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Abstract

The stealthiness of an attack is the most vital consideration
for an attacker to reach their goals without being detected.
Therefore, attackers put in a great deal of effort to increase
the success rate of attacks in order not to expose information
on the attacker and attack attempts resulting from failures.
Exploitation of the kernel, which is a prime target for the
attacker, usually takes advantage of heap-based vulnerabili-
ties, and these exploits’ success rates fortunately remain low
(e.g., 56.1% on average) due to the operating principle of the
default Linux kernel heap allocator, SLUB.

This paper presents PSPRAY, a timing side-channel attack-
based exploitation technique that significantly increases the
success probability of exploitation. According to our evalua-
tion, with 10 real-world vulnerabilities, PSPRAY significantly
improves the success rate of all those vulnerabilities (e.g.,
from 56.1% to 97.92% on average). To prevent this exploita-
tion technique from being abused by the attacker, we further
introduce a new defense mechanism to mitigate the threat of
PSPRAY. After applying mitigation, the overall success rate of
PSPRAY becomes similar to that from before using PSPRAY
with negligible performance overhead (0.25%) and memory
overhead (0.52%).

1 Introduction
The Linux kernel is a major attack target to accomplish the
attacker’s objectives (e.g., escalating privilege). To address
these attempts, several kernel mitigation techniques (e.g.,
KASLR [11], KCFI [8, 12], and KDFI [21, 34]) have been
proposed. These mitigation techniques make attacker’s ex-
ploitation more difficult since the success rate of exploitation
is a critical factor for attackers and developers.

For attackers, the stealthiness of an attack is one of the most
important requirement when launching the exploitation. This
is because if the exploitation fails, the attack would be caught
by the defender. More specifically, such failure might lead
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to a kernel panic, which is a very apparent symptom that de-
fenders can notice. Therefore, attackers are highly motivated
to improve the success rate of their attacks. Even for kernel
developers, if the vulnerability seems to be difficult to exploit,
they may judge that the vulnerability is not a serious one.
Therefore, developers often postpone the patching procedure
so as to focus on other, more seemingly urgent ones.

Focusing on the popular heap-based kernel vulnerabili-
ties (e.g., 968 of 1,107 vulnerabilities found by Syzkaller are
heap-related vulnerabilities [38]), it is difficult for attackers
to assure the successful exploitation. This is because, in order
to exploit the heap-based vulnerabilities, the attacker should
be able to roughly predict the current allocation status. How-
ever, it is nearly impossible for the following two reasons.
First, the kernel’s object allocation status is not accessible
by attackers. As the privilege separation between the user
and the kernel is employed, the user has no way to directly
access the kernels’ memory layout and thus to directly learn
the allocation status. Second, the kernels’ memory allocator
shows non-deterministic, pseudo-random behavior, rendering
it difficult to infer its internal status. To be specific, the allo-
cation behavior of SLUB [7], the default Linux kernel’s heap
allocator, depends on various underlying contexts (e.g., an
object order within the freelist is randomly determined, and
the allocation pool is maintained with multi-stage pools in
which each pool is dependent to other stage’s pool).

To clearly showcase such difficulty, let us take examples us-
ing two representative heap vulnerabilities: out-of-bounds and
use-after-free vulnerabilities. In the case of exploiting an out-
of-bounds vulnerability, the attacker has to place two objects
next to each other (i.e., one object triggering out-of-bounds
and the other overwritten by the out-of-bounds). However, due
to the slab freelist random [1] which is the default mitigation
technique of major distributions (e.g., Ubuntu and Debian),
the allocation order of the SLUB is pseudo-random, so the
attacker cannot ensure such side-by-side object placements.
Similarly, in order to exploit a use-after-free vulnerability,
the attacker should be able to place two objects (i.e., one ob-
ject being freed and the other being used/referenced) at the

USENIX Association 32nd USENIX Security Symposium    6825



same virtual address. However, it is possible that the SLUB
allocator may assign different allocation pools for these two
objects so that there can be cases those two objects cannot
be overlapped. We note that in order to increase reliability
of the exploit, the heap spraying technique [9, 13, 33] has
been popularly used. However, heap spraying alone cannot
completely bypass the slab freelist random mitigation in the
SLUB allocator.

This paper presents PSPRAY, a new kernel heap exploita-
tion technique, which can significantly increase the reliability
of the heap exploit against the slab freelist random mitigation
technique. Acknowledging that the key to launching success-
ful heap exploitation is learning the kernel allocation status,
PSPRAY first develops new side-channel attacks against the
SLUB allocator. Next, leveraging this new side-channel at-
tack, we further show how to significantly augment the heap
exploitation reliability.

More specifically, the key idea of PSPRAY is using the tim-
ing side-channel to indirectly learn the allocation status of the
slab. To the best of our knowledge, while various timing side-
channels have been presented [10, 15, 16, 19, 22, 23, 32, 40],
PSPRAY is the first timing side-channel attack for exploiting
memory corruptions. Using the timing side-channel, we can
differentiate the internal allocation path of SLUB, which in
turn allows us to infer a partial allocation status (i.e., whether
the allocation has taken place from the empty freelist or not).

Based on this allocation status information by PSPRAY, we
further design new heap exploitation techniques. Specifically,
when exploiting the out-of-bounds vulnerability, we find that
attackers can avoid the cases where the vulnerable object and
the target object are not adjacent. Likewise, in order to exploit
use-after-free (as well as double-free), we find that attackers
can learn that the vulnerable object and the target object are
not placed at the same address, thereby avoiding the failure
cases.

In order to demonstrate that PSPRAY is effective in aug-
menting the exploitation reliability, we developed exploits
using PSPRAY for 10 real-world vulnerabilities. Our evalua-
tion results showed that PSPRAY significantly improved the
success rate, from 56.10% to 97.92% on average. Notably,
in the case of 83bec2, which is found by Syzkaller [38], the
exploitation with PSPRAY shows a 98.16% success rate while
the exploitation without PSPRAY only showed a 13.70% suc-
cess rate.

As a mitigation solution against PSPRAY’s side-channel
attacks, we further introduce a new defense mechanism. The
basic idea is to obscure the timing when an empty freelist
is used for allocation through irregular period assignments.
Using this method, the success rate of attacks reverts back to
what it was before using PSPRAY.

To summarize, this paper makes the following contribu-
tions:

• Analysis of heap exploitation failure. We figure out the
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Figure 1: Architecture of SLUB allocator

cause of the exploitation failure through the operating prin-
ciple of the SLUB allocator.

• New heap exploitation technique. PSPRAY presents a new
Linux kernel heap exploitation method that bypasses the
cause of the exploitation failure using timing side-channel
attacks.

• New mitigation technique. We suggest and implement a
new mitigation technique against PSPRAY.

2 Background
2.1 SLUB Allocator
SLUB allocator [7] is a default Linux kernel heap memory
management mechanism intended for the efficient memory
allocation of kernel objects. SLUB allocator manages the
slabs, which are a group of one or more pages for fast and
efficient object allocation.
The architecture of SLUB allocator. The basic architec-
ture of the SLUB allocator is illustrated in Figure 1. The
SLUB allocator includes various kmem_cache according to
a specific type (e.g., task_struct) or a specific size (e.g.,
kmalloc series). Each kmem_cache uses both per-CPU mecha-
nism and per-node mechanism for managing the slabs. More
specifically, each CPU core has individual freelist, page,
and partial. Freelist is a linked list of free objects on
page, and every object allocated through SLUB allocate from
this freelist. Even though there is a freelist for each slab,
SLUB allocator manages a separate CPU-freelist in order
to achieve faster performance. In more detail, accessing the
CPU’s page-freelist or CPU’s partial-freelist after accessing
target slab is slower than immediately accessing the CPU-
freelist. The CPU’s page consists of one slab and partial
consists of one or more slabs. SLUB allocator manages free
objects with linked lists. As previously stated, each slab has
an individual freelist separate from the CPU-freelist, and
these freelists are used when the CPU-freelist is empty.
Also, each node has a partial, which consists of one or more
slabs. Each node’s partial-freelist can also be used when
CPU-freelist is empty.
Allocation sequence of SLUB allocator. Figure 2 shows
the allocation sequence of SLUB allocator. A rule of thumb
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Figure 2: Allocation sequence of SLUB allocator
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Figure 3: Mechanism of slab freelist random

is that all objects are allocated from CPU-freelist. If CPU-
freelist is not available, then CPU-freelist must become
available first by reclaiming from other slabs. Therefore,
the object allocation can take different paths depending on
whether the object allocation is immediately performed on
CPU-freelist or performed after reclaiming.

The fast-path is the case where there is an available object
in the CPU-freelist, and thus it allocates the object immedi-
ately. If there is no object in the CPU-freelist, the medium
path #1 is taken, in which the kernel promotes the CPU’s page-
freelist to the CPU-freelist and then allocates the object. If
the CPU-freelist and the CPU’s page are empty, the SLUB
allocator executes the medium path #2, in which it moves
from CPU’s partial to CPU’s page and promotes the CPU’s
page-freelist to CPU-freelist. Even if there is no slab in
both CPU’s page and CPU’s partial, the SLUB allocator
executes the medium path #3, in which it moves from node’s
partial to CPU’s page and promotes the CPU’s page-freelist
to CPU-freelist. Lastly, the slow-path is the case where
there is no slab in CPU’s page, partial, and node’s partial.
Therefore, the SLUB allocator creates a new slab using buddy
allocator. Then, the kernel assigns a new slab to CPU’s page
and promotes the CPU’s page-freelist to the CPU-freelist.

