
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

The Gates of Time: Improving Cache Attacks
with Transient Execution

Daniel Katzman, Tel Aviv University; William Kosasih, The University of Adelaide;
Chitchanok Chuengsatiansup, The University of Melbourne;

Eyal Ronen, Tel Aviv University; Yuval Yarom, The University of Adelaide
https://www.usenix.org/conference/usenixsecurity23/presentation/katzman

The Gates of Time: Improving Cache Attacks with Transient Execution

Daniel Katzman , William Kosasih , Chitchanok Chuengsatiansup , Eyal Ronen , Yuval Yarom

Tel-Aviv University
The University of Adelaide

The University of Melbourne

Abstract
For over two decades, cache attacks have been shown to pose
a significant risk to the security of computer systems. In partic-
ular, a large number of works show that cache attacks provide
a stepping stone for implementing transient-execution attacks.
However, much less effort has been expended investigating the
reverse direction—how transient execution can be exploited
for cache attacks. In this work, we answer this question.

We first show that using transient execution, we can per-
form arbitrary manipulations of the cache state. Specifically,
we design versatile logical gates whose inputs and outputs are
the caching state of memory addresses. Our gates are generic
enough that we can implement them in WebAssembly. More-
over, the gates work on processors from multiple vendors,
including Intel, AMD, Apple, and Samsung. We demonstrate
that these gates are Turing complete and allow arbitrary com-
putation on cache states, without exposing the logical values
to the architectural state of the program.

We then show two use cases for our gates in cache attacks.
The first use case is to amplify the cache state, allowing us
to create timing differences of over 100 millisecond between
the cases that a specific memory address is cached or not. We
show how we can use this capability to build eviction sets in
WebAssembly, using only a low-resolution (0.1 millisecond)
timer. For the second use case, we present the Prime+Store
attack, a variant of Prime+Probe that decouples the sampling
of cache states from the measurement of said state. Prime+
Store is the first timing-based cache attack that can sample the
cache state at a rate higher than the clock rate. We show how to
use Prime+Store to obtain bits from a concurrently executing
modular exponentiation, when the only timing signal is at a
resolution of 0.1 millisecond.

1 Introduction

Modern processors consist of a large collection of components
and algorithms that implement the instruction set architecture
(ISA), collectively called the microarchitecture. One such

important component is an out-of-order execution engine,
which schedules and executes the instructions of the program.
Out-of-order execution improves program performance by ex-
ecuting instructions when all their dependencies are satisfied
instead of strictly following the program order.

Out-of-order execution is inherently speculative, both be-
cause the processor aims to predict the control flow of the
program and because it assumes that instructions do not ter-
minate abnormally, e.g., due to traps. Thus, the processor
may execute instructions that do not appear in the nominal
program execution. Because the results computed by such
instructions are dropped and are never committed to the archi-
tectural state of the processor, such so-called transient instruc-
tions were considered an innocuous side effect of out-of-order
execution. However, the discovery of transient-execution at-
tacks [9, 40, 43, 92] demonstrated that this is not the case.
Specifically, while the results of transient instructions are
ignored, the side effects of the computation on microarchitec-
tural components are not reversed. Consequently, an attacker
can cause transient execution of instructions that access secret
data and transmit it through the state of microarchitectural
components, such as caches.

Many microarchitectural components are caches that store
the results of recent operations with the aim of accelerating
future similar operations. Cache attacks [21, 45, 78], which
observe the cache state to leak secret data, have been known
for two decades [80]. These attacks target various caches,
including data caches [29, 44, 52, 53, 59, 93, 94, 96], in-
struction and microcode caches [4, 57, 62], address transla-
tion [27, 42, 84], and branch prediction [2, 3, 16, 17, 97].
Cache attacks have a devastating impact on the security of
cryptographic implementations, including symmetric cryp-
tography [12, 13, 23, 35, 36, 52, 64, 80], public-key sys-
tems [7, 19, 54, 55, 65, 96], and even non-cryptographic
code [28, 73, 95].

Cache attacks typically need to distinguish cache hits from
misses. As the timing difference is very small (less than a
hundred nanoseconds), reducing the accuracy of available
timers is considered as a line of defense against such at-

USENIX Association 32nd USENIX Security Symposium 1955

tacks [32, 41, 85]. Consequently, to protect against transient-
execution attacks that exploit caches, browsers reduce the
resolution of the timers they provide [31, 56, 89] and also
eliminate some methods of creating artificial timers [70].

Restricting timer resolution also limits the attacker’s ability
to find eviction sets. These are groups of congruent addresses
in the cache, i.e., addresses that map to the same cache set [28,
44, 52, 59, 83, 94], which are used to evict other addresses
from the cache. Techniques for finding eviction sets also
require the ability to distinguish hits from misses [44, 58, 59,
86]. Hence, low-resolution timers also hamper an essential
step for carrying out cache attacks.

Some cache attacks have been designed to use only low-
resolution timers [14, 30, 47, 66, 72, 74, 75]. However, to
the best of our knowledge, none of these has been adapted
for finding eviction sets and the question of finding eviction
sets with low-resolution timers remains open. Moreover, in
all published attacks, the timer resolution limits the sampling
rate. In particular, no high-resolution tracing attacks, e.g.,
against modular exponentiation [8, 44, 96, 98] have been
demonstrated using only low-resolution timers.

A large number of works exploit cache states for imple-
menting transient-execution attacks [5, 6, 10, 11, 30, 39, 42,
43, 46, 60, 61, 66, 67, 68, 69, 71, 76, 81, 82]. However, the
reverse question has so far not been investigated. Thus, in this
work, we ask the following question:

Can transient execution improve cache attacks?

Our Contribution
In this work we answer the question in the affirmative. We
demonstrate that effects of transient execution can improve
cache attacks significantly. The core idea is that cache states
can affect the length of speculative execution and the way
it modifies future state. We develop techniques that allow
us to manipulate cache states, amplify it, store information
in it, and even compute on it. We then use these techniques
to demonstrate how we can perform high-resolution cache
attacks with only a low-resolution timer.

The core idea behind our techniques is that cache states
can represent information [47]. In our instantiation we use
the presence of an address in the last-level cache (LLC) to
represent a Boolean state. When a memory address is in the
LLC, the value it represents is a logical ′1′. Conversely, if it is
not in the LLC, its value is a logical ′0′. We note that program
execution indirectly affects the logical value associated with
an address. For example, reading from or writing to a memory
address brings it to the cache, setting its logical value to ′1′.
Conversely, using the clflush instruction to evict a memory
address from the cache sets its logical value to ′0′.

