
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Did the Shark Eat the Watchdog in the NTP Pool?
Deceiving the NTP Pool’s Monitoring System

Jonghoon Kwon, ETH Zürich; Jeonggyu Song and
Junbeom Hur, Korea University; Adrian Perrig, ETH Zürich

https://www.usenix.org/conference/usenixsecurity23/presentation/kwon

Did the Shark Eat the Watchdog in the NTP Pool?
Deceiving the NTP Pool’s Monitoring System

Jonghoon Kwon
ETH Zürich

Jeonggyu Song
Korea University

Junbeom Hur
Korea University

Adrian Perrig
ETH Zürich

Abstract
The NTP pool has become a critical infrastructure for modern
Internet services and applications. With voluntarily joined
thousands of timeservers, it supplies millions of distributed
(heterogeneous) systems with time. While numerous efforts
have been made to enhance NTP’s accuracy, reliability, and
security, unfortunately, the NTP pool attracts relatively little
attention. In this paper, we provide a comprehensive analysis
of NTP pool security, in particular the NTP pool monitoring
system, which oversees the correctness and responsiveness
of the participating servers. We first investigate strategic at-
tacks that deceive the pool’s health-check system to remove
legitimate timeservers from the pool. Then, through empirical
analysis using monitoring servers and timeservers injected
into the pool, we demonstrate the feasibility of our approaches,
show their effectiveness, and debate the implications. Finally,
we discuss designing a new pool monitoring system to miti-
gate these attacks.

1 Introduction

Time synchronization across distributed systems is essential
in modern Internet services and applications, for instance
in the validation of certificates [14, 16]. Accurate time is
vital also for network infrastructure and its control and data
plane operations, e.g., updating routing tables with a precise
clock would enable dynamic congestion control and avoid
routing loops [2, 36]. The Network Time Protocol (NTP) is
the de facto standard in practice for such time synchronization
among interconnected entities.

Yet, NTP is known to be vulnerable to Man-In-The-Middle
(MITM) attacks that drop, replay, delay, or alter synchroniza-
tion packets, resulting in time shifting of the victim enti-
ties [1, 18, 33, 39, 40]. Given the vital role of NTP, various
approaches for securing NTP have been proposed. Early re-
search focuses on introducing cryptographic primitives to
authenticate NTP communication [9, 11, 20, 21, 23]. The com-
mon intuition behind the ideas is that authentication prevents

packet manipulation and hijacking. Nonetheless, delay at-
tacks and compromised timeservers remain effective. Thus,
redesigning NTP received attention to achieve Byzantine ro-
bustness even in the presence of adversarial timeservers [8,32].
While numerous efforts to secure NTP communication have
been made, only a limited number of studies have focused on
the NTP ecosystem [24, 35].

The NTP Pool Project [30], the biggest NTP ecosystem,
bundles thousands of public timeservers into regional or
vendor-specific domains, and provides NTP clients across
the globe centralized access via the domain name service
(DNS). With the NTP pool, NTP clients enjoy reliable and
available time sources. Indeed, millions of networked devices,
including routers, IoT devices, and Android mobile devices,
rely on the NTP pool. Given this critical infrastructure, inter-
esting research questions arise: “What if a determined attacker
takes control over the pool?”, “What if an attacker manages
to remove the majority of legitimate timeservers from the pool
while keeping malicious timeservers as only available time
sources?”. To answer these questions, we conduct an in-depth
analysis of the current NTP pool architecture and fundamental
vulnerabilities in its centralized management system.

We explore strategic attack approaches targeting the NTP
pool’s health-check system [29]. The NTP pool has a monitor-
ing system that inspects the status of timeservers in the pool.
It frequently sends NTP challenges to the timeservers and
checks their clock accuracy and responsiveness. Timeservers
with an incorrect time value are discharged and eventually
removed from the pool. Our attacks investigate abuse of the
monitoring system: (i) introducing an arbitrary asymmetric
delay to the NTP communications between the monitoring
server and timeservers, (ii) manipulating the local clock of the
monitoring server, and (iii) injecting malicious monitoring
servers into the pool. The strategic attacks deceive the pool
into believing that the legitimate timeservers in a specific
region are out-of-sync, inducing the pool to expel the healthy
timeservers. This allows an attacker controlling a small num-
ber of timeservers to inflate its influence in the target region
and potentially affect a large number of NTP clients.

USENIX Association 32nd USENIX Security Symposium 6151

Through experiments and analysis, we show the feasibility
of our attacks, demonstrating how the current pool’s single
monitoring system (and also the new monitoring system cur-
rently being tested with 13 monitoring servers) is vulnerable
to attacks. We first propose an adaptive delay attack in which
an MITM attacker continuously micro-adjusts asymmetric
network delay, and analyze the impact of the adaptive delay
attack on the target timeserver’s offset and monitoring score.
Second, we shift a monitoring server’s local clock and dis-
cuss its implications. We then analyze the multi-monitoring
system’s vulnerabilities by injecting monitoring servers into
the pool. Finally, we propose mitigation strategies in three
aspects: a robust reference clock for the monitoring system,
delay attack detection, and a new scoring system.

The main contributions of this paper are the following:

• For the first time, we provide a comprehensive analysis
of the NTP pool monitoring system and disclose vulner-
abilities caused by a lack of security consideration in its
design.

• We introduce strategic attacks exploiting the vulnerabili-
ties of the NTP pool’s self-health-checking system and
demonstrate their feasibility.

• We present possible mitigation strategies, and discuss the
fundamental architecture design for securing the current
and future NTP pool monitoring system.

Ethics statement and responsible disclosure. To avoid any
potential harm to the existing NTP pool system and its users,
the NTP timeservers and monitoring servers that we planted
into the pool reacted truthfully except to the queries we gen-
erated for testing. That is, the timeservers and monitoring
servers recognize the source and destination IP addresses
used for the experiment, and distinguish experimental pack-
ets. To prevent unexpected collateral damage, we turn the
timeserver’s status into monitoring only (inactive) when con-
ducting an experiment, ensuring none of the NTP clients
read a faulty time value. In addition, we carefully chose an
attack parameter that is sufficient to confirm its effective-
ness while avoiding harm to systems or Internet users. We
disclosed our findings to the NTP pool administrator and
were requested to post the findings to the NTP pool com-
munity channel for further discussion. There is an on-going
discussion now at https://community.ntppool.org/c/
monitor-operators/13 (monitor operators only).

2 Background: NTP Basics

The concept of NTP was first introduced in 1979 [22], and
NTP has been one of the oldest Internet protocols in current
use. It is intended to synchronize different computing systems,
originally described as a client-server model, over packet-
switched, variable-latency networks.

Server

Client T0

T1

T3

T2

{T
1 , T

2 }

Time

Figure 1: The basic NTP message exchange.

NTP clients. An NTP client synchronizes its time by peri-
odically sending time synchronization requests to NTP time-
servers, gathering the servers’ local time information to esti-
mate the time offset. Given that the estimated offset could vary
depending on the network condition, the client used to query
multiple servers—multiple queries to each—prune outliers,
and compute the median offset to update its time.
NTP timeservers. An NTP timeserver provides clients with
its local time information. For the sake of scalability, NTP
timeservers form a hierarchical structure called strata. High
precision time keeping devices, such as Global Navigation
Satellite Systems (GNSS) and atomic clocks, are positioned
at the top of the hierarchy. The physical reference clocks
are not directly connected to a network, but only provide
time information to stratum 1 timeservers that provide the
reference clock across the network. The stratum number thus
indicates the distance of a timeserver to the reference clocks; a
server synchronized to a stratum N server is placed in stratum
N +1.
Time-offset computation. NTP is a protocol exchanging
messages between an NTP client and an NTP timeserver
to fetch the server’s local time. The client initiates a query
to fetch the server’s RX and TX timestamps (e.g., T1 and
T2 in Figure 1). Through the message exchange, the NTP
client collects four distinct timestamps, i.e., T0 ∼ T3, and
computes the time-offset between the server and client, θ =
(T1−T0)+(T2−T3)

2 .
The time-offset computation is based on an intrinsic as-

sumption that the propagation delay is the same in both direc-
tions, i.e., T0+θ+δ/2 = T1, where δ = (T3−T0)− (T2−T1).
In a real system, however, this assumption will (most likely)
not hold due to the nature of packet-switched networks, e.g.,
hot-potato routing [7, 13, 31] and packet buffering [10, 15].
Consequently, the accuracy of the offset computation de-
grades, e.g., up to the magnitude of 100 milliseconds [25].
NTP Security. There were no security considerations in the
early design of NTP. Thus, similar to other early Internet
protocols, NTP was vulnerable to MITM attacks where a
malicious entity on the communication path intercepts and
forges NTP packets. These vulnerabilities bolstered the need
for NTP authentication.

Consequently, an authentication method using a pre-shared
symmetric key was introduced in NTPv3 [20], adding exten-
sion fields for message authentication to NTP packets, includ-
ing a 32-bit key identifier and 64-bit cryptographic checksum.
Nevertheless, the key distribution is considered outside the

6152 32nd USENIX Security Symposium USENIX Association

https://community.ntppool.org/c/monitor-operators/13
https://community.ntppool.org/c/monitor-operators/13

scope of NTP. Given that the pre-shared keys require a manual
configuration for each client-server pair, it does not scale well.
NTPv4 [21] solves this issue using public key cryptography in
the Autokey method [12]. Unfortunately, the initial design of
Autokey had vulnerabilities to several attacks, such as a brute
force attack against the small seed values (32 bits), leading
to the evolution to Autokey v2, which became Network Time
Security (NTS), published as an IETF RFC [11].