2.2 Slab Freelist Random
The Linux kernel offers a configuration option,
CONFIG_SLAB_FREELIST_RANDOM [1], designed to miti-
gate the OOB vulnerability exploitation. In particular, it is
a Linux security configuration which has been added since
Linux v4.8, and major distributions such as Ubuntu and
Debian have been using it by default since Ubuntu v16.04
and Debian v9, respectively.

Figure 3 illustrates before and after this configuration is
applied. Before this configuration is enabled, the SLUB allo-
cator allocates the object from the slab sequentially. Therefore,
one can easily place the vulnerable object and the target ob-
ject, which contains either pointer or critical data, next to each
other when exploiting OOB vulnerability. After this configu-
ration is applied, however, the SLUB allocator randomizes the
order of the freelist when the kernel creates the new slab. As a
result, it becomes difficult for the attacker to place vulnerable
object and target object next to each other, thereby hardening
the kernel from the OOB exploitation.

3 Exploitation method and failure cases
In general, the memory corruption arising from the kernel
heap area can be divided into three vulnerability types: out-
of-bounds, use-after-free, and double-free. In this section, we
first explain how to exploit each vulnerability type. Then, we
further show how the exploitation attempts can fail due to the
random nature of SLUB allocator.

3.1 Out-Of-Bounds
Exploitation method. Out-Of-Bounds (OOB) is a vulner-
ability accessing beyond a predetermined heap object size
(e.g., a heap buffer overflow). In order to exploit the OOB,
an attacker should place two objects, a vulnerable object and
a target object, next to each other. The vulnerable object is
an object that can trigger out-of-bounds access. The target
object is an object which is overwritten by the OOB. It should
contain a function pointer or other critical data, such that once
overwritten, it would allow the attacker to divert control- or
data-flows.

When exploiting the OOB in the random nature of SLUB
allocator, the most common technique to place the vulnera-
ble object and target object next to each other is heap spray-
ing [9, 33], which is also known as heap grooming [13]. Heap
spraying is the technique that transforms the heap from an
unknown and random state into a partially known state. How-
ever, the attacker cannot know the information about freelist
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Figure 4: The exploitation process of CVE-2017-7533 (OOB)

order so that the heap spraying can allocate from zero to N-1
objects in one slab with N being the number of objects per
slab. Then, the attacker allocates the vulnerable object. Since
the allocation of the target object is uniformly random, if the
attacker is lucky, the vulnerable object and the target object
are allocated adjacent to each other.

Figure 4 shows the success case when exploiting CVE-
2017-7533. The attacker first allocates the target object 1,000
times using the syscall, open() (in Figure 4-a). Next, the at-
tacker allocates the vulnerable object using sendmsg() syscall
(in Figure 4-b). If the attacker is lucky, the vulnerable object
and the target object are adjacent to each other. Finally, if the
attacker triggers the OOB vulnerability using another syscall,
sendmsg(), then the target object is corrupted (in Figure 4-c).

Failure cases. Due to the random nature of SLUB allocator,
the exploitation attempt may fail when exploiting the OOB
(shown in Figure 5). The reason is that it is difficult for the
attacker to place the vulnerable object and the target object
next to each other because of slab freelist random and the
fact that the attacker (granted with the user’s privilege) cannot
know the order of freelist. Therefore, the attacker cannot know
how many target objects have been filled up in the slab when
using heap spraying. If the number of target objects allocated
to the slab is zero, it fails (in Figure 5-a). If the number of
target objects allocated to the slab is one or two, there are cases
where it fails depending on the freelist order (in Figure 5-b, c).
If the number of target objects allocated to the slab is three,
the vulnerable object is allocated to the last position of the
slab, and it fails (in Figure 5-d).

Probability model. The probability of successful OOB ex-
ploitation is as follows. We assume that the number of objects
that can be allocated in one slab is N, and the order of freelist
is uniformly random. This assumption is reasonable because
the Linux kernel uses the Fisher-Yates shuffle algorithm [14]
to randomize the slab freelist. We further assume that one
vulnerable object and k sprayed target objects are allocated
in the same slab at random. To be a successful exploitation,
a sprayed target object must be allocated right after the vul-
nerable object. The probability that the vulnerable object and
sprayed target object are adjacent in the same page is repre-
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sented by the following formula:

N−1Ck ∗ kC1

NCk ∗N−kC1
=

k
N

For the entire case, we choose k target objects from N free
objects and then choose one vulnerable object from remaining
free objects. For the exploitable case, the vulnerable object
and target object must be adjacent. Therefore, we choose k
target objects from N−1 free objects (except one object from
N free objects for vulnerable object). Then, we choose one
vulnerable object from selected k target objects. Furthermore,
we calculate the average probability of each k case. The num-
ber of sprayed target objects can be from 0 to N −1, so the
probability of OOB exploitation with a random slab freelist
is calculated with the following formula:

PBaseline
OOB =

N−1
∑

k=0

k
N

N
=

N −1
2N

6828    32nd USENIX Security Symposium USENIX Association



A AV A

T Target object

Vuln objectV

C Victim object

F Free object

U

K

connect();

A AC A

U

K

C = msgsnd();

A AF A

U

K

shutdown();

a) Allocate the vulnerable object with 
three additional objects and free 
the vulnerable object

b) Allocate the victim object

c) Trigger double-free which
actually free the victim object

A AF A

A AA

U

K

msgsnd();
msgrcv(C);

d) Allocate the target object
and if we access to victim object 
it corrupt the target object

T

3 4 21

3 4 21

3 4 21

3 4 21 3 4 21

Corrupted 
Target objectT

Allocated objectA

Figure 7: The exploitation process of CVE-2017-6074 (DF)

3.2 Use-After-Free and Double-Free
UAF exploitation method. Use-After-Free (UAF) is a vul-
nerability if the object is accessed after being freed. To exploit
UAF, an attacker needs to place the vulnerable object (i.e., be-
ing freed) and target object (i.e., being allocated after freeing)
at the same virtual address. Figure 6 shows the exploitation
process when exploiting the CVE-2019-2215. The attacker
first executes the syscall, epoll_ctl(), which allocates both
the vulnerable object and one additional object in kmalloc-
512 (in Figure 6-a). Then, the attacker executes the syscall,
ioctl(), which frees the vulnerable object (in Figure 6-b).
Next, executing the syscall, msgsnd(), allocates the target ob-
ject to the same virtual address, which was originally placed
by the vulnerable object (in Figure 6-c). Finally, the attacker
execute the syscall, close(), which accesses the freed vulner-
able object (in Figure 6-d).

DF exploitation method. The Double-Free (DF) vulnera-
bility frees an object that has already been freed. In order to
exploit the DF vulnerability, two objects (i.e., victim object
and target object) are needed. The attacker allocates and frees
the vulnerable object using first free. Then, the attacker al-
locates the victim object at the same address as vulnerable
object and frees the victim object using double-free. At this
time, because the attacker frees the victim object with the
code of freeing the vulnerable object, it leaves the pointer
(i.e., dangling pointer) that points to the victim object. Then,
the attacker allocates the target object at the same address as
vulnerable object and victim object. Finally, if the attacker ac-
cesses the victim object using dangling pointer, it corrupts the
target object. Figure 7 shows the process when exploiting the
CVE-2017-6074. The attacker first allocates the vulnerable
object and three additional objects in kmalloc-2048 and frees
the vulnerable object using the connect() syscall (in Fig-
ure 7-a). Then, the attacker allocates the msg_msgseg object
as the victim object using the msgsnd() syscall (in Figure 7-b).
Then, the shutdown() system call is executed, which frees
the already freed vulnerable object (in Figure 7-c). In reality,
it frees the victim object and leaves dangling pointer, which
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Figure 8: UAF and DF vulnerability exploitation failure case

points to the victim object. Then, the attacker allocates the
msg_msg object to the same address as the target object us-
ing msgsnd() system call (in Figure 7-d). At this time, the
attacker can access and corrupt the target object using a dan-
gling pointer.
Failure cases. Due to the inherent operational behaviors of
the SLUB allocator, there are restrictions when exploiting
the UAF and DF vulnerabilities. Figure 8 shows one reason
(changed CPU’s page) for failure when exploiting UAF and
DF vulnerabilities.

Depending on the vulnerability, a system call that allocates
a vulnerable object does not always allocate only one object.
In the case of CVE-2018-6555, it allocates the vulnerable
object with 12 additional objects in kmalloc-96. The attacker
supposes that the CPU’s page is partially filled (in Figure 8-
a). Then, the attacker executes the system call that allocates
vulnerable object and additional object. When allocating the
vulnerable object, the slab, which is assigned to CPU’s page,
is fully filled so that the corresponding slab is moved to full-
list and the CPU’s page is emptied. Then, when allocating
the additional object, the kernel executes medium-path #2, #3
or slow-path to fill the CPU’s page. That is, CPU’s page is
changed to another slab, and the additional object is allocated
from the changed CPU’s page (in Figure 8-b). Then, the at-
tacker frees a vulnerable object (in Figure 8-c). Lastly, if the
attacker tries to allocate the target object, it cannot reallocate
to the address of the vulnerable object. Because the CPU’s
page is changed, the kernel allocates the target object from
the changed CPU’s page (in Figure 8-d).
Probability model. The success rate of UAF and DF ex-
ploitation is as follows: N denotes the number of objects per
slab and A denotes the number of object allocations by the sys-
tem call, which allocates the vulnerable object and additional
objects.