We then design gates that operate on the logical value of
memory addresses. Each gate has one or more input addresses.
The core of the gate consists of an instruction that starts
transient execution followed by one or more memory accesses
to output addresses. The gate creates an input-dependent race

between the time that the processor detects and squashes
the transient execution and the time that the accesses to the
output execute. It is designed so that if a logical function
of the inputs, such as NAND, is true, the memory accesses
win the race and get executed transiently. Otherwise, if the
function is false, the transient execution wins the race and
the memory accesses do not execute.

We test our gates on multiple processors. All of our gates
work with little modifications on Intel and AMD processors.
Some of the gates also work on ARM processors, including
Apple M1 and Samsung Exynos. Our gates are reminiscent of
the “weird gates” of Evtyushkin et al. [18]; however, they do
not investigate the use of the gates for cache attacks. Moreover,
our gates are more generic and more accurate than theirs. See
a comparison in Section 7.

To demonstrate the robustness and versatility of our gates,
we use them to implement three circuits. To show that our
gates allow Turing complete computation, we first implement
a four-bit Arithmetic Logic Unit (ALU) [50]. Executing the
250 gates of the circuit produces the correct result in 80%
of the cases. Following Evtyushkin et al. [18], we then in-
vestigate the use of our gates for implementing SHA-1 [49].
Specifically, we implement the round function of SHA-1 us-
ing 2 208 gates. The circuit produces a correct 160-bit result
in 63% of the cases. Our final example is Conway’s game of
life [20]. It consists of 6 464 gates per generation and correctly
computes one generation of an 12×12 universe in 62.76% of
the cases.

We then turn our attention to using the gates for cache
attacks. We first show how our gates allow using a low-
resolution timer to detect whether a target memory line is
in the cache or not. For that, we use gates with a large fan-out
to repeatedly replicate the state of the target memory location
over multiple memory addresses. We can now access all the
addresses with replicated state, amplifying the signal enough
to be detected with a low-resolution timer. Overall, we am-
plify the signal by six orders of magnitude, achieving a timing
difference of over 100 millisecond between the cases.

We then use our amplification technique to find eviction
sets in the Chrome browser using the built-in JavaScript timer,
whose resolution is 0.1 millisecond. Specifically, we use the
algorithm of Vila et al. [86] with our amplification. We build
an eviction set in approximately 15 seconds on average, show-
ing that reducing clock resolution does not prevent eviction
set creation.

Finally, we implement a cryptographic attack with low-
resolution timer. We present Prime+Store, a variant of the
Prime+Probe attack [36, 44, 52, 53], which is implemented
using gates. Prime+Store uses a NAND gate to sample the
cache state and store the result to a cache state of an unre-
lated memory address. This decouples the cache sampling
from the time measurement, allowing to collect a sequence of
samples at a high rate. After collecting multiple samples, we
amplify each separately to obtain the probe result. We use the

1956 32nd USENIX Security Symposium USENIX Association

attack against the implementation of modular exponentiation
in GnuPG 1.4.13. We show that although we use a timer with
a resolution of 0.1 millisecond, we can sample the cache every
0.33 microsecond—more than two orders of magnitude faster
than the clock resolution.

In summary, this paper makes the following contributions:
• We investigate, for the first time, how transient execution

can be used for improving cache attacks.
• We show how to use transient execution to build logi-

cal gates that manipulate the state of the cache based on
whether data is cached or not (Section 3). Our gates are
generic and versatile. They can work on multiple architec-
tures and can be implemented in WebAssembly.

• We demonstrate that our gates are robust enough to perform
arbitrary calculations in the cache (Section 4).

• We show how to use our gates to amplify a small timing
difference and distinguish whether a memory address is
cached with a low-resolution timer, and use this amplifica-
tion to build eviction sets in WebAssembly, using only a
low-resolution timer (Section 5).

• We show how to perform high-resolution cache attacks with
a low-resolution timer (Section 6).

Responsible Disclosure. We disclosed our results and noti-
fied affected vendors, namely, Intel, AMD, Apple, Samsung,
Arm, Google, and Mozilla. All acknowledged the issue but
did not consider that it exposes new threats to their products
and did not require an embargo.

2 Background

Cache. The cache is a small bank of memory located near the
processor. By storing recently accessed data, it exploits the
temporal and spatial locality of typical programs to bridge the
speed gap between the fast processor and the slower memory.
Specifically, the memory space is divided into fixed-size lines,
typically 64 bytes. When the processor accesses memory, it
first checks whether the requested line resides in the cache.
If that line is found in the cache, or cache hit, the memory
access is served quickly from the cache. On the other hand,
if the requested line is not in the cache, or cache miss, the
processor is forced to retrieve the line from the main memory,
and the memory access is served much slower. The processor
then stores the retrieved data in the cache for potential future
uses. Since caches have limited capacities, the processor may
need to evict some lines from the cache to create space for
storing the recently retrieved memory lines into the cache.

Modern processors typically use multiple caches, with a
common hierarchy that consists of L1, L2, and L3 caches. L1
cache is the smallest and fastest, located in each processor
core. The L3 cache or last-level cache (LLC) is the slowest but
has the largest capacity and is shared among other processor
cores.

Modern caches are usually set-associative where they are
organized into multiple sets, each consisting of a number of

ways. Each memory line is mapped to a single cache set and
can only be stored in one of the ways of the particular set it
is mapped to. Memory addresses that map to the same cache
set are called congruent to each other. A group of congruent
memory addresses is called an eviction set.
Prime+Probe. Prime+Probe [52] is a cache attack technique
that exploits the structure of set-associative caches to leak in-
formation. The attack consists of three steps. In the first prime
step, the attacker prepares the cache into a pre-defined state
by filling one or more cache sets with attacker’s data, which
is usually achieved through repeatedly accessing elements
of an eviction set. In the next step, the attacker simply lets
the victim execute and possibly evict some of the attacker’s
pre-filled data out of the cache. This happens if the victim
accesses memory that is mapped to a cache set previously
filled with the attacker’s data. In the final probe step, the at-
tacker measures the time it takes to access the data it used
during the prime phrase. If the data can be retrieved quickly
or within short access time, this means that this data was still
in the cache, i.e., it was not evicted during the victim’s ex-
ecution. On the other hand, if it takes a long time to access
the data, this indicates that the data has been evicted by the
victim, implying that the victim has accessed data which is
mapped into that specific cache set. The attacker then uses
the mapping between cache sets and address bits to learn the
memory address that the victim has accessed.
The Instruction Pipeline. Program execution in modern
processors is shared between two main components, the front
end and the execution engine. The front end fetches instruc-
tions from memory, decodes them and transfers them to the
execution engine for execution.1 The execution engine then
executes the instructions and notifies the front end when com-
pleted. The front end then commits the results of the instruc-
tions to the architectural state and retires the instructions.
Out-of-Order Execution. To exploit instruction-level par-
allelism, the execution engine does not execute instructions
in the order specified by the program. Instead, it executes
instructions when all their arguments are ready and a suitable
execution unit is available. To implement out-of-order exe-
cution, the front end and the execution engine share a data
structure called reorder buffer (ROB), which keeps track of
in-flight instructions. Specifically, the front end issues instruc-
tions to the execution engine by recording them at the tail of
the ROB. The execution engine uses a variant of the Tomasulo
algorithm [79] to execute the instructions in some arbitrary
order, and records execution termination in the ROB. When
the instruction at the head of the ROB terminates, the front
end removes it from the ROB and retires it. This ensures that
instructions retire in program order irrespective of the order
they are executed in.

