
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Automated Cookie Notice Analysis and Enforcement
Rishabh Khandelwal and Asmit Nayak, University of Wisconsin—Madison;

Hamza Harkous, Google, Inc.; Kassem Fawaz, University of Wisconsin—Madison
https://www.usenix.org/conference/usenixsecurity23/presentation/khandelwal

Automated Cookie Notice Analysis and Enforcement
Rishabh Khandelwal

University of Wisconsin�Madison
Asmit Nayak

University of Wisconsin�Madison
Hamza Harkous�

Google Inc.

Kassem Fawaz
University of Wisconsin�Madison

Abstract
Online websites use cookie notices to elicit consent from the
users, as required by recent privacy regulations like the GDPR
and the CCPA. Prior work has shown that these notices are
designed in a way to manipulate users into making website-
friendly choices which put users’ privacy at risk. In this work,
we present CookieEnforcer, a new system for automatically
discovering cookie notices and extracting a set of instructions
that result in disabling all non-essential cookies. In order to
achieve this, we �rst build an automatic cookie notice detec-
tor that utilizes the rendering pattern of the HTML elements
to identify the cookie notices. Next, we analyze the cookie
notices and predict the set of actions required to disable all
unnecessary cookies. This is done by modeling the problem
as a sequence-to-sequence task, where the input is a machine-
readable cookie notice and the output is the set of clicks to
make. We demonstrate the ef�cacy of CookieEnforcer via
an end-to-end accuracy evaluation, showing that it can gen-
erate the required steps in 93.7% of the cases. Via a user
study, we also show that CookieEnforcer can signi�cantly
reduce the user effort. Finally, we characterize the behavior
of CookieEnforcer on the top 100k websites from the Tranco
list, showcasing its stability and scalability.

1 Introduction

Cookies are small blocks of data stored on users’ browsers
that allow the websites to record the state of the browsing ses-
sion, enabling them to enhance the user experience. Previous
works have shown that the majority of the cookies are used for
advertising and tracking purposes [4,7,19,20,43] and that this
trend has been rising in the last decade [45,49]. To curb the
associated privacy risks, governments have introduced privacy
regulations (GDPR [2] and ePrivacy Directive [1]). These re-
quire websites to obtain explicit, speci�c, and informed user
consent before collecting or processing user data.

To comply with these regulations, websites use cookie no-
tices to obtain users’ consent and (in some cases) to offer them
options to control cookies. Still, in their current forms, cookie
notices suffer from usability issues [26]. Websites often de-
sign the notices to nudge the users into giving consent [52] or
make it harder for users to �nd the cookie settings.

�The opinions expressed in this publication are those of the author and
not of Google.

Take https://www.dailymail.co.uk/ as an example
(when visited from the UK in February 2023). To adjust their
cookie settings, the user is presented with a blocking notice
where they should �rst click on the �Cookie Settings� but-
ton to navigate to the settings menu. On that menu, there are
11 individual cookie settings, 9 of which are pre-enabled for
�legitimate interests�. Further, there is another view for per-
vendor settings with over 100 listed vendors along with their
options; all these options are also pre-enabled1. Both menus
do not have an opt-out button; the user has to individually
disable each cookie setting.

Prior work [5] has highlighted the dif�culty of exercising
cookie control, showing that users are more likely to agree
to the default option when the alternative is dif�cult to �nd.
There, users expressed interest in having easier ways to limit
access to their data. To bridge this usability gap, several pro-
posals have aimed at automating the interaction with cookie
notices. These can be categorized into two approaches: those
that work at the browser level � interacting with the underly-
ing cookie storage � and those that work at the website UI
level � interacting with the cookie notice itself.

Anti-tracking solutions [14,22] take the browser-level route
by blocking all third-party cookies but fail to address non-
essential cookies from the �rst parties. Chen et al. [8] found
that existing solutions like disabling third-party cookies or
using �lter lists do not adequately prevent user tracking. Re-
cently, CookieBlock [4] was proposed as another browser-
level solution that takes a machine learning (ML) approach to
automatically classify both �rst and third-party cookies based
on their values before blocking the undesired subset. How-
ever, as ML is inherently error-prone, its failures within this
approach manifest in breaking websites’ functionalities due to
the deletion of necessary cookies. Furthermore, browser-level
solutions prevent the user from leveraging additional opt-out
mechanisms provided by the websites. Fouad et al. [21] found
that a signi�cant number of websites use cookie respawning,
where a deleted cookie is automatically recreated.

In the notice-centric approach, the idea is to interact with
the cookie notices themselves, as a human would do. So far,
the solutions taking that route have relied on manually analyz-
ing a subset of cookie notices (by major Consent Management
Platforms (CMPs)) and hard-coding JavaScript snippets to
enforce privacy-respecting cookie choices [24, 38, 46]. As we

1A video illustrating this: https://youtu.be/FI0oJF03eCI

USENIX Association 32nd USENIX Security Symposium 1109

https://www.dailymail.co.uk/
https://youtu.be/FI0oJF03eCI

show later, these fail to scale to the variety of cookie notices
in the wild.

We note that the two solutions described above are orthog-
onal to each other. While the browser-level solutions override
website owners’ design and manipulate cookies, the notice-
level approach interacts with the notice as a human would,
relying on website-provided options. The Notice-centric ap-
proach also bene�ts from the sites’ motivation to abide by
regulations and from existing regulatory supervision. In the
browser-level approach that manipulates cookies, it is often
non-trivial to identify non-essential �rst-party cookies. For
example, a popular browser-level solution PrivacyBadger [22]
fails to disable non-essential cookies on www.gov.uk.

In this work, we take the notice-centric approach and pro-
pose CookieEnforcer, the �rst cookie enforcement controller
system that operates at the website UI level while still gen-
eralizing to a wide variety of websites, without hard-coded
rules. CookieEnforcer’s backend locates the �ne-grained op-
tions for each notice, understands the semantics of the cookie
settings, and automatically extracts instructions to disable
non-essential cookies. These instructions consist of a set of
clicks which can then be executed on the frontend, a Chrome
browser extension. Achieving these objectives required (1)
building a uni�ed understanding of the cookie control settings
that scales across web technologies and (2) providing users
with options to enforce only the necessary cookies.

At the core of CookieEnforcer are two ML models. The
�rst is an encoder-based classi�cation model (based on
BERT [16]) that identi�es the cookie notice, leveraging its tex-
tual features. The second model is an encoder-decoder model
(based on T5 [44]), which takes the text content and selection
status of the notice’s elements and produces the sequence of
steps required to disable non-essential cookies. Around these
models, we built several blocks to simulate user interaction
with the target website. The �nal outcome per website is a
JavaScript snippet that can enforce the sequence of steps from
the decision model. A distinctive aspect of CookieEnforcer is
that it provides the users with three interface options, ranging
from fully automated to semi-automated methods, which cater
to the tradeoff between automation on one hand and the sense
of con�dence in cookie enforcement on the other hand.

We evaluate CookieEnforcer from three angles: end-to-end
accuracy, user perception, and scalability. First, we perform
an end-to-end evaluation on 2000 websites from Tranco [36],
assessing the core components. We show that our pipeline
correctly generates a sequence of clicks required to disable
non-essential cookies for 93.7% of the pages in our manually
annotated dataset. Second, we conduct an online user study
with 165 participants on Proli�c to measure the effectiveness
of CookieEnforcer’s client implemented as a browser exten-
sion. We show that it signi�cantly reduces the time taken to
adjust cookie settings on a set of 13 websites (0.9 seconds
as compared to 24 seconds for manual baseline). Moreover,
CookieEnforcer obtained a 37% higher score on System Us-

ability Scale (SUS) compared to the manual baseline. Third,
we run the backend of CookieEnforcer on the top-100k web-
sites from the Tranco list [36]. This measurement showcases
the low failure rate of CookieEnforcer and its ability to char-
acterize cookie notices at scale.

2 Background and Related Work

Cookie Notice Studies: Websites use cookie notices to ob-
tain users’ consent and (in many cases) allow them to control
such cookies. Consent Management Platforms (CMPs) help
websites comply with the regulations [30] by offering APIs to
manage cookie notices. These platforms are third party inte-
grations, which provide easy solutions for obtaining and stor-
ing user consent. As of 2020, the adoption rate of these CMPs
was limited to 10% of the 10k most popular websites [30],
with many websites opting to implement customized versions
of the cookie notice.
Cookie Notice Analysis: Sanchez-Rola et al. [47] conducted
a manual analysis of 2k EU websites to determine the extent of
cookie-based tracking. They found that 57% of these include
cookie notices. Degeling et al. [15] measured the GDPR’s
impact on cookie notices by manually examining the top 500
websites in each of the EU member states. They found that
62% of the websites serve cookie notices. More recently,
Kampanos et al. [33] used a list of common CSS selectors to
detect cookie notices in 17k websites in the UK and Greece.
They found that 45% of these serve a cookie notice. They
also analyzed the notices to check for compliance to �nd that
only a small fraction provides a direct opt-out option. Eijk et
al. [18] used a similar methodology to understand the effect
of user location on the presence of cookie notices. Matte
el al. [40] compared the user options against those stored
by the CMPs and found suspected violations. Bollinger el
al. [4] analyzed 30k websites and identi�ed several GDPR
violations. Finally, Coudert et al. [12] used a keyword based
scoring algorithm to detect cookie notices and analyzed them
for detecting dark patterns.

