
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Automated Cookie Notice Analysis and Enforcement
Rishabh Khandelwal and Asmit Nayak, University of Wisconsin—Madison;

Hamza Harkous, Google, Inc.; Kassem Fawaz, University of Wisconsin—Madison
https://www.usenix.org/conference/usenixsecurity23/presentation/khandelwal

Automated Cookie Notice Analysis and Enforcement

Rishabh Khandelwal
University of Wisconsin–Madison

Asmit Nayak
University of Wisconsin–Madison

Hamza Harkous∗

Google Inc.

Kassem Fawaz
University of Wisconsin–Madison

Abstract

Online websites use cookie notices to elicit consent from the

users, as required by recent privacy regulations like the GDPR

and the CCPA. Prior work has shown that these notices are

designed in a way to manipulate users into making website-

friendly choices which put users’ privacy at risk. In this work,

we present CookieEnforcer, a new system for automatically

discovering cookie notices and extracting a set of instructions

that result in disabling all non-essential cookies. In order to

achieve this, we first build an automatic cookie notice detec-

tor that utilizes the rendering pattern of the HTML elements

to identify the cookie notices. Next, we analyze the cookie

notices and predict the set of actions required to disable all

unnecessary cookies. This is done by modeling the problem

as a sequence-to-sequence task, where the input is a machine-

readable cookie notice and the output is the set of clicks to

make. We demonstrate the efficacy of CookieEnforcer via

an end-to-end accuracy evaluation, showing that it can gen-

erate the required steps in 93.7% of the cases. Via a user

study, we also show that CookieEnforcer can significantly

reduce the user effort. Finally, we characterize the behavior

of CookieEnforcer on the top 100k websites from the Tranco

list, showcasing its stability and scalability.

1 Introduction

Cookies are small blocks of data stored on users’ browsers

that allow the websites to record the state of the browsing ses-

sion, enabling them to enhance the user experience. Previous

works have shown that the majority of the cookies are used for

advertising and tracking purposes [4,7,19,20,43] and that this

trend has been rising in the last decade [45, 49]. To curb the

associated privacy risks, governments have introduced privacy

regulations (GDPR [2] and ePrivacy Directive [1]). These re-

quire websites to obtain explicit, specific, and informed user

consent before collecting or processing user data.

To comply with these regulations, websites use cookie no-

tices to obtain users’ consent and (in some cases) to offer them

options to control cookies. Still, in their current forms, cookie

notices suffer from usability issues [26]. Websites often de-

sign the notices to nudge the users into giving consent [52] or

make it harder for users to find the cookie settings.

∗The opinions expressed in this publication are those of the author and

not of Google.

Take https://www.dailymail.co.uk/ as an example

(when visited from the UK in February 2023). To adjust their

cookie settings, the user is presented with a blocking notice

where they should first click on the “Cookie Settings” but-

ton to navigate to the settings menu. On that menu, there are

11 individual cookie settings, 9 of which are pre-enabled for

“legitimate interests”. Further, there is another view for per-

vendor settings with over 100 listed vendors along with their

options; all these options are also pre-enabled1. Both menus

do not have an opt-out button; the user has to individually

disable each cookie setting.

Prior work [5] has highlighted the difficulty of exercising

cookie control, showing that users are more likely to agree

to the default option when the alternative is difficult to find.

There, users expressed interest in having easier ways to limit

access to their data. To bridge this usability gap, several pro-

posals have aimed at automating the interaction with cookie

notices. These can be categorized into two approaches: those

that work at the browser level – interacting with the underly-

ing cookie storage – and those that work at the website UI

level – interacting with the cookie notice itself.

Anti-tracking solutions [14,22] take the browser-level route

by blocking all third-party cookies but fail to address non-

essential cookies from the first parties. Chen et al. [8] found

that existing solutions like disabling third-party cookies or

using filter lists do not adequately prevent user tracking. Re-

cently, CookieBlock [4] was proposed as another browser-

level solution that takes a machine learning (ML) approach to

automatically classify both first and third-party cookies based

on their values before blocking the undesired subset. How-

ever, as ML is inherently error-prone, its failures within this

approach manifest in breaking websites’ functionalities due to

the deletion of necessary cookies. Furthermore, browser-level

solutions prevent the user from leveraging additional opt-out

mechanisms provided by the websites. Fouad et al. [21] found

that a significant number of websites use cookie respawning,

where a deleted cookie is automatically recreated.

In the notice-centric approach, the idea is to interact with

the cookie notices themselves, as a human would do. So far,

the solutions taking that route have relied on manually analyz-

ing a subset of cookie notices (by major Consent Management

Platforms (CMPs)) and hard-coding JavaScript snippets to

enforce privacy-respecting cookie choices [24, 38, 46]. As we

1A video illustrating this: https://youtu.be/FI0oJF03eCI

USENIX Association 32nd USENIX Security Symposium 1109

https://www.dailymail.co.uk/
https://youtu.be/FI0oJF03eCI

show later, these fail to scale to the variety of cookie notices

in the wild.

We note that the two solutions described above are orthog-

onal to each other. While the browser-level solutions override

website owners’ design and manipulate cookies, the notice-

level approach interacts with the notice as a human would,

relying on website-provided options. The Notice-centric ap-

proach also benefits from the sites’ motivation to abide by

regulations and from existing regulatory supervision. In the

browser-level approach that manipulates cookies, it is often

non-trivial to identify non-essential first-party cookies. For

example, a popular browser-level solution PrivacyBadger [22]

fails to disable non-essential cookies on www.gov.uk.

In this work, we take the notice-centric approach and pro-

pose CookieEnforcer, the first cookie enforcement controller

system that operates at the website UI level while still gen-

eralizing to a wide variety of websites, without hard-coded

rules. CookieEnforcer’s backend locates the fine-grained op-

tions for each notice, understands the semantics of the cookie

settings, and automatically extracts instructions to disable

non-essential cookies. These instructions consist of a set of

clicks which can then be executed on the frontend, a Chrome

browser extension. Achieving these objectives required (1)

building a unified understanding of the cookie control settings

that scales across web technologies and (2) providing users

with options to enforce only the necessary cookies.

At the core of CookieEnforcer are two ML models. The

first is an encoder-based classification model (based on

BERT [16]) that identifies the cookie notice, leveraging its tex-

tual features. The second model is an encoder-decoder model

(based on T5 [44]), which takes the text content and selection

status of the notice’s elements and produces the sequence of

steps required to disable non-essential cookies. Around these

models, we built several blocks to simulate user interaction

with the target website. The final outcome per website is a

JavaScript snippet that can enforce the sequence of steps from

the decision model. A distinctive aspect of CookieEnforcer is

that it provides the users with three interface options, ranging

from fully automated to semi-automated methods, which cater

to the tradeoff between automation on one hand and the sense

of confidence in cookie enforcement on the other hand.

We evaluate CookieEnforcer from three angles: end-to-end

accuracy, user perception, and scalability. First, we perform

an end-to-end evaluation on 2000 websites from Tranco [36],

assessing the core components. We show that our pipeline

correctly generates a sequence of clicks required to disable

non-essential cookies for 93.7% of the pages in our manually

annotated dataset. Second, we conduct an online user study

with 165 participants on Prolific to measure the effectiveness

of CookieEnforcer’s client implemented as a browser exten-

sion. We show that it significantly reduces the time taken to

adjust cookie settings on a set of 13 websites (0.9 seconds

as compared to 24 seconds for manual baseline). Moreover,

CookieEnforcer obtained a 37% higher score on System Us-

ability Scale (SUS) compared to the manual baseline. Third,

we run the backend of CookieEnforcer on the top-100k web-

sites from the Tranco list [36]. This measurement showcases

the low failure rate of CookieEnforcer and its ability to char-

acterize cookie notices at scale.

2 Background and Related Work

Cookie Notice Studies: Websites use cookie notices to ob-

tain users’ consent and (in many cases) allow them to control

such cookies. Consent Management Platforms (CMPs) help

websites comply with the regulations [30] by offering APIs to

manage cookie notices. These platforms are third party inte-

grations, which provide easy solutions for obtaining and stor-

ing user consent. As of 2020, the adoption rate of these CMPs

was limited to 10% of the 10k most popular websites [30],

with many websites opting to implement customized versions

of the cookie notice.

Cookie Notice Analysis: Sanchez-Rola et al. [47] conducted

a manual analysis of 2k EU websites to determine the extent of

cookie-based tracking. They found that 57% of these include

cookie notices. Degeling et al. [15] measured the GDPR’s

impact on cookie notices by manually examining the top 500

websites in each of the EU member states. They found that

62% of the websites serve cookie notices. More recently,

Kampanos et al. [33] used a list of common CSS selectors to

detect cookie notices in 17k websites in the UK and Greece.

They found that 45% of these serve a cookie notice. They

also analyzed the notices to check for compliance to find that

only a small fraction provides a direct opt-out option. Eijk et

al. [18] used a similar methodology to understand the effect

of user location on the presence of cookie notices. Matte

el al. [40] compared the user options against those stored

by the CMPs and found suspected violations. Bollinger el

al. [4] analyzed 30k websites and identified several GDPR

violations. Finally, Coudert et al. [12] used a keyword based

scoring algorithm to detect cookie notices and analyzed them

for detecting dark patterns.

Our approach differs from these works in two aspects. First,

we present a more robust cookie notice detection that does

not rely on keywords or handcrafted rules (which can easily

become obsolete). Second, we go beyond detecting cookie

notices and extracting dark patterns. We analyze the detected

cookie notices to extract and understand its fine-grained op-

tions using a deep text-to-text model. We use this understand-

ing to automatically disable non-essential cookies.

Users’ Perception and Dark Patterns: Utz et al. [53] con-

ducted a manual analysis to identify common properties of

cookie notices. They investigated how these properties impact

users’ decision to accept/reject cookies, finding that nudg-

ing has a large effect on users’ choice. Similarly, Machuletz

et al. [39] studied how the number of options and presence

of “select all” button influences users’ decisions. Kulyk et

1110 32nd USENIX Security Symposium USENIX Association

www.gov.uk

al. [35] reported that users find cookie notices annoying and

disruptive. Nouwens et al. [42] studied the effect of CMPs on

people’s consent choices by scraping designs from popular

CMPs in 10k UK websites, finding dark patterns on most of

the websites.