1Technically, decoding converts instructions to micro-operations (µops).
The exact distinction between instructions and µops is not relevant for this
work and we use ‘instructions’ to refer to both instructions and the µops they
correspond to.

USENIX Association 32nd USENIX Security Symposium 1957

Branch Prediction. When the front end decodes a branch,
it often cannot determine the next instruction because the
branch condition or target address is yet to be computed. In-
stead of stalling, the front end tries to predict the branch out-
come based on recently executed branches. It then continues
to issue instructions based on the prediction. For correct pre-
dictions, this saves time by allowing younger instructions to
execute before the branch executes. However, if the prediction
turns out to be incorrect, the execution engine squashes all
younger instructions and asks the front end to resume execu-
tion from the correct outcome of the branch. The front end
ignores squashed instructions and never retires them. Thus,
their results are never committed. The same mechanism is
used for squashing younger instructions when an older in-
struction causes a trap, such as division by zero or memory
access violation.

Instructions that are executed and eventually squashed are
also called transient. While the processor does not commit
their results to the architectural state, any effects that exe-
cuting transient instructions has on the microarchitectural
state of the processor are not reversed, leading to potential
vulnerabilities [9, 40, 43].

3 Gates

This section describes the main ideas behind our implementa-
tions of logical gates based on cache states and speculative
execution. We explain the computational model, assumptions,
and design rationale.

3.1 Computational Model

We use logical gates to implement computation on the mi-
croarchitectural cache states of memory addresses. We de-
fine the logical value of “uncached” addresses as ′0′, and of
“cached” addresses (either in L1, L2, or LLC) as ′1′. Changing
the logical state from ′0′ to ′1′ is straightforward: we sim-
ply need to read the data stored in an address, and it will be
fetched into the cache. However, we do not assume access
to low-level instructions (e.g., clflush) that can set the cache
state to ′0′ directly. Instead, we assume that the initial value
for hitherto unused addresses is ′0′. Our gates compute a logi-
cal function of their inputs and store the result in the output.
Because testing an input is done by accessing it, our gate
evaluation is destructive. That is, computing over the state of
an address brings it to the cache, setting its logical value to ′1′.
The main implication of destructive gates is that we cannot
reuse the same address as an input to multiple gates.

3.2 NOT Gate

The main insight that motivates our design is that the length of
the speculation window of a mispredicted branch is not fixed.

if (*in == 0)
 return;
out = mul(out, x)
out = mul(out, x)

1. After branch training,
we mispredict the
condition and continue
execution

...
out = mul(out, x)
read(*out)

...
out = mul(out, x)
...
out = mul(out, x)

2. Rollback of
speculative
window if '*in' is
in L1

3. Rollback of speculative
window if '*in' is in L2

4. Rollback of
speculative
window if '*in' is
in L3

5. If '*in' is uncached we
reach the code that
access '*out' before
speculative window is
squashed

Note: x is set to
1 during run time

Figure 1: NOT Gate. read(*out) is transiently executed only
when *in is not cached.

Instead, it depends on the time it takes the processor to evalu-
ate the condition of the mispredicted branch. The length of
the speculative window determines the number of instructions
that are speculatively executed after the branch. Hence, the
number of instructions that are executed speculatively varies
with the time it takes to resolve the branch condition.

Figure 1 shows how we use these variable-length specu-
lative windows to create a NOT gate. We use a branch con-
ditioned on *in. Architecturally, we have *in=0. Hence the
code should return without executing any of the subsequent
instructions. However, the value of *in is not immediately
available to the CPU as the pointer needs to be dereferenced

Before using the gate, we train the branch predictor to
assume *in is not zero. Consequently, while waiting for the
branch condition to be evaluated, the processor continues to
speculatively execute instructions from the predicted branch.
The length of this speculative window depends on the time it
takes the processor to evaluate the branch condition, which is
dominated by the time it takes to retrieve the value of *in.

In turn, the time to retrieve the value of *in depends on
where that value is stored. If the variable *in is cached in the
L1 data cache, accessing it will be quick (≈4 cycles). The
time will be longer if *in is retrieved from the L2 cache, and
even longer if it needs to be retrieved from the LLC. Finally,
if the value of *in is not cached, it will need to be retrieved
from memory, which would take a few hundreds of cycles.

The mispredicted branch contains a sequence of dummy
operations (we use imul instructions to repeatedly multiply the
pointer out by 1) followed by a memory access to the output
variable *out. Tying the value of out to the multiplication
ensures that the processor does not execute the memory access
before all of the dummy instructions complete execution.

The number of dummy operations is carefully chosen such
that if *in is cached in any of the cache levels, the speculative
window will terminate before the memory access to *out is
issued and *out will not be accessed. However, if the value
of *in is not cached, the speculative window is long enough
and the access to *out executes speculatively. Eventually, the
processor retrieves the value of *in and squashes all instruc-
tions on the mispredicted branch. However, because memory
accesses execute asynchronously, the memory access to *out

1958 32nd USENIX Security Symposium USENIX Association

will complete even if the instruction is squashed.
If *in is cached (′1′) then *out is not accessed and main-

tains its original logical value. Conversely, if *in is not
cached, the memory access to *out executes transiently, bring-
ing the value of *out to the cache, which sets the logical value
to ′1′. As we assume the initial state of *out is uncached (′0′),
the end result is that, after executing the gate, the logical
value of *out is the inverse of the original logical value of
*in. Hence, the gate computes the logical NOT function.