PBaseline
UAF & DF =


N−A+1

N (if A < N)

1
N (if A ≥ N)

It can be divided into two cases. If A is less than N, the suc-
cess rate will depend on whether the vulnerable object and
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additional objects are placed in one slab. Otherwise, if A is
greater than or equal to N, the exploitation will be success-
ful when the last object allocated by the system call, which
allocates the vulnerable object, fully fills the CPU’s page. If
the slab is fully filled up, the corresponding slab is moved
to the full-list that manages the fully allocated slab, and then
the CPU’s page is emptied. At this time, if the object is freed,
the slab that contains this object is assigned to the page of
the CPU again. In other words, it is possible to reallocate the
target object to the same address as the vulnerable object.

4 Our Approach : PSPRAY

The major reason for exploitation failure is that the infor-
mation about slab’s allocation status is not available to the
attacker. Thus, the random nature of the SLUB allocator pro-
vides effective statistical mitigation against the attacker. How-
ever, we find the timing side-channel, which allows us to learn
the allocation status of the slab partially. Specifically, using
this timing side-channel, the attacker can notice the new and
clean-state slab is created, which in turn allows inferring the
allocation status of the corresponding slab. Therefore, the
attacker can avoid exploitation failure cases based on this
additional information.

4.1 Timing Side-Channel on SLUB allocator
As we have seen in §2.1, the SLUB allocator allocates the ob-
ject with five different paths (i.e., fast-path, medium-path #1,
#2, #3, and slow-path). The reason why the SLUB allocator is
divided into these multiple paths is that it is optimized to im-
prove performance. The SLUB allocator uses a fall-through
algorithm to execute an efficient path with as little overhead
as possible (as shown in Figure 2).

To clearly show the different performance of each
path, we measure the performance from the beginning
of slab_alloc_node(), which is the main function of
kmalloc(), to the end of slab_alloc_node() using msgsnd()
system call, which allocates one object (more details in §4.3).
Then, we take the average of 100 runs for each path, which
shows noticeable differences per path. The fast-path, which
allocates the object from the freelist of CPU, is the fastest
(on average 459 cycles). The medium path #1, #2, and #3
show 676, 1,191, and 1,848 cycles, respectively. On the con-
trary, the slow-path is the slowest, which shows a significant
performance gap with the other paths (on average 6,048 cy-
cles). This is because the slow-path creates a new slab using
buddy allocator, moves a new slab to CPU’s page, and pro-
motes CPU’s page-freelist to CPU-freelist, which takes a
considerable amount of time. This implies that, if the attacker
can precisely measure the performance of allocation, an at-
tacker can tell which path has been taken for the allocation,
establishing the timing side-channel on SLUB allocator’s in-
ternal behaviors. Then, the question becomes based on the
knowledge of which path has been taken for the allocation.
How can one further infer the allocation status?

4.2 Inferring Allocation Status
Even if one can differentiate each path, not all paths are useful.
To avoid exploitation failure, we need to learn the allocation
status of the slab (e.g., how many objects are allocated in
the target slab). However, fast-path and medium path #1 use
the CPU’s page, so we cannot tell the allocation status of the
slab. Moreover, the medium path #2 and #3 move the CPU’s
and node’s partial to CPU’s page. However, the partial
usually has one or more already allocated objects. As such, it
is difficult to infer the slab’s allocation status if those paths
are taken.

However, the behavior of the slow-path is unique from
other paths. If the slow-path is taken, the kernel creates a new
slab from the buddy allocator and allocates one object from
the new slab. Therefore, we can tell whether the currently
used slab is a new slab and the allocation status of the corre-
sponding slab is filled only with one object. In other words, if
we distinguish between the slow-path and other paths through
the timing side-channel, we can predict the allocation status
of a new slab.

4.3 Proof-Of-Concept
Finding an adequate system call. In order to use timing
side-channel, we need a system call that is used for object
allocation and has three conditions: First, the system call
should be available as a user privilege. Second, the system
call must allocate one object. If the system call allocates more
than one object, it would be difficult to infer which path has
been taken. Third, the system call should not have a significant
impact on performance except for object allocation.

To find an adequate system call, we modify the Linux ker-
nel to trigger panic when the system call allocates one ob-
ject in kmalloc-series. Then, we do the fuzz testing using
Syzkaller [38] for 24 hours and find 23 system calls that meet
these three conditions (as shown in Table A.1). These system
calls allocate object and copying the data from user space,
while the rest code does not critically affect performance. Us-
ing these system calls, we can cover all of the kmalloc series
(i.e., from kmalloc-32 to kmalloc-8192).
Experiment. To prove that the effectiveness of the theoreti-
cal timing side-channel on SLUB allocator is possible in the
real-world, we allocate the kernel object 1,000 times using
msgsnd() systems call, which is prevalently used for Linux
kernel heap spray. At the same time, we measure the perfor-
mance of msgsnd() system call from user space. The kernel
object allocation is performed through a total of three experi-
ments for each of the three kmem_cache (i.e., kmalloc-1024,
kmalloc-2048, and kmalloc-4096). Figure A.1 is the source
code used in the experiment. We experiment on a machine
with Ubuntu 20.04.3 LTS on Intel(R) Core(TM) i7-8700 CPU
@ 3.20GHz, 32G RAM, and 512GB HDD.
Experiment Results. Figure 9 shows performance evalua-
tion result using msgsnd() system call from user space. Fig-
ure 9(a)-1, Figure 9(b)-1, and Figure 9(c)-1 show the per-
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(a) The value of measuring performance in kmalloc-1024

(1) 0-1000 allocations (2) 0-100 allocations (3) 300-400 allocations

(b) The value of measuring performance in kmalloc-2048

(1) 0-1000 allocations (2) 0-100 allocations (3) 300-400 allocations

(c) The value of measuring performance in kmalloc-4096

Figure 9: The value of measuring performance using msgsnd() system call

formances of the total 1,000 allocations in kmalloc-1024,
kmalloc-2048, and kmalloc-4096. In the first 100 allocations,
as illustrated in Figure 9(a)-2, Figure 9(b)-2, and Figure 9(c)-
2), the fast-path and medium paths are hard to differentiate.
This is because msgsnd() not only allocates objects through
kmalloc() but also copies data through copy_from_user().

However, slow-path shows a noticeable performance differ-
ence from other paths. Before the code of msgsnd() is loaded
to the CPU cache, the average performance of other paths is
about 10,000 cycles, and the average performance of slow-
path is about 35,000 cycles. After around 80 trials, the code
of msgsnd() is loaded to the CPU cache, which is more faster
and stabler. Therefore, looking at trials from 300 to 400 (in
Figure 9(a)-3, Figure 9(b)-3, and Figure 9(c)-3), it can be seen
that fast-path and slow-path can be intuitively distinguished.
In conclusion, in the user space, we can differentiate the fast-
path and slow-path through the timing side-channel so that
we can notice whether a new slab is created and the allocation
status of the corresponding slab.

5 Application of PSPRAY

This section introduces applications of PSPRAY to avoid the
exploitation failure due to the random nature of the SLUB
allocator.

5.1 OOB Exploitation
As previously stated in §3.1, the main cause of failure when
exploiting OOB vulnerability is that slab freelist is random.
SLUB allocator randomizes the freelist order when the slab
is created. It lowers the probability the adjacent allocation of
the vulnerable object and the target object. However, using
PSPRAY, we can predict the allocation status of the slab. By
applying this clue, we can fill the slab with one vulnerable
object and then fill the remaining area with a target object.

Figure 10 shows the application method of PSPRAY, which
bypasses the randomness of slab freelist. At first, using
PSPRAY, we can find when the slow-path is executed (in
Figure 10-b). Then, the slab B is created, and one object is
allocated to the slab B. If the number of objects per slab is N,
then we allocate the sprayed object N −1 times to fill up the
slab B (in Figure 10-c). Now, if we allocate an object, then
the kernel executes the slow-path, which creates a new slab C
for object allocation. Therefore, we allocate the target object
N −1 times to fill everything but one object in the new slab
(in Figure 10-d). Then, we allocate one vulnerable object to
fill up the new slab C (in Figure 10-e). At this point, the slab
C will be filled with N −1 target objects and one vulnerable
object. If the vulnerable object is not in the last position of
the slab, the OOB vulnerability will corrupt one of the target
objects. Therefore, the success rate of this exploitation with-
out noise (e.g., if the other process allocates the object to the
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Figure 10: Exploiting OOB with PSPRAY.

same slab right before allocating the vulnerable object) is as
follows:

PPSPRAY
OOB =

N −1
N

.

5.2 UAF and DF Exploitation
As previously mentioned in §3.2, the main cause of fail-
ure when exploiting the UAF and DF vulnerability is that
the CPU’s page is changed to another slab. However, using
PSPRAY, we can circumvent this situation.

Figure 11 shows the method of exploiting UAF and DF
vulnerabilities using PSPRAY. We first use PSPRAY to find
when a new slab is created through slow-path (in Figure 11-b).
Therefore, we know the current CPU’s page is filled with one
object. Next, we allocate the vulnerable object and additional
objects (in Figure 11-c), and then we free the vulnerable object
(in Figure 11-d). After that, we allocate the target object to the
same address as the vulnerable object (in Figure 11-e). Lastly,
if we trigger the UAF or DF, it will corrupt the target object.
Therefore, the success rate of exploitation using PSPRAY,
without noise, is as follows.