Automated Enforcement: The widespread availability of

dark patterns in cookie notices motivated approaches

for automated interactions on the user’s behalf. Particu-

larly, the browser extensions Consent-O-Matic [46], Cliqz-

Autoconsent [38] and Ninja-Cookie [24] automatically en-

force users’ choices for cookie notices. However, these exten-

sions employ rule-based enforcement and rely on the presence

of specific CMPs. This approach does not scale to the ma-

jority of websites implementing customized cookie notices.

Similarly, other works [4, 9, 31] classify cookies into pre-set

categories and provide options to remove these cookies from

the browser storage. In these approaches, the user is still re-

quired to interact with the cookie notices. We address this

limitation by emulating users’ interaction with cookie notices.

Another set of works [10, 27, 34] analyze privacy settings

pages to present them in a more accessible manner. Specifi-

cally, Chen et al. [10] and Khandelwal el al. [34] automatically

detect hard-to-find privacy settings on Android and the web

respectively. Habib et al. [27] analyze the privacy policies

of the websites to determine the opt-out links and presents

them to the user. These approaches operate on fairly static

webpages, and the user still has to manually interact with the

settings. Our work differs in two aspects: First, we cope with

the highly-dynamic nature of cookie notices. For example,

the cookie settings can be dynamically injected after the user

interacts with the notice (e.g., clicks on “More Options”).

Second, these systems do not model the choices’ semantics.

In CookieEnforcer, we use this modeling to enable the user

to automatically disable the non-essential cookies.

HTML Analysis Techniques To detect cookie notices,

CookieEnforcer leverages techniques from the HTML render-

ing process. HTML rendering can be abstracted as a relative

ordering of layers (HTML elements) along an imaginary z-

axis. The ordering of these layers, i.e., which element is at

the top and so on, is determined using the stacking context2

and stacking order. The stacking order refers to the position

of web elements on this imaginary z-axis. Without special

attributes, the stacking order is generally the same as the order

of appearance in the HTML. This ordering can be altered via

a special CSS attribute called z-index, where higher z-index

results in a higher position in the stacking order. The z-index

is set to “auto” for the elements where it is not specified.

Cookie Notice

Elements

Machine

Readable Notice

Instructions to

Disable Cookies

Backend Frontend

Instructions to

Disable Cookies

Detector Analyzer
Decision
Model Database

Browser
Extension Enforcer

Figure 1: An overview of CookieEnforcer’s components. Backend

generates the machine readable representation of cookie notices

whereas Frontend uses them to disable non-essential cookies.

3 System Overview

The three objectives of CookieEnforcer are to transform the

cookie notices into a machine readable format, determine the

cookie setting configuration to disable non-essential cookies

(whenever possible), and generate a set of instructions that can

be used to enforce this configuration. A high level overview

of CookieEnforcer is in Fig. 1; it utilizes two components to

achieve its objectives: backend and frontend.

Backend: The backend of CookieEnforcer consists of three

modules. The Detector module (Section 4) takes as input a

domain name and identifies the web element corresponding

to a cookie notice (if present). Then the Analyzer module

(Section 5) mimics the behavior of a human user by dynami-

cally interacting (performing click actions) with the cookie

notice to locate all the adjustable settings. This module ac-

counts for the cases where settings become unhidden or are

dynamically injected upon user interaction. It outputs a list of

all interactive elements and their associated text description.

Next, the Decision Model (Section 6) utilizes semantic text

understanding to decide on the sequence of actions to disable

the non-essential cookies.

Frontend: The frontend consists of the CookieEnforcer

browser extension which fetches the information for each

website from the backend and allows the users to disable

the non-essential cookies. The extension allows the users to

choose between three interfaces (Section 7.2) that provide

users with control over the level of automation. Finally, the

Enforcer (Section 7.1) module performs the actions to disable

the non-essential cookies, with or without user intervention

– depending on the interface type selected by the user. Note

that the cookie notice might not appear if the cookie settings

have been decided on before (by the user or the extension).

Challenges: In order to achieve the goals of CookieEnforcer,

we must overcome three main challenges:

• First, CookieEnforcer must identify the cookie notice

present on the website. This problem is challenging due

to the flexible nature of HTML implementation. For ex-

ample, prior work [18] that used CSS selectors to detect

cookie notices had a high false negative rate of 18%.

2For more details on stacking contexts: https://web.dev/learn/
css/z-index/#stacking-context.

USENIX Association 32nd USENIX Security Symposium 1111

https://web.dev/learn/css/z-index/#stacking-context
https://web.dev/learn/css/z-index/#stacking-context

• Second, CookieEnforcer must extract the configurable

settings along with their context from the cookie notice.

This task is challenging as the interactable elements can

(1) be dynamically injected in the notice using JavaScript

and (2) exhibit dynamic effect when clicked. This chal-

lenge renders a static analysis approach ineffective. For

example, in Fig. 3(b), Save Settings button submits user

preferences whereas the switch disables/enables cookies.

• Third, CookieEnforcer must understand the context of

each cookie setting. This task is also challenging since

the context of the settings (provided by the text describ-

ing them) comes from free form natural language, and

is diverse. Keyword-based approaches cannot cope with

the diversity of text in cookie notices. For example,

on www.virginmedia.com, the element that reveals fine-

grained settings has the text: “Open the cookie jar”.

4 Cookie Notice Detector

The Detector module detects the presence of cookie notices

on webpages. As indicated earlier, this task is challenging as

the open nature of HTML allows different implementations

of the cookie notices. For example, it is possible to design

the cookie notices as floating pop-ups with custom elements,

inline frames (IFrames), shadow-roots,3 or simply as div ele-

ments. CookieEnforcer addresses these challenges by relying

on the global stacking order of HTML.

4.1 Candidate identification

A website serving a cookie notice is expected to surface the

notice over the content of the websites to ensure that the

user sees the notice and has the opportunity to provide con-

sent. Hence, the elements corresponding to the cookie notices

should be higher in the stacking order of the HTML.4 As

described in Section 2, the stacking order determines which

element the user sees on the top most layer of the webpage.

The Detector module leverages this invariant behavior. It

looks for non-negative z-index attributes within the stacking

context to mark candidate elements. However, in practice, not

all implementations of cookie notices utilize the z-index to sur-

face the cookie notices. For example, the website www.gov.uk

shows the notice as the first element in the HTML tree, with-

out utilizing z-index. To capture such instances, the Detector

module expands the candidate set to include the first three and

the last three visible elements of the webpage. We acknowl-

edge that the latter is a heuristic stemming from our empirical

observation that, in the cases where the z-index is not used,

the notice is present in the top or the bottom of the DOM tree.

3For more details: https://developer.mozilla.org/docs/
Web/Web_Components/Using_shadow_DOM

4Technically, cookie notices should be higher in the stacking order of the

HTML within the root stacking context. We omit references to the stacking

context for simplicity.

4.2 Text Classifier

After obtaining the candidates, our goal is to identify the

cookie notice element. We rely on the text in the candidate

elements and use a text classifier to perform this task.

Baseline Approach: One approach to perform this classifica-

tion is to use a keyword-based model as the cookie notice is

expected to convey information about the use of cookies. How-

ever, this approach is not effective for cases which provide

notice and choice without explicitly talking about the cookies.

For example, when accessed from the United Kingdom, the

cookie notice on www.arizona.edu reads: I have read, under-

stand, and consent to UA’s enrollment management Privacy

Policy. Consent, Decline. Therefore, we need a classification

model that relies on the text semantics to determine if the

candidate element is a cookie notice.

Classifier Choice: We use a text classifier based on BERT

(Bidirectional Encoder Representations from Transformers),

a Transformer-based encoder pretrained on masked language

modeling and next sentence prediction objectives [17]. BERT

has been the model of choice for achieving strong perfor-

mance on a variety of text classification tasks, such as senti-

ment analysis and topic classification [51]. The key advantage

of such a large pretrained model is that it is readily trained on

a large corpus, so it can be finetuned on a downstream task

with a relatively small dataset. In this work, we finetune the

BERTBase-Cased variant (case-sensitive with 12 layers).

Training/Testing Sets Curation: We create the data for the

classifier by sampling 250 websites from the top-50k most

popular website list from Tranco [36]. We first extract the

candidate elements for each website from this set by using the

candidate identification methods. One of the authors then man-

ually annotated each website, indicating whether it showed

a cookie notice. The annotation task involved looking at the

screenshots of the webpages and identifying if a cookie notice

was present. As the task is fairly easy for an expert, we only

require one annotation per website. We obtain 112 websites

with cookie notices and 138 without cookie notices. We ex-

tract at most two candidate elements from each website to

obtain a total of 505 candidate elements, 112 of which are

notice elements. We keep aside a test set of 100 candidates, 50

cookie notices elements and 50 non-cookie notice elements.

For each candidate, we first extract its text by concatenating

the text of all its elements. For example, in Fig. 3(a), the input

text for the classifier would be: We use cookies to improve

your browsing experience...to manage your cookie settings,

click “More Information”. Accept Cookies More Information.

Training and Performance: Next, we finetune the model on

the training set with 62 notice elements and 343 non-notice el-

ements. We use oversampling to ensure that both classes were

represented equally. We trained the BERTBase-Cased model

with a learning rate of 2e−5 for 10 epochs and used the last

1112 32nd USENIX Security Symposium USENIX Association

www.virginmedia.com
www.gov.uk
https://developer.mozilla.org/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/docs/Web/Web_Components/Using_shadow_DOM
www.arizona.edu

Instances Support Recall Precision F1-score

Not Cookie notice 50 0.96 0.98 0.97

Cookie notice 50 0.98 0.96 0.97

Total Pages 100 0.97 0.97 0.97

Table 1: Classifier’s performance on the test set.

model checkpoint for evaluation. Table 1 shows the perfor-

mance of the classifier on the test set. The classifier achieves

an average F1-score of 0.97, indicating that the model learned

to distinguish cookie notice elements from the rest. Analyz-

ing the failure cases, we observe that, in a few cases where

the text contained topics other than cookies, the model was

confused. We attribute this to the fact that as text about other

topics increase, the information about cookie notices present

in the text gets diluted, resulting in mis-classification.

5 Cookie Notice Analyzer

The Analyzer module takes the HTML element correspond-

ing to the cookie notice as its input and extracts the cookie

settings, their current state (selected or not-selected), and the

text corresponding to the settings.5

The flexible nature of HTML implementations presents two

challenges for the Analyzer module. First, cookie notices are

frequently dynamic. On several websites, the elements corre-

sponding to cookie settings only load when another button is

clicked. This renders the static analysis of HTML ineffective.