Our approach differs from these works in two aspects. First,
we present a more robust cookie notice detection that does
not rely on keywords or handcrafted rules (which can easily
become obsolete). Second, we go beyond detecting cookie
notices and extracting dark patterns. We analyze the detected
cookie notices to extract and understand its �ne-grained op-
tions using a deep text-to-text model. We use this understand-
ing to automatically disable non-essential cookies.
Users’ Perception and Dark Patterns: Utz et al. [53] con-
ducted a manual analysis to identify common properties of
cookie notices. They investigated how these properties impact
users’ decision to accept/reject cookies, �nding that nudg-
ing has a large effect on users’ choice. Similarly, Machuletz
et al. [39] studied how the number of options and presence
of �select all� button in�uences users’ decisions. Kulyk et

1110 32nd USENIX Security Symposium USENIX Association

www.gov.uk

al. [35] reported that users �nd cookie notices annoying and
disruptive. Nouwens et al. [42] studied the effect of CMPs on
people’s consent choices by scraping designs from popular
CMPs in 10k UK websites, �nding dark patterns on most of
the websites.

Automated Enforcement: The widespread availability of
dark patterns in cookie notices motivated approaches
for automated interactions on the user’s behalf. Particu-
larly, the browser extensions Consent-O-Matic [46], Cliqz-
Autoconsent [38] and Ninja-Cookie [24] automatically en-
force users’ choices for cookie notices. However, these exten-
sions employ rule-based enforcement and rely on the presence
of speci�c CMPs. This approach does not scale to the ma-
jority of websites implementing customized cookie notices.
Similarly, other works [4, 9, 31] classify cookies into pre-set
categories and provide options to remove these cookies from
the browser storage. In these approaches, the user is still re-
quired to interact with the cookie notices. We address this
limitation by emulating users’ interaction with cookie notices.

Another set of works [10,27,34] analyze privacy settings
pages to present them in a more accessible manner. Speci�-
cally, Chen et al. [10] and Khandelwal el al. [34] automatically
detect hard-to-�nd privacy settings on Android and the web
respectively. Habib et al. [27] analyze the privacy policies
of the websites to determine the opt-out links and presents
them to the user. These approaches operate on fairly static
webpages, and the user still has to manually interact with the
settings. Our work differs in two aspects: First, we cope with
the highly-dynamic nature of cookie notices. For example,
the cookie settings can be dynamically injected after the user
interacts with the notice (e.g., clicks on �More Options�).
Second, these systems do not model the choices’ semantics.
In CookieEnforcer, we use this modeling to enable the user
to automatically disable the non-essential cookies.

HTML Analysis Techniques To detect cookie notices,
CookieEnforcer leverages techniques from the HTML render-
ing process. HTML rendering can be abstracted as a relative
ordering of layers (HTML elements) along an imaginary z-
axis. The ordering of these layers, i.e., which element is at
the top and so on, is determined using the stacking context2
and stacking order. The stacking order refers to the position
of web elements on this imaginary z-axis. Without special
attributes, the stacking order is generally the same as the order
of appearance in the HTML. This ordering can be altered via
a special CSS attribute called z-index, where higher z-index
results in a higher position in the stacking order. The z-index
is set to �auto� for the elements where it is not speci�ed.

Cookie Notice
Elements

Machine
Readable Notice

Instructions to
Disable Cookies

Backend Frontend

Instructions to
Disable Cookies

!"#"$#%& '()*+,"& !"$-.-%(/
0%1"* !)#)2)." 3&%4."&/

56#"(.-%(5(7%&$"&

Figure 1: An overview of CookieEnforcer’s components. Backend
generates the machine readable representation of cookie notices
whereas Frontend uses them to disable non-essential cookies.

3 System Overview

The three objectives of CookieEnforcer are to transform the
cookie notices into a machine readable format, determine the
cookie setting con�guration to disable non-essential cookies
(whenever possible), and generate a set of instructions that can
be used to enforce this con�guration. A high level overview
of CookieEnforcer is in Fig. 1; it utilizes two components to
achieve its objectives: backend and frontend.

Backend: The backend of CookieEnforcer consists of three
modules. The Detector module (Section 4) takes as input a
domain name and identi�es the web element corresponding
to a cookie notice (if present). Then the Analyzer module
(Section 5) mimics the behavior of a human user by dynami-
cally interacting (performing click actions) with the cookie
notice to locate all the adjustable settings. This module ac-
counts for the cases where settings become unhidden or are
dynamically injected upon user interaction. It outputs a list of
all interactive elements and their associated text description.
Next, the Decision Model (Section 6) utilizes semantic text
understanding to decide on the sequence of actions to disable
the non-essential cookies.

Frontend: The frontend consists of the CookieEnforcer
browser extension which fetches the information for each
website from the backend and allows the users to disable
the non-essential cookies. The extension allows the users to
choose between three interfaces (Section 7.2) that provide
users with control over the level of automation. Finally, the
Enforcer (Section 7.1) module performs the actions to disable
the non-essential cookies, with or without user intervention
� depending on the interface type selected by the user. Note
that the cookie notice might not appear if the cookie settings
have been decided on before (by the user or the extension).

Challenges: In order to achieve the goals of CookieEnforcer,
we must overcome three main challenges:

� First, CookieEnforcer must identify the cookie notice
present on the website. This problem is challenging due
to the �exible nature of HTML implementation. For ex-
ample, prior work [18] that used CSS selectors to detect
cookie notices had a high false negative rate of 18%.

2For more details on stacking contexts: https://web.dev/learn/
css/z-index/#stacking-context.

USENIX Association 32nd USENIX Security Symposium 1111

https://web.dev/learn/css/z-index/#stacking-context
https://web.dev/learn/css/z-index/#stacking-context

� Second, CookieEnforcer must extract the con�gurable
settings along with their context from the cookie notice.
This task is challenging as the interactable elements can
(1) be dynamically injected in the notice using JavaScript
and (2) exhibit dynamic effect when clicked. This chal-
lenge renders a static analysis approach ineffective. For
example, in Fig. 3(b), Save Settings button submits user
preferences whereas the switch disables/enables cookies.

� Third, CookieEnforcer must understand the context of
each cookie setting. This task is also challenging since
the context of the settings (provided by the text describ-
ing them) comes from free form natural language, and
is diverse. Keyword-based approaches cannot cope with
the diversity of text in cookie notices. For example,
on www.virginmedia.com, the element that reveals �ne-
grained settings has the text: �Open the cookie jar�.

4 Cookie Notice Detector

The Detector module detects the presence of cookie notices
on webpages. As indicated earlier, this task is challenging as
the open nature of HTML allows different implementations
of the cookie notices. For example, it is possible to design
the cookie notices as �oating pop-ups with custom elements,
inline frames (IFrames), shadow-roots,3 or simply as div ele-
ments. CookieEnforcer addresses these challenges by relying
on the global stacking order of HTML.

4.1 Candidate identi�cation
A website serving a cookie notice is expected to surface the
notice over the content of the websites to ensure that the
user sees the notice and has the opportunity to provide con-
sent. Hence, the elements corresponding to the cookie notices
should be higher in the stacking order of the HTML.4 As
described in Section 2, the stacking order determines which
element the user sees on the top most layer of the webpage.
The Detector module leverages this invariant behavior. It
looks for non-negative z-index attributes within the stacking
context to mark candidate elements. However, in practice, not
all implementations of cookie notices utilize the z-index to sur-
face the cookie notices. For example, the website www.gov.uk
shows the notice as the �rst element in the HTML tree, with-
out utilizing z-index. To capture such instances, the Detector
module expands the candidate set to include the �rst three and
the last three visible elements of the webpage. We acknowl-
edge that the latter is a heuristic stemming from our empirical
observation that, in the cases where the z-index is not used,
the notice is present in the top or the bottom of the DOM tree.

3For more details: https://developer.mozilla.org/docs/
Web/Web_Components/Using_shadow_DOM

4Technically, cookie notices should be higher in the stacking order of the
HTML within the root stacking context. We omit references to the stacking
context for simplicity.

4.2 Text Classi�er

After obtaining the candidates, our goal is to identify the
cookie notice element. We rely on the text in the candidate
elements and use a text classi�er to perform this task.

Baseline Approach: One approach to perform this classi�ca-
tion is to use a keyword-based model as the cookie notice is
expected to convey information about the use of cookies. How-
ever, this approach is not effective for cases which provide
notice and choice without explicitly talking about the cookies.
For example, when accessed from the United Kingdom, the
cookie notice on www.arizona.edu reads: I have read, under-
stand, and consent to UA’s enrollment management Privacy
Policy. Consent, Decline. Therefore, we need a classi�cation
model that relies on the text semantics to determine if the
candidate element is a cookie notice.