PPSPRAY
UAF & DF = 100%.

6 Attack Evaluation
This section aims at evaluating the exploitation effectiveness
of PSPRAY. To verify the effectiveness of PSPRAY, we divide
the evaluation into two steps. First, we develop and exploit
synthetic Out-Of-Bounds, Use-After-Free, and Double-Free
vulnerabilities (§6.1) to show that PSPRAY is effective in most
kmem_cache (i.e., from kmalloc-64 to kmalloc-4096). Second,
we exploit 10 real-world vulnerabilities with PSPRAY (§6.2)
to verify real-world impact.
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Figure 11: Exploiting UAF with PSPRAY.

Environment Setting. All of our experiments are per-
formed on a server running Ubuntu 18.04.5 LTS with Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30GHz (48 cores in total) and
512GB RAM. For each exploit, we compile the Linux v4.15
and create disk image. Then, we run it in QEMU 2.11.1 [4]
virtual machine (VM) with 2 CPU cores and 2GB RAM VM
configuration.

6.1 Synthetic Vulnerability
6.1.1 Design Synthetic Vulnerability
To conduct an in-depth study on the effectiveness of PSPRAY,
we create synthetic vulnerabilities of OOB, UAF, and DF for
Linux. These vulnerabilities are added to a plain Linux v4.15
kernel source code. For these OOB, UAF, and DF vulnera-
bilities, we use three different system calls to allocate the
vulnerable objects and trigger the vulnerabilities. We care-
fully implement an OOB read vulnerability and a UAF read
vulnerability to prevent the kernel panic during the experi-
ment because if the kernel panic occurs, the system is stopped,
and the result of the rest of the trials is affected. For UAF and
DF vulnerability exploitations, we collect and analyze six
real-world vulnerabilities. Based on our analysis, we realize
that these system calls allocate a vulnerable object with four
additional objects on average. Therefore, we evaluate the UAF
and DF vulnerabilities assuming that a system call usually
allocates a vulnerable object with four additional dummy ob-
jects. In addition, each experiment consists of 20 rounds and
each round attempts the exploitation 500 times.
OOB exploitation. Figure A.2 shows the code of synthetic
OOB read vulnerability. This code is implemented similarly
to CVE-2016-6187. When a system call is called, an object is
first allocated through kzalloc(). Then, the kernel triggers
an OOB read vulnerability that reads the next object’s data. If
the value read through the OOB read is the nonce value that
we sprayed through msgsnd(), the attack will succeed.
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OOB UAF with 4 dummy objects DF with 4 dummy objects

Cache
# of obj
per slab PBaseline

OOB Baseline PPSPRAY
OOB PSPRAY PBaseline

UAF Baseline PPSPRAY
UAF PSPRAY PBaseline

DF Baseline PPSPRAY
DF PSPRAY

kmalloc-64 64 49.21% 41.48% 98.43% 96.81% 94.00% 93.27% 100.00% 100.00% 94.00% 95.13% 100.00% 100.00%
kmalloc-96 42 48.80% 42.27% 97.62% 97.83% 90.47% 91.25% 100.00% 100.00% 90.47% 91.53% 100.00% 100.00%
kmalloc-128 32 48.43% 43.36% 96.87% 96.86% 87.50% 86.89% 100.00% 100.00% 87.50% 87.49% 100.00% 100.00%
kmalloc-192 42 48.80% 33.61% 97.61% 95.20% 90.47% 89.98% 100.00% 100.00% 90.47% 90.31% 100.00% 100.00%
kmalloc-256 32 48.43% 17.94% 96.87% 95.04% 87.50% 88.13% 100.00% 100.00% 87.50% 87.83% 100.00% 100.00%
kmalloc-512 32 48.43% 37.34% 96.87% 95.54% 87.50% 87.32% 100.00% 100.00% 87.50% 88.12% 100.00% 100.00%
kmalloc-1024 32 48.43% 27.28% 96.87% 96.44% 87.50% 88.13% 100.00% 100.00% 87.50% 86.98% 100.00% 100.00%
kmalloc-2048 16 46.87% 45.41% 93.75% 92.90% 75.00% 74.75% 100.00% 100.00% 75.00% 75.13% 100.00% 100.00%
kmalloc-4096 8 43.75% 26.70% 87.50% 87.04% 50.00% 51.46% 100.00% 100.00% 50.00% 50.59% 100.00% 100.00%

Table 1: Exploitation results on synthetic vulnerabilities

Experiments on this vulnerability are conducted in two
methods. The first method is to use the heap spraying, which is
introduced in §3.1. Then, the second method is to use PSPRAY,
which is described in §5.1.
UAF exploitation. The code of a synthetic UAF read vulner-
ability, which is implemented similarly to CVE-2018-6555,
appears in Figure A.3. In this example code, this system call
(i.e., uaf_test()) provides three commands. If cmd is 1, the
kernel allocates the vulnerable object, which is the vulner-
able object used for UAF read, along with four additional
dummy objects. If cmd is 2, the kernel frees the vulnerable
object. Then, if cmd is 3, the kernel reads the value from the
vulnerable object, which is freed at cmd 2.
DF exploitation. In Figure A.3, one can see the code of syn-
thetic Double-Free vulnerability. This code is implemented
similarly to CVE-2017-6074. In this code, this system call
provides three commands but for Double-Free, it needs two
commands–i.e., 1 and 2. If cmd is 1, the kernel allocates the
vulnerable object and allocates four dummy objects. If cmd
is 2, the kernel frees the vulnerable object.

Experiments on these UAF and DF vulnerabilities are also
conducted in two methods: The first method is the general
approach when exploiting UAF and DF vulnerabilities, which
are described in §3.2. The second method is using PSPRAY
which, is described in §5.2.

6.1.2 Synthetic Vulnerability Exploitation Results
As shown in Table 1, PSPRAY shows a higher success rate
than regular exploitation in all cases. In the case of the OOB
vulnerability, our probability model (i.e., PBaseline

OOB ) shows an
average of 48%, but the real success rate that we measured
using heap Feng Shui shows at least 17.94%, which is lower
than our probability model. This is because the noise can
occur during the allocation of the target object or right before
the allocation of the vulnerable object. This leads to hindering
the vulnerable object and the target object from being adjacent
to each other. On the other hand, exploitation using PSPRAY
shows an average of 94.61%, which is similar to the expected
success rate (i.e., PPSPRAY

OOB ). The reason why PSPRAY does
not show a nearly perfect success rate is the case where the
vulnerable object is allocated to the last location of the slab,
which cannot corrupt the target object even if the OOB is
triggered.

As for the UAF vulnerability case, the measured success
rate shows 83.46% on average, and each case is quite similar
to the probability model (i.e., PBaseline

UAF ). This is because there
is only one case in which noise occurs and interferes with the
exploit (i.e., right before the allocation of the target object).
More specifically, the lowest success rate is kmalloc-4096,
showing a 51.46% success rate. This is because the number of
objects per kmalloc-4096 slab is eight. Therefore, if more than
four objects are already allocated in the slab, the allocation of
the vulnerable object and four additional dummy objects make
the slab fill up, causing the CPU’s page to change. However,
the exploitation using PSPRAY has a 100% success rate in
all cases, which is the same as our probability model (i.e.,
PPSPRAY

UAF ). This is because using PSPRAY, we can avoid
CPU’s page is changed.

In the case of the DF vulnerability, the measured success
rate shows 83.67%, which is similar to our probability model
(i.e., PBaseline

DF ). Similar to UAF, there are two cases where
noise can be generated (i.e., right before the allocation of the
victim object and target object). The lowest success rate is
kmalloc-4096, which shows a 50.59% success rate. This is
because if more than four objects are already allocated in the
slab, the allocation of the vulnerable object and four additional
dummy objects makes the slab fill up, which changes the
CPU’s page. That is, it fails. However, using PSPRAY, the
success rate of exploitation shows 100% in all cases. This is
the same as our probability model (i.e., PPSPRAY

DF ).

6.2 Real-World Vulnerability
6.2.1 Real-World Exploitation Setup
In order to prove that PSPRAY is truly effective in exploit-
ing vulnerabilities, we collect 10 real-world vulnerabilities.
Among those, seven are from public CVEs, and the remaining
three are collected from syzbot, which is a list of vulnerabili-
ties found using Syzkaller [38]. In our evaluation, we utilize
publicly available exploits for public CVEs. Since the remain-
ing three cases from syzbot do not have publicly available
exploits, we develop an exploit for them. All these vulnera-
bilities are ported to Linux v4.15 and are evaluated when the
slab freelist random is enabled. All vulnerability exploitation
aims to determine whether the target object can be corrupted.