Second, the fine-grained cookie settings in many of the cookie

notices are initially hidden. In order to change the fine-grained

settings, users have to navigate to a different view (usually by

clicking buttons like “Cookie Settings”). This second view

is usually a different element in the DOM tree. As a result,

CookieEnforcer has to keep track of the browser state with

respect to the different cookie elements as well as different

views of the cookie notice.

CookieEnforcer addresses these challenges by mimicking

the actions of real users: it interacts with the cookie notices

and observes the behavior of the webpage after each interac-

tion. The Analyzer starts by first discovering the elements in

the notice with which the user can interact. Next, the Analyzer

clicks on each element to identify any dynamically injected

elements. Finally, it identifies the cookie settings and extracts

the text corresponding to those settings.

5.1 Identifying Interactive Elements

CookieEnforcer leverages the tabbing feature of HTML to

identify the interactive elements within the cookie notice.

This feature allows users to access interactive elements via

the Tab key. Prior work, analyzing the HTML pages to de-

tect privacy settings, also used this technique [34]. The key

5Video with steps is at: https://youtu.be/ViyKxbY3rAM.

(a) (b)

Figure 2: Examples of different types of text extraction. (a) Switch

on www.horiba.com has no aria-label, text is extracted via HTML

code and on-screen distance. (b) The label for switch on www.

justinbeaber.com has aria-label as Online Advertising.

idea is that, since the users need to interact with the cookie

settings to adjust the preferences, we can simulate this inter-

action via tabbing and obtain a set of candidates for cookie

settings. By relying on this invariant behavior of the HTML,

CookieEnforcer extracts the set of candidate cookie settings.

This set of candidates does not contain dynamically in-

jected elements, which are loaded as a result of an interaction

with another element. For example, in Fig. 3, the settings

appearing after clicking on “More Information” button are

dynamically loaded. The Analyzer module recursively checks

for these elements by clicking each visible element from the

candidate set and querying again to find new elements.

After obtaining the candidate elements set, the Analyzer

module excludes the elements that redirect the user to a differ-

ent page or open a separate tab. This way, we filter out links

for cookie policies, explanations about cookies, and cookie

vendor details. A side effect of this decision is that the module

also filters out elements which take users to dedicated web-

pages for cookie settings. We further cover this in evaluation

(Section 8.1) and discuss the usability implications of this

decision in Section 9.

5.2 Extracting Cookie Settings

At this point, we the analyzer has found all interactable el-

ements in the cookie notice. The next step is to extract the

text that describes these settings. This text, combined with

the state of the element (selected/not-selected) is needed for

the decision model (Section 6) to semantically understand the

cookie notice.

Here, we use two independent signals to extract descriptive

and concise text corresponding to an HTML element. First,

we leverage the aria-label attribute,6 wherever available. This

6For more information: https://www.w3.org/TR/wai-aria/
#aria-label

USENIX Association 32nd USENIX Security Symposium 1113

https://youtu.be/ViyKxbY3rAM
www.horiba.com
www.justinbeaber.com
www.justinbeaber.com
https://www.w3.org/TR/wai-aria/#aria-label
https://www.w3.org/TR/wai-aria/#aria-label

attribute allows assisted technologies to read and consume

webpages, thereby making web content accessible to users

with disabilities. For example, the aria-label attribute for

the highlighted switch in Fig. 2(b) has a value of “Online

Advertising” which describe what setting the switch adjusts.

In the absence of aria-label attribute, we design a text ex-

traction technique inspired by Khandelwal et al. [34]. For

each interactable element, it searches for the closest parent

node in the DOM tree that contains text. However, this parent

node might contain other text such as the description of the

setting. For example, in Fig. 2(a), ideally we would like the

text corresponding to the switch to be Functionality cook-

ies, as opposed to Functionality cookies together with the

description below it. We address this limitation by relying

on the on-screen distance to identify the element describing

the setting. Specifically, we find the closest (on-screen) text

containing element from the cookie setting. In cases with

multiple elements with the same on-screen distance, we break

the tie first using the x coordinate (and then the y coordinate,

if needed). For example, in Fig. 2(a), the closest text element

for the switch (marked with the box) is Functionality cookies.

The final step in this stage is indexing each extracted

HTML element. Prior work [25] has used XML Path Lan-

guage (XPath) [11] to reference the HTML elements. How-

ever, we empirically found that, due to the dynamic nature of

the notices, XPaths for cookie notices are highly vulnerable

to change upon page updates (e.g. in the DOM tree, notice

element can be injected before or after another div element is

loaded for ads); hence they are not suitable. Instead, we rely

on the querySelector() HTML function7 (which returns

the element matching a specified CSS selector or group of

selectors in the HTML). Using this function, we construct a

path that can be used to identify the elements, even when the

placement of the element is dynamic.

5.3 Execution Roles

In order to represent a cookie notice in a machine readable

format, CookieEnforcer determines the execution role of the

elements by interacting (performing the click action) with

them and analyzing the effect on the webpage. We define the

execution role for all interactive elements within the cookie

notice as described in Table 2. These roles categorize the

possible outcomes when the user clicks an element in the

cookie notice. Type A elements allow a user to adjust their

preference for a particular setting. Type B elements reveal

new cookie notices. Type C elements reveal hidden settings

within a cookie notice (e.g., “Functional and Personalization”

tab in Fig. 3). Finally, Type D elements are used to submit

the choices. Type D elements typically conclude the users’

interaction with the cookie notice. A detailed description of

the above types is provided in Appendix A.1

7For more details: https://developer.mozilla.org/en-US/
docs/Web/API/Document/querySelector

(a) (b)

A

B

C

D

Figure 3: Cookie notices on www.nobelbiocare.com showing el-

ements with different execution roles. (A) Type A element used to

enable/disable Analytics cookie. (B) Type B element reveals the

second banner shown on the right. (C) Type C element reveals the

hidden settings. (D) Type D element to submit the preferences.

Type Execution Role Example

A
Configuring

choices

A switch enabling/disabling marketing cook-

ies

B
Uncovering hid-

den notices

Cookie Settings button in Fig. 3 (B) that re-

veals another notice when it is clicked

C
Uncovering hid-

den settings

Analytics and Tracking Cookies tab in Fig. 3

(C) that reveals setting which was previously

not visible

D Enforcing choices
Accept Button in Fig. 3 (D) that completes

the users’ interaction with the notice.

Table 2: Definition of the execution roles with examples.

6 Decision Model

At this stage, we have extracted all the interactable cookie

settings, associated them with text, identified their execution

role, and determined their addresses. The next step is to de-

termine the actions required to disable non-essential cookies.

We employ a decision model that understands the context (as

provided by the setting text and the execution role) in which

the user interacts with the settings. We then use the contexts

of all the settings to determine the configuration required to

disable the non-essential cookies.

6.1 Why Natural Language Understanding?

To determine the step required to disable cookies,

CookieEnforcer needs to parse the different settings across

views of the cookie notice and semantically understand them.

One approach to perform this task is to simply deselect all

the enabled options and determine which element to click to

save the configuration. However, this approach has two main

limitations. First, the existing settings are not always enabled

or disabled by default. The user might be required to interfere

to enable/disable cookies (e.g., www.microsoft.com). Second,

the cookie setting might be worded in a way where the ele-

ment needs to be selected to disable non-essential cookies.

1114 32nd USENIX Security Symposium USENIX Association

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
www.nobelbiocare.com
www.microsoft.com

For example, the option can be: Only allow necessary cookies.

Deselecting this option will lead to undesirable outcomes.

Hence, it is important to account for the text of the element.

Another approach to formulate the task is: given the text as-

sociated with the element and its execution role, determine if

it should be clicked. The major drawback with this approach

is that it models the task as a series of decisions without con-

sidering the interplay between these decisions. For example,

if a site shows three buttons: “Accept all,” “Save custom pref-

erences,” and “Reject all,” we want to click on “Reject all.”

However, if another site only shows “Save custom preferences”

and “Accept,” we want to select “Save custom preferences,”

so it is sub-optimal to treat them independently.

Thus, we observe that an effective decision model should

meet two requirements: a) semantically understand the text

corresponding to the options and b) determine the series of

actions required by simultaneously considering for all options.

6.2 Extracting Actions to Disable Cookies

Our goal here is to develop a decision model that takes in the

text corresponding to all the cookie settings and their current

state (selected or not-selected), and determines the actions

required to disable the non-essential cookies. We model this

problem as a sequence-to-sequence learning task where the

model gets the text and the state and determines the steps

required. Specifically, we train a Text-To-Text Transfer Trans-

former (T5) model as the decision model.

The T5 model, introduced by Raffel et al. [44], proposes

a unified framework that treats all NLP tasks as text-to-text

problems. This model has been shown to have a strong perfor-

mance on a variety of NLP tasks ranging from classification

to generation problems [23, 29, 48]. The general approach

of serializing structured steps into text has also been used to

achieve state-of-the-art results in the data-to-text generation

community [28, 32]. For our purposes, we fine-tune a T5-

Large model (770 million parameters) to produce a sequence

of steps (clicks) required to disable the cookies.

Guided by the elements’ execution roles (Table 2), we first

transform the information stored about the cookie notice in a

single sentence format. Specifically, Type A elements have a

state associated with them (selected/not-selected) whereas the

other elements do not. The state of Type A elements allows

the model to understand that these elements are configurable.

Then we train the model to produce a text indicating which

elements to click, given the text representation. The input and

output for the T5 model would take the following format:

Input-Output format for the Decision model.

Input: < notice_0_tag_0> - <notice_0_tag_0_text>,

<notice_0_tag_0_state> || <notice_0_tag_1> - <notice_0_tag_1_text>,

<notice_0_tag_1_state> - . . . **

<notice_1_tag_0> - <notice_1_tag_0_text> - . . . <end>

Output: Click <notice_0_tag_0> | Click <notice_0_tag_2> ** Click

<notice_1_tag_2>

The ** symbol separates multiple notices’ contents in the

input and the output. The || symbol separates the settings

options within the same notice in the input. The | symbol

separates the click steps within the same notice in the output.

Note that the state for an element is only defined if it belongs

to Type A. For example, Table3 shows the input and output

for the T5 model corresponding to the cookie notices on

www.askubuntu.com shown on (1) and (4) in Fig. 4.