Classi�er Choice: We use a text classi�er based on BERT
(Bidirectional Encoder Representations from Transformers),
a Transformer-based encoder pretrained on masked language
modeling and next sentence prediction objectives [17]. BERT
has been the model of choice for achieving strong perfor-
mance on a variety of text classi�cation tasks, such as senti-
ment analysis and topic classi�cation [51]. The key advantage
of such a large pretrained model is that it is readily trained on
a large corpus, so it can be �netuned on a downstream task
with a relatively small dataset. In this work, we �netune the
BERTBase-Cased variant (case-sensitive with 12 layers).

Training/Testing Sets Curation: We create the data for the
classi�er by sampling 250 websites from the top-50k most
popular website list from Tranco [36]. We �rst extract the
candidate elements for each website from this set by using the
candidate identi�cation methods. One of the authors then man-
ually annotated each website, indicating whether it showed
a cookie notice. The annotation task involved looking at the
screenshots of the webpages and identifying if a cookie notice
was present. As the task is fairly easy for an expert, we only
require one annotation per website. We obtain 112 websites
with cookie notices and 138 without cookie notices. We ex-
tract at most two candidate elements from each website to
obtain a total of 505 candidate elements, 112 of which are
notice elements. We keep aside a test set of 100 candidates, 50
cookie notices elements and 50 non-cookie notice elements.

For each candidate, we �rst extract its text by concatenating
the text of all its elements. For example, in Fig. 3(a), the input
text for the classi�er would be: We use cookies to improve
your browsing experience...to manage your cookie settings,
click �More Information�. Accept Cookies More Information.

Training and Performance: Next, we �netune the model on
the training set with 62 notice elements and 343 non-notice el-
ements. We use oversampling to ensure that both classes were
represented equally. We trained the BERTBase-Cased model
with a learning rate of 2e�5 for 10 epochs and used the last

1112 32nd USENIX Security Symposium USENIX Association

www.virginmedia.com
www.gov.uk
https://developer.mozilla.org/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/docs/Web/Web_Components/Using_shadow_DOM
www.arizona.edu

Instances Support Recall Precision F1-score

Not Cookie notice 50 0.96 0.98 0.97
Cookie notice 50 0.98 0.96 0.97

Total Pages 100 0.97 0.97 0.97

Table 1: Classi�er’s performance on the test set.

model checkpoint for evaluation. Table 1 shows the perfor-
mance of the classi�er on the test set. The classi�er achieves
an average F1-score of 0.97, indicating that the model learned
to distinguish cookie notice elements from the rest. Analyz-
ing the failure cases, we observe that, in a few cases where
the text contained topics other than cookies, the model was
confused. We attribute this to the fact that as text about other
topics increase, the information about cookie notices present
in the text gets diluted, resulting in mis-classi�cation.

5 Cookie Notice Analyzer

The Analyzer module takes the HTML element correspond-
ing to the cookie notice as its input and extracts the cookie
settings, their current state (selected or not-selected), and the
text corresponding to the settings.5

The �exible nature of HTML implementations presents two
challenges for the Analyzer module. First, cookie notices are
frequently dynamic. On several websites, the elements corre-
sponding to cookie settings only load when another button is
clicked. This renders the static analysis of HTML ineffective.
Second, the �ne-grained cookie settings in many of the cookie
notices are initially hidden. In order to change the �ne-grained
settings, users have to navigate to a different view (usually by
clicking buttons like �Cookie Settings�). This second view
is usually a different element in the DOM tree. As a result,
CookieEnforcer has to keep track of the browser state with
respect to the different cookie elements as well as different
views of the cookie notice.

CookieEnforcer addresses these challenges by mimicking
the actions of real users: it interacts with the cookie notices
and observes the behavior of the webpage after each interac-
tion. The Analyzer starts by �rst discovering the elements in
the notice with which the user can interact. Next, the Analyzer
clicks on each element to identify any dynamically injected
elements. Finally, it identi�es the cookie settings and extracts
the text corresponding to those settings.

5.1 Identifying Interactive Elements
CookieEnforcer leverages the tabbing feature of HTML to
identify the interactive elements within the cookie notice.
This feature allows users to access interactive elements via
the Tab key. Prior work, analyzing the HTML pages to de-
tect privacy settings, also used this technique [34]. The key

5Video with steps is at: https://youtu.be/ViyKxbY3rAM.

!"# !$#

Figure 2: Examples of different types of text extraction. (a) Switch
on www.horiba.com has no aria-label, text is extracted via HTML
code and on-screen distance. (b) The label for switch on www.
justinbeaber.com has aria-label as Online Advertising.

idea is that, since the users need to interact with the cookie
settings to adjust the preferences, we can simulate this inter-
action via tabbing and obtain a set of candidates for cookie
settings. By relying on this invariant behavior of the HTML,
CookieEnforcer extracts the set of candidate cookie settings.

This set of candidates does not contain dynamically in-
jected elements, which are loaded as a result of an interaction
with another element. For example, in Fig. 3, the settings
appearing after clicking on �More Information� button are
dynamically loaded. The Analyzer module recursively checks
for these elements by clicking each visible element from the
candidate set and querying again to �nd new elements.

After obtaining the candidate elements set, the Analyzer
module excludes the elements that redirect the user to a differ-
ent page or open a separate tab. This way, we �lter out links
for cookie policies, explanations about cookies, and cookie
vendor details. A side effect of this decision is that the module
also �lters out elements which take users to dedicated web-
pages for cookie settings. We further cover this in evaluation
(Section 8.1) and discuss the usability implications of this
decision in Section 9.

5.2 Extracting Cookie Settings
At this point, we the analyzer has found all interactable el-
ements in the cookie notice. The next step is to extract the
text that describes these settings. This text, combined with
the state of the element (selected/not-selected) is needed for
the decision model (Section 6) to semantically understand the
cookie notice.

Here, we use two independent signals to extract descriptive
and concise text corresponding to an HTML element. First,
we leverage the aria-label attribute,6 wherever available. This

6For more information: https://www.w3.org/TR/wai-aria/
#aria-label

USENIX Association 32nd USENIX Security Symposium 1113

https://youtu.be/ViyKxbY3rAM
www.horiba.com
www.justinbeaber.com
www.justinbeaber.com
https://www.w3.org/TR/wai-aria/#aria-label
https://www.w3.org/TR/wai-aria/#aria-label

attribute allows assisted technologies to read and consume
webpages, thereby making web content accessible to users
with disabilities. For example, the aria-label attribute for
the highlighted switch in Fig. 2(b) has a value of �Online
Advertising� which describe what setting the switch adjusts.

In the absence of aria-label attribute, we design a text ex-
traction technique inspired by Khandelwal et al. [34]. For
each interactable element, it searches for the closest parent
node in the DOM tree that contains text. However, this parent
node might contain other text such as the description of the
setting. For example, in Fig. 2(a), ideally we would like the
text corresponding to the switch to be Functionality cook-
ies, as opposed to Functionality cookies together with the
description below it. We address this limitation by relying
on the on-screen distance to identify the element describing
the setting. Speci�cally, we �nd the closest (on-screen) text
containing element from the cookie setting. In cases with
multiple elements with the same on-screen distance, we break
the tie �rst using the x coordinate (and then the y coordinate,
if needed). For example, in Fig. 2(a), the closest text element
for the switch (marked with the box) is Functionality cookies.

The �nal step in this stage is indexing each extracted
HTML element. Prior work [25] has used XML Path Lan-
guage (XPath) [11] to reference the HTML elements. How-
ever, we empirically found that, due to the dynamic nature of
the notices, XPaths for cookie notices are highly vulnerable
to change upon page updates (e.g. in the DOM tree, notice
element can be injected before or after another div element is
loaded for ads); hence they are not suitable. Instead, we rely
on the querySelector() HTML function7 (which returns
the element matching a speci�ed CSS selector or group of
selectors in the HTML). Using this function, we construct a
path that can be used to identify the elements, even when the
placement of the element is dynamic.

5.3 Execution Roles
In order to represent a cookie notice in a machine readable
format, CookieEnforcer determines the execution role of the
elements by interacting (performing the click action) with
them and analyzing the effect on the webpage. We de�ne the
execution role for all interactive elements within the cookie
notice as described in Table 2. These roles categorize the
possible outcomes when the user clicks an element in the
cookie notice. Type A elements allow a user to adjust their
preference for a particular setting. Type B elements reveal
new cookie notices. Type C elements reveal hidden settings
within a cookie notice (e.g., �Functional and Personalization�
tab in Fig. 3). Finally, Type D elements are used to submit
the choices. Type D elements typically conclude the users’
interaction with the cookie notice. A detailed description of
the above types is provided in Appendix A.1

7For more details: https://developer.mozilla.org/en-US/
docs/Web/API/Document/querySelector

!"# !$#

!

"

#

$

Figure 3: Cookie notices on www.nobelbiocare.com showing el-
ements with different execution roles. (A) Type A element used to
enable/disable Analytics cookie. (B) Type B element reveals the
second banner shown on the right. (C) Type C element reveals the
hidden settings. (D) Type D element to submit the preferences.