In NTS, an NTS-KE (key exchange) server ensures that
the NTP server and client share the same cryptographic algo-
rithms and authenticate them. Through the NTS key establish-
ment protocol, a client retrieves initial cookies, Authenticated
Encryption with Associated Data (AEAD) keys, and NTP
server addresses. With this information, the client requests a
server clock reading. The query is signed with the key and
includes a cookie, such that the server can validate the client’s
query and continue the authenticated time synchronization.
However, given that NTS is expensive—adding round-trip
latency and server-side public key operations—it has shown
only limited adoption in practice. Furthermore, NTP authenti-
cation does not protect against network delay attacks.

3 Case Study: NTP Pool Ecosystem

We provide an empirical analysis of the NTP pool ecosystem
(§3.1) and present our concerns regarding the security of the
NTP pool (§3.2). To better understand the NTP pool ecosys-
tem, we participate in the NTP pool with three monitoring
servers and three timeservers located in Europe, North Amer-
ica, and Asia, and observe the operational details of each role
for five months (from March to July, 2022).

3.1 NTP Pool Architecture
The NTP pool is a group of public NTP timeservers, enabling
NTP clients to synchronize. For usability, reliability, and scal-
ability, the NTP pool system leverages DNS, unifying access
to the participating timeservers distributed across the globe;
the participating timeservers become part of the pool.ntp.org
domain—each IP address is assigned to a subdomain—and
DNS polling is used to provide clients with the best server
IP address based on their geographic proximity. Currently,
as of Oct. 2022, more than 4500 timeservers are part of the
pool serving approximately a million hosts per day, including
routers, IoT devices, and home appliances.

Considering that the NTP Pool Project is voluntary-
oriented, managing such heterogeneous systems is challeng-
ing. The pool employs two key management artifacts to sim-
plify the complexity: the watchdog system and management
central. A watchdog, i.e., a monitoring server, periodically
checks the status of the participating timeservers. A central-
ized management server oversees the monitoring server’s op-
eration to keep a consistent view over time across the pool.
Figure 2 illustrates the overall NTP pool structure.

M
an

ag
em

en
t

L
ay

er
T

im
es

er
ve

r
Po

ol
 L

ay
er

U
se

r
L

ay
er

MGMT Server Monitor Server

Volunteer-provided NTP Timeserver

External Timeservers

NTP Clients

Job lists

Monitoring results

Sanity Check

Time Sync

Time Sync

Join Manage Monitoring
Time Sync

NTP Pool Project

Figure 2: The basic structure of the NTP pool.

Management system. The management system’s main tasks
are twofold: administration and supervision. The management
system provides an interface through which participants can
register their timeservers with a publicly accessible and static
IP address. The management system registers the new time-
servers into different DNS zones according to their location,
leading NTP clients to the most suitable, the least erroneous
timeservers nearby. Another main task is to ensure the relia-
bility and integrity of the pool. To this end, the management
system utilizes the monitoring server to track the status of the
participating timeservers; it delivers scheduled job lists to the
monitoring server, collects monitoring results, and removes
unhealthy timeservers from the pool.

A decision to expel a timeserver from the pool is made
through a scoring algorithm [29]. At every inspection round,
the management server estimates a new score for each time-
server. The score ranges from 20 to −100, depending on
the inspection result. According to their scores, timeservers
are classified as either active or inactive: between 20 and
10, a timeserver is recognized as an active server appear-
ing in DNS responses, and a timeserver with a score be-
low 10 is an inactive server and thus invisible in DNS
responses. If a timeserver’s score drops below −15, i.e.,
BAD_SERVER_THRESHOLD, an out-of-band notification (e.g.,
an email alert) is sent to the server’s administrator.

The scoring algorithm applies the following hard-coded
linear step function to preclude sudden shifts in the score:

scorenew = min(max_score,(scoreold ∗0.95)+ step), (1)

where 0.95 is the aging rate, max_score is the upper limit of
score (= 20 by default), and step is the step variable. The step
variable ranges from +1 to−5 according to the target server’s
response (see, Algorithm 1). More precisely, step =−5 if the
target server is offline (i.e., unreachable or not responding).
For the target servers with time offset > 75 ms, it would be
−4 ≤ step ≤ +0.7; otherwise +1. We confirmed that the
scoring algorithm is being used in the live monitoring server
through an experiment using a test timeserver to which an arbi-
trary delay is applied; after the test server’s score reached 17.2
due to the −1.8 step value by the artificial offset of 700 ms,

USENIX Association 32nd USENIX Security Symposium 6153

Algorithm 1: Step Formula (https://github.com/ntppool/
monitor/client/localok/local-check.go, commit 6005ff4)

1 if no_response or stratum == 0 then
2 step =−5
3 else
4 if |offset|> 3 or stratum >= 8 then // 3 s
5 step =−4
6 if |offset|> 3 then
7 max_score =−20
8 end
9 else if |offset|> 0.75 then // 750 ms

10 step =−2
11 else if |offset|> 0.075 then // 75 ms
12 step =−4∗ |offset|+1
13 else
14 step =+1
15 end
16 end

it took about 80 rounds of inspection (i.e., approximately 18
hours) to reach the maximum score of 20 again.
Monitoring server. The monitoring server is responsible for
checking the health of timeservers in the pool, more precisely
the timeservers’ responsiveness and time accuracy. By sim-
ply exchanging packets through NTP, it inspects if the target
timeserver replies to the requests (i.e., responsiveness) and cal-
culates the timeserver’s time offset to the monitoring server’s
local time (i.e., accuracy).

Keeping the monitoring server’s time accurate is critical,
because timeservers that are either offline or appear out-of-
sync with the monitoring server’s clock will be marked as
inactive and are eventually removed from the pool. To this
end, the monitoring server performs continuous self-checkups
before pulling a job list of timeservers to be inspected from the
management server. The monitoring server performs a sanity
check on the local clock using NTP with external timeservers
in the hard-coded external timeserver list. If the sanity check
is passed, i.e., the number of hosts (external timeservers) with
local offset < 3.5 ms is bigger than failureThreshold, where

failureThreshold =

len(hosts)− ((len(hosts)+2)/2),
(2)

the monitoring server retrieves a job list from the management
server and executes monitoring. Otherwise, it retries again
after a second. Note that the management server makes job
lists by grouping the timeservers registered in the pool into
subgroups, allowing the monitoring server to pull a sched-
uled job list. According to the current monitoring schedule,
timeservers are inspected approximately every 13 minutes.

The monitoring server reports the inspection results to the
pool’s management server, including the target timeserver’s
IP, offset, and RTT. Based on the report, the management
server calculates the step value and updates the corresponding
score for each timeserver. The front end of the management
server has an interface that allows anyone to search for time-
server scores and download CSV logs from the last 24 hours

Table 1: Hard-coded reference time sources for the sanity
check (commit 6005ff4).

Source Active (as of May 2022)
time.apple.com
ntp.ubuntu.com
time.google.com
ntp1.net.berkeley.edu
tock.ucla.edu
ntp.inet.tele.dk
uslax1-ntp-001.aaplimg.com
defra1-ntp-002.aaplimg.com
uklon5-ntp-001.aaplimg.com
ntp.stupi.se
ntp.se
ntp.nict.jp
ntp.ripe.net
time.fu-berlin.de

that contain inspection time, offset, step value, score, and the
responsible monitoring server.

3.2 Vulnerabilities at the Top of the Hierarchy
The pool has been operating a single monitoring server, i.e.,
Monitor SJ (monsjc1.ntppool.net), San Jose, CA, US. The
simple monitoring setup delivers a good enough quality of
self-healing mechanism with reasonable management over-
head, yet it has fundamental challenges.
Circular dependency in the time measurement. The single
monitoring server inspects all timeservers in the pool whether
their time is coherent with the UTC standard. Considering the
vital role of overseeing the thousands of timeservers’ time,
the accuracy of the monitoring server’s local clock is essential.
Nevertheless, the monitoring server’s local clock also has a
weak foundation of precision, a software clock that needs to be
frequently synchronized with high-precision external clocks.
Unlike other critical infrastructures, such as tier-1 ISPs, finan-
cial networks, or transportation systems, where their time is
tightly synchronized with the physical reference clocks, how-
ever, the pool’s monitoring system does not seem to have such
luxury. The monitoring server keeps sanity checking its time
with external stratum 1 or 2 timeservers (listed in Table 1),
indicating that the server’s clock is likely being synchronized
with external timeservers with a similar stratum rather than
highly precise reference clocks. A concern is that the monitor-
ing server and timeservers in the pool get fed their time by the
same external time sources? What if these external sources
propagate inaccurate time? This potential circular dependency
may banish timeservers with the correct time and keeps ones
with the same incorrect time sources, jeopardizing the time of
the entire pool and further all NTP clients synchronized with
the surviving timeservers.
Asymmetric network delay. Given that NTP is the basic
protocol for the pool’s time-related operations, i.e., synchro-
nization with external time sources and monitoring of the
pool’s timeservers, the architecture inherits NTP’s weakness
to the asymmetric network delays. As briefly described in Sec-
tion 2, NTP works very well under ideal network condition

6154 32nd USENIX Security Symposium USENIX Association

https://github.com/ntppool/monitor/client/localok/local-check.go
https://github.com/ntppool/monitor/client/localok/local-check.go

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

ausyd1

belgg1

dehaj1

deksf3

denue1-1

denue1-2

esm
ad1

fihel1-1

fihel1-2

frviy1

krgm
p1

usla1

sgsin1

jptky1

O
ff

se
t

(m
s)

Figure 3: Offsets logged by various monitoring servers for a
test timeserver.

where network latencies for both directions are symmetric.
The NTP standards clearly state the possible inaccuracy; de-
pending on the versions of ntpd running on the servers, mon-
itoring servers’ local clocks might vary up to a few tens of
milliseconds (NTPv4 [21]) or a few hundreds of milliseconds
(NTPv3 [20]). A problem is that asymmetric propagation
delays can be deliberately induced by an adversary.
Single-point-of-failure. A single monitoring server repre-
sents a single point of failure. Due to a variety of reasons,
such as server maintenance or network link failure, the mon-
itoring server may go offline, leaving timeservers with no
supervision. It is also problematic if the monitoring server’s
time deviates from the real time or the accuracy of NTP is not
guaranteed due to a network problem.