3.3 More Complex Gates
The technique used for implementing the NOT in Section 3.2
can be extended to implement more complex logical gates.
We now demonstrate how we can combine inputs to create a
NAND gate and add branches to create a NOR.

3.3.1 NAND Gate

To create a NAND gate, we take our NOT gate and replace
the if statement if (*in == 0) with:

if (*in1 + *in2 == 0)

Similar to the NOT gate, after we train the branch predictor,
a speculative execution window is opened. It continues to run
until the values of both *in1 and *in2 are made available to
the CPU. The CPU processes the two read requests in parallel.
Thus, the length of the speculative window is approximately
the longer of the two access times.

If either of the input addresses is uncached, the processor
needs to wait until the contents is retrieved from memory,
resulting in a long speculation window. Consequently, in such
a case, speculative execution reaches the read(*out) instruc-
tion, setting the value of the output to ′1′. On the other hand,
if both addresses are cached, the length of the speculative win-
dow is shorter. Consequently, the misspeculation is squashed
before it reaches the read code, and the state of the output
address remains ′0′. To summarize, if the state of both in-
put addresses is ′1′, the output value remains ′0′. Otherwise,
the output is set to ′1′. Hence, the code computes the logical
NAND function.

3.3.2 NOR Gate

For a NOR gate, we replace the single if statement of the NOT ,
i.e., if (*in == 0), with two consecutive if statements:

if (*in1 == 0) {return;}
if (*in2 == 0) {return;}

If either input addresses is cached, the speculative window
of the corresponding if statement is short and speculation is
squashed before the processor executes the read. This leaves
the state of the output address at ′0′. However, if both input
addresses are not in the cache, the processor needs to retrieve
both values from memory before it can squash the speculation
of any of the branches. This allows a long speculation window,

f=sqrt(f)
...
f=sqrt(f)
if (f == 0)
 return;

x = read(*in)

1. After branch training, we
mispredict the condition and
continue execution

read(*(out + x))

2. Rollback of speculative
window if '*in' is uncached

3. Only if '*in' is cached we reach
the code that access '*out' and only
then rollback the speculative
window

Figure 2: A Buffer Gate with a Fixed Branch Delay.

which would execute the read command, setting the state of
the output to ′1′. To summarize, only if the state of both
inputs values is ′0′, we get an output value of ′1′. Otherwise,
the output value is ′0′. This is exactly the logical value of a
NOR function.

3.4 Multiple Inputs and Outputs

Repeating the patterns in Section 3.3 we can increase the
number of inputs in the NAND and NOR. For example, for a
four input NAND we use the following if statement:

if (*in1 + *in2 + *in3 + *in4 == 0)

Similarly, we can replicate the output of the gates into multiple
output variables by adding read statements to the misspec-
ulated branch. We use the notation GATEin

out for gate GATE
with in inputs and out outputs.

The processor uses a structure called line fill buffer (LFB) to
track memory loads that miss on the L1 cache. Consequently,
the number of LFBs limits the number of reads that can be
processed concurrently, and the fan-in and fan-out of our gates.
Specifically, when the total of the fan-in and fan-out exceeds
the number of LFB entries (12 in the processors we use), the
gates may fail.

3.5 Gates With a Fixed Branch Delay

All of the gates we use operate by creating a race between
the time a branch is resolved and the time the outputs are
accessed speculatively. In all of the gates we have seen so far,
the timing of resolving the branch varies depending on the
logical state of the inputs, whereas the timing of the memory
access is fixed by the computation of the imul instructions. In
this section we create additional gate types by swapping the
fixed and the variable paths of execution.

Figure 2 shows an example of a BUFFER gate, which
copies the logical state of the input to the output. The gate
operates by first calculating a sequence of sqrt operations,
which are set to return the (architectural) value 0. It then
branches on the result, returning if the value is indeed 0.

USENIX Association 32nd USENIX Security Symposium 1959

During the computation of the sqrt operations, the proces-
sor cannot predicate the final result. Consequently, the pro-
cessor predicts the outcome of the branch, which we exploit
by setting the branch predictor to mispredict the branch out-
come. During the ensuing speculation window, the processor
proceeds to execute the remaining code of the function.

The misspeculated code first reads the input *in. It then
adds this value to the pointer out, and reads from the resulting
address. Before using the gate, we ensure that the memory
that in points to contains the value 0. Thus, the second read
operation accesses the location pointed by out. However,
the processor has to read *in before it can read *(out+x).
Consequently, the timing of the read from out depends on
whether *in is in the cache or not, i.e., whether its state is ′0′

or ′1′. If *in is in the cache (state ′1′), the read from out will
be executed before the speculative window is squashed and its
state will be set to ′1′. However, if *in is not the cache (state
′0′), the speculative window will be squashed before its value
will be made available to the CPU. In that case the second
read instruction will not be executed speculatively, and the
state of out will remain ′0′. This is exactly the truth table for
a BUFFER gate.

As before, by reading more output addresses (e.g.,
read(*(out2 + x)), read(*(out3 + x)), etc.) we can increase the
fan-out of the gate and extend it to BUFFER1

Y .
Similar to the extension of NOT1

Y to NANDX
Y gate, we can

extend BUFFER1
Y to ANDX

Y gate. This is done by making
the reading of *out dependent on the sum of multiple input
addresses instead of a single input address (e.g., x = read(*in1)
+ read(*in2), x = read(*in1) + read(*in2) + read(*in3), etc.).
Only if all input addresses are cached, their sum is available
to the CPU, and the read instructions are executed before the
speculative window is squashed.

3.6 Gates Without Branch Training

In order to open the speculative window, we need to train
the branch predictor to mispredict the initial branch we are
speculating on. We use the training method introduced in [25].
It starts with two “dry runs” of the gate that train the branch
predictor, followed by the actual “wet run”. Moreover, each
run of the gate (either “dry” or “wet”) starts with an empty
for loop that creates a consistent branch history. As a conse-
quence, the training of the gates is relatively long, increasing
the overall run time of our gates.

To reduce training time and allow faster gates, we use a
novel approach to cause the branch predictor to reliably mis-
predict a branch without the need to “retrain” it. The main idea
is to replace the single if condition with a large switch state-
ment. The correct case is determined by combining the value
of the input address with a counter that is incremented after
each evaluation of the gate. As the value of the input address is
not available to the CPU, the branch predictor mispredicts by
jumping to the previously chosen case based on the counter’s

previous value. According to our experimental evaluation of
the gates, switching from the branch training-based approach
(“bt”) to our non-branch training-based approach (“nbt”) can
significantly reduce the gates’ run time at the cost of a slight
reduction in the gates’ accuracy. Thus, the “nbt” gates present
a tradeoff between performance and accuracy.