We evaluate real-world exploitation under two circum-
stances: 1) idle state and 2) busy state. The idle state is
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CVE Bug Type Slab Cache
# of obj
per slab

# of
alloc PBaseline

OOB
Baseline

(Idle)
Baseline
(Busy) PPSPRAY

OOB
PSPRAY

(Idle)
PSPRAY
(Busy)

CVE-2017-7533 [29] OOB kmalloc-256 32 2 48.43% 33.78% 25.64% 96.87% 94.26% 90.48%
CVE-2017-7184 [28] OOB kmalloc-128 32 1 48.43% 21.18% 18.86% 96.87% 96.52% 91.86%
CVE-2016-6187 [26] OOB kmalloc-128 32 1 48.43% 23.38% 20.18% 96.87% 95.58% 92.12%
CVE-2010-2959 [25] OOB kmalloc-512 32 2 48.43% 39.60% 24.08% 96.87% 94.80% 92.60%

CVE Bug Type Slab Cache
# of obj
per slab

# of
alloc PBaseline

UAF & DF
Baseline

(Idle)
Baseline
(Busy) PPSPRAY

UAF & DF
PSPRAY

(Idle)
PSPRAY
(Busy)

CVE-2019-2215 [31] UAF kmalloc-512 32 2 96.87% 93.28% 91.18% 100.00% 100.00% 99.98%
CVE-2018-6555 [30] UAF kmalloc-96 42 13 71.42% 63.50% 58.86% 100.00% 99.94% 99.96%
83bec2... [37] UAF kmalloc-4096 8 8 12.50% 13.70% 9.42% 100.00% 98.16% 97.00%
77e2cf... [36] UAF kmalloc-192 21 1 100.00% 95.74% 84.92% 100.00% 100.00% 98.88%
CVE-2017-6074 [27] DF kmalloc-2048 16 4 81.25% 80.64% 75.48% 100.00% 100.00% 98.20%
6b8d6b... [35] DF kmalloc-512 32 1 100.00% 96.28% 94.92% 100.00% 99.98% 99.90%

Table 2: Exploitation results on real-world vulnerabilities

simulated without any other processes being executed. The
busy state is simulated by running stress-ng to prove the
effectiveness of PSPRAY on system workloads. The program,
stress-ng, spawns two workers for each CPU, IO, and VM,
continuously occupying 100% CPU usage on all CPUs. Ad-
ditionally, to prove that stress-ng creates a heavy workload,
we measure the number of background heap operations under
the two conditions without workload (idle) and with workload
(busy) in §A.1.

In this evaluation, each experiment consists of 5,000 rounds,
and each round triggers the exploitation one time. This is
because one trigger per execution should give more reliable
results. Indeed, kernel panics due to the failed exploits (even
if the kernel is not crashing) make the kernel unstable, and
the vulnerability cannot be reliably triggered again.

6.2.2 Real-World Exploitation Results
Table 2 shows the result of the exploitation of real-world
vulnerabilities under two circumstances (i.e., idle and busy).
In our evaluation, all success rate of vulnerabilities using
PSPRAY outperform general heap spraying exploitation tech-
niques.

Overall, the measured success rate of heap spraying is lower
than we expected (i.e., PBaseline

OOB ). This is because we do not
account for the probability of the noise. Noise can occur
when spraying the target object. That is, the other process
can allocate an object during the allocation of target objects,
which deviates from the theory that only target objects are
allocated sequentially. Noise occurs more frequently in the
busy state than in the idle state. Therefore, the success rate of
the idle state is higher than the success rate of the busy state.

More specifically, for the case of OOB vulnerabilities, the
success rate on average is 29.48% under an idle state and
22.19% under a busy state with heap spraying. The vulnera-
bility that shows the lowest success rate is CVE-2017-7184,
which shows a 21.18% success rate in idle state and 18.86%
in busy state. This is because noise can occur while the target
object is being sprayed and right before the vulnerable object
allocation.

However, the exploitation success rate using PSPRAY ap-

pears to be similar to the success rate we expected (i.e.,
PPSPRAY

OOB ). The case where the success rate has increased
the most is CVE-2017-7184. It increased by about 75.34%
under idle state and 73% under busy state. The reason for
this is that after allocating target objects and one vulnerable
object, we allocate the one sprayed object to verify that the
slow-path has been executed. Through this method, if slow-
path is executed, it is possible to indirectly check whether
the vulnerable object and target objects are allocated within
one slab. That is, this method can indirectly notice the noise
occurrence (i.e., other object allocation). For example, if noise
occurs so that other object is allocated, allocating one sprayed
object does not trigger slow-path. However, there is an excep-
tion if the noise allocates the objects as much as the number
of objects per slab. At this time, allocating one sprayed ob-
ject triggers slow-path, but it is hard to guarantee that one
vulnerable object and N-1 target object are allocated in one
slab. We suspect this is the reason why the workload does not
significantly impact the success rate of OOB. However, since
it is still possible that the vulnerable object is allocated to the
last local object in the slab, the success rate does not reach
100%.

In the case of UAF and DF vulnerabilities, the success rate
of the general exploitation method is also slightly less than
we expected (i.e., PBaseline

UAF & DF). This is because the noise that
executes the context switch can occur between freeing the
vulnerable object and allocating the target object. In addition,
in the busy state, noise occurs more often than in the idle
state. More specifically, among UAF and DF vulnerabilities,
the vulnerability that shows the lowest success rate is 83bec2
with 13.70% under idle state and 9.42% under busy state with
heap spray. This is because 83bec2 allocates the vulnerable
object and seven additional objects. However, the number of
objects per kmalloc-4096 slab is eight. In other words, for
the exploitation to succeed by bypassing the change in CPU’s
page resulting from additional object allocation, it needs a
new slab that has not been used before.

However, using PSPRAY, the success rate in the idle state
shows a nearly perfect success rate. This is because the time
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window (i.e., after the allocation of the vulnerable object
and before the allocation of the target object) in which noise
should occur is very narrow in UAF and DF compared to OOB.
Therefore, even in the busy state, noise does not greatly affect
the success rate. This is why the average success rate under
the busy state (i.e., 98.98%) is not significantly different from
the average success rate under the idle state (i.e., 99.68%).

7 Mitigation
This section proposes a new defense mechanism against
PSPRAY. Recall that PSPRAY is a timing side-channel attack
that takes advantage of the following two factors: i) a slow-
path allocation is significantly slower than other allocation
paths, which can be noticed through timing-channel attacks;
ii) when the slow-path allocation takes place, the attacker
can learn the allocation status of freelist—i.e., an empty
freelist.

Understanding aforementioned factors, one may consider
to employ one of two following methods:

• Ensure uniform allocation performance for all allocation
paths, eradicating the first factor.

• Randomize the slow-path allocation context, eradicating
the second factor.

Mitigation #1. Uniform Allocation Performance. The
first method’s main advantage is that the attacker cannot dis-
tinguish which allocation path has been taken per allocation
request because every allocation would take the same time.
To achieve this, the kernel developer may insert dummy code
(e.g., a meaningless loop) into fast- and medium allocation
paths, which evens out all the allocation performances into
worst cases. However, the disadvantage is that the perfor-
mance degradation would be considerable. More importantly,
the SLUB allocator applies several optimization techniques to
improve performance. Thus, in order to apply this approach,
the SLUB allocator would need to disable all these optimiza-
tions. To summarize the first mitigation method, although its
design can be fairly simple and effective, we do not think it
is an appropriate mitigation against PSPRAY, considering the
criticality of the allocation performance in kernel.
Mitigation #2. Randomized Slow-path Allocation Con-
text. The second method is to randomize the slow-path
allocation context, which is independent of the allocation
status of freelist. Note that PSPRAY abuses the fact that
once the slow-path allocation takes place, the freelist is
always empty. More technically, when both page and partial
are empty, an empty page is immediately allocated to the
page through the slow-path, allowing the attacker to learn the
freelist status. In order to mitigate this, one can randomize
the invocation context of the slow-path, thereby ensuring that
the slow-path does not always result in an empty freelist.
In other words, even if the attacker notices the slow-path, the
freelist can be in any allocation status—i.e., the freelist

Algorithm 1: Randomized slow-path allocation con-
text

1 Input C: information about kmem_cache
2 Input Slow_path_index: a public constant index to trigger slow-path
3 Function slab_alloc_node(C):
4 if !is_freelist_empty(C) then
5 Obj = fast_path(C);

6 else if !is_cpu_page_empty(C) then
7 Obj = medium_path1(C);

8 else if !is_cpu_partial_empty(C) then
9 Obj = medium_path2(C);

10 else if !is_node_partial_empty(C) then
11 Obj = medium_path3(C);

12 else
13 Obj = slow_path(C);

14 if Slow_path_index == index_within_slab(Obj) then
15 if is_CPU_partial_empty(C) then
16 new_slow_path();

17 return Obj

may be completely empty, or any number of objects were
allocated within the freelist.

In order to randomize the slow-path allocation context,
one can leverage the existing randomness of allocation order,
which can effectively simplify its implementation. Specifi-
cally, one first determines the constant object index within the
range of a slab, which we call a slow-path index—i.e., from
zero to N-1, where N is the number of objects in the slab. This
slow-path index is a public constant, which is secure even if
known to the attacker. This is because the object allocation
over the slow-path index would take place at random as the
slab freelist is randomized. Next, when the allocation is per-
formed over the slow-path index, the slow-path is taken and
thus the partial would be filled up.

This second method prevents the attacker from learning the
allocation status. This is because even after the slow-path, the
freelist can be in any allocation status due to the random-
ness of the slow-path index. In terms of performances, the
second method would not introduce much overhead in run-
time speed and memory uses. It may allocate the page slightly
ahead of time, which should have been allocated without this
mitigation. According to our detailed performance evaluation
results §A.3, the average overhead is around 1%.