3.3 New Monitoring System under Pilot Test-
ing and Limitations

Multiple monitoring stations. Since May 2022, the pool has
employed multiple monitoring servers in its beta testbed to
test a new monitoring system*. The participating monitor-
ing servers collect scores for a subgroup in the pool (under
ntp.beta.grundclock.com) and report the monitoring results
to the log server. From our observations so far, however, no
distinct changes have been addressed other than configur-
ing multiple monitoring servers; the scoring logic has not
changed, and the log server simply averages the aggregated
scores. Nevertheless, here we share our insight learned from
the observations that might be useful to improve the new
monitoring system with multiple servers.
Split views of the distributed monitoring servers. The new
scoring algorithm must achieve resilience against potential
bias in the aggregated monitoring results from the distributed
monitoring servers. Despite the sanity check with the same
external timeservers, each monitoring server might have differ-
ent local clock values, because of: (i) different external time-
servers they are synchronized with, (ii) different geographical

*There is an ongoing discussion in the NTP pool community for a new
monitoring system and scoring logic, issued on April 29, 2022 [26].

distances between the external timeservers and monitoring
servers, and (iii) different network conditions, such as instant
network congestion. Figure 3 supports the possibility of the
monitoring results’ inconsistency. We investigated how the
distributed monitoring servers file the monitoring results for
our test timeserver. As shown in the figure, each monitor-
ing server logs different offsets ranging from 32.28 ms to
−11.57 ms. Recall that all the monitoring servers have passed
the sanity check, which requires an accuracy of ±3.5 ms.
Malicious monitoring servers. The NTP pool’s manage-
ment system allows the monitoring servers to perform a self
sanity check before monitoring. This implementation choice
assumes that the monitoring server is fully committed to the
integrity of the pool. The assumption, however, only stands
if all the monitoring servers are under the pool’s authority.
Employing voluntary monitoring servers as currently tested
cannot guarantee such trust; monitoring servers planted with
malicious intent may blindfold the self sanity check to feed
the pool’s management server with forged monitoring results.
Other than authenticating the participating monitoring servers
through the pool-issued certificates, there are currently no
security mechanisms in place to prevent misbehavior.

4 Attack Modeling

Goal. The attacker’s goal is to shift the local time of NTP
clients in a wide area, e.g., a country or even a continent,
by leveraging the NTP pool system. To illustrate the sever-
ity of such a large-scale time shift attack, an attacker could
gradually disrupt critical infrastructures over an entire region,
e.g., disrupt finance or health care operations. To this end, we
consider an attacker attempting to dominate the NTP pool
ecosystem by removing legitimate timeservers from the pool.
Adversary model. We assume a benign NTP pool manage-
ment and monitoring server infrastructure, as otherwise the
security of the system is trivially compromised.

The adversary controls a subset of the timeservers in the
target region, which were obtained either by compromising ex-
isting timeservers, or by injecting its own servers into the pool.
Timeservers under the adversary’s control can distinguish be-
tween regular NTP clients and the NTP pool’s monitoring
server. Adversarial time servers report different local clock
readings; accurate clock readings to the monitoring server
and incorrect time values to NTP clients. Their selective re-
sponse enables to pass the pool’s inspection, ensuring their
survivability.

The adversary may also perform on-path attacks: modify-
ing or injecting packets into unauthenticated connections, or
delaying or dropping packets in case of authenticated con-
nections. In addition, the network attacks can be performed
off-path in conjunction with BGP prefix hijacking, enabling
the attack from diverse vantage points.
Attack strategies. Chronos [8, 37] and Ananke [32] enable
NTP clients to collect time information from randomly sam-

USENIX Association 32nd USENIX Security Symposium 6155

NTP Pool
Timeservers

External Reference
Timeserver Monitoring Server

MGMT

③ Report

② Time Sync ① Monitoring

NTP Clients

Time Sync

Figure 4: Three targets to exploit the monitoring system.

pled multiple NTP timeservers, remove outliers, and compute
seemingly accurate time (i.e., the average value of the sur-
viving time information), improving resilience against the
time-shifting attack. Hence, to be successful in the attack,
the attacker must have a legion of malicious timeservers to
occupy the majority of the NTP client’s query list, tamper
with the majority of response packets directed to the client,
or attract the clients to malicious time servers, e.g., through
DNS cache poisoning. However, there are practical difficul-
ties: (i) to affect a target area or the entire pool, hundreds or
even thousands of timeservers must be infected or injected,
(ii) packet tempering can be blocked if the response packets
are authenticated, and (iii) it can only increase the probabil-
ity of the attacker’s timeserver getting queried by multiple
clients, but cannot guarantee that the client’s query list will
be populated with the attacker’s timeservers.

In our attack, the attacker aims to make legitimate time-
servers in the pool invisible, maximizing the influence of the
attacker’s timeservers. To this end, the attacker leverages the
pool’s monitoring system. As described in Section 3.1, the
NTP pool monitoring system removes timeservers exhibiting
abnormal offsets or non-responsiveness from the pool through
periodic health checks. By exploiting this monitoring process,
the attacker excludes competing (legitimate) timeservers from
the pool and attracts more queries from NTP clients to the
attacker’s timeservers.

We understand that this radical attack model may cause
drastic changes in the NTP ecosystem and thus can be easily
detected by the pool administrator. Therefore, for the attacker,
it is vital to maintain a low profile to avoid being caught on
the pool administrator’s radar. The attacker, therefore, lever-
ages BAD_SERVER_THRESHOLD. Recall that the monitoring
server classifies each time server into active or inactive, and
remove stages according to their score: if the score is 10 or
less, the corresponding timeserver is tagged as inactive and
excluded from the DNS table. When the score drops below
−15 (i.e., BAD_SERVER_THRESHOLD), the timeserver’s admin-
istrator will be notified. Therefore, the attacker’s strategic
goal is to keep the scores of benign timeservers between 10
and −15, the so-called grey zone.

We now present two viable attack approaches: interference
and invasive attacks. With the interference attack approach,
the adversary launches network attacks to exploit the mon-
itoring operations and, eventually, influence the inspection
results (1 and 2 in Figure 4). This approach is suitable for

the current pool system with a single monitoring server under
the pool’s administration. Another attack approach targets the
multiple monitoring server system currently being tested. The
adversary performs a more invasive attack, directly manipu-
lating the monitoring results (3 in Figure 4).

5 Interference Attacks

5.1 Adding Asymmetric Delays to Monitoring
Packets

The attacker interferes with the monitoring server’s inspection
process to mislead the health checks on timeservers. The
most intuitive attack method is to directly modify the time
value in the payload of the NTP response packet. For this,
however, the attacker must be on the vantage point to which
most NTP response packets towards the monitoring server
aggregates (locale limitation). In addition, it is inefficient
to parse the payload, compute the target offset, and modify
the payload for all NTP response packets from thousands
of timeservers (performance degradation). Finally, payload
modification will not be feasible if NTP packets are protected
using Transport Layer Security (TLS) with cryptographic
keys shared via AutoKey/NTS. Note that, in this attack, we
do not assume direct control over the monitoring server; the
current monitoring system is under direct management by the
pool’s administrator, so any intention of system penetration
might be detected via, e.g., software auditing.
Delay attack. Considering the NTP basics, a delay attack is
the most effective and difficult to mitigate. The attacker can
achieve the same results by simply adding an asymmetric net-
work delay to the NTP communication. The delay attack does
not require any changes in the exchanged synchronization
packets and thus sidesteps any potential NTP authentication
schemes. Furthermore, above all, the asymmetric network de-
lay is not a conspicuous phenomenon in the current Internet
due to many reasons, such as network congestion or routing
path asymmetry, so detecting the delay attack is challenging.
Driven by this, the attacker performs asymmetric delay attacks
such that target_delay = 2∗ target_offset. Since the attacker
aims to keep the target timeservers’ scores between 10 and
−15, target_offset should be adjusted to ideally meet step= 0.
According to line 12 in Algorithm 1, target_offset = 1/4 =
250 ms and consequently, target_delay = 500 ms. Note that
the default value for MAXDIST, which denotes the maximum
RTT that NTPv4 tolerates for accuracy against delay attacks,
is one second [21], and thus the additional 500 ms is expected
not to cause an NTP failure in most practical cases.
BGP hijacking. To effectively perform the asymmetric delay
attack on all timeservers, the attacker must be at the point
where all traffic is aggregated, or all traffic must be diverted
to the attacker. Obviously, the most certain aggregation point
would be right before the monitoring server. The attacker,
however, cannot always achieve this, and thus the off-path

6156 32nd USENIX Security Symposium USENIX Association

Monitoring
Server

Attacker
Timeserver

(TS1)

Timeserver
(TS2)

Internet

Req1

R
eq
2

Rep1

Rep2

Target Network
AS 54825

139.178.68.0/22

Attacker’s Network
AS 66666

139.178.70/24

BG
P

① Hijack monitoring server’s
IP prefix

② Send NTP requests to TSes

③ Reroute NTP replies through
the attacker’s network

Figure 5: BGP hijacking against the IP prefix of the pool’s
monitoring server reroutes NTP response packets, introducing
asymmetric latencies only into the monitoring process.

attack model using BGP hijacking would be a better approach.
The attacker modifies the routing path towards the target

IP prefixes through forged BGP announcements. The off-path
attacker can either become the destination of the hijacked
packets or forward them to the real destination. Considering
the attacker hijacking packets between a monitoring server
and thousands of timeservers in the pool, targeting the IP
prefix containing the monitoring server is obviously the sim-
plest. Figure 5 illustrates the off-path attacker. We confirmed
from RIPEstat [34] that the current monitoring server (mon-
sjc1.ntppool.net) resides within an AS (54825) that owns a
/22 IP prefix. By broadcasting a forged BGP announcement
that the attacker claims to possess a more specific prefix (e.g.,
/24), the attacker is able to update the routers’ routing infor-
mation bases. Given that the attacker hijacks the monitoring
server’s IP prefix, the NTP request packets will be routed
through the original paths. On the other hand, the response
packets will take a detour through the attacker, causing an
additional arbitrary delay α = OWD(Rep)−OWD(Req) and
resulting in asymmetric latencies.