We note here that some websites provide an option to opt-

out of non-essential cookies on the first cookie notice but

can have pre-selected options on the second. When creating

the training data, we chose to disable the cookies from the

first notice only. This emulates the behavior of the human

who would not click to see more options if the option to

reject non-essential cookies was provided. The model learns

this behavior too upon training. This way, the decision model,

given all the options available on a given webpage, can predict

what actions to take to disable non-essential cookies.

6.3 Training and Performance

To create the dataset for the decision model, we first sample

300 websites with cookie notices from Tranco’s top-50k pop-

ular website list [36]. Next, we analyze the sites using the

Detector and the Analyzer module to extract the options and

their states (selected or not-selected). Then one of the authors

manually determined the series of clicks required to disable

the non-essential cookies. This resulted in a dataset of 300

labeled websites. Next, we keep 60 websites aside for the test

set. We further ensure that the test set consists of customized

in-house notices as well as notices from different CMPs to

ensure diversity.

We test the performance of the model by measuring its

quality via the exact match percentage metric: the generated

sequence should be exactly the same as the ground truth. We

find the exact match % of the model on the test set to be 95%,

indicating that the model has succeeded in learning the task

across a variety of websites. For example, take the input:

Input : switch0 - do not allow non-essential cookies, not selected ||

button1 - save || button2 - accept <end> .

The model correctly generates:

Output : Click switch0 | Click button1.

This selected wording (involving a double negative) was not

present in the training set. The most similar phrase was: do not

sell personal information. The failure cases included notices

USENIX Association 32nd USENIX Security Symposium 1115

www.askubuntu.com

Website Input Output

netflix.com
button1 - learn more about our use of cookies and information. || button4 - accept || button5 - reject

|| button6 - personalise my choices || button7 - close ** button0 - close ... || save settings <end>
Click button5.

tata.com button0 - sweet! || button1 - sorry, i’m on a diet <end> Click button1.

askubuntu.
com

button0 - customize settings || button1 - accept all cookies ** switch3 - performance cookies, not

selected || switch4 - functional cookies, not selected || switch5 - targeting cookies, not selected ||
button6 - confirm my choices || button7 - accept all cookies || button8 - cancel <end>

Click button0 ** Click button6.

Table 3: Examples demonstrating the application of Decision model on cookie notices for a few websites. We show the
screenshots corresponding to these cookie notices in Fig. 11 (in Appendix A.4). Note that for www.tata.com, the options are
non-standard but the decision model is still able to reject the cookies. More examples can be found in Table. 9.

where the number of setting options is large and the input

to the model is truncated. Note that we further evaluate the

performance of the decision model with a larger dataset in the

end-to-end evaluation (Section 8).

It is worth noting too that the exact match % is a conser-

vative metric. In practice, it can be relaxed depending on the

output sequence. For example, the relative order of clicking on

two switches is not important, but clicking the “Save” button

before clicking a switch might give undesirable outcomes.

Table 3 shows three examples from applying the decision

model on a diverse set of cookie notices (the screenshots for

these notices are shown in Fig. 11 of Appendix A.4). Notably,

we see that, for www.netflix.com, there are two views for the

cookie notice with second view consisting of fine grained

options. However, since the first view contains a reject but-

ton, the decision model only clicks on it. Another interesting

example is www.newscientist.com. Apart from the regular

switches, the second view for the cookie notice on this website

contains an option to object to legitimate interests for basic

ads. This option can be easily missed by the users as they have

to expand an additional frame to see that. CookieEnforcer not

only finds this option, but also understands the semantics and

decides to object. These examples showcase that the model

learns the context and generalizes to new examples.

7 Frontend

The frontend of the CookieEnforcer is a browser extension

for Google Chrome. It has two components: the Enforcer

module and the user interface.

7.1 Enforcer

The frontend receives the set of instructions for a specific

website from the backend.8 These instructions contain the

CSS selector path for the cookie notices. Further, for all

cookie setting elements, the instructions also contain 1) path

of the element relative to cookie notice, and 2) desired state of

the setting element. Using the CSS selector, the extension

first determines whether the cookie notice is present. Then,

8We discuss the deployment options to deliver instructions in Section 9

2

Extension

1

First Notice

4

Second NoticeExecuted Javascript

3

Figure 4: A typical workflow of CookieEnforcer extension

with semi-automated enforcement. (1) First the user visits www.

askubuntu.com. (2) User activates the plugin and instructs the

extension to disable non-essential cookies. (3) CookieEnforcer re-

trieves the information (locally) and generates the Javascript required.

(4) Adjusted settings before submitting preferences.

it accesses each cookie setting using the relative paths and

adjusts it to get the desired state. For example, for a slider, if

the desired state is disabled but the current state is enabled,

the Enforcer clicks on the element to change the state. A more

detailed example, including a snippet of the Javascript code

is shown in the Appendix A.2.

Why Not Replay Cookies: An alternate solution to perform-

ing the clicks at client side is to extract the actual cookies set

by websites after setting the optimal configuration in the back-

end and replay them at the client side at run-time. There would

be no need to perform the clicks in this case. Note that the

backend component of CookieEnforcer is still required to de-

termine the optimal configuration. This solution, however, has

several drawbacks: (1) The websites do not need to store con-

sent string as a cookie - they can store it at other locations in

the browser. For example, https://seminolestate.edu stores

the consent string in local storage. (2) Some cookies can also

1116 32nd USENIX Security Symposium USENIX Association

netflix.com
tata.com
askubuntu.com
askubuntu.com
www.tata.com
www.netflix.com
www.newscientist.com
www.askubuntu.com
www.askubuntu.com
https://seminolestate.edu

have encrypted ids before the preferences. In these cases, it

not clear how the cookies interacts with the server database

and whether it breaks the usability. (3) In some cases, cookies

are set before the user interacts with the notice and replayed

cookies do not overwrite existing cookies.9

Additionally, we note that one major advantage of per-

forming clicks over replaying cookies is that it helps

CookieEnforcer identify whether there has been a change in

the cookie notice implementation on a website. For example,

if a website changes CMPs, the cookie replay solution will be

ineffective. However, CookieEnforcer can detect the staleness

of its paths and trigger a re-analysis to update them. Gener-

ally, performing clicks is a preferable solution as it works

within the framework provided by the websites, which can be

expected to remain an invariant due to usability aspects.

7.2 User Interfaces

The core functionality of CookieEnforcer is to disable non-

essential cookies (wherever possible). As discussed above,

this requires CookieEnforcer to perform clicks on behalf of

the users, who may have different levels of comfort with such

a form of automated enforcement. To account for such prefer-

ences, CookieEnforcer consists of three interfaces (described

below) that allow various degrees of control. Each interface

comes with its own usability aspects and lies on one point of

the tradeoff line between full automation and full control. We

provide a discussion on this trade-off in Section 8.2.2.

Semi-Automated Enforcement: Upon detecting the cookie

notice, the user first activates the extension by clicking on

its icon, thus showing an “Enforce Cookies” button on the

extension popup. Clicking on it activates the Enforcer module

(discussed below) which performs the actions. This mode

allows the users to see how the enforcement is happening

by artificially introducing delays between the clicks. The

workflow for this mode is shown in Fig. 4. A demo for this

mode is shown at https://youtu.be/gasSjHo8Zwk.

Fully Automated Enforcement: The extension detects the

cookie notice and automatically triggers the Enforcer module

to disable non-essential cookies. Furthermore, the extension

hides the cookie notice(s) and performs the clicks in the back-

ground so that the browsing experience of the users is not

impacted. Thus, in this mode, the user does not interact with

the cookie notice or the extension. A demo for this mode is

shown at https://youtu.be/f8rtTUwIHlU.

Informed Enforcement: The extension first checks whether

the cookie notice is present. Upon detecting the cookie notice,

the website then overlays a pre-recorded GIF showing the

actions that the extension will perform. The user can see the

GIF and click to provide informed consent to the extension,

which then triggers the Enforcer module. A demo for this

mode is shown at https://youtu.be/eh7a35oaKlU.

9We noticed such behavior on https://ffii.org/.

Evaluation Dataset: 2000 domains | 1000 with cookie banners

2000 Domains

Detector Analyzer Decision Model

Sites with Banners: 986 Correctly Annotated: 950 End to End Accuracy : 93.7%

Figure 5: The results from evaluation of CookieEnforcer shows that

the system performs well on the test set.

8 Evaluation

We perform multiple experiments to evaluate the accuracy,

usability and stability of CookieEnforcer, as well as to show-

case its utility on a large-scale dataset. We seek to answer

these questions:

Q1. What is the end-to-end performance of CookieEnforcer?

Q2. Does CookieEnforcer improve the user experience?

Q3. Can CookieEnforcer analyze cookie notices at a scale?

8.1 End-to-End Evaluation

We conducted a manual end-to-end quality evaluation of

CookieEnforcer on 2000 sites to assess the accuracy of ex-

tracting a machine-readable representation of cookie notices

(if present) on previously unseen domains. Fig. 5 provides an

overview of these steps. We also evaluated the generalizability

of CookieEnforcer by analyzing sites from different locations

(London, California, and Illinois). Finally, we demonstrated

the temporal stability of the extracted cookie notice represen-

tations, indicating the feasibility of offline deployment.

Dataset: The evaluation dataset for CookieEnforcer con-

sisted of 2000 diverse domains, including 250 from the top-1k

of the Tranco list [36] and the remaining domains in the 1k-

50k range. To increase the likelihood of encountering cookie

notices, the evaluation was conducted from a GDPR-covered

location (London, UK) via a VPN. The dataset for the Detec-

tor module was manually annotated10 by taking screenshots

of the websites and judging the presence of a cookie notice.

Annotating the dataset for the Analyzer module beforehand

was infeasible due to lack of unique identifiers for cookie set-

ting options, so we manually verified the presence of cookie

settings after passing the data through the Analyzer. To create

the annotated dataset for Decision Model, we obtained input

strings from the Analyzer module and manually wrote the

expected output strings required to disable cookies.

Findings: The evaluation set’s 2000 domains were first pro-

cessed by the Detector module. The module identified 986

domains as having cookie notices, with 2 false positives and

16 false negatives. The Analyzer module was then used to

identify the various cookie settings present in the notices

10Since these tasks are objective/deterministic in nature, one of the authors

did the manual annotation.