Compilers offer multiple implementations for switch state-
ments. For our technique to work, we need the compiler to
use an indirect branch with a jump table. The choice of im-
plementation method depends on the number of cases and
their values. In our experiments we find that in both the native
and the WebAssembly compiler we use, the compiler chooses
a jump-table-based implementation when there are at least
eight cases. Once the implementation is chosen, the number
of cases has little impact on the gates’ accuracy or perfor-
mance. Hence we use the required minimum of eight cases
for implementing our gates.

The full version of this paper contains code samples for the
gate as well as detailed evaluation results.

3.7 Gates Evaluation
In our work, we focused our experiments on Intel’s range of
processors where we optimized the implementation of our
gates to work on those processors. See the full version of this
paper for complete experimental results with different gate
types including a discussion on the various values for fan-in
and fan-out.

Note that many of the gates require tailoring parameters
where we perform the tuning on a case-by-case basis (e.g.,
number of dummy instructions). We can fully optimize many
of the gates achieving an accuracy of approximately 99.9%
or above. All branch training-based gates achieve an accuracy
of over ≈ 99.5%, while the slightly less accurate non-branch
training-based gates still achieve an accuracy of over≈ 95.8%.
We can also see that our non-branch training-based gates
are indeed significantly faster than our branch training-based
variants. The non-branch training-based gates are approxi-
mately 300 cycles faster. Specifically, they are around twice
as fast when the output is ′1′ and three times faster when the
output is ′0′.

We could also reproduce similar results on an AMD
Ryzen 5 3500U and further implemented some of the gate
types on ARM processors. The full version of this paper
presents experimental results on the AMD Ryzen 5 3500U
and on a Macbook Air laptop with Apple M1 processor and
a Galaxy S21 phone with a Samsung Exynos 2100 SoC. We
leave the optimization of gates for these platforms to future
work.

4 Circuits

To demonstrate the versatility of our gates, we now show
how they can be used to build complex logical circuits. We

1960 32nd USENIX Security Symposium USENIX Association

investigate three circuits: the arithmetic logic unit (ALU) from
Nisan and Schocken [50], the SHA-1 hash function [49], and
finally Conway’s game of life [20].

Experimental Setup. We carry out the experiments in this
section on an Intel NUC 9 Extreme Kit equipped with an
Intel Core i7-9750H CPU running Xubuntu 21.10. Due to the
load-sensitive nature of the speculative gates and the cache
states, we isolate the core used to run the experiment using
the isolcpus kernel parameter and enable huge pages.

Our experiments explore the effects of the prefetcher (en-
able vs. disable) [87] on the accuracy of our circuits. We have
also tested the effects of CPU frequency scaling (fixed vs.
variable). We find that gates need to be tuned for the pro-
cessor frequency. However, once tuned, the accuracy of the
gates is similar. Moreover, we find that when setting a vari-
able frequency, the processor mostly executes at the highest
frequency. Therefore, we only report the results of variable
frequency to reflect a more realistic scenario.

4.1 ALU
We first demonstrate the viability of our speculative gates
through a construction of a four-bit ALU adapted from Nisan
and Schocken [50].

The ALU takes two four-bit numbers, x and y, along with
six control values, as input. Then it produces a four-bit value
output. The control values are used to direct the ALU to
which operations to perform on each operand. Specifically, by
using different combinations of the control values, the ALU
performs different operations such as increment, decrement,
addition, subtraction, negation, binary AND and binary OR.

To initialize the state of x, y, and the control values, we
either read the corresponding address to signify ′1′ or flush
the address to signify ′0′. We then let the ALU perform its
computation. Finally, we read the results by measuring the
access time of the output addresses.

We utilize error correction techniques to improve the ac-
curacy of our ALU. Specifically, we run the ALU five times
with five copies of the same initial values. We then use the
majority-out-of-5 gate (described in the full version) to com-
pute the final value. Performing such redundant calculation
and following a majority vote is a classic error correction
approach as used in, for example, redundant coding to detect
and correct errors from bit flips [38, 77, 88]. Our ALU is built
from 250 logic gates without majority (1 258 logic gates with
majority). It consists of 336 intermediate states (1 688 with
majority), of which only the four output bits, or 1.19% (0.24%
with majority) are exposed architecturally.

We perform 10 000 sets of experiments to measure the per-
formance of our ALU where we focus on the correctness of
the four-bit output. Each set of experiments contains 100 runs
of the ALU, where the inputs are selected at random. For
each run, the accuracy is one if all the four bits are correct. If
any of the four bits are incorrect, the accuracy is zero. The

Figure 3: ALU Accuracy. PD denotes accuracy with
prefetcher disabled, MPD denotes accuracy with error cor-
rection (majority gate) with prefetcher disabled. PE signifies
accuracy with prefetcher enabled, while MPE signifies accu-
racy with majority gate and prefetcher enabled. For visibility,
the Y axis is trimmed at a frequency of 0.35.

average of the accuracy of 100 runs represents the accuracy
of that set of experiments. Figure 3 illustrates the result of
our experiments in histogram. Specifically, it shows the ac-
curacy of the ALU calculation with/without error correction
and with/without prefetcher enabled. The histogram clearly
highlights a significant increase in the accuracy when using
the majority gates, namely, from a median of 89.0% to 100%
(82.0% to 95.4% average) when disabling the prefetcher and
from a median of 37.0% to 91.0% (43.7% to 84.1% aver-
age) when enabling the prefetcher. On average, performing
an ALU instruction takes 106 microseconds without error
correction and 529 microseconds with error correction.

4.2 SHA-1

Our second example of a circuit is an implementation of a
cryptographic hash function SHA-1 [49]. Note that in contrast
to Evtyushkin et al. [18] our entire round of SHA-1 calcu-
lations are performed in microarchitectural states where we
interact with them only for the initial state setting and the final
output reading. Generally, SHA-1 consists of a loop with 80
iterations to produce a 160-bit message digest output. In our
experiment, we perform one round of SHA-1; Listing 1 shows
the pseudocode.