The additional delay caused by BGP hijacking varies de-
pending on the attacker’s location. For example, as shown
in the figure, Rep1 will demonstrate a higher additional de-
lay than Rep2 due to the longer detour. A practical chal-
lenge for the attack is that the attacker cannot directly in-
fer how much additional delay αi has been introduced for
each timeserver. Considering that typical Internet latency
is likely below target_delay, 500 ms—for intercontinental
communications such as Europe-Asia, it is around 300 ∼
350 ms—the attacker needs to generate another artificial de-
lay β = target_delay−α.
Adaptive asymmetric latency. To estimate β, the attacker
reverse-engineers the monitoring server’s log records re-
trieved from the management server. More precisely, the at-
tacker first collects the addresses of the hijacked timeservers
by sniffing the NTP response packets destined for the mon-
itoring server. After sufficient time has elapsed for the pool
to update a new score for the timeserver, e.g., one minute,
the attacker retrieves the timeserver’s CSV log from the man-

agement server and estimates α by comparing the recently
logged offset with the one collected a few hours prior, and
accordingly β. Finally, on the subsequent monitoring round
on the same timeserver, that attacker introduces an additional
delay β to the NTP response packets. This can be repeated
until the desired offset is met, implying the logs are leveraged
as the correction references for the attacker to calibrate β. We
analyze the feasibility of this approach in Section 7.1.
Attacker’s timeservers. BGP hijacking will also reroute the
NTP response packets originating from timeservers under
the attacker’s control. Nevertheless, the attacker’s timeservers
can compensate α by responding with modified time values,
remaining as active timeservers in the pool.

5.2 Shifting the Monitoring Server’s Local
Time

Shifting the monitoring server’s local time is another effective
attack model, since it causes the monitoring server to believe
that all the functioning timeservers in the pool are out-of-sync.
In this attack, we consider an in-network attacker whose goal
is to shift the local time of the monitoring server by tricking
its time synchronization process from outside.
Hijacking synchronization packets. To shift the monitoring
server’s time while still enabling it to pass the sanity checks,
the attacker must intervene in two communication channels:
the reference clock of the monitoring server and external
timeservers with which the monitoring server performs its
sanity checks. Similar to the previous attack, the attacker
can attempt to hijack the packets with BGP. However, BGP
hijacking effects to a wider area, so it does not fit well with the
targeted attack. If possible, performing on-path delay attacks
targeting only the two types of communication will be the
most efficient and effective approach. However, as we discuss
earlier, the on-path attack places a strong assumption on the
location. Another practical approach is DNS cache poisoning,
which specifically targets the monitoring server’s external
time sources, where the monitoring server’s queries can be
redirected to the attacker’s fake timeservers.

The attacker targets the monitoring server’s DNS re-
solver as shown in Figure 6. By following the hijackers
guide [3, 6, 14], the attacker disguises as the legitimate name
server with the spoofed IP and injects fake responses (or
IP fragments) to the resolver when it issues a query to the
upstream authoritative name servers. The attacker knows
in advance the victim domains, such as the reference time-
server’s domain (i.e., ussjc2-ntp-001.aaplimg.com), and the
corresponding name server’s IP address (i.e., 17.253.207.1).
Suppose the elaborately forged fake response arrives before
the legitimate response. In that case, the resolver accepts the
fake response, updates its cache, and replies to the monitoring
server with the fake IP address. Indeed, DNS cache poison-
ing is practical considering that: (i) only 12% of resolvers
enabled DNSSEC [5], (ii) over 30% of ASes do not block

USENIX Association 32nd USENIX Security Symposium 6157

AttackerResolver

Timeserver pool

DNS
Reference

Clocks
①

②

④

① Poison monitoring server’s
DNS resolver

② DNS query for reference clocks
③ Reroute NTP packets and shift

monitoring server’s local clock
④ Kick legitimate timeservers out

from the pool

③

Monitoring
Server

Figure 6: The attacker hijacks monitoring server’s synchro-
nization process with external reference clocks, shifting the
local clock at the monitoring server.

source address spoofing [17], and (iii) new DNS cache poison-
ing attacks targeting the lower layers of the DNS hierarchy,
e.g., OS-side stub resolvers, seem viable [19].

6 Invasive Attack

Injecting malicious monitoring servers. A new monitoring
server can be registered and participate in the beta test through
the dedicated management URL [28]. The server owner needs
to download and install the monitoring agent binary from the
NTP pool developer repository [27]. Once an IP address and
e-mail address are given, the NTP pool administrator issues
API keys (including a certificate) for communication with
the management server. We were able to join the pool’s mon-
itoring system with three servers in Europe, the Americas,
and Asia, respectively. The attacker can also register multiple
monitoring servers into the pool through the same process.
Section 7.3 will show how easy it is to enter the pool’s moni-
toring system and deactivate target timeservers using a few
monitoring servers.
Bypassing sanity checks. The legitimacy of the monitoring
server, for now, solely depends on its self-sanity check. The
monitoring server self-estimates the accuracy of the local
clock through NTP packet exchanges with external public
timeservers. However, bypassing the sanity check is simple:
omitting the sanity check line of the source code or bypassing
the binary execution downloaded from the repository. The cur-
rent monitoring system does not consider any integrity check
of the (participating) monitoring server, e.g., authentication of
the sanity check or code auditing. If the attacker’s monitoring
server bypasses the self-sanity check, then its entire NTP pool
is now the attacker’s playground.
Manipulating monitoring results. The attacker can down-
load the monitoring job list from the management server
through a legitimate API, GetServers(). For each time-
server’s IP address in the job list, time is measured through
NTP packet exchanges, offset is calculated, and then the tar-
get timeserver’s status is reported with the job list ID through

another API, SubmitResults(). To intentionally lower the
score of the target timeserver, a false offset value will be re-
ported. The simplest way is to shift the monitoring server’s
local clock. The faulty local clock will add an arbitrary offset
to all NTP results for normally functioning timeservers.

A bolder attack approach is directly adding the desired
offset to the target timeservers’ monitoring results through
monitor code manipulation. By abusing the monitoring report
process, the attacker can overwrite any desired value in the
offset field of ServerStatus regardless of the NTP measure-
ment result. If the target server’s stratum and RTT value are
known, the attacker does not even need to perform NTP. In ad-
dition, the attack can target specific IPs, surgically excluding
timeservers assigned for a target area. Note that the attacker
can use a DNS crawler [35] to collect the NTP timeservers’
IP addresses assigned to domains for specific zones, such as
continents, countries, and vendors. The management server
will update these targeted timeservers’ scores to a lower value
and eventually turn them into an inactive state.
A few monitoring servers is enough. The injected monitor-
ing server’s influence is inversely proportional to the number
of legitimate monitoring servers registered in the monitoring
server pool. The target timeserver’s score intentionally low-
ered by the attacker will be restored by the other monitoring
servers. However, due to the biased sensitivity of the step for-
mula in the current scoring algorithm—drops fast but recovers
slowly, i.e.,−5 to +1 in one round—the attacker’s monitoring
server is comparable to theoretically five legitimate servers.
The aging rate in the scoring algorithm even exacerbates this
further; the aging rate always affects negatively when the
score value ranges 20∼ 0. Therefore, injecting a few monitor-
ing servers (e.g., less than 20 % of the monitoring server pool)
would give the attacker a significant attack power (see, Sec-
tion 7.3). It is important to note that this attack is technically
not scale-limited; rather, an injected monitoring server can
cover all the timeservers in the pool if the job lists are given,
as in the case of a single monitor.

7 Attack Analysis

To quantify the feasibility of the attacks aiming at the heart
of the NTP pool monitoring system, we mainly analyze the
following three factors: if (i) the attacker can micro-control
the target server’s time offset with delay attacks (§7.1), (ii)
the monitoring server whose local clock is arbitrarily shifted
can still perform the sanity check, monitoring, and reporting
(§7.2), and (iii) a small proportion of monitoring servers can
successfully manipulate the target timeserver’s score (§7.3).
Furthermore, and most importantly, we analyze if the attacker
can keep a low profile without being caught by the NTP
administrator during and after the attacks (§7.4). For ethical
experiments, all tests are conducted on/to/from servers we
planted into the pool; none of the existing NTP pool entities
were affected by the experiments for correct operation.

6158 32nd USENIX Security Symposium USENIX Association

 0

 100

 200

 300

 400

 500

 600

 700

07:44

09:45

12:06

14:31

16:57

19:15

21:36

23:49

A
sy

m
m

et
ri

c
D

el
ay

 (
m

s)

α
β

α + β

Figure 7: Asymmetric delays.

−300

−250

−200

−150

−100

−50

 0

 50

07:44

09:45

12:06

14:31

16:57

19:15

21:36

23:49

−4

−3

−2

−1

 0

 1

O
ff

se
t

(m
s)

S
te

p

Offset
Step

Figure 8: Offset and step values.