Type Execution Role Example

A Con�guring
choices

A switch enabling/disabling marketing cook-
ies

B Uncovering hid-
den notices

Cookie Settings button in Fig. 3 (B) that re-
veals another notice when it is clicked

C Uncovering hid-
den settings

Analytics and Tracking Cookies tab in Fig. 3
(C) that reveals setting which was previously
not visible

D Enforcing choices Accept Button in Fig. 3 (D) that completes
the users’ interaction with the notice.

Table 2: De�nition of the execution roles with examples.

6 Decision Model

At this stage, we have extracted all the interactable cookie
settings, associated them with text, identi�ed their execution
role, and determined their addresses. The next step is to de-
termine the actions required to disable non-essential cookies.
We employ a decision model that understands the context (as
provided by the setting text and the execution role) in which
the user interacts with the settings. We then use the contexts
of all the settings to determine the con�guration required to
disable the non-essential cookies.

6.1 Why Natural Language Understanding?

To determine the step required to disable cookies,
CookieEnforcer needs to parse the different settings across
views of the cookie notice and semantically understand them.

One approach to perform this task is to simply deselect all
the enabled options and determine which element to click to
save the con�guration. However, this approach has two main
limitations. First, the existing settings are not always enabled
or disabled by default. The user might be required to interfere
to enable/disable cookies (e.g., www.microsoft.com). Second,
the cookie setting might be worded in a way where the ele-
ment needs to be selected to disable non-essential cookies.

1114 32nd USENIX Security Symposium USENIX Association

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
www.nobelbiocare.com
www.microsoft.com

For example, the option can be: Only allow necessary cookies.
Deselecting this option will lead to undesirable outcomes.
Hence, it is important to account for the text of the element.

Another approach to formulate the task is: given the text as-
sociated with the element and its execution role, determine if
it should be clicked. The major drawback with this approach
is that it models the task as a series of decisions without con-
sidering the interplay between these decisions. For example,
if a site shows three buttons: �Accept all,� �Save custom pref-
erences,� and �Reject all,� we want to click on �Reject all.�
However, if another site only shows �Save custom preferences�
and �Accept,� we want to select �Save custom preferences,�
so it is sub-optimal to treat them independently.

Thus, we observe that an effective decision model should
meet two requirements: a) semantically understand the text
corresponding to the options and b) determine the series of
actions required by simultaneously considering for all options.

6.2 Extracting Actions to Disable Cookies

Our goal here is to develop a decision model that takes in the
text corresponding to all the cookie settings and their current
state (selected or not-selected), and determines the actions
required to disable the non-essential cookies. We model this
problem as a sequence-to-sequence learning task where the
model gets the text and the state and determines the steps
required. Speci�cally, we train a Text-To-Text Transfer Trans-
former (T5) model as the decision model.

The T5 model, introduced by Raffel et al. [44], proposes
a uni�ed framework that treats all NLP tasks as text-to-text
problems. This model has been shown to have a strong perfor-
mance on a variety of NLP tasks ranging from classi�cation
to generation problems [23, 29, 48]. The general approach
of serializing structured steps into text has also been used to
achieve state-of-the-art results in the data-to-text generation
community [28, 32]. For our purposes, we �ne-tune a T5-
Large model (770 million parameters) to produce a sequence
of steps (clicks) required to disable the cookies.

Guided by the elements’ execution roles (Table 2), we �rst
transform the information stored about the cookie notice in a
single sentence format. Speci�cally, Type A elements have a
state associated with them (selected/not-selected) whereas the
other elements do not. The state of Type A elements allows
the model to understand that these elements are con�gurable.
Then we train the model to produce a text indicating which
elements to click, given the text representation. The input and
output for the T5 model would take the following format:

Input-Output format for the Decision model.

Input: < notice_0_tag_0> - <notice_0_tag_0_text>,

<notice_0_tag_0_state> jj <notice_0_tag_1> - <notice_0_tag_1_text>,

<notice_0_tag_1_state> - . . . **

<notice_1_tag_0> - <notice_1_tag_0_text> - . . . <end>

Output: Click <notice_0_tag_0> j Click <notice_0_tag_2> ** Click

<notice_1_tag_2>

The ** symbol separates multiple notices’ contents in the
input and the output. The jj symbol separates the settings
options within the same notice in the input. The j symbol
separates the click steps within the same notice in the output.
Note that the state for an element is only de�ned if it belongs
to Type A. For example, Table3 shows the input and output
for the T5 model corresponding to the cookie notices on
www.askubuntu.com shown on (1) and (4) in Fig. 4.

We note here that some websites provide an option to opt-
out of non-essential cookies on the �rst cookie notice but
can have pre-selected options on the second. When creating
the training data, we chose to disable the cookies from the
�rst notice only. This emulates the behavior of the human
who would not click to see more options if the option to
reject non-essential cookies was provided. The model learns
this behavior too upon training. This way, the decision model,
given all the options available on a given webpage, can predict
what actions to take to disable non-essential cookies.

6.3 Training and Performance

To create the dataset for the decision model, we �rst sample
300 websites with cookie notices from Tranco’s top-50k pop-
ular website list [36]. Next, we analyze the sites using the
Detector and the Analyzer module to extract the options and
their states (selected or not-selected). Then one of the authors
manually determined the series of clicks required to disable
the non-essential cookies. This resulted in a dataset of 300
labeled websites. Next, we keep 60 websites aside for the test
set. We further ensure that the test set consists of customized
in-house notices as well as notices from different CMPs to
ensure diversity.

We test the performance of the model by measuring its
quality via the exact match percentage metric: the generated
sequence should be exactly the same as the ground truth. We
�nd the exact match % of the model on the test set to be 95%,
indicating that the model has succeeded in learning the task
across a variety of websites. For example, take the input:
Input : switch0 - do not allow non-essential cookies, not selected jj
button1 - save jj button2 - accept <end> .
The model correctly generates:
Output : Click switch0 j Click button1.
This selected wording (involving a double negative) was not
present in the training set. The most similar phrase was: do not
sell personal information. The failure cases included notices

USENIX Association 32nd USENIX Security Symposium 1115

www.askubuntu.com

Website Input Output

netflix.com button1 - learn more about our use of cookies and information. jj button4 - accept jj button5 - reject
jj button6 - personalise my choices jj button7 - close ** button0 - close ... jj save settings <end> Click button5.

tata.com button0 - sweet! jj button1 - sorry, i’m on a diet <end> Click button1.

askubuntu.
com

button0 - customize settings jj button1 - accept all cookies ** switch3 - performance cookies, not
selected jj switch4 - functional cookies, not selected jj switch5 - targeting cookies, not selected jj
button6 - con�rm my choices jj button7 - accept all cookies jj button8 - cancel <end>

Click button0 ** Click button6.

Table 3: Examples demonstrating the application of Decision model on cookie notices for a few websites. We show the
screenshots corresponding to these cookie notices in Fig. 11 (in Appendix A.4). Note that for www.tata.com, the options are
non-standard but the decision model is still able to reject the cookies. More examples can be found in Table. 9.

where the number of setting options is large and the input
to the model is truncated. Note that we further evaluate the
performance of the decision model with a larger dataset in the
end-to-end evaluation (Section 8).

It is worth noting too that the exact match % is a conser-
vative metric. In practice, it can be relaxed depending on the
output sequence. For example, the relative order of clicking on
two switches is not important, but clicking the �Save� button
before clicking a switch might give undesirable outcomes.

Table 3 shows three examples from applying the decision
model on a diverse set of cookie notices (the screenshots for
these notices are shown in Fig. 11 of Appendix A.4). Notably,
we see that, for www.netflix.com, there are two views for the
cookie notice with second view consisting of �ne grained
options. However, since the �rst view contains a reject but-
ton, the decision model only clicks on it. Another interesting
example is www.newscientist.com. Apart from the regular
switches, the second view for the cookie notice on this website
contains an option to object to legitimate interests for basic
ads. This option can be easily missed by the users as they have
to expand an additional frame to see that. CookieEnforcer not
only �nds this option, but also understands the semantics and
decides to object. These examples showcase that the model
learns the context and generalizes to new examples.

7 Frontend

The frontend of the CookieEnforcer is a browser extension
for Google Chrome. It has two components: the Enforcer
module and the user interface.