1 void sha1_round(A, B, C, D, E, W) {
2 temp = circular_shift(5, A) + ((B & C) |
3 ((~B) & D)) + E + W + 0x5A827999;
4 E = D; D = C;
5 C = circular_shift(30, B);
6 B = A; A = temp;
7 }

Listing 1: Pseudocode for the first round of SHA-1

As the listing shows, one round of SHA-1 consists of two
circular left shifts, four additions, two binary AND, one binary
OR, and one binary NOT, each operating on 32-bit words. The
calculation of a round of SHA-1 requires 32-bit adder, AND,
OR, and NOR. In total, the circuit consists of 2 208 logic gate

USENIX Association 32nd USENIX Security Symposium 1961

Figure 4: SHA-1 Accuracy

primitives and exposes 1.07% of its 2,976 total microarchi-
tectural intermediate logical states to the architectural state.

We evaluate our implementation by running the SHA-1 and
testing the rate of which the full 160-bit result is correctly com-
puted. Specifically, we take measurements of 10 000 experi-
ments, with each experiment performing 100 runs of SHA-1
with random inputs.

Figure 4 shows the distribution of the accuracy for a single
round of SHA-1. With prefetcher disabled, we obtain an aver-
age and median of 94.95% and 99.00% respectively. When
the prefetcher is enabled, we obtain an average and median
of 66.55% and 58% respectively. Each round of SHA-1 takes
only 969 microseconds to run.

We further evaluate the robustness of our circuit by instru-
menting it to compute two blocks of SHA-1, each consisting
of 80 rounds. For a complete implementation, we also use
four round functions, as specified in the SHA-1 standard [49].
To perform the calculation, we chain consecutive invocation
of SHA-1 round circuits. That is, after performing one round,
we sample the result and copy it to the architectural state of
the processor. We then use the sampled data to set up the
cache state for the following round. We further increase the
accuracy by computing each round ten times, and using the
per-bit majority to determine the output of each round.

Repeating the full computation 1 000 times, we observe
a 95.1% probability that the output from our two-block
SHA-1 is correct. Each run involves 3 737 600 logic gates and
5 068 800 intermediate values, 1.01% of which is exposed
architecturally.

Evtyushkin et al. [18] implement SHA-1 using their “weird
gates”. Their implementation relies on Intel Transactional
Synchronization Extensions (TSX) [33], a feature of Intel pro-
cessor but has been mostly disabled due to security issues [34].
Also, their implementation exposes a significant part (41.9%)
of the logical state of SHA-1 to the architectural state of the
program. In contrast, our implementation uses generic proces-
sor features, which are available across multiple architectures,
and exposes only 1.01% of the logical states.

4.3 Game of Life
As a third example for complex logical circuits based on
our gates, we implement Conway’s game of life [20] for a

Figure 5: T-tetromino Heatmap (calculated from 300 repeti-
tions, the brighter the cell the higher accuracy)

universe up to size 12×12. Recall that the game is a cellular
automaton, consisting of a grid of cells. Each cell has a state
which can be either ‘live’ or ‘dead’. Each generation, the state
of a cell is updated based on the values of the cell and of its
eight neighbors, using the following rules: (1) a live cell that
has two or three live neighbors remains live; (2) a dead cell
with exactly three live neighbors becomes live; (3) other live
cells become dead, and other dead cells remain dead. In our
implementation, we denote a live cell by ′1′ and a dead cell
by ′0′.

According to the rules, calculating the next state of a cell
requires evaluating the state of that particular cell and its
eight neighbors. Since evaluating a cell changes its value, it
becomes crucial to not destroy the state of the cells that are
still needed for future evaluations. To tackle this challenge,
we microarchitecturally copy the value of a cell into two
locations. The first is used to perform an actual calculation
while the second is used to restore the original state of the
cell.

We implement games over multiple generations with ini-
tial states such as T-tetromino [1] and glider. Figure 5 shows
16 generations of the game, starting from a T-tetromino pat-
tern, in a 12× 12 universe. The brightness of a cell shows
the probability that our circuits calculates it as live. Table 1
summarizes the accuracy of a glider across 50 generations for
an 12×12 universe. We achieve a high accuracy for the first
generation; however, due to error propagations onto future
generations, the accuracy drops as the game progresses.

Each generation requires 7 808 logic gates to perform its
calculation with the total of 11 456 intermediate microarchi-
tectural states. This means that running 10 generations com-
putes 114 560 intermediate microarchitectural states. As we
expose only the final output of the circuit to the microarchitec-
tural states, the number of states exposed constantly remains
64 regardless of the number of generations. Specifically, for
one generation we expose 0.56% (64/11456), whereas for 10
generations we expose 0.06% (64/114560). One generation of
the game takes 3.19 millisecond to run.

5 Probe Amplification

This section demonstrates how we use our gates for side-
channel probe amplification. A fundamental ability that most

1962 32nd USENIX Security Symposium USENIX Association

Prefetcher Disabled Prefetcher Enabled

Generation Average Median Average Median
(percent) (percent) (percent) (percent)

1 59.10 69.00 62.76 73.00
10 48.74 48.00 46.99 48.00
20 22.76 22.00 25.58 25.00
30 15.28 13.00 15.53 11.00
40 17.09 16.00 11.10 9.00
50 10.99 9.00 4.70 3.00

Table 1: Game of Life Glider Accuracy

Figure 6: One Generation Game of Life Accuracy

microarchitectural side-channel and speculative execution
based attacks require is to determine or “probe” if a specific
cache line is in the cache or not. Because the difference in
access time is only in the order of approximately 100 clock
cycles, this requires access to high-resolution timers. In many
settings, e.g., WebAssembly and JavaScript code in modern
browsers, access to such timers is actively blocked to prevent
this type of attacks. We propose an amplification approach,
using our gates, that can amplify the minute timing difference
between cache hit and cache miss, allowing the use of timers
with arbitrarily low resolution to distinguish the two.

The scheme consists of three amplification steps. In the
first step, we use a single gate to achieve a small amplification.
In the second step, we create a tree-like structure achieving a
theoretical timing difference of up to 4 milliseconds. Finally,
in the third step, we combine multiple trees to achieve an
arbitrarily long timing difference.

5.1 Single-Gate Amplification
The first step in our proposed scheme is using NOT1

Y , a NOT
gate with a fan-out of Y (e.g., Y = 4), to gain a small amplifi-
cation.2 We denote the access time to an address cached in the
LLC by tin, the access time to an uncached address in the main
memory by tRAM , and their difference by ∆cache = tRAM− tin.
Assume we want to test if addrin is cached or not. Instead of
directly measuring the access time to addrin, we use addrin

2We use the NOT1
Y and not the BUFFER1

Y because it is easier to imple-
ment for multiple environments (e.g., native and WebAssembly).

in

out 1 out Y out Yl -Y out Yl

Figure 7: Amplification Tree Based on NOT1
Y Gates

as an input for the NOT1
Y gate. Then we measure the total

time it takes to sequentially access all Y output addresses. If
addrin was uncached, the Y output addresses will be cached
and the total access time will be Y · tin. Otherwise, the Y out-
put addresses will be uncached and the total access time will
be Y · tRAM . This amplifies the timing difference by a factor
of Y , from ∆cache to ∆gate = Y ·∆cache.