0

Figure 9: Target timserver’s score (blue line).

7.1 Distorting the Vision of the Monitor

We set a goal of 500 ms asymmetric delay to overwhelm the
NTP pool silently. To achieve this in a dynamic network en-
vironment, an attacker performs the adaptive delay attack
described in Section 5.1. That is, through continuous mon-
itoring log analysis, the attacker infers the previous delay
and feedback on the current delay, micro-adjusting the attack
configuration. We applied the following methodology.

1. On the target timeserver, a random delay 50 ms (± 20 ms)
to all outgoing traffic is added at its network interface.

2. The attacker sniffs packets between the target timeserver
and the monitoring server on the communication path.

3-1) The attacker pulls the monitoring logs from the man-
agement server every 30 seconds, and tracks the latest
offset value of the target timeserver.

3-2) The attacker infers α from the offset, calculates β, and
updates its DB with the {IP, β} pair.

3-3) When a new NTP response packet arrives (e.g., destined
for the monitoring server), the attacker performs a DB
lookup and applies an additional delay β to the packet.

4. The attacker repeats step 3, adjusting the total delay.

Regarding the experiment, we would like to note that (i)
we configured the target timeserver’s status as monitoring
only by adjusting the net_speed parameter so that none of
the NTP clients solicits a time value from the timeserver, (ii)
we ensured no entities between the attacker and the target
timeserver to avoid any unnecessary casualty by the attack,
and (iii) we ignored DB lookup overheads since it only takes
a few hundred nanoseconds—the maximum DB entries are
< 5K—and does not significantly affect the results. Figure 7
shows the asymmetric delays applied to the target timeserver
following the experiment steps.
Impact of Adding 500 ms. Adjusting β is to compensate for
the network jitter observed in the previous monitoring pro-
cess, and thus there is always a gap between αi and αi−1. In
addition, as α is an inference from approximating the offset
value, it is also affected by the real offset coming from differ-
ent clock drifts between the target timeserver and monitoring
server. Nonetheless, as shown in the results, we confirmed

that the approximation-based delay inference does not sig-
nificantly affect the overall attack performance. The attacker
successfully enforced an asymmetric delay of about 500 ms
with an up to 2 ∗ jitter, relatively small errors compared to
target_delay, and compensated for the errors in the very
next inspection rounds. In a nutshell, the monitoring results
intrigued by the attack were settled at an average offset of
245.6 ms (233.6 ms ∼ 258.9 ms)—successful time shifting
from an average of 0.8 ms under normal conditions—and the
step value accordingly could be suppressed from one to an
average of 0.017 as shown in Figure 8.

The experiment was conducted for approximately 18 hours,
from 07:20 to 01:20 the next day in local time. Figure 9,
captured from the NTP Pool Management Web, shows the
monitoring results of the target timeserver logged by the gen-
uine monitoring server; the green and red plots indicate the
recorded offsets and the blue line draws the target timeserver’s
score. In a nutshell, with the forged offsets (red dots), we suc-
cessfully inactivated the target timeserver within 3 hours and
35 minutes (20→ 9.8, entering the grey zone). Since then,
the score kept decreasing and finally stabilized at 0.7 after 15
hours of entering the grey zone.

7.2 Implications of a Faulty Single Monitor
Next, we demonstrate if a monitoring server with shifted local
clock operates without interruption, and analyze what impli-
cations it has. The experiment uses one of the monitoring
servers we injected into the multi-monitoring server testbed
in order not to affect the legitimate monitoring server.
No integrity check at all except the sanity check. The
higher stratum timeserver the monitoring server synchronizes
with is known. Thus, by hijacking the time synchronization
packets, we successfully shifted the local clock of the mon-
itoring server by 250 ms. The next step is to pass the sanity
checks. As shown in Table 1, the hard-coded timeserver list
for the sanity check is also known. However, we observed
the list has changed frequently for the last four months. We
thus double-checked the server list by sniffing DNS packets.
Table 2 is the list of external timeservers we confirmed. A
total of 12 domain names were queried, of which ten were
confirmed in the Github code, and two were new domains.

USENIX Association 32nd USENIX Security Symposium 6159

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

C
D

F

Offset (sec)

Attacker
ausyd1
belgg1
dehaj1
deksf3
denue1
esmad1

fihel1
frviy1
jptky1
sgsin1
usla1

ustys1

Figure 10: CDF for offsets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

−5 −4 −3 −2 −1 0 1

C
D

F

Step

Attacker
ausyd1
belgg1
dehaj1
deksf3
denue1
esmad1

fihel1
frviy1
jptky1
sgsin1
usla1

ustys1

Figure 11: CDF for step values.

0

Figure 12: Example of an effected timserver’s score.

Table 2: Observed external timeservers via DNS sniffing.

Source IPs Hard-coded
ntp.nist.jp 133.243.238.163, 133.243.238.244,

61.205.120.130, 133.243.238.164,
133.243.238.243

defra1-ntp-002.aaplimg.com 17.253.54.253
uklon5-ntp-001.aaplimg.com 17.253.34.125
time.fu-berlin.de 130.133.1.10
ntp.ripe.net 193.0.0.229
ntp.inet.tele.dk 193.162.159.194
ntp1.net.berkeley.edu 169.229.128.134
uslax1-ntp-001.aaplimg.com 17.253.26.125
time.apple.com 17.253.82.253, 17.253.82.125,

17.253.114.125
ntp.stupi.se 192.36.143.150, 192.36.143.151,

192.36.143.153, 192.36.143.234
tock.ucla.edu 164.67.62.212, 164.67.62.199
jptyo5-ntp-001.aaplimg.com 17.253.68.125

According to the sanity check algorithm (see, Equation (2)), a
sanity check can be easily avoided if five out of 12 timeservers
are subjected to have an offset < 3.5 ms. We also hijacked
the sanity check packets toward the timeservers with known
domains and successfully passed the sanity check.

In this demonstration, the most important finding is that
there is no additional hidden verification procedure over the
integrity of the monitoring server’s local clock other than the
sanity check. The monitoring server that passed the sanity
check was able to pull the job list from the management server,
perform inspections with the shifted local clock, and register
the incorrect monitoring results to the management server.
One failure for all. Our monitoring server operates with
shifted local clock for two hours, from 21:09 to 22:10 in
local time. A total of 234 timeservers were inspected during
the experiment. The inspection frequency was hour basis—
a monitoring server would have an inspection cycle of ei-
ther one hour or 13 minutes, according to the management
server’s job scheduling. Therefore, a timeserver was inspected
up to two times by our monitoring server during the period.
Figure 10 plots the CDF of the offset values measured for
the timeservers by our monitoring server as well as other
(active) monitoring servers. The average offset we reported
was 242.5 ms (STD: 49.2 ms), while the other monitoring
servers reported 0.1 ms (STD: 9.4 ms). From our reports, 12
timeservers were recorded with offsets < 10 ms; five were

offset = 0 due to I/O timeout. Considering that the remaining
seven showed similar offsets in the other monitoring servers’
reports, we suspect that the attack failure was caused by arbi-
trary network delays.

The offsets reported are subsequently reflected as step val-
ues. As shown in Figure 11, the step values derived from the
other monitoring servers’ reports converge to one, whereas
our reports drive the step value to nearly zero. We confirmed
this from the management web interface. Figure 12 shows the
history of monitoring results of one of the inspectees. As high-
lighted with the red boxes, the gaze of the monitoring server
whose local clock is shifted looking at other timeservers is
indeed reflected. It is important to note that this experimental
setup does not affect the live timeserver’s operation as other
monitoring servers quickly compensate for the score drop.
However, in the current NTP pool with a single monitoring
server, it implies that an attack on the monitoring server’s
local clock can affect all the timeservers in the pool and, con-
sequently, all the underlying NTP clients.

7.3 Injecting a Few Monitors is Enough

We now analyze how resilient multi-monitoring environments
are against malicious monitoring servers. To this end, two
monitoring servers we injected repeatedly filed the lowest
step value, −5 (i.e., I/O timeout), for one of our timeservers.
Recall that the target timeserver is configured for monitoring
only, not appearing in DNS queries. The experiment was
conducted from 11:30 am to 3:00 pm the next day. Figure 13
shows the offset result reported by multiple monitors for the
target timeserver and the corresponding score value change.
While continuously reporting I/O timeouts, we observed no
warnings (e.g., email notification) or implicit actions (e.g.,
ignoring reports) from the management system.

After filing an I/O timeout (red dot), we immediately ob-
served a sharp drop in the score (blue line). However, due
to the “server OK” report (green dot) from the other normal
monitors, the score value gradually ramped up and soon recov-
ered to almost the original score value even before the next
attack, unlike our anticipation. In order to understand this
phenomenon, we carefully investigated the leading cause, and

6160 32nd USENIX Security Symposium USENIX Association

0

Figure 13: Reported offsets and the corresponding
score with two attackers.

 0

 2

 4

 6

 8

 10

 12

12:00

14:24

16:48

19:12

21:36

00:00

02:24

 0

 10

 20

In
ac

ti
v

e
p

er
io

d
 (

m
in

)

S
co

re

Score
Downtime

Figure 14: Recovery time to escape
the grey zone (> 10).