7.1 Enforcer

The frontend receives the set of instructions for a speci�c
website from the backend.8 These instructions contain the
CSS selector path for the cookie notices. Further, for all
cookie setting elements, the instructions also contain 1) path
of the element relative to cookie notice, and 2) desired state of
the setting element. Using the CSS selector, the extension
�rst determines whether the cookie notice is present. Then,

8We discuss the deployment options to deliver instructions in Section 9

2

Extension

1

First Notice

4

Second NoticeExecuted Javascript

3

Figure 4: A typical work�ow of CookieEnforcer extension
with semi-automated enforcement. (1) First the user visits www.
askubuntu.com. (2) User activates the plugin and instructs the
extension to disable non-essential cookies. (3) CookieEnforcer re-
trieves the information (locally) and generates the Javascript required.
(4) Adjusted settings before submitting preferences.

it accesses each cookie setting using the relative paths and
adjusts it to get the desired state. For example, for a slider, if
the desired state is disabled but the current state is enabled,
the Enforcer clicks on the element to change the state. A more
detailed example, including a snippet of the Javascript code
is shown in the Appendix A.2.
Why Not Replay Cookies: An alternate solution to perform-
ing the clicks at client side is to extract the actual cookies set
by websites after setting the optimal con�guration in the back-
end and replay them at the client side at run-time. There would
be no need to perform the clicks in this case. Note that the
backend component of CookieEnforcer is still required to de-
termine the optimal con�guration. This solution, however, has
several drawbacks: (1) The websites do not need to store con-
sent string as a cookie - they can store it at other locations in
the browser. For example, https://seminolestate.edu stores
the consent string in local storage. (2) Some cookies can also

1116 32nd USENIX Security Symposium USENIX Association

netflix.com
tata.com
askubuntu.com
askubuntu.com
www.tata.com
www.netflix.com
www.newscientist.com
www.askubuntu.com
www.askubuntu.com
https://seminolestate.edu

have encrypted ids before the preferences. In these cases, it
not clear how the cookies interacts with the server database
and whether it breaks the usability. (3) In some cases, cookies
are set before the user interacts with the notice and replayed
cookies do not overwrite existing cookies.9

Additionally, we note that one major advantage of per-
forming clicks over replaying cookies is that it helps
CookieEnforcer identify whether there has been a change in
the cookie notice implementation on a website. For example,
if a website changes CMPs, the cookie replay solution will be
ineffective. However, CookieEnforcer can detect the staleness
of its paths and trigger a re-analysis to update them. Gener-
ally, performing clicks is a preferable solution as it works
within the framework provided by the websites, which can be
expected to remain an invariant due to usability aspects.

7.2 User Interfaces
The core functionality of CookieEnforcer is to disable non-
essential cookies (wherever possible). As discussed above,
this requires CookieEnforcer to perform clicks on behalf of
the users, who may have different levels of comfort with such
a form of automated enforcement. To account for such prefer-
ences, CookieEnforcer consists of three interfaces (described
below) that allow various degrees of control. Each interface
comes with its own usability aspects and lies on one point of
the tradeoff line between full automation and full control. We
provide a discussion on this trade-off in Section 8.2.2.
Semi-Automated Enforcement: Upon detecting the cookie
notice, the user �rst activates the extension by clicking on
its icon, thus showing an �Enforce Cookies� button on the
extension popup. Clicking on it activates the Enforcer module
(discussed below) which performs the actions. This mode
allows the users to see how the enforcement is happening
by arti�cially introducing delays between the clicks. The
work�ow for this mode is shown in Fig. 4. A demo for this
mode is shown at https://youtu.be/gasSjHo8Zwk.
Fully Automated Enforcement: The extension detects the
cookie notice and automatically triggers the Enforcer module
to disable non-essential cookies. Furthermore, the extension
hides the cookie notice(s) and performs the clicks in the back-
ground so that the browsing experience of the users is not
impacted. Thus, in this mode, the user does not interact with
the cookie notice or the extension. A demo for this mode is
shown at https://youtu.be/f8rtTUwIHlU.
Informed Enforcement: The extension �rst checks whether
the cookie notice is present. Upon detecting the cookie notice,
the website then overlays a pre-recorded GIF showing the
actions that the extension will perform. The user can see the
GIF and click to provide informed consent to the extension,
which then triggers the Enforcer module. A demo for this
mode is shown at https://youtu.be/eh7a35oaKlU.

9We noticed such behavior on https://ffii.org/.

!"#$%#&'()*+#&#,-&.*/000*1(2#'),*3*4000*5'&6*7((8'-*9#))-:,

!"""#$%&'()*

$+,+-,%. /)'012+. $+-(*(%)#3%4+0

5(,+*#6(,7#8'))+.*9#:;< =%..+-,01#/))%,',+49#:>" ?)4#,%#?)4#/--@.'-1#9#:ABCD

Figure 5: The results from evaluation of CookieEnforcer shows that
the system performs well on the test set.

8 Evaluation

We perform multiple experiments to evaluate the accuracy,
usability and stability of CookieEnforcer, as well as to show-
case its utility on a large-scale dataset. We seek to answer
these questions:
Q1. What is the end-to-end performance of CookieEnforcer?
Q2. Does CookieEnforcer improve the user experience?
Q3. Can CookieEnforcer analyze cookie notices at a scale?

8.1 End-to-End Evaluation

We conducted a manual end-to-end quality evaluation of
CookieEnforcer on 2000 sites to assess the accuracy of ex-
tracting a machine-readable representation of cookie notices
(if present) on previously unseen domains. Fig. 5 provides an
overview of these steps. We also evaluated the generalizability
of CookieEnforcer by analyzing sites from different locations
(London, California, and Illinois). Finally, we demonstrated
the temporal stability of the extracted cookie notice represen-
tations, indicating the feasibility of of�ine deployment.

Dataset: The evaluation dataset for CookieEnforcer con-
sisted of 2000 diverse domains, including 250 from the top-1k
of the Tranco list [36] and the remaining domains in the 1k-
50k range. To increase the likelihood of encountering cookie
notices, the evaluation was conducted from a GDPR-covered
location (London, UK) via a VPN. The dataset for the Detec-
tor module was manually annotated10 by taking screenshots
of the websites and judging the presence of a cookie notice.
Annotating the dataset for the Analyzer module beforehand
was infeasible due to lack of unique identi�ers for cookie set-
ting options, so we manually veri�ed the presence of cookie
settings after passing the data through the Analyzer. To create
the annotated dataset for Decision Model, we obtained input
strings from the Analyzer module and manually wrote the
expected output strings required to disable cookies.
Findings: The evaluation set’s 2000 domains were �rst pro-
cessed by the Detector module. The module identi�ed 986
domains as having cookie notices, with 2 false positives and
16 false negatives. The Analyzer module was then used to
identify the various cookie settings present in the notices

10Since these tasks are objective/deterministic in nature, one of the authors
did the manual annotation.

USENIX Association 32nd USENIX Security Symposium 1117

https://youtu.be/gasSjHo8Zwk
https://youtu.be/f8rtTUwIHlU
https://youtu.be/eh7a35oaKlU
https://ffii.org/

from these domains. Manual veri�cation was performed, and
a website was counted as an error if the Analyzer missed at
least one cookie setting. The Analyzer correctly identi�ed the
options in 950 domains. It also �ltered out the false positives
from the previous stage as the elements on those pages only
had out-of-page links. The Decision Model was applied to
the elements from the remaining 950 domains. The model’s
outputs were compared to the manually written ones using
exact sequence match as the metric (cf. Sec. 6.3). The deci-
sion model accurately predicted the steps for 937 domains,
resulting in an accuracy of 93.7% for CookieEnforcer in the
end-to-end evaluation.

Error Analysis: The Detector module failed to detect cookie
notices on a total of 16 domains. Seven of these domains
had the notice present in a �shadow-root� element11, which is
rendered separately from the document’s main DOM tree and
is inaccessible using Selenium. Four domains had notices that
were only displayed for a short time (�6 seconds) and were
missed by the tool due to its included delay to allow all ele-
ments to load. The remaining four websites had notices with
missing z-index attributes. The Analyzer module failed on 36
domains. In 12 of these, the cookie settings were present on
a different URL and were �ltered out, resulting in erroneous
representation. On the remaining 22 domains, the cookie no-
tice had non-standard behavior, such as elements that were not
reachable via tabbing, long delays between the �rst and sec-
ond notice, or non-standard implementation of �checkboxes�
and �radio� buttons. Finally, the Decision Model failed on
domains with large numbers of settings, due to model input
truncation12. For example, https://www.blu-ray.com/ has
over 100 settings, leading to a very long input.

Privacy Implication of Errors: In CookieEnforcer, errors
can arise due to: (a) the Detector missing the notice (b) the
Analyzer missing cookie settings, or (c) the Decision Model
resulting in incorrect instructions. Detection errors (16/1000)
and errors in the decision model due to input string size
(15/1000) do not pose a privacy risk as CookieEnforcer does
not take any actions on these websites and leaves the notice
for the user to interact with. However, instances where the An-
alyzer misses some settings may lead to keeping non-essential
cookies enabled, posing a privacy risk. These instances oc-
curred 3.6% of the time in the evaluation set.

Generalizability: To evaluate CookieEnforcer’s generaliz-
ability, we analyzed cookie notices from 937 correctly anno-
tated websites in the testing set via VPNs in London (LDN),
California (CA), and Illinois (IL). Comparing LDN vs. CA,
70.6% of the analyzed domains had the same notice while
17.2% did not show a cookie notice when accessed from CA.
The remaining 12.2% had different notices, some of which
provided a �Do Not Sell My Information� link or lacked �ne-

11For more details: https://shorturl.at/hiuY6
12We ran the T5 model inference with 256 tokens only, but it is possible to

run it with a much larger number.

grained opt-out options. However, CookieEnforcer correctly
generated instructions to disable non-essential cookies for
these domains. We note that different notices based on loca-
tion do not pose issues during deployment because we can
identify the location of web requests and serve the appropri-
ate instructions. When comparing domains accessed from
CA vs. IL, we found that only 1.2% websites had a different
notice. For example, https://www.prada.com/ had an option
to reject cookies on the �rst notice when accessed from CA,
but not from IL. Notably, CookieEnforcer generated accurate
instructions to disable non-essential cookies for all websites
with different notices.