5.2 Probe Time Amplification Tree
As mentioned in Section 3.4, the fan-out is limited by the
size of the LFB, allowing only a small constant amplification.
To support a larger amplification factor, our next step is to
use a tree structure with tree depth l as shown in Figure 7.
Again, we use addrin as an input to a NOT1

Y gate. However,
instead of simply accessing the Y output addresses, we now
use each of them as inputs to NOT1

Y gates. This gives us a
total of Y 2 output addresses. We then continue in the same
manner for the full l layers, resulting in a total of Y l output
addresses. If the number of layers l is even, we expect all
output addresses to be cached if addrin was cached, and un-
cached otherwise. If l is odd, the cache state of the output
addresses is negated. In either case, measuring the total time
of sequentially accessing all of the Y l output addresses allows
us to amplify the timing difference to Y l ·∆cache. Note that the
tree is generated in a breadth-first order, i.e., generating each
layer before continuing to the next one.

We note that the amplification factor of this tree structure
is limited by the cache size as the number of possible output
addresses is limited by the number of cache lines. For exam-
ple, if we assume an LLC of size 8 MB (217 cache lines) and
∆cache = 100 clock cycles (0.033 microseconds on a 3 GHz
CPU) then ∆tree ≤Y l ·∆cache ≈ 4 milliseconds. Moreover, due
to practical considerations (e.g., memory prefetcher, risk of
self eviction between layers of the tree, etc.), the maximal
number of output addresses we can reliably use is much lower.

5.3 Amplification Hyper-tree
To overcome the limitations of tree amplification method, we
use a hyper-tree structure. We start our hyper-tree amplifica-
tion by using an l-layer amplification tree to copy (or negate

USENIX Association 32nd USENIX Security Symposium 1963

if l is odd) the cache state of addrin to a bank of Y l output
addresses. We then continue to iterate over all addresses in
the bank. In each iteration, we use the address from the bank
as an input to a new tree, then sequentially access all the Y l

output addresses of the resulting tree. We measure the time
it takes to generate the Y l sub-trees and sequentially access
all the leaves of each sub-tree. Such a two-level hypertree
produces a total of Y 2·l output addresses. However, it only
has at most 2 ·Y l “live” memory addresses at each time, a
significant improvement over the single tree case. If needed,
we can extend this hyper-tree structure to d levels of sub-trees
and a total of Y d·l output addresses at a space cost of d ·Y l .

Note that in contrast to the simple tree amplification, we
cannot store all of the Y d·l output addresses in the cache at
the same time because the cache might not be large enough.
This means that we cannot merely measure the access time to
the output addresses but need to measure the entire process
of the amplification. This also means that regardless of the
cache state of addrin, we measure the time it takes to access
all of the addresses in all the nodes and leaves of the hyper-
tree. However, if the addresses in the layer before the last are
uncached, the output addresses are accessed from inside the
speculative window in parallel. In such a case, it takes tRAM
time to access all Y addresses inside the speculative window
and then Y · tin time to access them sequentially. However,
if the addresses in the layer before the last are cached, they
are only accessed sequentially at the end, with a total time
of Y ·tRAM . Hence, theoretically we obtain an overall amplified
timing difference of approximately

∆hypertree ≈ Y 2·l−1 · ((Y −1) · tRAM−Y · tin))≈ Y 2·l ·∆cache.

Note that the actual difference is lower due to the access time
in the intermediate layers. See the full version for details on
the hyper-tree amplification implementation.

5.4 Experimental Verification

To demonstrate our amplification hyper-tree scheme, we im-
plement and test it both in native code and in WebAssembly
code. We run the experiments on a Dynabook TECRA A50-
EC, with an Intel(R) Core(TM) i5-8250U CPU running
Ubuntu 20.04.3 LTS. In our experiments, we set the frequency
governance to performance. The WebAssembly code was
tested under Chromium 99.0.4843.0 (Developer Build). Fig-
ure 8 shows the results of running an amplification hyper-tree
in native. The hyper-tree is composed of three tree layers.
The topmost layer is an amplification tree from 1 to 16. The
bottom two layers are amplification trees from 1 to 512. In
total the tree amplifies the access time of a single address
to 16 ·512 ·512 = 4194304 memory accesses. For each run,
we measure the total time it takes to generate the whole tree
and access all the leaves. We run the amplification for a total
of 1000 times—500 runs with the root address we amplify

Figure 8: Amplification Hyper-Tree in Native

Figure 9: Amplification Hyper-Tree in WebAssembly.

cached, and 500 runs with it uncached. The difference be-
tween the median values of the two distributions is more than
100 milliseconds. Our statistical T-test analysis of the two
distributions (root cached vs. uncached) yield the p-value
(two-tailed) of 0.036, which strongly confirms that we can,
indeed, distinguish between the two scenarios.

Figure 9 shows the results of running an amplification
hyper-tree implemented in WebAssembly, after discarding
measurements that takes longer than 20 milliseconds as they
are too noisy to use (≈ 3% of the measurements). The hyper-
tree is composed of two tree layers. The topmost layer is an
amplification tree from 1 to 192. The second layer is an am-
plification tree from 1 to 512. In total the tree amplifies the
access time of a single address to 192 ·512 = 98304 memory
accesses. For each run, we measure the total time it takes to
generate the whole tree and access all the leaves. Similar to
the case of native code, we run 1000 experiments—500 with a
cached root and 500 with an uncached root. The difference be-
tween the median values of the two distributions is more than
2 milliseconds, which is the current timer resolution provided
in the Firefox browser. Similarly, we perform a statistical
T-test analysis of the two distributions (root cached vs. un-
cached) yield the p-value (two-tailed) of 0.010, which, again,
strongly confirms that we can, indeed, distinguish between
the two scenarios.

5.5 Eviction Set Creation
We now show how we use the probe time hyper-tree am-

plification scheme from Section 5 to create eviction sets us-
ing only low-resolution timers available to JavaScript and
WebAssembly code running inside a browser. We imple-
ment the eviction set creation algorithm from Vila et al. [86],

1964 32nd USENIX Security Symposium USENIX Association

Figure 10: Time to find an eviction set in Chrome using 0.1
millisecond low-resolution timer

while using our probe time amplification to support the low-
resolution timers provided by Google Chrome.