−12

−10

−8

−6

−4

−2

 0

 0 10 20 30 40 50 60

S
co

re
 C

h
an

g
es

Interval (min)

Figure 15: Score changes per at-
tack interval.

found it was due to the different influence of each monitoring
server on the monitoring result. Specifically, amongst the to-
tal 13 monitoring servers, seven have a monitoring frequency
of 12 ∼ 13 minutes, and the remaining six (including two
monitoring servers used in the attack) have approximately an
hour frequency. That is, considering the step formula’s biased
sensitivity, an attacker’s monitoring server with an hour mon-
itoring frequency is equivalent to that of a normal monitoring
server with 12 minutes; arithmetically, it is two to 39 influ-
ence metric. Indeed, according to the monitoring log, more
than 40 logs from the normal monitoring servers were filed
during an hour interval. Given that each normal monitoring
report increases the score by step−0.05∗ score, it takes 15
reports from 0 to over 10. Therefore, to be successful in the
attack, we conclude that the attacker needs four low-frequency
monitoring servers or two high-frequency monitoring servers.

Although the current attack configuration was unable to set-
tle the target timeserver’s score in the grey zone, we observed
great potential. Figure 14 illustrates how long the target time-
server’s score stayed in the grey zone. With two I/O timeouts,
the score went from max_score to 8.3 ∼ 8.5. Furthermore,
it takes about 4∼ 7 minutes (i.e., time to get filed with four
normal reports) to recover the score over 10. Considering that
the default ntpd synchronization frequency is between 64 and
1024 seconds and the most clients are relying on resolvers
with a 150 s TTL for the DNS records [24, 35], we expect
that a significant number of NTP clients will not be able to
synchronize with the timeserver, and it is an impressive result
for only two monitoring servers.

When only a small amount of attack power is available,
the effectiveness of the attack would more depend on the
concentration of available resources. With filing several neg-
ative monitoring results at once, the score can be directly
dropped to the grey zone before it is recovered. Figure 15
plots the score’s dropping amount (i.e., score before attack1
- score after attack2) for different attack intervals. When the
two malicious reports are perfectly synchronized, it results
in the maximum attack effectiveness of −11.7. On the other
hand, as the two malicious reports occurred sporadically, the
attack achieved only half of the maximum effectiveness (i.e.,
−6). Even worse, the score drops a little (−1 ∼ −2) if too

Table 3: Meantime a timeserver’s administrator gets notified
after its score drops below BAD_SERVER_THRESHOLD.

Server Monitor type Meantime to notify (Score)
T S1 (x.x.23.171) Single 1h 53m (−20.4)
T S2 (y.y.121.177) Multi 12m (−42.2)
T S3 (z.z.23.172) Multi 14m (−35.2)

many normal reports are filed before attack2, restoring the
score to a higher value than before attack1. A viable approach
is to fail in sanity check intentionally. When a sanity check
fails, the monitoring server awaits two minutes to attempt
another sanity check. Although the attacker cannot precisely
control the monitoring schedule, it is possible for the attacker
to postpone the scheduled monitoring tasks and perform a
synchronized attack using multiple monitoring servers.

7.4 Flying under the Radar

E-mail notification system. The grey zone of the current
monitoring system provides an optimal environment for such
low-profile attacks. It suspends a decision on temporary sta-
tus abnormalities of the timeservers prior to immediate ac-
tions. With the pending status, administrators of the pool
and target timeservers are unaware of such abnormality. In-
deed, throughout the experiment, we received no notification
from the pool while keeping a timeserver’s score in the grey
zone. We then deliberately lower the timeserver’s score be-
low BAD_SERVER_THRESHOLD (−15) in order to understand
the pool’s email notification system. According to our under-
standing, the notification system consists of two emails, i.e.,
an initial notification and a follow-up notification. We were
notified after a considerable amount of time (see, Table 3)
had passed since BAD_SERVER_THRESHOLD. The follow-up
notification came 4 hours and 46 minutes after the first notifi-
cation. Another follow-up has not been observed. Our find-
ings from this are: (i) the administrators of timeservers would
not be tipped as long as their timeservers reside in the grey
zone, and thus (ii) taking immediate action upon such ab-
normality will be difficult (even when the score goes below
BAD_SERVER_THRESHOLD).

USENIX Association 32nd USENIX Security Symposium 6161

8 Mitigation

So far, we have dealt with the inherent vulnerabilities of the
current NTP pool monitoring system and practical attack ap-
proaches to exploit them. We now discuss the functional and
design requirements to address these vulnerabilities. In ad-
dition, a new monitoring architecture for more secure and
reliable NTP pool management from a short-term and a long-
term perspectives is outlined.

8.1 Securing the Monitor’s Operations

For better security of the NTP pool monitoring system, the
first to consider is the integrity of the time synchronization
chain from the external time source, monitoring server, to
timeservers, even in the presence of such strategic attackers
(see, 1 and 2 in Figure 4).
Embedded, trustworthy reference clock. The monitoring
server performs time synchronization with external time-
servers. Usually, the external timeservers are stratum-1 servers
that are directly synchronized with highly precise reference
clocks, e.g., GNSSes or atomic clocks, meaning that the mon-
itoring server’s local clock would also achieve sufficient accu-
racy as stratum-2 timeservers. Nevertheless, this is held only
under ideal network conditions. As seen in Section 5.2, such
a strategic attack can easily shift the monitoring server’s local
clock. NTP authentication is rarely applied in practice, and
even if applied, a delay attack is always possible. The state-of-
the-art NTP security techniques using multiple time sources
are only suitable against malicious time sources, and their
incentives are not clear against hijacking attacks on the mon-
itoring servers prefix; all packets are affected by the attack,
and thus outliers are hardly distinguishable.

One of the most acceptable mitigations is to reposition the
monitoring server as stratum-1. That is, the monitoring server
would receive time inputs directly from an atomic clock or
GNSS. Atomic clocks are considered the most accurate time
source. Atomic clocks are designed to measure the precise
length of a second based on the oscillations of a certain atom
(e.g., 9B oscillations of a caesium-133 atom), which is used
as a frequency standard for the timekeeping element. GNSS
is another feasible choice that distributes precise time infor-
mation. Given that it is easy to find inexpensive atomic clocks
on the market, the stratum-1 position is no longer the property
of institutions with large budgets. As the only health-check
system in the pool is responsible for the time of millions of
distributed systems, having such a reliable and secure refer-
ence clock is essential. Further, besides the time accuracy, it
would dramatically reduce the chance of an attacker shifting
the monitoring server’s local clock.
RTT-offset correlation. All Internet services and applica-
tions, including NTP, inherit the security characteristics of the
underlying packet-switching infrastructure. Due to the lack of
forwarding transparency and limited routing control in the cur-

rent Internet, protocol-specific security amends demonstrated
a limited improvement. In addition, such design changes re-
quire a wide adoption to be effective, but deployability, espe-
cially with voluntary participants, is challenging. Then, what
is the most effective and viable way to secure the monitor-
ing process without requiring changes from the underlying
infrastructure or protocol design? We consider introducing
heuristics for monitoring anomaly detection.

We go back to the basics. The NTP accuracy is RTT sen-
sitive. Abusing the monitoring system requires a relatively
higher delay than the RTT expected in usual NTP commu-
nication. Luckily, such an unusual RTT can be easily recog-
nized [38]. The monitoring system may trace expected RTTs
considering the geographical proximity of the two communi-
cating systems and set, e.g., per-timeserver MAXDIST with an
additional 10% of the expected RTT. For a long-distance RTT
like 650 ms, its 10% only causes 32 ∼ 33 ms of offset, which
is a tolerable margin for NTP considering, de facto, NTP users
do not expect very high precision. Another approach is to de-
tect the change in RTT. The NTP pool monitoring system
readily reports RTTs for each timeserver. It can detect anoma-
lies in RTT when a significant instability other than common
jitter appears. In addition, with the future multi-monitor sys-
tem, if possible, it can determine whether the RTT abnormality
is a local or global characteristic. Timeservers having locale
similarity may be grouped and conduct correlation analysis
to locate the root cause of the abnormality.

8.2 Resilience against Injected Monitors

New scoring algorithm. The current scoring algorithm
equally weights each monitoring report. Upon receiving a re-
port, an offset is immediately reflected in the final score of the
corresponding timeserver. This allows the pool management
system to react instantly to a status change of timeservers.
On the other hand, it also increases the sensitivity to faulty
reports. Even with injecting a small number of monitoring
servers, scores of target timeservers can be significantly low-
ered, putting them in an inactive state. Considering the case
in which all (voluntary) monitoring servers cannot be com-
pletely trustworthy, we need to be able to classify such faulty
reports and exclude them from scoring (3 in Figure 4).

Chronos [8] inspires us. Chronos’ trust assumption is that
not all NTP servers are trustworthy. Given the trust model, an
NTP client requests time input from multiple timeservers, ex-
cludes outliers, and calculates the most statistically accurate
time value. The same approximate agreement approach can
be applied to the multi-monitoring system. When multiple
voluntary monitoring servers participate in the scoring pro-
cess, the pool cannot underestimate the possibility of faulty
monitoring inputs. Driven by this, the management server col-
lects monitored offsets from the monitoring servers, excludes
outliers, and calculates the correct score.

Algorithm 2 shows an example of the modified approx-

6162 32nd USENIX Security Symposium USENIX Association

Algorithm 2: Modified approximate agreement algorithm for the
step formula with multiple monitoring servers.