USENIX Association 32nd USENIX Security Symposium 1117

https://youtu.be/gasSjHo8Zwk
https://youtu.be/f8rtTUwIHlU
https://youtu.be/eh7a35oaKlU
https://ffii.org/

from these domains. Manual verification was performed, and

a website was counted as an error if the Analyzer missed at

least one cookie setting. The Analyzer correctly identified the

options in 950 domains. It also filtered out the false positives

from the previous stage as the elements on those pages only

had out-of-page links. The Decision Model was applied to

the elements from the remaining 950 domains. The model’s

outputs were compared to the manually written ones using

exact sequence match as the metric (cf. Sec. 6.3). The deci-

sion model accurately predicted the steps for 937 domains,

resulting in an accuracy of 93.7% for CookieEnforcer in the

end-to-end evaluation.

Error Analysis: The Detector module failed to detect cookie

notices on a total of 16 domains. Seven of these domains

had the notice present in a “shadow-root” element11, which is

rendered separately from the document’s main DOM tree and

is inaccessible using Selenium. Four domains had notices that

were only displayed for a short time (∼6 seconds) and were

missed by the tool due to its included delay to allow all ele-

ments to load. The remaining four websites had notices with

missing z-index attributes. The Analyzer module failed on 36

domains. In 12 of these, the cookie settings were present on

a different URL and were filtered out, resulting in erroneous

representation. On the remaining 22 domains, the cookie no-

tice had non-standard behavior, such as elements that were not

reachable via tabbing, long delays between the first and sec-

ond notice, or non-standard implementation of “checkboxes”

and “radio” buttons. Finally, the Decision Model failed on

domains with large numbers of settings, due to model input

truncation12. For example, https://www.blu-ray.com/ has

over 100 settings, leading to a very long input.

Privacy Implication of Errors: In CookieEnforcer, errors

can arise due to: (a) the Detector missing the notice (b) the

Analyzer missing cookie settings, or (c) the Decision Model

resulting in incorrect instructions. Detection errors (16/1000)

and errors in the decision model due to input string size

(15/1000) do not pose a privacy risk as CookieEnforcer does

not take any actions on these websites and leaves the notice

for the user to interact with. However, instances where the An-

alyzer misses some settings may lead to keeping non-essential

cookies enabled, posing a privacy risk. These instances oc-

curred 3.6% of the time in the evaluation set.

Generalizability: To evaluate CookieEnforcer’s generaliz-

ability, we analyzed cookie notices from 937 correctly anno-

tated websites in the testing set via VPNs in London (LDN),

California (CA), and Illinois (IL). Comparing LDN vs. CA,

70.6% of the analyzed domains had the same notice while

17.2% did not show a cookie notice when accessed from CA.

The remaining 12.2% had different notices, some of which

provided a “Do Not Sell My Information” link or lacked fine-

11For more details: https://shorturl.at/hiuY6
12We ran the T5 model inference with 256 tokens only, but it is possible to

run it with a much larger number.

grained opt-out options. However, CookieEnforcer correctly

generated instructions to disable non-essential cookies for

these domains. We note that different notices based on loca-

tion do not pose issues during deployment because we can

identify the location of web requests and serve the appropri-

ate instructions. When comparing domains accessed from

CA vs. IL, we found that only 1.2% websites had a different

notice. For example, https://www.prada.com/ had an option

to reject cookies on the first notice when accessed from CA,

but not from IL. Notably, CookieEnforcer generated accurate

instructions to disable non-essential cookies for all websites

with different notices.

Feasibility of Offline Deployment: We evaluate the feasibil-

ity of offline deployment by performing temporal analysis on

the generated instructions Specifically, we generate instruc-

tions to disable non-essential cookies on websites when ac-

cessed from London and verify their stability over one month.

We note that we only use the 937 correctly annotated websites

as we want to measure the stability of generated instructions.

For these sites, we generate the instructions on December

5, 2022 and then manually verify whether the non-essential

cookies are disabled using these instructions over a period

of one month. At the end of this period, we find that the in-

structions only fail in less than 1% of the websites, primarily

because the cookie notice has either disappeared or changed.

This demonstrates the stability of CookieEnforcer-generated

instructions over time. For cases where the notice changed,

CookieEnforcer was able to re-analyze and generate the cor-

rect instructions. We also note that the evaluation set included

websites with frequent layout changes, such as news websites.

Comparison with Existing Tools: We also compared the

performance of Ninja Cookie [24] and Consent-o-matic [46]

(both discussed in Sec. 2) with CookieEnforcer on our eval-

uation set (250 websites out of the 1000 with notices). We

define the failure metric as the fraction of websites on which

the cookie notice remained visible, despite the availability

of the plugin. We observe that Ninja Cookie fails in 50% of

the websites, whereas Consent-o-matic fails in 76% of the

websites, as compared to the failure rate of 9% for CookieEn-

forcer. Further, both plugins appeared to hide the notice only

on those websites that included CMPs, which is consistent

with a rule-based approach. Note that a rule-based approach

for CMPs has pitfalls as the websites can adapt the CMP to

their use case by customizing settings.

Even with the variations in the HTML and the dynamic

nature of elements in the cookie notice, our pipeline accurately

generates the steps required to disable non-essential cookies

in 937/1000 websites (overall accuracy of 93.7%). Unlike the

alternative in-browser solutions, CookieEnforcer’s errors do

not lead to breaking functionality and carry a minimal risk

(3.6%) of keeping non-essential cookies enabled.

1118 32nd USENIX Security Symposium USENIX Association

https://www.blu-ray.com/
https://shorturl.at/hiuY6
https://www.prada.com/

8.2 User-based Evaluation

We conducted a user study on Prolific to evaluate

CookieEnforcer with 165 US-based participants who had a

> 95 approval rate and at least 10 accepted submissions on

the platform. 52% of participants were female, 42% were

male, and 48% held a Bachelor’s degree. The average age

range was 25-34 years. The study, which was approved by the

IRB at our institute, lasted an average of 17.3 minutes with a

median time of 15.4 minutes. Participants were paid $3 and

no personally identifiable information was collected.

8.2.1 Study Design

We evaluate the usability of interfaces of CookieEnforcer by

designing a within-subject study, where the same user was

exposed to four conditions. The interfaces of CookieEnforcer

(Section 7.2) make up three of the conditions, while the man-

ual baseline is the last condition. We instructed each par-

ticipant to visit four websites and disable all non-essential

cookies using these conditions. As the goal of this study was

to measure the usability of the extension, we did not obscure

the goal of disabling cookies in the experiment.

Website Selection: As our primary objective in this study is to

measure the usability of CookieEnforcer, we require that the

participants are able to see and interact with the cookie notices

on the selected websites. Therefore, to minimize overlap with

users’ browsing history, we purposefully select a set of 13

non-popular websites. Of the 13 websites, 10 websites use 9

distinct Consent Management Platforms (CMPs) whereas 3

websites implement their own cookie notice. Additionally, 6

websites have an option similar to “Reject All” that allows

disabling multiple cookies with one click. These selection

criteria ensure that the selected websites have a diverse set of

cookie notices. More details on the website selection and a

full list of websites can be found in Appendix A.3.2.

Study Flow: During the study, participants first install the

CookieEnforcer extension from the Google Chrome Web-

store. Then four websites are chosen at random from those in

our pool such that the browser has no cookies for them. In the

manual condition, the participants interact with the cookie no-

tice to disable the non-essential cookies whereas, in the other

three conditions enabled by the extension (cf. Section 7.2),

the participants use the given interface to complete the task.

For each interface type, the participants are shown how to

perform the task on a sample website before they attempt the

task. Note here that the order of conditions, as well as condi-

tion assignment per website, were randomized to counteract

learning and fatigue effects.

As the participants interact with each cookie notice, we

record the total time and the number of clicks it takes for them

to adjust the cookie settings. We define the start time as the

time when the website has loaded in the browser (measured

via the extension). We also monitor the elements clicked,

Manual
Enforcement

Informed
Enforcement

Semi-Automated
Enforcement

Fully Automated
Enforcement

Interface Type

0

10

20

30

40

50

60

70

80

90

Sy
st

em
 U

sa
bi

lit
y

Sc
al

e

SUS
Time

0

10

20

30

40

50

60

70

Ti
m

e
in

 se
co

nd
s

Figure 6: The results from the usability study showing the variation

in usability and time needed for enforcement with different interface

types. We find that the usability score of Fully Automated mode is

significantly higher than the manual baseline (p = 1.2e−16).

which are used to determine the end time for the task. Af-

ter each task, the participants fill the System Usability Score

questionnaire [6]. After completing all tasks, the participants

are required to fill a post-study questionnaire consisting of

two questions: (1) Their preferred interface choice for setting

cookie preferences (including the manual baseline). (2) Their

level of comfort with the error rate of CookieEnforcer. Specif-

ically, we first informed the participants that CookieEnforcer

could make errors that might result in some tracking cookies

being enabled. We then asked them about the error rate they

would be comfortable with. After both questions, the partic-

ipants were asked to explain their choice in an open-ended

question. Finally, there was an open-ended question asking

for general feedback at the end of the survey. More details

about the user study are included in the Appendix. A.3.

Ethical Considerations We collect user clicks as part of

the study to determine the time taken to finish the tasks and

estimate user effort. Participants of the study are made aware

of this ahead of time. Further, we note that there is a safeguard

built in the plugin which allows data transfer only for websites

in the user study. Additionally, we instructed the participants

to delete the extension at the end of the study to ensure that

we do not collect any data outside of the user study.

8.2.2 Findings

We assess the usability of the four interfaces (three interfaces

for CookieEnforcer and the manual baseline) using two met-

rics: 1) usability score as measured by the SUS survey and 2)

user effort as measured by the time taken by participants to

disable non-essential cookies.

Fig. 6 compares the System Usability Scale (SUS) score

for the four interface types. SUS scores [3] are used in the

literature to evaluate different UI designs. With an average

score of 54, the fully automated interface outperforms the

USENIX Association 32nd USENIX Security Symposium 1119

Manual Informed Semi-Auto Full-Auto
Interface Types

0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
ta

ge
 o

f P
ar

tic
ip

an
ts

(a) Preference for interface type.

0% 10% 20% 30% 40% 50% >60%
% of Participants

0.0

0.2

0.4

0.6

0.8

1.0

To
le

ra
nc

e
C

D
F

(b) Error Tolerance for CookieEnforcer.