To summarize the second method, although its design may
be more complicated than the first, it is a reasonable mitigation
method against PSPRAY as it incurs negligible performance
overheads.
Implementation: Randomized Slow-path Allocation Con-
text. The algorithm of randomized slow-path allocation
contexts is illustrated in Algorithm 1. The modification over
the stock kernel is fairly simple, which is highlighted in red
color (line 14-16). In our actual implementation with the stock
Linux kernel (v4.15), the mitigation only modifies 13 lines
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Figure 12: Runtime snapshots of mitigation with the randomized
slow-path allocation context.

of code. In order to provide the randomness to the slow-path
index, we decided to use slab freelist random, which random-
izes the allocation sequence of objects. In our current imple-
mentation, we used a value zero as the slow-path index (line
14). Then we modified the kernel function, slab_alloc_node.
When the zero index is used for the allocation, the kernel
checks whether the CPU’s partial is empty (line 15). If it is
empty, the kernel creates a new slab with the buddy allocator
and assigns the new slab to the CPU’s partial (line 16).

Figure 12 illustrates an example of our mitigation, showing
runtime snapshots when four objects are allocated in order.
When the first object is allocated, the slow-path is not trig-
gered as its object index is not zero ( 1 ). When the second
object is allocated, now the mitigation takes effect as its allo-
cation takes place over the zero index ( 2a ). It checks if node’s
partial is empty, and if so, the kernel takes the slow-path.
Within this slow-path, the kernel creates a new slab with the
buddy allocator ( 2b ) and assigns the new slab to the node’s
partial ( 2c ). After that, the kernel allocates the third objects,
which uses up all objects in the current CPU’s page ( 3 ). As a
result, this would make the CPU’s page empty. Next, when
the kernel allocates the fourth object, the kernel notices that
the CPU’s page is empty, so it promotes new slab from the
partial to the page through medium-path #2 ( 4a ). Lastly, the
kernel allocates the object from the new slab ( 4b ), completing
all the allocation for four objects.

Revisiting the security assurance of this mitigation method,
the slow-path can be triggered at any point depending on how
the freelist is randomized. In the case of this example, the
slow-path is triggered when the second object is allocated.
However, since each slab has its own random allocation or-
der of freelist, the slow-path would be randomly triggered,
stopping PSPRAY’s timing-channel attacks.

Security Evaluation. To confirm the security effective-
ness of our mitigation, we performed object allocation on
kmalloc-2048 using msgsnd() in the same way that we did

with PSPRAY. Figure A.5 shows the performance difference
between a new slab through the new slow-path and an object
through a fast-path when allocating. This figure shows that
unlike PSPRAY, where the slow-path is executed periodically
in 16 units (i.e., the number of objects per slab), the new
slow-path is executed irregularly.

Table A.4 shows the result of the exploitation of a real-
world vulnerability. The overall success rate of using PSPRAY
under mitigation becomes similar to the success rate without
using PSPRAY. This is because, even if PSPRAY finds the
timing when the new slow-path is executed, it does not mean
the new slab would be used immediately. Therefore, finding a
new slow-path is meaningless when exploiting the heap-based
vulnerabilities under the proposed mitigation.
Overhead Evaluation. Due to the space limit, we present
the detail of performance overheads and memory overheads
in §A.3.

8 Discussion

8.1 The Noise
Even if we use PSPRAY, the noise stemming from the sched-
uler can hinder the exploitation. This is why the probability of
success we obtained through the probability model is slightly
higher (1.5% higher for OOB and 0.5% higher for UAF and
DF) than the actual probability of success through evalua-
tion. The noise can occur from two mechanisms: the CPU
migration and context switch. These noises can occur while
allocating a vulnerable object or a target object when exploit-
ing the OOB vulnerability. Also, the noises occur between
freeing a vulnerable object and allocating a target object when
exploiting the UAF and DF vulnerabilities.
CPU migration. If the CPU migration occurs, the CPU’s
page is changed to another one of the CPU’s page so that it hin-
ders the allocator to place the two objects adjacent or to place
two objects at the same address. However, it can be prevented
using the Linux system call, pthread_setaffinity_np().
This system call pins the process, which limits it to oper-
ate only on the CPU set. In other words, using CPU pinning,
we can mitigate the noise caused by the CPU migration.
Context switch. The context switch can allocate an unex-
pected object, which is allocated by other processes hindering
the placement of a vulnerable object and target object adjacent
to each other when exploiting the OOB vulnerability. Also,
an unexpected object can be placed at the same address as
the vulnerable object, that is, the target object is interrupted
to place at the same address as the vulnerable object. It can
be alleviated through higher scheduling priority.

However, despite the suppression, context switching does
happen sometimes. To address this context switching’s side
effects, PSPRAY only attempts to exploit heap vulnerabilities
when the slow-path is executed three times in a row for a
specific period (i.e., the number of objects in one slab), and
this number can be increased to further increase accuracy.
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PSPRAY only does this because this expected period (i.e.,
three times in a row for this period) can change when other
processes allocate and free the object to the target cache.
More specifically, if other processes allocate the object to
the target cache, the slow-path is executed faster than the
expected period. If another process frees the object to the
target cache, on the other hand, the kernel will execute the
slow-path later than expected. However, it is still possible
to fail if the context switching occurs after PSPRAY-ing and
before allocating a vulnerable object. This is because there
is currently no reliable way to find out whether the context
switch has occurred in a very short time period (i.e., between
PSPRAY-ing and allocating a vulnerable object).

8.2 The other OSes
To demonstrate the effectiveness of PSPRAY for other OSes,
we measure the applicability of PSPRAY to each kernel alloca-
tor. Overall, we confirm that the kernel heap allocator of other
OSes is similar to that of the Linux kernel SLUB allocator.

FreeBSD. FreeBSD is a free and open-source Unix-like
operating system. In FreeBSD, the kernel often uses malloc()
for kernel heap allocation. malloc() allocates the object to the
malloc-X zone, where X is the size of the object. Also, when
allocating the new object, the kernel seeks the current bucket.
If the bucket’s count is zero, the kernel calls cache_alloc()
to find an extra bucket to use. If there is none, the kernel calls
zone_alloc_bucket(), which creates a new bucket.

Figure A.6 shows the code for measuring the performance
of malloc(). We allocate the 1,000 objects with 512 sizes,
which are allocated in malloc-512 zone. malloc-512 zone
consists of a number of pages, each sized at 0x1000. That is,
eight objects can be placed per page. Figure A.7 shows the
result of measuring the performance of malloc() from trial
100 to 200. It can be seen that the performance increases for
each of the eight allocations. In other words, this figure shows
that a new page is allocated within eight units.

XNU. XNU is the computer operating system kernel de-
veloped at Apple. XNU often uses IOMalloc() for kernel
heap allocation. It allocates an object to the kalloc.X zone.
More specifically, IOMalloc() calls zalloc_item_slow()
when it is necessary to refill the zone. Otherwise, it calls
zalloc_item_fast() if the zone has enough free elements.
In zalloc_item_slow(), it expands the zone, that is, creating
a new page.

Figure A.8 is the code of measuring the performance of
IOMalloc(). We allocate the 1,000 objects with 256 sizes,
which are allocated in kalloc.256 zone. kalloc.256 zone
consists of a number of pages, each sized at 0x1000. There-
fore, a total of 16 objects can be placed per page. Figure A.9
shows the result of measuring the performance of IOMalloc()
from trial 200 to 300. It can be seen that the performance
increases noticeably for every 16 allocations. In other words,
PSPRAY can be also possible on XNU (Mac OS kernel).

9 Related work

Kernel Automated Exploit Generation. FUZE [39] finds a
spot where a new Use-After-Free occurs through fuzzing and
employs the symbolic execution to escalate the exploitability.
KOOBE [5] extracts the capabilities of a slab-out-of-bound
access vulnerability and then automates the process of ex-
ploitation. These works focus on finding the exploitability of
a vulnerability, so if we combine existing works and PSPRAY,
we can discover more vulnerabilities that are exploitable with
high exploitation reliability.

Kernel Exploit Techniques. ret2usr [17] and ret2dir [18] are
kernel exploitation techniques that modify the control flow to
userspace or direct mapped memory. Eloise [6] uses the elastic
object to bypass the KASLR and heap cookie protector. Ex-
pRace [20] increases the time window using the inter-process
and hardware interrupt. Existing studies have focused on how
to link target objects to RIP control or information leakage
when the target objects are corrupted. Conversely, PSPRAY
focuses on how to better corrupt target objects. Therefore, it
would be a further improvement for exploiting vulnerabilities
to combine PSPRAY and these previous works.

Timing Side-Channel Attack against Kernel. Many
works [15, 16, 22] are trying to circumvent the KASLR using
timing side-channel attacks. For example, Hund et al. [15]
presents a timing side channel attack against KASLR. It fo-
cuses on the timing difference caused by the OS page fault
handler. Alternatively, Drk [16] measures the timing differ-
ence using the Intel TSX abort handler to reduce the noise.
Further, Meltdown [22] applies the speculative execution to
place the value of kernel memory on the cache and uses tim-
ing difference to read the corresponding value. These works
focus on bypassing the KASLR, but PSPRAY focuses on in-
creasing the exploitation reliability of memory corruption that
occurs in the kernel heap area.