Input: M = {m1,m2, ...,mn}, t
Output: st

1 O = collectOffset(M, t) // gather results for a timeserver t from M
2 P = pruneOutlier(O, d) // prune d lowest and highest values
3 if max(P)−min(P)≤ 2ω then
4 st = stepFormula(avg(P))
5 else
6 O = collectOffset(trusted(M), t) // trusted monitors only
7 st = stepFormula(avg(O))

8 end
9 return st

imate agreement algorithm for the step formula under the
multi-monitor environment. The pool collects inspection re-
sults O for a target timeserver t from the registered n monitors,
M = {m1,m2, ...,mn}. Out of the n offsets, the d lowest and
highest offsets are excluded from the monitoring samples. As
discussed in §6 and §7.3, the biased step range yields a mean-
ingful proportion of injected monitoring servers at around
15 ∼ 20%. Therefore, the default value of d = n

5 would be
practical. Later, it is examined that the maximum difference
between all possible pairs of two surviving offsets does not
exceed 2w, where w is the max tolerable jitter for RTTt . Con-
sidering the empirical analysis of asymmetric network de-
lay (§3.2), we set w = 20 ms as default. When the condition is
met, a new step value will be derived from the average offset
of surviving samples avg(P) and updated to the new score
for t. The algorithm makes the monitoring process resilient
to various invasive attack scenarios:

• The attacker controls < d monitors. The attacker con-
trols a small subset of monitoring servers. Considering
that the attacker’s goal is to lower the target timeservers
score, all reports from the monitoring servers under the
attacker’s control will have a higher offset value than
honest monitoring results. Consequently, they always
fall into top/bottom d samples, and will be discarded by
the pruning process.

• The attacker controls < n− d monitors. In this case,
the attacker controls enough monitoring servers to sur-
vive the pruning process. Thus, now, the attacker aims to
let the algorithm discard as many true offsets as possible.
Nonetheless, as the attacker reports fewer than n−d off-
set values, at least d+1 true offsets will also be reported.
It means that, even if the algorithm discards top and bot-
tom d offsets, at least one true offset value survives at
the top/bottom of the remaining samples n−2d. Since
the algorithm checks if the maximum distance between
all pairs of surviving offsets is within 2w, to pass the
check, all the attacker’s reports must have offsets within
±2w from the true offset. Given that w = 20, avg(P)
would be < 0.04 s; hence, the final step value would
be +1 following Algorithm 1. Therefore, the attack is

ineffective. Note that, to discard all the true offsets, the
d +1 true offsets need to be split and appear in both top
and bottom d. This implies that all the attacker’s reports
in n−2d must be between the true offsets in the top and
bottom d. Consequently, no attack impact occurs.

• The attacker controls > n−d monitors. The attacker
dominates the monitoring system with a sufficiently
large number of injected monitoring servers. In this at-
tack scenario, true offsets are discarded, and all the sur-
viving n−2d samples are from the attacker’s monitoring
servers. This implies that the attack is successful.

To successfully lower the target timeserver’s score, an at-
tacker must appear en masse in the monitoring server pool
(e.g., more than 80% when d = n

5). We however argue that
such a case is not practical. The NTP pool’s administrator
can ensure that at least d + 1 monitoring servers are under
the administrator’s direct control, such that fewer than n−d
voluntary monitoring servers can participate in the scoring
process.

One extreme case not yet covered is that the attacker inten-
tionally reports faulty offsets that violate the “within 2w” rule
to sabotage the scoring algorithm. When the offset-distance
checkup fails, the algorithm ignores all the participating mon-
itoring servers, only collects monitoring reports from the
trusted monitors (i.e., the pool’s administrator controls), and
calculates a new step value.

8.3 Towards Better Security for the NTP Pool

Responsible monitoring servers. Only reliable and trustwor-
thy participants should be able to join as the monitoring server
operator. The monitoring system is a critical part of the man-
agement. Participants wishing to operate a monitoring server
thus need to prove their qualifications. The participants prove
their legitimacy through a strict verification process, e.g., ver-
ifying an institutional or organizational email address. They
must also meet sufficient performance requirements for a cor-
rect monitoring server operation, e.g., the presence of a highly
precise reference clock. Such high requirements increase the
reliability of the monitoring system operation while providing
source accountability for malicious monitoring results.
Adding unpredictability in monitoring. The monitoring
system must introduce unpredictability to prevent a sophisti-
cated attacker with a high-level understanding of the current
pool operation. First, we anticipate the anonymity of the moni-
toring server. A malicious timeserver can distinguish the mon-
itoring packets through the source IP of the incoming NTP
request. If the source IP becomes indistinguishable by lever-
aging an anonymous communication system, e.g., Tor [41],
the malicious timeserver will not be able to distinguish the
monitoring packets. Second, the monitoring system needs
irregularity. Even if the monitoring server’s IP is anonymized,

USENIX Association 32nd USENIX Security Symposium 6163

the attacker’s timeserver can circumvent the inspection by in-
ferring the next monitoring cycle and giving an honest answer
to all NTP requests within the expected monitoring window.
Introducing randomness to the monitor scheduling will thus
make the prediction difficult, improving resilience to the so-
phisticated attacker.
Long-term visions for secure monitoring. Various research
on NTP security has been conducted to improve the integrity
of NTP communication, source authentication, and malicious
time source detection. Nevertheless, the delay attacks still
remain a powerful attack against NTP. This is mostly, if not
all, due to the lack of routing control and lack of transparency
of the current hot-potato routing environment underneath. In
fact, this is not only NTP’s problem; many Internet services
are suffering from the same issue. Fortunately, various studies
for improving routing security are being actively conducted,
and among them, path-based future Internet architectures that
pursue a new design of Internet routing from a clean slate
attract attention [4, 42]. In path-based routing, two commu-
nicating endpoints determine the routing path based on the
network information given by the network’s control plane,
and the data plane ensures packet forwarding according to the
path information carried in the packet header. This allows the
communicating entities firm control over the forwarding path,
ensuring communication via a symmetric path, hijack preven-
tion, and dynamic rerouting to bypass on-path attackers.

9 Related Work

We review related work in the areas of secure and reliable
time synchronization which includes NTP pool mechanisms.
Secure time synchronization. Malhotra et al. [18] show how
vulnerable unauthenticated NTP is to on-path and off-path
time-shifting attacks. They exploit the fact that NTP clients
accept any time shift when first initialized. They also demon-
strate that NTP payloads can be overwritten by an off-path
attacker via an IPv4 fragmentation attack. Annessi et al. [1] in-
vestigate the challenges of source authentication for broadcast
time synchronization. NTPv3 [20] applies packet authentica-
tion with a pre-shared symmetric key, which needs to be done
out-of-band. In NTPv4, a PKI-based authentication mecha-
nism is introduced [21]. Authenticated Network Time Syn-
chronization (ANTP) [9] minimizes server-side cryptographic
operations by using symmetric cryptography for subsequent
synchronization processes once the client is authenticated.
Secure Time Synchronization (STS) [23] offloads the authen-
tication to a third party (i.e., Authorization Server), reducing
the server’s authentication overhead and enabling mutual au-
thentication between the server and client. Adopting cryp-
tographic primitives ensures secure time synchronization in
the presence of network attackers. Due to the difference in
requirements for synchronization precision between time syn-
chronization and the cryptographic systems, however, delay
attacks still remain unsolved.

Reliable time synchronization. The NTP Pool Project [30]
provides a centralized access to over 4,500 NTP timeservers
(as of Oct. 2022) distributed across the globe for millions of
users, servers, and applications. Rytilahti et al. [35] provide in-
depth analyses on the NTP pool ecosystem and discuss poten-
tial vulnerabilities. Through active probing, they discovered
that the NTP pool is highly dependent on a small number of
timeservers. Moura et al. [24] explore the NTP pool’s client-
server mapping characteristics and reveal its biased server
selection. Chronos [8] suggests an approximate agreement
algorithm where a client gathers time samples from multiple
NTP timeservers in the pool, prunes outliers, and averages the
remaining samples, achieving reliable time synchronization
in the presence of Byzantine attackers. Ananke [32] further
improves Chronos by allowing the clients to verify the time in-
formation from normal timeservers with the pool-guaranteed
stratum 1 timeservers.

10 Conclusion

The NTP pool that started as a small project has become an
indispensable infrastructure for setting the time on millions
of modern Internet devices. Unfortunately, the security of the
NTP pool has obtained relatively little attention. In this paper,
we examined the structural vulnerabilities of the current NTP
pool monitoring system and the potential vulnerabilities of the
multi-monitoring system under a pilot test. We demonstrated
that: (i) the adaptive delay attack can manipulate the pool’s
monitoring process and deactivate healthy timeservers with-
out being caught, (ii) shifting the monitoring server’s local
clock affects most of the inspection results (95%) under its
monitoring, and (iii) only two injected time servers can de-
activate timeservers for 4∼ 7 minutes. We further discussed
the short-term and long-term design directions for enhancing
the security of the NTP pool monitoring system from the
strategic attacks. We envision that the security improvement
plan will enhance the inspection accuracy of the NTP pool
monitoring system, and increase the resistance against the
injected malicious timeserver and monitoring server attacks.
To the best of our knowledge, this paper is the first work that
raises a fundamental question about the NTP pool’s security
for ensuring the integrity of timeservers in the pool.

Acknowledgments

We would like to thank the anonymous reviewers and shep-
herd for their insightful feedback and valuable suggestions.
We gratefully acknowledge support from ETH Zurich, and
from the Zurich Information Security and Privacy Center
(ZISC). This work was also supported by IITP grant funded
by the MSIT, Korea (No.2022-0-00411, IITP-2022-2021-0-
01810, IITP-2023-2020-0-01819).

6164 32nd USENIX Security Symposium USENIX Association

References

[1] R. Annessi, J. Fabini, and T. Zseby, “It’s About Time:
Securing Broadcast Time Synchronization with Data
Origin Authentication,” in Proceeings of the Interna-
tional Conference on Computer Communication and
Networks (ICCCN), 2017.

[2] V. Arun and H. Balakrishnan, “Copa: Practical Delay-
Based Congestion Control for the Internet,” in Proceed-
ings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

[3] M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waid-
ner, “Domain Validation++ for MITM-Resilient PKI,” in
Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2018.

[4] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz,
P. Müller, and A. Perrig, The Complete Guide to
SCION. From Design Principles to Formal Verification.
Springer, 2022.