Figure 7: (a) Majority of the participants preferred the fully auto-

mated interface as to not interact with the cookie notice. (b) 87% of

the users are comfortable with an error rate of 10%.

manual baseline (SUS: 38) and informed interface (SUS: 50).

We test the statistical significance of the change in usability

score using the Wilcoxon signed-rank test [54] and find that

the result is statistically significant (after correcting for mul-

tiple hypothesis testing). We note that the semi-automated

interface had a close SUS to the fully automated interface.

Next, we compare the average time taken by the partici-

pants to complete the task in Fig. 6. We find that the fully

automated interface required the least amount of user effort,

with the median time being 0.9 seconds compared to > 9 sec-

onds for the other interfaces (24 seconds for manual baseline).

We again test the statistical significance using the Wilcoxon

signed-rank test [54] and find the results to be statistically sig-

nificant. Additionally, in the baseline (manual) system, users

required an average of seven clicks (not known apriori) to

complete the tasks whereas the user had to click on a con-

sistent button in the informed enforcement mode and on the

extension icon (plus another consistent button) in the semi-

automated mode. Thus, the CookieEnforcer plugin signifi-

cantly reduces the time taken by users to disable non-essential

cookies. In Appendix A.3.3, we include the full pairwise sta-

tistical significance comparisons among the various interfaces

for the SUS and the time metrics.

User Preference for Interface: We analyze the participants’

preference for user interface while adjusting cookie settings

(Fig. 7a). We find that 92.73% of the participants preferred

an interface of CookieEnforcer, with 62% choosing the fully

automated interface. This is reflective of the value users have

found in usability evaluation (Fig. 6). Further, analyzing the

qualitative responses, we observe that participants liked the

fully automated interface due to its efficiency. For example,

one user stated “It is the most hands-off option, and it helps

me know that my data is taken care of without me having to

remember to do so after each page.” On the other hand, partic-

ipants who preferred the manual interface indicated that they

liked the fact that it puts humans in charge. It is noteworthy

that despite the requirement of informed consent (by GDPR,

CPRA), the users overwhelmingly favored the automated in-

terface due to its ease of execution, which is an increased

evidence on the convenience of delegating consent [41].

Usability of CookieEnforcer with Errors: Next, we ana-

lyze the self-reported error tolerance of the participants. We

define error rate here as the fraction of websites where at least

one of the non-essential cookies is enabled. Fig. 7b shows

the error rate that users are willing to tolerate while using

CookieEnforcer. We find that 83% of the participants have

≥ 10% tolerance for errors (self reported). We also note that

majority of the remaining 17% of users who do not tolerate

any tracking cookies desire to set their cookie preferences

manually. Recall that CookieEnforcer was found to allow non-

essential cookies in only 3.6% of the cases. Comparing this

with the tolerance rate reported by the users, and considering

usability scores of baseline and fully automated interface, we

conclude that CookieEnforcer is a usable tool that can reduce

the user effort required to adjust cookie preferences.

8.3 Scalability Analysis

We demonstrate the scalability of CookieEnforcer by running

it on a total of 100k websites and showcasing the insights that

can be gleaned.

8.3.1 Dataset and Setup

We use the top-100k websites from the Tranco list13 gener-

ated on 21 March 2022 [37]. We filter out 7,784 websites

that have non-English cookie notices using the langdetect

library [13]. Additionally, we filter out 6,743 websites that

were not accessible using the automated browser. At the end

of this filtering, we perform our analysis on 85,473 websites

by running the backend of CookieEnforcer. Further, to cap-

ture maximum cookie notices, we perform this analysis by

accessing the websites from the United Kingdom via a VPN.

8.3.2 Analysis

Characterizing the Dataset: Table 4 shows a breakdown

of the cookie notices obtained using CookieEnforcer on

the 85.47k websites in our dataset. First, we find that

CookieEnforcer detects a cookie notice on 52.7% of the

websites. Previous works that manually analyzed notices at a

small scale found notices in 57-62% of the websites [15, 47],

indicating that our estimate is within the expected range.14

Second, we note that 35.4% of the websites with notices

in our dataset had cookie notices with multiple views

while 64.6% had a single-view cookie notice. The aver-

age number of settings options for single view notices was

2, whereas, for notices with multiple views, it was 28 (with

a standard deviation of 103). This can be attributed to the

13Available at https://tranco-list.eu/list/K2JLW/
1000000

14The caveat when comparing against previous automated approaches is

that they operated at a smaller scale (with different data) and had lower detec-

tion accuracy. For instance, those using keyword-based CSS selectors found

that 40-45% of the websites in their dataset contained cookie notices [18,33].

1120 32nd USENIX Security Symposium USENIX Association

https://tranco-list.eu/list/K2JLW/1000000
https://tranco-list.eu/list/K2JLW/1000000

Type % Websites
Avg. # Settings

(per site)

One Click Opt-

Out (% websites)

No Notice 47.3 – –

Single View 64.6 2.17 (3.01) 11.5

Mutliple

Views
35.4 28.7 (103) 9.96

Table 4: Details about the analyzed websites. After the first
row, the percentage is calculated with total number of websites
with a cookie notice (45,044).

fact that some websites have over 1000 options to choose

from, including individual options from individual vendors

(https://www.formula1.com/). We do note that number of

websites with such behavior is < 5%. As such, the median

number of settings on multiple views is 9, potentially inviting

users to navigate multiple notices and interact with tens of

settings. With CookieEnforcer, the users can disable cookies

without interacting (with as low as zero clicks).

Finally, we approximate the number of websites that pro-

vide a One-click opt-out mechanism by analyzing the output

of the Decision model (Section 6) and counting instances

where only one click was required. We discard websites with

a single view notice and one setting option (usually “Accept

All”). We find that in total, only 21.5% of the websites with

cookie notices provide a One-click opt-out mechanism, in-

dicating the need for a higher cognitive load on users’ behalf

to determine the steps to disable non-essential cookies.

Timing Analysis: We calculated the average time taken by

the three major components of CookieEnforcer: (1) Cookie

Notice Detection (Section 4) (2) Analysis of First View (3)

Analysis of Additional Views. On average, CookieEnforcer

is able to detect notices in 26.6 seconds, whereas the analy-

sis of first and additional views takes 103 and 300 seconds,

respectively. This shows that CookieEnforcer can analyze a

website with notice(s) within minutes, an important desirable

feature for scalability. Furthermore, this analysis is highly

amenable to parallelization and further time optimization,

both per website and across websites.

Failure Cases: As indicated in Sec. 8.1, there are cases

where CookieEnforcer would fail to generate a machine-

readable representation of a cookie notice. Our analysis of

the 85,473 websites allows us to measure the cases where

CookieEnforcer fails at a scale. These cases primarily include

HTML implementations of cookie notices and settings that

are not part of CookieEnforcer’s design, such as using div

to implement checkboxes. We found that such failure cases

account for less than 5% of the analyzed websites and do not

impact the scalability of CookieEnforcer. We obtain this error

rate by examining notices, which consisted of multiple views

but no Type A elements, and by analyzing the errors in logs.

9 Discussion

Deployment Aspects: CookieEnforcer’s frontend needs to

access the enforcement instructions per website in order to

operate. There are multiple options for such storage that lie

on the usability-privacy spectrum. The default option we will

provide is the privacy-preserving one with the instructions

prepackaged with the extension. These instructions can be al-

ternatively hosted on a third-party server to reduce the storage

overhead. This involves disclosing first-time visits to websites,

so the user has to select a trusted server. Other solutions can

leverage private information retrieval techniques to balance

storage requirements and privacy properties.

Informed Consent: One challenge with automated solutions

for privacy enforcement, such as CookieEnforcer, is informed

consent. The philosophy of cookie notices is to allow the user

to be aware of and control how each website uses cookies to

track them. An automated solution might deprive the users of

exercising informed consent. However, we note that recent

regulations, such as California’s CCPA [50], contain provi-

sions for “authorized agents.”15 Consumers might exercise

their privacy rights through a registered authorized agent. A

legal entity can incorporate CookieEnforcer to act on behalf

of the users regarding cookie notices. The ensuing challenge

relates to potential errors in CookieEnforcer’s operation. As

an automated solution, errors are inevitable. While partici-

pants in our user study indicate some error tolerance, solutions

like CookieEnforcer have to be clear about the possibility of

errors and their impact on users’ privacy.

Limitations: A major limitation for CookieEnforcer comes

from variability in HTML implementation. For example,

CookieEnforcer relies on an accessibility feature (tabbing)

to identify the interactive elements in the cookie notices.

However, as we noted in our evaluation, the websites can

implement buttons that do not fit these criteria. However, we

empirically observe such websites to be rare.

We consider dedicated cookie setting pages as another lim-

itation for CookieEnforcer. While extracting the interactable

elements in the Analyzer module, we filter out out-of-page

elements, including elements pointing toward a dedicated

cookie settings page. A potential solution is to analyze the

page, determine if it is a cookie settings page, and notify the

user to adjust preferences.

Finally, we note that CookieEnforcer can fail during en-

forcement on the client-side. This failure can result from a

change in cookie notice or the elements within it going stale.

These failure modes can be detected via the plugin, which can

(after user consent) trigger a re-generation of the instructions

by the Backend of CookieEnforcer. These failures would only

result in the cookie notices staying on the screen, and the user

can then submit their preferences.

15https://privacy.microsoft.com/en-us/ccpa-guidance

USENIX Association 32nd USENIX Security Symposium 1121

https://www.formula1.com/
https://privacy.microsoft.com/en-us/ccpa-guidance

10 Conclusion

In this paper, we present CookieEnforcer, which, given a do-

main, automatically detects the cookie notice, extracts the

options provided and transforms the cookie notice into a ma-

chine readable format. It then uses a text-to-text deep learning

model to understand the different options provided and deter-

mines the steps required to disable non-essential cookies. The

machine readable format of the cookie notice further enables

more usable interfaces to be built. Finally, we have exten-

sively evaluated CookieEnforcer for performance, stability,

usability and scalabiltiy. We find that it accurately annotates

the cookie notices of a given domain, and is scalable. Further,

the users also found CookieEnforcer’s interface more usable

compared to the existing baseline.

Acknowledgments

This work was supported by the NSF through awards: CNS-

1942014 and CNS-2003129, and by gifts from NVIDIA and

Google. Finally, we thank the reviewers for their fruitful dis-

cussions and recommendations.

