieldt2,v,ov I-Alias

Generally speaking, all of these non-constant pointer arith-
metic productions conservatively match the pair of Field
edges once there’s a non-constant index (v) in either or both
of them. Still, we add extra non-terminal I-Alias for the same
reason in §4.2.3 (i.e., uncertain definition directions).
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