[5] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran,
D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson, “A Longitudinal,End-to-End View of the
DNSSEC Ecosystem,” in Proceedings of the USENIX
Security Symposium, 2017.

[6] T. Dai, P. Jeitner, H. Shulman, and M. Waidner, “The
Hijackers Guide To The Galaxy: Off-Path Taking Over
Internet Resources,” in Proceedings of the USENIX Se-
curity Symposium, 2021.

[7] W. de Vries, J. J. Santanna, A. Sperotto, and A. Pras,
“How Asymmetric is the Internet?” in Proceedings of
the IFIP International Conference on Autonomous In-
frastructure, Management and Security, 2015.

[8] O. Deutsch, N. R. Schiff, D. Dolev, and M. Schapira,
“Preventing (Network) Time Travel with Chronos,” in
Proceedings of the Symposium on Network and Dis-
tributed System Security (NDSS), 2018.

[9] B. Dowling, D. Stebila, and G. Zaverucha, “Authenti-
cated Network Time Synchronization,” in Proceedings
of the USENIX Security Symposium, 2016.

[10] R. Exel, “Mitigation of Asymmetric Link Delays in
IEEE 1588 Clock Synchronization Systems,” IEEE
Communications Letters, vol. 18, no. 3, pp. 507–510,
2014.

[11] D. Franke, D. Sibold, K. Teichel, M. Dansarie, and
R. Sundblad, “Network Time Security for the Network
Time Protocol,” RFC 8915, IETF, Sep. 2020. [Online].
Available: https://www.ietf.org/rfc/rfc8915.txt

[12] B. Haberman and D. Mills, “Network Time Proto-
col Version 4: Autokey Specification,” RFC 5906
(Informational), IETF, Jun. 2010. [Online]. Available:
https://www.ietf.org/rfc/rfc5906.txt

[13] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker,
“On Routing Asymmetry in the Internet,” in Proceedings
of the IEEE Global Telecommunications Conference
(GLOBECOM), 2005.

[14] P. Jeitner, H. Shulman, and M. Waidner, “The Impact of
DNS Insecurity on Time,” in Proceedings of the IEEE/I-
FIP International Conference on Dependable Systems
and Networks (DSN), 2020.

[15] M. Lévesque and D. Tipper, “Improving the PTP Syn-
chronization Accuracy under Asymmetric Delay Condi-
tions,” in Proceedings of the IEEE International Sympo-
sium on Precision Clock Synchronization for Measure-
ment, Control, and Communication (ISPCS), 2015.

[16] London Economics (LE), “The Economic Im-
pact on the UK of a Disruption to GNSS,”
https://www.gov.uk/government/publications/
the-economic-impact-on-the-uk-of-a-disruption-to-gnss,
2017.

[17] M. Luckie, R. Beverly, R. Koga, K. Keys, J. A. Kroll,
and K. Claffy, “Network Hygiene, Incentives, and Regu-
lation: Deployment of Source Address Validation in the
Internet,” in Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2019.

[18] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg,
“Attacking the Network Time Protocol,” in Proceedings
of the Symposium on Network and Distributed System
Security (NDSS), 2016.

[19] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang, and
H. Duan, “DNS Cache Poisoning Attack Reloaded: Rev-
olutions with Side Channels,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2020.

[20] D. Mills, “Network Time Protocol (Version 3)
Specification, Implementation and Analysis,” RFC
1305 (Draft Standard), IETF, Mar. 1992, obsoleted by
RFC 5905. [Online]. Available: https://www.ietf.org/
rfc/rfc1305.txt

[21] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network
Time Protocol Version 4: Protocol and Algorithms
Specification,” RFC 5905, IETF, Jun. 2010. [Online].
Available: https://www.ietf.org/rfc/rfc5905.txt

[22] D. L. Mills, Computer Network Time Synchronization:
The Network Time Protocol on Earth and in Space, Sec-
ond Edition. CRC Press, Inc., 2010.

USENIX Association 32nd USENIX Security Symposium 6165

https://www.ietf.org/rfc/rfc8915.txt
https://www.ietf.org/rfc/rfc5906.txt
https://www.gov.uk/government/publications/the-economic-impact-on-the-uk-of-a-disruption-to-gnss
https://www.gov.uk/government/publications/the-economic-impact-on-the-uk-of-a-disruption-to-gnss
https://www.ietf.org/rfc/rfc1305.txt
https://www.ietf.org/rfc/rfc1305.txt
https://www.ietf.org/rfc/rfc5905.txt

[23] F. Mkacher, X. Bestel, and A. Duda, “Secure Time Syn-
chronization Protocol,” in Proceedings of the IEEE In-
ternational Symposium on Precision Clock Synchroniza-
tion for Measurement, Control, and Communication (IS-
PCS), 2018.

[24] G. C. Moura, M. Davids, C. Schutijser, and C. Hessel-
man, “Diving into the NTP Pool,” Technical Report.
SIDN Labs, Arnhem, The Netherlands., Tech. Rep.,
2021.

[25] C. D. Murta, P. R. Torres Jr, and P. Mohapatra, “QRPp1-
4: Characterizing Quality of Time and Topology in a
Time Synchronization Network,” in Proceedings of the
IEEE Global Telecommunications Conference (GLOBE-
COM), 2006.

[26] NTP Pool Project, “Beta Monitoring Opera-
tors/Systems,” https://community.ntppool.org/t/
beta-monitoring-operators-systems.

[27] NTP Pool Project, “Monitor Repository,” https://builds.
ntppool.dev/repo/.

[28] NTP Pool Project, “NTP Pool Management-Beta,” https:
//manage-beta.grundclock.com/manage/monitors/new.

[29] NTP Pool Project, “NTP Pool Monitor Codebase,” https:
//github.com/ntppool/monitor.

[30] NTP Pool Project, “NTP Pool,” https://www.ntppool.
org/, 2022.

[31] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, and Z. M.
Mao, “A Measurement Study of Internet Delay Asym-
metry,” in Proceedings of the International Conference
on Passive and Active Network Measurement, 2008.

[32] Y. Perry, N. Rozen-Schiff, and M. Schapira, “A Devil
of a Time: How Vulnerable is NTP to Malicious Time-
servers?” in Proceedings of the Symposium on Network
and Distributed System Security (NDSS), 2021.

[33] D. Reilly, H. Stenn, and D. Sibold, “Network Time Pro-
tocol Best Current Practices,” Work in Progress, draft-
ietf-ntp-bcp-00, 2017.

[34] RIPE Network Coordination Centre, “RIPEstat,” https:
//stat.ripe.net/app/launchpad/, 2022.

[35] T. Rytilahti, D. Tatang, J. Köpper, and T. Holz, “Masters
of Time: An Overview of the NTP Ecosystem,” in Pro-
ceedings of the IEEE European Symposium on Security
and Privacy (EuroS&P), 2018.

[36] Z. Sarker, C. Perkins, V. Singh, and M. A. Ramalho,
“RTP Control Protocol (RTCP) Feedback for Congestion
Control,” RFC 8888, IETF, Jan. 2021. [Online].
Available: https://www.ietf.org/rfc/rfc8888.txt

[37] N. R. Schiff, D. Dolev, T. Mizrahi, and M. Schapira, “A
Secure Selection and Filtering Mechanism for the Net-
work Time Protocol with Chronos,” https://datatracker.
ietf.org/doc/html/draft-ietf-ntp-chronos-04, 2022.

[38] S. Sengupta, H. Kim, and J. Rexford, “Continuous In-
Network Round-Trip Time Monitoring,” in Proceedings
of the ACM SIGCOMM Conference, 2022.

[39] D. Sibold, S. Roettger, and K. Teichel, “Network Time
Security,” Internet Engineering Task Force, Internet-
Draft draft-ietf-ntp-network-time-security-nn, 2016.

[40] D. Sibold, S. Roettger, and K. Teichel, “Using the Net-
work Time Security Specification to Secure the Network
Time Protocol,” in Internet Draft, draft-ietf-ntp-using-
nts-for-ntp-06, 2016.

[41] P. Syverson, R. Dingledine, and N. Mathewson, “Tor:
The Second-generation Onion Router,” in Proceedings
of the USENIX Security Symposium, 2004.

[42] X. Yang, D. Clark, and A. W. Berger, “NIRA: A New
Inter-Domain Routing Architecture,” IEEE/ACM Trans-
actions on Networking, 2007.

6166 32nd USENIX Security Symposium USENIX Association

https://community.ntppool.org/t/beta-monitoring-operators-systems
https://community.ntppool.org/t/beta-monitoring-operators-systems
https://builds.ntppool.dev/repo/
https://builds.ntppool.dev/repo/
https://manage-beta.grundclock.com/manage/monitors/new
https://manage-beta.grundclock.com/manage/monitors/new
https://github.com/ntppool/monitor
https://github.com/ntppool/monitor
https://www.ntppool.org/
https://www.ntppool.org/
https://stat.ripe.net/app/launchpad/
https://stat.ripe.net/app/launchpad/
https://www.ietf.org/rfc/rfc8888.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-chronos-04
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-chronos-04

	Introduction
	Background: NTP Basics
	Case Study: NTP Pool Ecosystem
	NTP Pool Architecture
	Vulnerabilities at the Top of the Hierarchy
	New Monitoring System under Pilot Testing and Limitations

	Attack Modeling
	Interference Attacks
	Adding Asymmetric Delays to Monitoring Packets
	Shifting the Monitoring Server's Local Time

	Invasive Attack
	Attack Analysis
	Distorting the Vision of the Monitor
	Implications of a Faulty Single Monitor
	Injecting a Few Monitors is Enough
	Flying under the Radar

	Mitigation
	Securing the Monitor's Operations
	Resilience against Injected Monitors
	Towards Better Security for the NTP Pool

	Related Work
	Conclusion