Feasibility of Of�ine Deployment: We evaluate the feasibil-
ity of of�ine deployment by performing temporal analysis on
the generated instructions Speci�cally, we generate instruc-
tions to disable non-essential cookies on websites when ac-
cessed from London and verify their stability over one month.
We note that we only use the 937 correctly annotated websites
as we want to measure the stability of generated instructions.
For these sites, we generate the instructions on December
5, 2022 and then manually verify whether the non-essential
cookies are disabled using these instructions over a period
of one month. At the end of this period, we �nd that the in-
structions only fail in less than 1% of the websites, primarily
because the cookie notice has either disappeared or changed.
This demonstrates the stability of CookieEnforcer-generated
instructions over time. For cases where the notice changed,
CookieEnforcer was able to re-analyze and generate the cor-
rect instructions. We also note that the evaluation set included
websites with frequent layout changes, such as news websites.

Comparison with Existing Tools: We also compared the
performance of Ninja Cookie [24] and Consent-o-matic [46]
(both discussed in Sec. 2) with CookieEnforcer on our eval-
uation set (250 websites out of the 1000 with notices). We
de�ne the failure metric as the fraction of websites on which
the cookie notice remained visible, despite the availability
of the plugin. We observe that Ninja Cookie fails in 50% of
the websites, whereas Consent-o-matic fails in 76% of the
websites, as compared to the failure rate of 9% for CookieEn-
forcer. Further, both plugins appeared to hide the notice only
on those websites that included CMPs, which is consistent
with a rule-based approach. Note that a rule-based approach
for CMPs has pitfalls as the websites can adapt the CMP to
their use case by customizing settings.

Even with the variations in the HTML and the dynamic
nature of elements in the cookie notice, our pipeline accurately
generates the steps required to disable non-essential cookies
in 937/1000 websites (overall accuracy of 93.7%). Unlike the
alternative in-browser solutions, CookieEnforcer’s errors do
not lead to breaking functionality and carry a minimal risk
(3.6%) of keeping non-essential cookies enabled.

1118 32nd USENIX Security Symposium USENIX Association

https://www.blu-ray.com/
https://shorturl.at/hiuY6
https://www.prada.com/

https://tranco-list.eu/list/K2JLW/1000000
https://tranco-list.eu/list/K2JLW/1000000

Type % Websites Avg. # Settings
(per site)

One Click Opt-
Out (% websites)

No Notice 47.3 � �

Single View 64.6 2.17 (3.01) 11.5

Mutliple
Views 35.4 28.7 (103) 9.96

Table 4: Details about the analyzed websites. After the �rst
row, the percentage is calculated with total number of websites
with a cookie notice (45,044).

fact that some websites have over 1000 options to choose
from, including individual options from individual vendors
(https://www.formula1.com/). We do note that number of
websites with such behavior is < 5%. As such, the median
number of settings on multiple views is 9, potentially inviting
users to navigate multiple notices and interact with tens of
settings. With CookieEnforcer, the users can disable cookies
without interacting (with as low as zero clicks).

Finally, we approximate the number of websites that pro-
vide a One-click opt-out mechanism by analyzing the output
of the Decision model (Section 6) and counting instances
where only one click was required. We discard websites with
a single view notice and one setting option (usually �Accept
All�). We �nd that in total, only 21.5% of the websites with
cookie notices provide a One-click opt-out mechanism, in-
dicating the need for a higher cognitive load on users’ behalf
to determine the steps to disable non-essential cookies.

Timing Analysis: We calculated the average time taken by
the three major components of CookieEnforcer: (1) Cookie
Notice Detection (Section 4) (2) Analysis of First View (3)
Analysis of Additional Views. On average, CookieEnforcer
is able to detect notices in 26.6 seconds, whereas the analy-
sis of �rst and additional views takes 103 and 300 seconds,
respectively. This shows that CookieEnforcer can analyze a
website with notice(s) within minutes, an important desirable
feature for scalability. Furthermore, this analysis is highly
amenable to parallelization and further time optimization,
both per website and across websites.

Failure Cases: As indicated in Sec. 8.1, there are cases
where CookieEnforcer would fail to generate a machine-
readable representation of a cookie notice. Our analysis of
the 85,473 websites allows us to measure the cases where
CookieEnforcer fails at a scale. These cases primarily include
HTML implementations of cookie notices and settings that
are not part of CookieEnforcer’s design, such as using div
to implement checkboxes. We found that such failure cases
account for less than 5% of the analyzed websites and do not
impact the scalability of CookieEnforcer. We obtain this error
rate by examining notices, which consisted of multiple views
but no Type A elements, and by analyzing the errors in logs.

9 Discussion

Deployment Aspects: CookieEnforcer’s frontend needs to
access the enforcement instructions per website in order to
operate. There are multiple options for such storage that lie
on the usability-privacy spectrum. The default option we will
provide is the privacy-preserving one with the instructions
prepackaged with the extension. These instructions can be al-
ternatively hosted on a third-party server to reduce the storage
overhead. This involves disclosing �rst-time visits to websites,
so the user has to select a trusted server. Other solutions can
leverage private information retrieval techniques to balance
storage requirements and privacy properties.

Informed Consent: One challenge with automated solutions
for privacy enforcement, such as CookieEnforcer, is informed
consent. The philosophy of cookie notices is to allow the user
to be aware of and control how each website uses cookies to
track them. An automated solution might deprive the users of
exercising informed consent. However, we note that recent
regulations, such as California’s CCPA [50], contain provi-
sions for �authorized agents.�15 Consumers might exercise
their privacy rights through a registered authorized agent. A
legal entity can incorporate CookieEnforcer to act on behalf
of the users regarding cookie notices. The ensuing challenge
relates to potential errors in CookieEnforcer’s operation. As
an automated solution, errors are inevitable. While partici-
pants in our user study indicate some error tolerance, solutions
like CookieEnforcer have to be clear about the possibility of
errors and their impact on users’ privacy.
Limitations: A major limitation for CookieEnforcer comes
from variability in HTML implementation. For example,
CookieEnforcer relies on an accessibility feature (tabbing)
to identify the interactive elements in the cookie notices.
However, as we noted in our evaluation, the websites can
implement buttons that do not �t these criteria. However, we
empirically observe such websites to be rare.

We consider dedicated cookie setting pages as another lim-
itation for CookieEnforcer. While extracting the interactable
elements in the Analyzer module, we �lter out out-of-page
elements, including elements pointing toward a dedicated
cookie settings page. A potential solution is to analyze the
page, determine if it is a cookie settings page, and notify the
user to adjust preferences.

Finally, we note that CookieEnforcer can fail during en-
forcement on the client-side. This failure can result from a
change in cookie notice or the elements within it going stale.
These failure modes can be detected via the plugin, which can
(after user consent) trigger a re-generation of the instructions
by the Backend of CookieEnforcer. These failures would only
result in the cookie notices staying on the screen, and the user
can then submit their preferences.

15https://privacy.microsoft.com/en-us/ccpa-guidance

USENIX Association 32nd USENIX Security Symposium 1121

https://www.formula1.com/
https://privacy.microsoft.com/en-us/ccpa-guidance

10 Conclusion

In this paper, we present CookieEnforcer, which, given a do-
main, automatically detects the cookie notice, extracts the
options provided and transforms the cookie notice into a ma-
chine readable format. It then uses a text-to-text deep learning
model to understand the different options provided and deter-
mines the steps required to disable non-essential cookies. The
machine readable format of the cookie notice further enables
more usable interfaces to be built. Finally, we have exten-
sively evaluated CookieEnforcer for performance, stability,
usability and scalabiltiy. We �nd that it accurately annotates
the cookie notices of a given domain, and is scalable. Further,
the users also found CookieEnforcer’s interface more usable
compared to the existing baseline.

Acknowledgments

This work was supported by the NSF through awards: CNS-
1942014 and CNS-2003129, and by gifts from NVIDIA and
Google. Finally, we thank the reviewers for their fruitful dis-
cussions and recommendations.

References

[1] European parliament, council of the european union. directive
2002/58/ec of the european parliament and of the council of
12 july 2002 concerning the processing of personal data and
the protection of privacy in the electronic communications
sector (directive on privacy and electronic communications),
july 2002. https://eur-lex.europa.eu/eli/dir/2002/
58/oj.

[2] European parliament, council of the european union. regulation
(eu) 2016/679 of the european parliament and of the council of
27 april 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement
of such data, and repealing directive 95/46/ec (general data
protection regulation), april 2016. http://data.europa.eu/
eli/reg/2016/679/2016-05-04.

[3] A. Bangor, P. T. Kortum, and J. T. Miller. An empirical eval-
uation of the system usability scale. Intl. Journal of Human�
Computer Interaction, 24(6):574�594, 2008.

[4] D. Bollinger. Analyzing cookies compliance with the gdpr.
Master’s thesis, 2021.