References

[1] European parliament, council of the european union. directive

2002/58/ec of the european parliament and of the council of

12 july 2002 concerning the processing of personal data and

the protection of privacy in the electronic communications

sector (directive on privacy and electronic communications),

july 2002. https://eur-lex.europa.eu/eli/dir/2002/

58/oj.

[2] European parliament, council of the european union. regulation

(eu) 2016/679 of the european parliament and of the council of

27 april 2016 on the protection of natural persons with regard

to the processing of personal data and on the free movement

of such data, and repealing directive 95/46/ec (general data

protection regulation), april 2016. http://data.europa.eu/

eli/reg/2016/679/2016-05-04.

[3] A. Bangor, P. T. Kortum, and J. T. Miller. An empirical eval-

uation of the system usability scale. Intl. Journal of Human–

Computer Interaction, 24(6):574–594, 2008.

[4] D. Bollinger. Analyzing cookies compliance with the gdpr.

Master’s thesis, 2021.

[5] I. Borberg, R. Hougaard, W. Rafnsson, and O. Kulyk. “so i

sold my soul”: Effects of dark patterns in cookie notices on

end-user behavior and perceptions.

[6] J. Brooke et al. Sus-a quick and dirty usability scale. Usability

evaluation in industry, 189(194):4–7, 1996.

[7] J. Brookman, P. Rouge, A. Alva, and C. Yeung. Cross-device

tracking: Measurement and disclosures. Proc. Priv. Enhancing

Technol., 2017(2):133–148, 2017.

[8] Q. Chen, P. Ilia, M. Polychronakis, and A. Kapravelos. Cookie

swap party: Abusing first-party cookies for web tracking. In

Proceedings of the Web Conference 2021, WWW ’21, page

2117–2129, New York, NY, USA, 2021. Association for Com-

puting Machinery.

[9] Q. Chen, P. Ilia, M. Polychronakis, and A. Kapravelos. Cookie

swap party: Abusing first-party cookies for web tracking. In

Proceedings of the Web Conference 2021, WWW ’21, page

2117–2129, New York, NY, USA, 2021. Association for Com-

puting Machinery.

[10] Y. Chen, M. Zha, N. Zhang, D. Xu, Q. Zhao, X. Feng, K. Yuan,

F. Suya, Y. Tian, K. Chen, et al. Demystifying hidden privacy

settings in mobile apps. In 2019 IEEE Symposium on Security

and Privacy (SP), pages 570–586. IEEE, 2019.

[11] J. Clark, S. DeRose, et al. Xml path language (xpath), 1999.

[12] R. Coudert. Automatically detect dark patterns in cookie ban-

ners. 2020.

[13] M. M. Danilak. Langdetect, python library to detect language.

[14] C. T. David Cancel. Ghostery. https://www.ghostery.

com/, 2010.

[15] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub, and

T. Holz. We value your privacy... now take some cookies:

Measuring the gdpr’s impact on web privacy. arXiv preprint

arXiv:1808.05096, 2018.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:

Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:

Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

[18] R. v. Eijk, H. Asghari, P. Winter, and A. Narayanan. The impact

of user location on cookie notices (inside and outside of the

european union). In Workshop on Technology and Consumer

Protection (ConPro’19), 2019.

[19] S. Englehardt and A. Narayanan. Online tracking: A 1-million-

site measurement and analysis. In Proceedings of the 2016

ACM SIGSAC conference on computer and communications

security, pages 1388–1401, 2016.

[20] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,

J. Mayer, A. Narayanan, and E. W. Felten. Cookies that give

you away: The surveillance implications of web tracking. In

Proceedings of the 24th International Conference on World

Wide Web, pages 289–299, 2015.

[21] I. Fouad, C. Santos, A. Legout, and N. Bielova. Did i delete

my cookies? cookies respawning with browser fingerprinting.

ArXiv, abs/2105.04381, 2021.

[22] E. F. Foundation. Privacybadger. https://privacybadger.

org/, 2014.

[23] D. Furrer, M. van Zee, N. Scales, and N. Schärli. Compositional

generalization in semantic parsing: Pre-training vs. specialized

architectures. arXiv preprint arXiv:2007.08970, 2020.

[24] T. Goudout. Ninja cookie. https://gitlab.com/

ninja-cookie/ninja-cookie, 2020.

[25] R. Gunawan, A. Rahmatulloh, I. Darmawan, and F. Firdaus.

Comparison of web scraping techniques: regular expression,

1122 32nd USENIX Security Symposium USENIX Association

https://eur-lex.europa.eu/eli/dir/2002/58/oj
https://eur-lex.europa.eu/eli/dir/2002/58/oj
http://data.europa.eu/eli/reg/2016/679/2016-05-04
http://data.europa.eu/eli/reg/2016/679/2016-05-04
https://www.ghostery.com/
https://www.ghostery.com/
https://privacybadger.org/
https://privacybadger.org/
https://gitlab.com/ninja-cookie/ninja-cookie
https://gitlab.com/ninja-cookie/ninja-cookie

html dom and xpath. In International Conference on Industrial

Enterprise and System Engineering (IcoIESE 2018) Compari-

son, volume 2, pages 283–287, 2019.

[26] H. Habib, S. Pearman, J. Wang, Y. Zou, A. Acquisti, L. F.

Cranor, N. Sadeh, and F. Schaub. "it’s a scavenger hunt":

Usability of websites’ opt-out and data deletion choices. In

Proceedings of the 2020 CHI Conference on Human Factors

in Computing Systems, pages 1–12, 2020.

[27] H. Habib, Y. Zou, A. Jannu, N. Sridhar, C. Swoopes, A. Ac-

quisti, L. F. Cranor, N. Sadeh, and F. Schaub. An empirical anal-

ysis of data deletion and opt-out choices on 150 websites. In

Fifteenth Symposium on Usable Privacy and Security (SOUPS

2019), 2019.

[28] H. Harkous, I. Groves, and A. Saffari. Have your text and use

it too! end-to-end neural data-to-text generation with semantic

fidelity. In Proceedings of the 28th International Conference

on Computational Linguistics, pages 2410–2424, Barcelona,

Spain (Online), Dec. 2020. International Committee on Com-

putational Linguistics.

[29] H. Harkous, S. T. Peddinti, R. Khandelwal, A. Srivastava, and

N. Taft. Hark: A deep learning system for navigating privacy

feedback at scale. In 2022 IEEE Symposium on Security and

Privacy (SP), 2022.

[30] M. Hils, D. W. Woods, and R. Böhme. Measuring the emer-

gence of consent management on the web. In Proceedings of

the ACM Internet Measurement Conference, pages 317–332,

2020.

[31] X. Hu, N. Sastry, and M. Mondal. Cccc: Corralling cookies

into categories with cookiemonster. In 13th ACM Web Science

Conference 2021, pages 234–242, 2021.

[32] M. Kale and A. Rastogi. Text-to-text pre-training for data-to-

text tasks. In Proceedings of the 13th International Conference

on Natural Language Generation, pages 97–102, Dublin, Ire-

land, Dec. 2020. Association for Computational Linguistics.

[33] G. Kampanos and S. F. Shahandashti. Accept all: The land-

scape of cookie banners in greece and the uk. In IFIP In-

ternational Conference on ICT Systems Security and Privacy

Protection, pages 213–227. Springer, 2021.

[34] R. Khandelwal, T. Linden, H. Harkous, and K. Fawaz. Prisec:

A privacy settings enforcement controller. In 30th USENIX

Security Symposium (USENIX Security 21), 2021.

[35] O. Kulyk, A. Hilt, N. Gerber, and M. Volkamer. this website

uses cookies”: Users’ perceptions and reactions to the cookie

disclaimer. In European Workshop on Usable Security (Eu-

roUSEC), 2018.

[36] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Ko-

rczyński, and W. Joosen. Tranco: A research-oriented top

sites ranking hardened against manipulation. In Proceedings

of the 26th Annual Network and Distributed System Security

Symposium, pages 1–15. Internet Society, 2019.

[37] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Ko-

rczyński, and W. Joosen. Tranco: A research-oriented top

sites ranking hardened against manipulation. In Proceedings

of the 26th Annual Network and Distributed System Security

Symposium, NDSS 2019, Feb. 2019.

[38] S. Macbeth. Cliqz autoconsent. https://github.com/

ghostery/autoconsent, 2020.

[39] D. Machuletz and R. Böhme. Multiple purposes, multiple prob-

lems: A user study of consent dialogs after gdpr. Proceedings

on Privacy Enhancing Technologies, 2020(2):481–498, 2020.

[40] C. Matte, N. Bielova, and C. Santos. Do cookie banners respect

my choice? : Measuring legal compliance of banners from

iab europe’s transparency and consent framework. In 2020

IEEE Symposium on Security and Privacy (SP), pages 791–809,

2020.

[41] B. Nissen, V. Neumann, M. Mikusz, R. Gianni, S. Clinch,

C. Speed, and N. Davies. Should i agree? delegating consent

decisions beyond the individual. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems,

pages 1–13, 2019.

[42] M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Kagal.

Dark patterns after the gdpr: Scraping consent pop-ups and

demonstrating their influence. In Proceedings of the 2020

CHI conference on human factors in computing systems, pages

1–13, 2020.

[43] P. Papadopoulos, N. Kourtellis, and E. Markatos. Cookie syn-

chronization: Everything you always wanted to know but were

afraid to ask. In The World Wide Web Conference, pages 1432–

1442, 2019.

[44] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,

M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the lim-

its of transfer learning with a unified text-to-text transformer.

Journal of Machine Learning Research, 21(140):1–67, 2020.

[45] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defend-

ing against {Third-Party} tracking on the web. In 9th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 12), pages 155–168, 2012.

[46] Rolf, Bagge, Janus, Bager, and Kristensen. Consent-o-matic.

https://github.com/cavi-au/Consent-O-Matic, 2020.

[47] I. Sanchez-Rola, M. Dell’Amico, P. Kotzias, D. Balzarotti,

L. Bilge, P.-A. Vervier, and I. Santos. Can i opt out yet? gdpr

and the global illusion of cookie control. In Proceedings of the

2019 ACM Asia conference on computer and communications

security, pages 340–351, 2019.

[48] P. Shaw, M.-W. Chang, P. Pasupat, and K. Toutanova. Com-

positional generalization and natural language variation: Can

a semantic parsing approach handle both? In Proceedings of

the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), pages

922–938, Online, Aug. 2021. Association for Computational

Linguistics.