10 Conclusion

Exploiting Linux kernel heap vulnerabilities is exceptionally
difficult due to the operating principle of the default Linux
SLUB allocator. In this paper, we analyze these exploitation
failures that occur in the kernel heap area depending on the
operating principle of the default Linux SLUB allocator. Then,
we develop PSPRAY, a new heap spraying technique that uses
a timing side-channel, which can significantly increase the
probability of an attacker’s exploit. Through synthetic and
real-world vulnerabilities, PSPRAY demonstrates that it can
circumvent the low exploitation success rates issue (e.g., the
success rate of 83bec2 from 13.70% to 98.16%). Furthermore,
before this problem is abused by attackers, we suggest a miti-
gation technique for PSPRAY that successfully conceals when
a new slab is used with negligible performance and memory
overhead (around 1%).
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A Appendix
A.1 Heavy workload test with stress-ng
Background heap operation. To demonstrate that stress-ng creates a
heavy workload, we measured the number of the background heap operations
(i.e., kmalloc() and kfree()) under an idle state (i.e., without workload) and
a busy state (i.e., with workload). Table A.2 shows the number of background
heap operations under the two conditions, without workload and with the
workload, respectively. To perform this experiment, we modified the kernel
to count the number of heap operations in each cache. We then measured
the number of heap operations in 100 seconds. As a result, in an idle state,
the kernel allocates and frees around 42 objects per second. On the other
hand, in a busy state, the kernel allocates and frees around 46,102 objects per
second. We think such a difference would clearly sets up the heavy workload
environment.
Pspray-ing. Since stress-ng allocates many objects, the PSPRAY’s process
of finding when the slow-path is executed also slows down. More specifically,
PSPRAY can determine this moment only when the slow-path is executed
three times in a row for a specific period as described in §8.1. If stress-ng
allocates a number of objects in a short period, the slow-path is not executed
for a specific period. Table A.3 shows the time that PSPRAY took to execute.
Overall, in all cache, it can be seen that under workload is slower than without
workload. However, PSPRAY succeeds in an average of about one second
even though the speed is slowed down with workload. We think such a second
delay should not be problematic when launching the exploitation attack.

A.2 Success rate according to the number of
dummy objects

To find out the effect of the number of additional dummy objects on the UAF
and DF expoit success rate, we conduct additional experiments. Figure A.4
shows the success rate with a fixed number of dummy objects. Overall, the
more additional dummy objects included, the lower the success rate becomes.
The sharp drop in the success rate occurs with the slab with eight objects (i.e.,
kmalloc-4096). Then, the success rate does not change significantly from
more than a certain number of objects (e.g., after 7 additional objects in the
red line and after 15 additional objects in the green line). This is because
even if the number of objects to be allocated increases when the last object
fills the slab, the slab is moved to the full list, and the CPU’s page is emptied.
At this time, the slab that contains the first freed object is assigned to the
CPU’s page. Note that, the average number of additional dummy objects in
our real-world evaluation (i.e., based on six UAF and DF vulnerabilities in
Table 2) is four.

A.3 Performance Overhead of Mitigation
This section evaluates the performance and memory overhead of our proposed
mitigation. The experiment was performed on Linux v4.15, using the same

configuration as we evaluated PSPRAY. We measured the performance and
memory usage in three cases: 1) after system booting, 2) running LMBench,
and 3) running SPEC CPU2017.
Measurement Method: Performance Overhead. To measure the per-
formance overhead, we use three different performance benchmark tools.
The first benchmark tool is systemd-analyze [3], which measures the system
boot-up performance. The second benchmark tool is LMBench v3.0 [24],
which measures the latency and bandwidth of common system calls and I/O
operations. The third benchmark tool is SPEC CPU2017 [2], which contains
compute-intensive programs for measuring performance.
Measurement Method: Memory Overhead. To measure the memory
overhead of our mitigation, we modified the kernel (i.e., new_slab()) to log
the number of newly created slabs and the total size of the created slabs and
check the total amount of used memory using /proc/meminfo.
Result Summary. The average mitigation overhead is around 1% for both
performance and memory overheads. We think the performance overhead of
mitigation is low because it does not introduce much operational differences.
Anyway the slow-path should be executed eventually, but the difference is
that the mitigation performs the slow-path in advance. Moreover, we think
the memory overhead is low because the new slow-path only assigns up to
one slab for each slab cache in advance. In our evaluation setup, the total
number of slab cache is 148. This implies that in the worse case, 148 slabs
(i.e., at most 600KB) can be assigned in advance.

A.3.1 After system booting
Performance Overhead. The tool we used to find the boot time is systemd-
analyze. Without mitigation, the kernel spent 1.924s to finish the loading of
the kernel and user application. On the other hand, the kernel that applies our
mitigation spent 1.925s to finish the loading. Overall, the difference between
having mitigation and not having mitigation is 0.05%. In other words, our
mitigation does not significantly affect the booting time.
Memory Overhead. We measure the memory usage after system booting.
During system booting, the kernel creates 4,686 new slab and assigns 1,840
KB slab without our proposed mitigation. In addition, the total size of all
the pages used by kernel is 76,548 KB. On the other hand, when the kernel
applies our mitigation, the kernel creates 4,700 new slabs and assigns 1,854
KB for all the slabs. The total size of all the pages the kernel uses with our
mitigation is 76,972 KB.

A.3.2 LMBench
Performance Overhead. We evaluate performance overhead with and
without our mitigation using LMBench. The test where the most overhead
occurred is fork()+exit(), and about 1.3% overhead occurred. This is be-
cause fork() makes a large amount causes of allocation create an almost
exact duplicate of the process that calls it. The test where the least overhead
occurred is stat(), about -0.2% overhead occurred. This is because stat()
only retrieves the file’s information without object allocation. In other words,
we think the result is not affected by our mitigation but affected by noise
(e.g., interrupt). Overall, the average of ten tests shows 0.655% overhead
occurred.
Memory Overhead. We measured the memory usage before and after
LMBench is executed, then calculate the difference. While LMbench is
executed, the kernel creates 1,776,577 new slabs and assigns 1,137 MB all
the slabs without our mitigation. Furthermore, the total page of kernel uses
during LMBench is 1,351 MB. On the other hand, when the kernel applies
our mitigation, the kernel creates 1,775,661 new slab and assigns 1,141 MB
for all the slabs. The total size of the page the kernel uses during LMBench
is 1,354 MB. Overall, the average memory overhead is 0.34%.

A.3.3 SPEC CPU2017
Performance Overhead. Using SPEC CPU2017, we measure the perfor-
mance overhead. The least optimal case where the most overhead occurred is
625.x264, about 0.31% overhead occurred. This is because 625.x264 encodes
video streams that involve many object allocations. In addition, there are 10
tests that do not cause overhead. Overall, the average of all 20 tests in SPEC
CPU2017 shows 0.066% negligible overhead.

USENIX Association 32nd USENIX Security Symposium    6839

https://syzkaller.appspot.com/bug?id=77e2cfee3bc0fdd3bcaf05ea83a9c26a59ddbf6c
https://syzkaller.appspot.com/bug?id=77e2cfee3bc0fdd3bcaf05ea83a9c26a59ddbf6c
https://syzkaller.appspot.com/bug?id=6b8d6b1847122db76e4ebd32b9d580684bac133c
https://syzkaller.appspot.com/bug?id=6b8d6b1847122db76e4ebd32b9d580684bac133c
https://syzkaller.appspot.com/bug?id=83bec290888c08680fb630ec3a2bc87d0ad4b73f
https://syzkaller.appspot.com/bug?id=83bec290888c08680fb630ec3a2bc87d0ad4b73f
https://github.com/google/syzkaller


Cache Syscalls

kmalloc-32 sys_setsockopt, sys_keyctl

kmalloc-64 sys_msgsnd, sys_setsockopt

kmalloc-128 sys_msgsnd, sys_bind, sys_fchmod, sys_fchown

kmalloc-192 sys_setsockopt, sys_msgsnd

kmalloc-256 sys_msgsnd, sys_setsockopt, sys_ioctl

kmalloc-512
sys_keyctl, sys_ioctl, sys_setsockopt,
sys_msgsnd, sys_ppoll, sys_poll

kmalloc-1024
sys_setsockopt, sys_msgsnd, sys_write,
sys_kexec_load, sys_ioctl

kmalloc-2048 sys_write, sys_setsockopt, sys_msgsnd

kmalloc-4096
sys_readv, sys_setsockopt, sys_pread64,
sys_read, sys_lseek, sys_msgsnd, sys_preadv

kmalloc-8192 sys_setsockopt, sys_ioctl, sys_ioperm

Table A.1: The system calls which allocate just one object.

1 int main()
2 {
3 int msqid[1000];
4 for(int i = 0; i < 1000; i++)
5 { msqid[i] = msgget(IPC_PRIVATE, 0644 | IPC_CREAT); }
6

7 for(int i = 0; i < 1000; i++)
8 {
9 int size = 4096-0x100; // SIZE

10 struct {
11 long mtype;
12 char mtext[size];
13 } msg;
14 memset(msg.mtext, 0, size-1);
15 msg.mtype = 1;
16 long long int st = rdtsc();
17 msgsnd(msqid[i], &msg, sizeof(msg.mtext), 0);
18 long long int des = rdtsc();
19 printf("%d-%lld\n", i, des - st);
20 }
21 }

Figure A.1: Proof-Of-Concept of PSPRAY using msgsnd()

Memory Overhead. We measure the memory usage before and after SPEC
CPU2017 is executed. Without our mitigation, the kernel creates 8,114 new
slabs and assigns 3,196 KB for all the slabs and total page of all the pages
the kernel uses is 4,243 KB. On the other hand, the kernel which applies
our mitigation creates 8,152 new slabs and 3,213 KB is assigned for all the
slabs. Furthermore, the total size of all the page the kernel uses during SPEC
CPU2017 is 4,284 KB. Overall, the average memory overhead is 0.65%.