[5] I. Borberg, R. Hougaard, W. Rafnsson, and O. Kulyk. �so i
sold my soul�: Effects of dark patterns in cookie notices on
end-user behavior and perceptions.

[6] J. Brooke et al. Sus-a quick and dirty usability scale. Usability
evaluation in industry, 189(194):4�7, 1996.

[7] J. Brookman, P. Rouge, A. Alva, and C. Yeung. Cross-device
tracking: Measurement and disclosures. Proc. Priv. Enhancing
Technol., 2017(2):133�148, 2017.

[8] Q. Chen, P. Ilia, M. Polychronakis, and A. Kapravelos. Cookie
swap party: Abusing �rst-party cookies for web tracking. In

Proceedings of the Web Conference 2021, WWW ’21, page
2117�2129, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[9] Q. Chen, P. Ilia, M. Polychronakis, and A. Kapravelos. Cookie
swap party: Abusing �rst-party cookies for web tracking. In
Proceedings of the Web Conference 2021, WWW ’21, page
2117�2129, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[10] Y. Chen, M. Zha, N. Zhang, D. Xu, Q. Zhao, X. Feng, K. Yuan,
F. Suya, Y. Tian, K. Chen, et al. Demystifying hidden privacy
settings in mobile apps. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 570�586. IEEE, 2019.

[11] J. Clark, S. DeRose, et al. Xml path language (xpath), 1999.

[12] R. Coudert. Automatically detect dark patterns in cookie ban-
ners. 2020.

[13] M. M. Danilak. Langdetect, python library to detect language.

[14] C. T. David Cancel. Ghostery. https://www.ghostery.
com/, 2010.

[15] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub, and
T. Holz. We value your privacy... now take some cookies:
Measuring the gdpr’s impact on web privacy. arXiv preprint
arXiv:1808.05096, 2018.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[18] R. v. Eijk, H. Asghari, P. Winter, and A. Narayanan. The impact
of user location on cookie notices (inside and outside of the
european union). In Workshop on Technology and Consumer
Protection (ConPro’19), 2019.

[19] S. Englehardt and A. Narayanan. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security, pages 1388�1401, 2016.

[20] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,
J. Mayer, A. Narayanan, and E. W. Felten. Cookies that give
you away: The surveillance implications of web tracking. In
Proceedings of the 24th International Conference on World
Wide Web, pages 289�299, 2015.

[21] I. Fouad, C. Santos, A. Legout, and N. Bielova. Did i delete
my cookies? cookies respawning with browser �ngerprinting.
ArXiv, abs/2105.04381, 2021.

[22] E. F. Foundation. Privacybadger. https://privacybadger.
org/, 2014.

[23] D. Furrer, M. van Zee, N. Scales, and N. Schärli. Compositional
generalization in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970, 2020.

[24] T. Goudout. Ninja cookie. https://gitlab.com/
ninja-cookie/ninja-cookie, 2020.

[25] R. Gunawan, A. Rahmatulloh, I. Darmawan, and F. Firdaus.
Comparison of web scraping techniques: regular expression,

1122 32nd USENIX Security Symposium USENIX Association

https://eur-lex.europa.eu/eli/dir/2002/58/oj
https://eur-lex.europa.eu/eli/dir/2002/58/oj
http://data.europa.eu/eli/reg/2016/679/2016-05-04
http://data.europa.eu/eli/reg/2016/679/2016-05-04
https://www.ghostery.com/
https://www.ghostery.com/
https://privacybadger.org/
https://privacybadger.org/
https://gitlab.com/ninja-cookie/ninja-cookie
https://gitlab.com/ninja-cookie/ninja-cookie

html dom and xpath. In International Conference on Industrial
Enterprise and System Engineering (IcoIESE 2018) Compari-
son, volume 2, pages 283�287, 2019.

[26] H. Habib, S. Pearman, J. Wang, Y. Zou, A. Acquisti, L. F.
Cranor, N. Sadeh, and F. Schaub. "it’s a scavenger hunt":
Usability of websites’ opt-out and data deletion choices. In
Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, pages 1�12, 2020.

[27] H. Habib, Y. Zou, A. Jannu, N. Sridhar, C. Swoopes, A. Ac-
quisti, L. F. Cranor, N. Sadeh, and F. Schaub. An empirical anal-
ysis of data deletion and opt-out choices on 150 websites. In
Fifteenth Symposium on Usable Privacy and Security (SOUPS
2019), 2019.

[28] H. Harkous, I. Groves, and A. Saffari. Have your text and use
it too! end-to-end neural data-to-text generation with semantic
�delity. In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2410�2424, Barcelona,
Spain (Online), Dec. 2020. International Committee on Com-
putational Linguistics.

[29] H. Harkous, S. T. Peddinti, R. Khandelwal, A. Srivastava, and
N. Taft. Hark: A deep learning system for navigating privacy
feedback at scale. In 2022 IEEE Symposium on Security and
Privacy (SP), 2022.

[30] M. Hils, D. W. Woods, and R. Böhme. Measuring the emer-
gence of consent management on the web. In Proceedings of
the ACM Internet Measurement Conference, pages 317�332,
2020.

[31] X. Hu, N. Sastry, and M. Mondal. Cccc: Corralling cookies
into categories with cookiemonster. In 13th ACM Web Science
Conference 2021, pages 234�242, 2021.

[32] M. Kale and A. Rastogi. Text-to-text pre-training for data-to-
text tasks. In Proceedings of the 13th International Conference
on Natural Language Generation, pages 97�102, Dublin, Ire-
land, Dec. 2020. Association for Computational Linguistics.

[33] G. Kampanos and S. F. Shahandashti. Accept all: The land-
scape of cookie banners in greece and the uk. In IFIP In-
ternational Conference on ICT Systems Security and Privacy
Protection, pages 213�227. Springer, 2021.

[34] R. Khandelwal, T. Linden, H. Harkous, and K. Fawaz. Prisec:
A privacy settings enforcement controller. In 30th USENIX
Security Symposium (USENIX Security 21), 2021.

[35] O. Kulyk, A. Hilt, N. Gerber, and M. Volkamer. this website
uses cookies�: Users’ perceptions and reactions to the cookie
disclaimer. In European Workshop on Usable Security (Eu-
roUSEC), 2018.

[36] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Ko-
rczy·nski, and W. Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. In Proceedings
of the 26th Annual Network and Distributed System Security
Symposium, pages 1�15. Internet Society, 2019.

[37] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Ko-
rczy·nski, and W. Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. In Proceedings
of the 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, Feb. 2019.

[38] S. Macbeth. Cliqz autoconsent. https://github.com/
ghostery/autoconsent, 2020.

[39] D. Machuletz and R. Böhme. Multiple purposes, multiple prob-
lems: A user study of consent dialogs after gdpr. Proceedings
on Privacy Enhancing Technologies, 2020(2):481�498, 2020.

[40] C. Matte, N. Bielova, and C. Santos. Do cookie banners respect
my choice? : Measuring legal compliance of banners from
iab europe’s transparency and consent framework. In 2020
IEEE Symposium on Security and Privacy (SP), pages 791�809,
2020.

[41] B. Nissen, V. Neumann, M. Mikusz, R. Gianni, S. Clinch,
C. Speed, and N. Davies. Should i agree? delegating consent
decisions beyond the individual. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems,
pages 1�13, 2019.

[42] M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Kagal.
Dark patterns after the gdpr: Scraping consent pop-ups and
demonstrating their in�uence. In Proceedings of the 2020
CHI conference on human factors in computing systems, pages
1�13, 2020.

[43] P. Papadopoulos, N. Kourtellis, and E. Markatos. Cookie syn-
chronization: Everything you always wanted to know but were
afraid to ask. In The World Wide Web Conference, pages 1432�
1442, 2019.

[44] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the lim-
its of transfer learning with a uni�ed text-to-text transformer.
Journal of Machine Learning Research, 21(140):1�67, 2020.

[45] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defend-
ing against fThird-Partyg tracking on the web. In 9th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 155�168, 2012.

[46] Rolf, Bagge, Janus, Bager, and Kristensen. Consent-o-matic.
https://github.com/cavi-au/Consent-O-Matic, 2020.

[47] I. Sanchez-Rola, M. Dell’Amico, P. Kotzias, D. Balzarotti,
L. Bilge, P.-A. Vervier, and I. Santos. Can i opt out yet? gdpr
and the global illusion of cookie control. In Proceedings of the
2019 ACM Asia conference on computer and communications
security, pages 340�351, 2019.

[48] P. Shaw, M.-W. Chang, P. Pasupat, and K. Toutanova. Com-
positional generalization and natural language variation: Can
a semantic parsing approach handle both? In Proceedings of
the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages
922�938, Online, Aug. 2021. Association for Computational
Linguistics.

[49] K. Solomos, P. Ilia, S. Ioannidis, and N. Kourtellis. Clash of
the trackers: Measuring the evolution of the online tracking
ecosystem. arXiv preprint arXiv:1907.12860, 2019.

[50] State of California. California Consumer Privacy Act
(CCPA). https://leginfo.legislature.ca.gov/faces/
billTextClient.xhtml?bill_id=201720180AB375, June
2018. Assembly Bill No. 375.