[49] K. Solomos, P. Ilia, S. Ioannidis, and N. Kourtellis. Clash of

the trackers: Measuring the evolution of the online tracking

ecosystem. arXiv preprint arXiv:1907.12860, 2019.

[50] State of California. California Consumer Privacy Act

(CCPA). https://leginfo.legislature.ca.gov/faces/

billTextClient.xhtml?bill_id=201720180AB375, June

2018. Assembly Bill No. 375.

USENIX Association 32nd USENIX Security Symposium 1123

https://github.com/ghostery/autoconsent
https://github.com/ghostery/autoconsent
https://github.com/cavi-au/Consent-O-Matic
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

[51] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune bert for

text classification? In China National Conference on Chinese

Computational Linguistics, pages 194–206. Springer, 2019.

[52] C. Utz, M. Degeling, S. Fahl, F. Schaub, and T. Holz. (un)

informed consent: Studying gdpr consent notices in the field.

In Proceedings of the 2019 ACM SIGSAC Conference on Com-

puter and Communications Security, pages 973–990, 2019.

[53] C. Utz, M. Degeling, S. Fahl, F. Schaub, and T. Holz.

(un)informed consent: Studying gdpr consent notices in the

field. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’19, page

973–990, New York, NY, USA, 2019. Association for Comput-

ing Machinery.

[54] F. Wilcoxon. Individual comparisons by ranking methods. In

Breakthroughs in statistics, pages 196–202. Springer, 1992.

A Appendix

A.1 Details on Execution Roles

The click command in Selenium emulates the click operation on a

given element. However, the click action can only be performed if

the element is visible on the browser (and is not overlayed by another

element). For instance, if the first click on the Save Settings button

removes the notice, a second click on the same element will result

in an error as the element is no longer visible. Another example

is when an element allows users to configure a choice. There, we

should be able to click it multiple times to change the choice. We

leverage these behaviors to identify the different execution roles for

the elements.

As mentioned in Section 5.3, there are 4 types of execution role

assigned to each element by the Analyzer module. They are as fol-

lows:

1. Type A: An element belongs to Type A if it is visible after

two clicks and its state (selected or not-selected) changes with

the clicks. For example, the switch element in Fig. 3 changes

state and is visible after the clicks. Note that it is possible

to implement Type A elements such that the state cannot be

queried; however, empirically, we found that to be very rare.

2. Type B: Elements belonging to Type B reveal another cookie

notice. Thus, to identify these elements, we check (1) if the

element disappears after the clicks, and (2) the Detector module

returns the new notice. For example, when we click the button

“More information” in Fig. 3, the new notice (the right plot in

Fig. 3) appears. Thus, we determine the execution role of the

button to be Type B.

3. Type C: To identify Type C elements, we require that (1) the

element can be clicked twice, and (2) that its checked attribute

should not change with clicks. These elements are used for

internal navigation within the notice.

4. Type D: Such elements result in closing the cookie notice. We

identify these elements by requiring (1) failure in the second

click, and (2) no new cookie notice appearing after first click.

A.2 Generation of JavaScript Code

Here we illustrate how CookieEnforcer disables non-essential cook-

ies on www.askubuntu.com by executing JavaScript via the exten-

sion. First, the extension retrieves a set of instructions with CSS

selectors for cookie notices. For each cookie setting present on

the notice, the instructions also contain 1) paths for the setting ele-

ment relative to the cookie notice, and 2) desired state of the setting

element. The state and the corresponding actions are tracked using

a variable code. The set of all codes are shown in Table 5. For ex-

ample, code = 3 instructs the extension to click the setting element

if it is visible. We also note that the paths are stored relative to the

cookie notice as the absolute path (xpath) of the setting elements

may change (ref. Section 5).

For the http://askubuntu.com, a partial set of instructions is

shown in Fig. 8.

Figure 8: A Partial instruction set for askubuntu website for illustra-

tion purposes.

The extension executes the instructions sequentially, starting by

first detecting the cookie notice using the query selectors (lines 3-10

in Fig. 9). Next, after identifying the cookie notice, the Enforcer

module finds the setting elements using the relative paths present

in the instructions (line 13-15, Fig. 9). Finally, it checks the desired

state of the element and performs actions as required (lines 17-18

and lines 23-24 in Fig. 9.

Figure 9: CookieEnforcer’s JS generation code. Ellipses are used to

skip non-important parts of the code.

1124 32nd USENIX Security Symposium USENIX Association

www.askubuntu.com
http://askubuntu.com

Code Purpose

1
Check if element is displayed and if not then wait for

2 sec at 40ms intervals

2 Check if element is displayed and if not raise error

3 Click on the element if it is displayed

4 Click on element unconditionally

5 Click on element if selected

6 Click on element if not selected

99 iFrame injection

Table 5: Table for codes used in the extension and their purpose.

A.3 Details of the User Study

A.3.1 User-Based Evaluations

Here we provide more details about the User Study we conducted

to evaluate the usability of our extension. We first asked users to

install our custom chrome browser extension which detected a subset

of websites from Table 6 which had never been visited by the user.

From that subset we choose 4 website, one for each of the 4 types

of user interface as mentioned in 7.2 for the study. Then they were

prompted to visit these website as shown in Fig. 10.

Figure 10: Prompting Users to visit the website.

A.3.2 Websites Used in the User Study

To choose websites for the study we looked at websites that used

some of the most common CMPs like TrustArc and OneTrust as

well as some that used custom cookie notices. We also selected some

websites with a one click opt-out button and some that required

multiple clicks. Table 6. shows the full list of websites we used for

the user study.

A.3.3 Usability Evaluation

Participants were asked to fill out a standard System Usability Scale

questionnaire [6] for each of the 4 interfaces they used.

The p-value for SUS score of all the combinations of interfaces

are given in Table 7 below:

Interface Type Manual Informed Semi Auto

Manual – 3.5e−12 7.4e−21 1.2e−16

Informed 3.5e−12 – 1.78e−03 3.98e−03

Semi 7.4e−21 1.78e−03 – 7.66e−01

Auto 1.2e−16 3.98e−03 7.66e−01 –

Table 7: SUS score p-values of all interfaces’ combinations.

Website CMP Type

seminolestate.edu sscCookieStatement

statsperform.com Optanon/OneTrust

gordonramsay.com CybotCookiebot

crowe.com Optanaon/OneTrust

financialsense.com Custom

horiba.com Custom

vogella.com QuantCast

schroders.com Custom

decathlon.co.uk Didomi

justinbiebermusic.com Evidon

hydroflask.com TrustArc

piwik.pro PIWIK pro

huntingpeaks.com Iubenda

Table 6: List of Websites and their CMP types.

Since the p-value of the SUS Scores for user preference between

manually setting cookies against that of using CookieEnforcer exten-

sion is < 0.05 we can reject the null hypothesis and say that these

observations are statistically significant.

We also noted down the time taken by participants to use each

of the interface. The p-value between the time taken for each of the

interfaces is given in Table 8.

Interface Type Manual Informed Semi Auto

Manual – 4.34e−13 9.52e−21 2.12e−34

Informed 4.34e−13 – 7.09e−03 3.36e−31

Semi 9.52e−21 7.09e−03 – 9.74e−30

Auto 2.12e−34 3.36e−31 9.74e−30 –

Table 8: p-values of time taken for all interfaces’ combinations.

Since the p-value of the time taken to manually set cookies against

the time taken by any of the CookieEnforcer interface is < 0.05 we

can reject the null hypothesis and say that these observations are

statistically significant.

A.4 Examples of Cookie Notices

In Figure 11, we show some examples of the cookie banners that are

discussed in Section 6.

USENIX Association 32nd USENIX Security Symposium 1125

Website Input Output

www.
amazonaws.
com

button0 - customize cookie preferences || button1 - accept all cookies ** switch0 - allow performance

category , selected || switch1 - allow functional category , not selected || switch2 - allow advertising

category , not selected || button3 - cancel customizing cookie preferences || button4 - save customized

cookie preferences <end>

Click button0 ** Click switch0

| Click button4.

reddit.com button0 - reject non-essential || button1 - accept all <end> Click button0.

wordpress.
com

button0 - customize || button1 - accept all ** switch3 - analytics: these cookies allow us to optimize

performance by collecting , selected || switch4 - advertising: these cookies are set by us and our

advertising , not selected || button5 - accept selection <end>

Click button0 ** Click switch3

| Click button5.

www.facebook.
com

button1 - more options || button2 - allow all cookies ** switch4 - cookies from other companies we

use tools from other companies , not selected || button8 - allow only essential cookies || button9 -

allow selected cookies <end>

Click button1 ** Click button8.

newscientist.
com

button1 - i accept || button2 - show purposes ** button4 - select basic ads; object to legitimate

interests ... switch23 - analytics cookies , not selected || button62 - confirm my choices

Click button2 ** ... Click but-

ton4 | Click button62.

Table 9: Examples demonstrating the application of Decision model on cookie notices for a few websites.

A

B

C

D

E

F

G

H

Figure 11: Screenshots of Cookie Notices for the websites listed in Table 9 where (A) is the first view for WordPress and (B) is the second

view. (C) is the first view for Netflix and (D) is the second view. (E) is the first view of NewScientist and (F) is the second view. (G) is the first

view of TATA and (H) is the first view of Reddit.

1126 32nd USENIX Security Symposium USENIX Association

www.amazonaws.com
www.amazonaws.com
www.amazonaws.com
reddit.com
wordpress.com
wordpress.com
www.facebook.com
www.facebook.com
newscientist.com
newscientist.com

	Introduction
	Background and Related Work
	System Overview
	Cookie Notice Detector
	Candidate identification
	Text Classifier

	Cookie Notice Analyzer
	Identifying Interactive Elements
	Extracting Cookie Settings
	Execution Roles

	Decision Model
	Why Natural Language Understanding?
	Extracting Actions to Disable Cookies
	Training and Performance

	Frontend
	Enforcer
	User Interfaces

	Evaluation
	End-to-End Evaluation
	User-based Evaluation
	Study Design
	Findings

	Scalability Analysis
	Dataset and Setup
	Analysis

	Discussion
	Conclusion
	Appendix
	Details on Execution Roles
	Generation of JavaScript Code
	Details of the User Study
	User-Based Evaluations
	Websites Used in the User Study
	Usability Evaluation

	Examples of Cookie Notices