1 char *oob_ptr;
2 SYSCALL_DEFINE2(oob_test, int, size, int, nonce)
3 {
4 oob_ptr = kzalloc(size, GFP_KERNEL); // ALLOC
5 int *p = (int *)(oob_ptr + size);
6 int v = p[12]; // OOB READ
7 if(v == nonce)
8 {
9 kfree(oob_ptr);

10 return 0x1337;
11 }
12 kfree(oob_ptr);
13 return -1;
14 }

Figure A.2: Synthetic Out-Of-Bounds read vulnerability code

1 int *uaf_ptr;
2 int *dummy_ptr[4];
3

4 SYSCALL_DEFINE2(uaf_test, int, cmd, int, size)
5 {
6 if(cmd == 1) // ALLOC
7 {
8 uaf_ptr = kzalloc(size, GFP_KERNEL);
9 dummy_ptr[0] = kzalloc(size, GFP_KERNEL);

10 dummy_ptr[1] = kzalloc(size, GFP_KERNEL);
11 dummy_ptr[2] = kzalloc(size, GFP_KERNEL);
12 dummy_ptr[3] = kzalloc(size, GFP_KERNEL);
13 }
14 else if(cmd == 2) // FREE
15 {
16 kfree(uaf_ptr);
17 }
18 else if(cmd == 3) // USE
19 {
20 int v = uaf_ptr[12];
21 if(v == 0xDEADBEEF)
22 return 0x1337;
23 return -1;
24 }
25 return -1;
26 }

Figure A.3: Synthetic Use-After-Free and Double-Free vulnerability
code

Cache w/o workload w/ workload Ovehead %

kmalloc-32 4.67 33.63 620.12%
kmalloc-64 8.82 15.77 78.79%
kmalloc-96 0.51 45.16 8754.90%
kmalloc-128 3.47 11455.30 330023.91%
kmalloc-192 9.64 11458.78 118767.01%
kmalloc-256 4.28 81.96 1814.95%
kmalloc-512 0.89 44.10 4855.05%

kmalloc-1024 3.06 22910.59 748612.09%
kmalloc-2048 0.17 12.01 6964.70%
kmalloc-4096 7.10 45.41 539.57%

Total 42.61 46102.71 108096.92%

Table A.2: The number of background heap operations each second
on each CPU under w/o workload (idle) and w/ workload (busy).
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Cache w/o workload (s) w/ workload (s) Delayed (s)

kmalloc-32 0.1700 0.3313 0.1613
kmalloc-64 0.2083 0.5603 0.3520
kmalloc-96 0.1657 0.6598 0.4941
kmalloc-128 0.1293 0.4587 0.3294
kmalloc-192 0.2328 1.0539 0.8211
kmalloc-256 0.2320 0.6929 0.4609
kmalloc-512 0.2157 0.7770 0.5613

kmalloc-1024 0.2319 1.6589 1.4270
kmalloc-2048 0.1652 1.4823 1.3171
kmalloc-4096 0.1352 1.9823 1.8471

Average 0.1886 0.9657 0.7771

Table A.3: The time cost to success PSPRAY under w/o workload
and w/ workload.
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Figure A.4: The success rate according to the number of additional
dummy objects when exploiting UAF vulnerability
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Figure A.5: Measuring the performance of msgsnd() when the miti-
gation is applied

1 static int lkm_handler(struct module *module, int type, void *arg)
2 {
3 void *p[1000];
4 long long int st, end = 0;
5

6 switch(type)
7 {
8 case MOD_LOAD:
9 for(int i = 0; i < 1000; i++)

10 {
11 st = rdtsc();
12 p[i] = malloc(512, M_ECHOBUF, M_WAITOK|M_ZERO);
13 end = rdtsc();
14 uprintf("%d-%lld\n", i, end-st);
15 }
16 break;
17 }
18 return retval;
19 }

Figure A.6: Proof-Of-Concept driver source code for FreeBSD
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Figure A.7: The result of measuring the performance of malloc()
in FreeBSD

1 bool SimpleDriverClassName::start(IOService* provider)
2 {
3 void *p[1000];
4

5 for(int i = 0; i< 1000; i++)
6 {
7 long long int st = rdtsc();
8 p[i] = IOMalloc(256);
9 long long int end = rdtsc();

10 IOLog("%d-%lld\n", i, end-st);
11 }
12

13 return True;
14 }

Figure A.8: Proof-Of-Concept driver source code for XNU
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Figure A.9: The result of measuring the performance of IOMalloc()
in XNU
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CVE Bug Type Slab Cache
# of obj
per slab

# of
alloc POOB_Random

Heap
Feng Shui PPSPRAY

OOB_Random
PSPRAY

w/o mitigation
PSPRAY

w/ mitigation

CVE-2017-7533 [29] OOB kmalloc-256 32 2 48.43% 33.78% 96.87% 94.26% 31.84%
CVE-2017-7184 [28] OOB kmalloc-128 32 1 48.43% 21.18% 96.87% 96.52% 23.32%
CVE-2016-6187 [26] OOB kmalloc-128 32 1 48.43% 23.38% 96.87% 95.58% 30.14%
CVE-2010-2959 [25] OOB kmalloc-512 32 2 48.43% 39.60% 96.87% 94.80% 35.48%

CVE Bug Type Slab Cache
# of obj
per slab

# of
alloc PUAF Baseline PPSPRAY

UAF
PSPRAY

w/o mitigation
PSPRAY

w/ mitigation

CVE-2019-2215 [31] UAF kmalloc-512 32 2 96.87% 93.28% 100.00% 100.00% 93.42%
CVE-2018-6555 [30] UAF kmalloc-96 42 13 71.42% 63.50% 100.00% 99.94% 65.34%
83bec2... [37] UAF kmalloc-4096 8 8 12.50% 13.70% 100.00% 98.16% 12.84%
77e2cf... [36] UAF kmalloc-192 21 1 100.00% 95.74% 100.00% 100.00% 96.12%
CVE-2017-6074 [27] DF kmalloc-2048 16 4 81.25% 80.64% 100.00% 100.00% 81.12%
6b8d6b... [35] DF kmalloc-512 32 1 100.00% 96.28% 100.00% 99.98% 96.32%

Table A.4: Exploitation result on real-world vulnerability with mitigation

Test w/o mitigation w/ mitigation Overhead

Systemd-Analyze (s)

Kernel 1.249 1.249 0.00%
User 0.675 0.676 0.15%

Total 1.924 1.925 0.05%

LMbench - latency (ms)

syscall() 0.5157 0.5174 0.3%
open()/close() 2.6810 2.7021 0.8%
read() 0.7644 0.7725 1%
write() 0.7134 0.7199 0.9%
select() (10 fds) 0.8680 0.8728 0.55%
select() (100 fds) 1.5100 1.5212 0.7%
stat() 1.3038 1.3005 -0.2%
fstat() 0.8282 0.8282 0%
fork() + exit() 115.3949 116.9343 1.3%
fork() + execve() 418.9595 423.8459 1.2%

Average 0.655%

SPEC CPU2017 - latency (s)

600.perlbench 24.3 24.3 0%
602.gcc 0.006 0.006 0%
603.bwaves 29.1 29.15 0.17%
605.mcf 10.4 10.4 0%
607.cactuBSSN_s 3.45 3.453 0.08%
619.lbm_s 0.93 0.93 0%
620.omnetpp 2.62 2.62 0%
621.wrf_s 6.76 6.77 0.14%
623.xalancbmk 0.045 0.045 0%
625.x264 32.1 32.2 0.31%
627.cam4_s 2.49 2.493 0.12%
628.pop2_s 2.548 2.55 0.07%
631.deepsjeng 8.97 8.98 0.11%
638.imagick_s 0.0205 0.0205 0%
641.leela 4.20 4.20 0%
644.nab_s 2.01 2.012 0.1%
648.exchange2 21.02 21.03 0.04%
649.fotonik3d_s 4.29 4.29 0%
654.roms_s 4.85 4.86 0.20%
657.xz 11.2 11.2 0%

Average 0.066%

Table A.5: The performance of the Linux with and without mitiga-
tion.

Test w/o mitigation w/ mitigation Overhead

After System Boot

# of all created slab 4,686 4,700 0.29%
The memory size of
all created slab 1,840 KB 1,854 KB 0.76%

/proc/meminfo 76,548 KB 76,972 KB 0.55%

Average 0.53%

After LMbench

# of all created slab 1,765,577 1,775,661 0.57%
The memory size of
all created slab 1,137 MB 1,141 MB 0.35%

/proc/meminfo 1,351 MB 1,354 MB 0.22%

Average 0.38%

After SPEC CPU2017

# of all created slab 8,114 8,152 0.46%
The memory size of
all created slab 3,196 KB 3,213 KB 0.53%

/proc/meminfo 4,243 KB 4,284 KB 0.96%

Average 0.65%

Table A.6: The memory overhead of the Linux with and without
mitigation.
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