USENIX Association 32nd USENIX Security Symposium 1123

https://github.com/ghostery/autoconsent
https://github.com/ghostery/autoconsent
https://github.com/cavi-au/Consent-O-Matic
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

[51] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to �ne-tune bert for
text classi�cation? In China National Conference on Chinese
Computational Linguistics, pages 194�206. Springer, 2019.

[52] C. Utz, M. Degeling, S. Fahl, F. Schaub, and T. Holz. (un)
informed consent: Studying gdpr consent notices in the �eld.
In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 973�990, 2019.

[53] C. Utz, M. Degeling, S. Fahl, F. Schaub, and T. Holz.
(un)informed consent: Studying gdpr consent notices in the
�eld. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, page
973�990, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[54] F. Wilcoxon. Individual comparisons by ranking methods. In
Breakthroughs in statistics, pages 196�202. Springer, 1992.

A Appendix

A.1 Details on Execution Roles
The click command in Selenium emulates the click operation on a
given element. However, the click action can only be performed if
the element is visible on the browser (and is not overlayed by another
element). For instance, if the �rst click on the Save Settings button
removes the notice, a second click on the same element will result
in an error as the element is no longer visible. Another example
is when an element allows users to con�gure a choice. There, we
should be able to click it multiple times to change the choice. We
leverage these behaviors to identify the different execution roles for
the elements.

As mentioned in Section 5.3, there are 4 types of execution role
assigned to each element by the Analyzer module. They are as fol-
lows:

1. Type A: An element belongs to Type A if it is visible after
two clicks and its state (selected or not-selected) changes with
the clicks. For example, the switch element in Fig. 3 changes
state and is visible after the clicks. Note that it is possible
to implement Type A elements such that the state cannot be
queried; however, empirically, we found that to be very rare.

2. Type B: Elements belonging to Type B reveal another cookie
notice. Thus, to identify these elements, we check (1) if the
element disappears after the clicks, and (2) the Detector module
returns the new notice. For example, when we click the button
�More information� in Fig. 3, the new notice (the right plot in
Fig. 3) appears. Thus, we determine the execution role of the
button to be Type B.

3. Type C: To identify Type C elements, we require that (1) the
element can be clicked twice, and (2) that its checked attribute
should not change with clicks. These elements are used for
internal navigation within the notice.

4. Type D: Such elements result in closing the cookie notice. We
identify these elements by requiring (1) failure in the second
click, and (2) no new cookie notice appearing after �rst click.

A.2 Generation of JavaScript Code
Here we illustrate how CookieEnforcer disables non-essential cook-
ies on www.askubuntu.com by executing JavaScript via the exten-

sion. First, the extension retrieves a set of instructions with CSS
selectors for cookie notices. For each cookie setting present on
the notice, the instructions also contain 1) paths for the setting ele-
ment relative to the cookie notice, and 2) desired state of the setting
element. The state and the corresponding actions are tracked using
a variable code. The set of all codes are shown in Table 5. For ex-
ample, code = 3 instructs the extension to click the setting element
if it is visible. We also note that the paths are stored relative to the
cookie notice as the absolute path (xpath) of the setting elements
may change (ref. Section 5).

For the http://askubuntu.com, a partial set of instructions is
shown in Fig. 8.

Figure 8: A Partial instruction set for askubuntu website for illustra-
tion purposes.

The extension executes the instructions sequentially, starting by
�rst detecting the cookie notice using the query selectors (lines 3-10
in Fig. 9). Next, after identifying the cookie notice, the Enforcer
module �nds the setting elements using the relative paths present
in the instructions (line 13-15, Fig. 9). Finally, it checks the desired
state of the element and performs actions as required (lines 17-18
and lines 23-24 in Fig. 9.

Figure 9: CookieEnforcer’s JS generation code. Ellipses are used to
skip non-important parts of the code.

1124 32nd USENIX Security Symposium USENIX Association

www.askubuntu.com
http://askubuntu.com

Code Purpose

1 Check if element is displayed and if not then wait for
2 sec at 40ms intervals

2 Check if element is displayed and if not raise error

3 Click on the element if it is displayed

4 Click on element unconditionally

5 Click on element if selected

6 Click on element if not selected

99 iFrame injection

Table 5: Table for codes used in the extension and their purpose.

A.3 Details of the User Study
A.3.1 User-Based Evaluations

Here we provide more details about the User Study we conducted
to evaluate the usability of our extension. We �rst asked users to
install our custom chrome browser extension which detected a subset
of websites from Table 6 which had never been visited by the user.
From that subset we choose 4 website, one for each of the 4 types
of user interface as mentioned in 7.2 for the study. Then they were
prompted to visit these website as shown in Fig. 10.

Figure 10: Prompting Users to visit the website.

A.3.2 Websites Used in the User Study

To choose websites for the study we looked at websites that used
some of the most common CMPs like TrustArc and OneTrust as
well as some that used custom cookie notices. We also selected some
websites with a one click opt-out button and some that required
multiple clicks. Table 6. shows the full list of websites we used for
the user study.

A.3.3 Usability Evaluation

Participants were asked to �ll out a standard System Usability Scale
questionnaire [6] for each of the 4 interfaces they used.

The p-value for SUS score of all the combinations of interfaces
are given in Table 7 below:

Interface Type Manual Informed Semi Auto

Manual � 3:5e � 12 7:4e�21 1:2e �16

Informed 3:5e � 12 � 1:78e�03 3:98e�03

Semi 7:4e � 21 1:78e�03 � 7:66e�01

Auto 1:2e � 16 3:98e�03 7:66e�01 �

Table 7: SUS score p-values of all interfaces’ combinations.

Website CMP Type

seminolestate.edu sscCookieStatement

statsperform.com Optanon/OneTrust

gordonramsay.com CybotCookiebot

crowe.com Optanaon/OneTrust

�nancialsense.com Custom

horiba.com Custom

vogella.com QuantCast

schroders.com Custom

decathlon.co.uk Didomi

justinbiebermusic.com Evidon

hydro�ask.com TrustArc

piwik.pro PIWIK pro

huntingpeaks.com Iubenda

Table 6: List of Websites and their CMP types.

Since the p-value of the SUS Scores for user preference between
manually setting cookies against that of using CookieEnforcer exten-
sion is < 0:05 we can reject the null hypothesis and say that these
observations are statistically signi�cant.

We also noted down the time taken by participants to use each
of the interface. The p-value between the time taken for each of the
interfaces is given in Table 8.

Interface Type Manual Informed Semi Auto

Manual � 4:34e �13 9:52e� 21 2:12e � 34

Informed 4:34e� 13 � 7:09e�03 3:36e � 31

Semi 9:52e� 21 7:09e �03 � 9:74e � 30

Auto 2:12e� 34 3:36e �31 9:74e� 30 �

Table 8: p-values of time taken for all interfaces’ combinations.

Since the p-value of the time taken to manually set cookies against
the time taken by any of the CookieEnforcer interface is < 0:05 we
can reject the null hypothesis and say that these observations are
statistically signi�cant.

A.4 Examples of Cookie Notices
In Figure 11, we show some examples of the cookie banners that are
discussed in Section 6.

USENIX Association 32nd USENIX Security Symposium 1125

Website Input Output

www.
amazonaws.
com

button0 - customize cookie preferences jj button1 - accept all cookies ** switch0 - allow performance
category , selected jj switch1 - allow functional category , not selected jj switch2 - allow advertising
category , not selected jj button3 - cancel customizing cookie preferences jj button4 - save customized
cookie preferences <end>

Click button0 ** Click switch0
j Click button4.

reddit.com button0 - reject non-essential jj button1 - accept all <end> Click button0.

wordpress.
com

button0 - customize jj button1 - accept all ** switch3 - analytics: these cookies allow us to optimize
performance by collecting , selected jj switch4 - advertising: these cookies are set by us and our
advertising , not selected jj button5 - accept selection <end>

Click button0 ** Click switch3
j Click button5.

www.facebook.
com

button1 - more options jj button2 - allow all cookies ** switch4 - cookies from other companies we
use tools from other companies , not selected jj button8 - allow only essential cookies jj button9 -
allow selected cookies <end>

Click button1 ** Click button8.

newscientist.
com

button1 - i accept jj button2 - show purposes ** button4 - select basic ads; object to legitimate
interests ... switch23 - analytics cookies , not selected jj button62 - con�rm my choices

Click button2 ** ... Click but-
ton4 j Click button62.

Table 9: Examples demonstrating the application of Decision model on cookie notices for a few websites.

Figure 11: Screenshots of Cookie Notices for the websites listed in Table 9 where (A) is the �rst view for WordPress and (B) is the second
view. (C) is the �rst view for Net�ix and (D) is the second view. (E) is the �rst view of NewScientist and (F) is the second view. (G) is the �rst
view of TATA and (H) is the �rst view of Reddit.

1126 32nd USENIX Security Symposium USENIX Association

www.amazonaws.com
www.amazonaws.com
www.amazonaws.com
reddit.com
wordpress.com
wordpress.com
www.facebook.com
www.facebook.com
newscientist.com
newscientist.com

	Introduction
	Background and Related Work
	System Overview