We run our experiment on an unmodified Chrome
102.0.5005.61 (Official Build; 64-bit) on the same setup as
before. Our WebAssembly code chooses a memory address
and tries to find its congruent eviction set that includes 12
addresses. We start with a set of 3000 addresses that, with a
very high probability, contain all 128 possible eviction sets
with the same page offset as the target address. In 83 out of
100 runs, we are able to find the correct eviction set. Another
8 runs are “close”, meaning that only one address returned is
not in the real eviction set. We are not able to find an eviction
set for the remaining 9 runs. Failed runs are due to excessive
noise. The algorithm detects such failures, and re-running
typically finds an eviction set.

Figure 10 shows the measured running time of the algo-
rithm. To summarized, our algorithm is able to find the correct
eviction set in 78% of the runs. We only use the 0.1 millisec-
ond resolution timer provide by Chrome, and the median run
time of algorithm is approximately 11 seconds.

6 Prime+Store: Fast Attacks with Slow Clocks

Slow clocks introduce two problems for microarchitectural
side-channel attacks. The first issue is that it is hard to distin-
guish microarchitectural events with a slow clock; we address
this problem in Section 5. The second issue is that the clock
limits the rate at which we can measure events; each mea-
surement takes at least one clock tick. This section presents
the Prime+Store attack, which overcomes this limitation. We
first describe the attack and then demonstrate how we use it
against a vulnerable version of ElGamal.

6.1 Prime+Store
Our Prime+Store attack is a variant of Prime+Probe. Recall
that a Prime+Probe attack consists of two main actions. In
the prime step, the attacker accesses all of the members of
an eviction set, bringing them to the cache. In the probe step,
the attacker accesses the members of the eviction set again to
measure the access time and detect if any of the members of
the eviction set has been evicted from the cache. Specifically,

the probe step is a function that takes the cache state of the
eviction set members and returns false if all of them are
in the cache and true if some of them are not in the cache.
We note that under our computational model, if eviction set
members are in the cache, they represent the logical value ′1′.
Hence, the probe function effectively calculates the NAND of
the logical values of the addresses in the eviction set.

Based on this observation, we design our Prime+Store at-
tack using a NANDx

1 gate, where x is the associativity of the
cache. For the attack, we use an eviction set as the input to the
NANDx

1 gate. This stores the probe result as the cache state
of the output of the gate. To perform multiple probes of the
same cache set, we repeatedly invoke the NANDx

1 gate with
the eviction set as input, but each invocation we set the output
to a different memory address. After we finish sampling, we
can then test each of the memory addresses to determine the
outputs of the gates. Thus, using this technique, we decouple
the cache measurements from the sampling, allowing us to
perform repeated samples at a high rate.

Recall that the total fan-in and fan-out of our gates is limited
by the size of the LFB, but the fan in of the NAND gate used
for the probe operation is the associativity of the LLC. Hence,
if the associativity of the LLC is larger than the size of the
LFB, the NAND gate may fail to work. We note, however,
that in most cases, the victim only evicts one entry from the
cache. Consequently, most of the eviction set remains cached.
Accesses to cached memory free the LFB fast, allowing the
attack to operate even though the fan-in is larger than the size
of the LFB. The attack may still fail when several entries of
the eviction set are evicted from the cache. We ignore this
case, considering the failure as noise. If such noise is not
acceptable, the attacker can use a more complex circuit to
compute the NAND function using multiple gates.

6.2 Attacking ElGamal
To demonstrate the effectiveness of Prime+Store, we use it to
recover the private key from a vulnerable implementation of
the ElGamal public-key encryption scheme [15]. Specifically,
we target the modular exponentiation operation, which raises
a base b to the power e modulo some modulus m, i.e., calcu-
lating be mod m. During ElGamal decryption, the private key
is used as the exponent e. Hence, our attack aims to recover
the exponent.

The attack itself consists of three steps. We first collect
traces of memory activity that correspond to segments of
the modular exponentiation operation. We then process these
traces to recover the operations performed during the observed
segments. Finally, we “stitch” the segments to recover the
private key. In this subsection we describe the attack setup
and the victim we target. Following subsections describe the
steps of the attack.

Attack Setup. We run the experiment on Dynabook TECRA
A50-EC, with an Intel Core i5-8250U CPU running Ubuntu

USENIX Association 32nd USENIX Security Symposium 1965

20.04.3 LTS with LFB size 12. The frequency governance is
set to performance. We run two processes, a victim and a spy.
The victim uses GnuPG 1.4.13 to repeatedly perform ElGamal
decryption with a 4 096-bit modulus. With this parameter, the
GnuPG private key is of length 457 bits. The spy performs
the attack, collecting traces as described below in Section 6.3.

Victim Implementation. To calculate the modular exponen-
tiation, GnuPG 1.4.13 uses the square-and-multiply algorithm.
The algorithm consists of three main operations, square, mul-
tiply, and modular reduction. It scans the bits of the exponents
from the most to the least significant. For a bit value zero,
it performs square followed by a modular reduction. For a
bit value one, it performs a sequence of square, modular re-
duction, multiply, and modular reduction. The algorithm is
known to be vulnerable to side-channel attacks and has been
attacked multiple times [44, 96, 98]. Specifically, by recover-
ing the sequence of square and multiply operations that the
algorithm performs, the attacker can recover the exponent.

6.3 Trace Acquisition

In our attack, we find an eviction set for the code of the square
operation and use Prime+Store to repeatedly sample cache
usage in the cache set. Once we have collected several sam-
ples, we use our amplification technique from Section 5 to
amplify each sample to allow recovery with our clock.

Because measurement takes a long time, data we collect
may decay, e.g., due to spurious cache evictions. To overcome
the decay, we use two techniques. First, we observe that de-
cays tend to change values only in one direction (′1′ to ′0′).
We therefore oversample and then coalesce three consecutive
samples using a NOR gate before measuring the result. Hence,
unless all three samples decay, we do not miss a ′1′ sample.

However, when measurement time is long, oversampling
is not sufficient to avoid decay. Consequently, as a second
measure, we limit the number of samples we collect in each
trace, so that the trace only correspond to a small segment of
the exponentiation operation.

For the attack on ElGamal, we collect a total of 100 000
traces, each consisting of 2 793 samples, at a rate of 0.33
microsecond per sample. We then coalesce groups of three
consecutive samples, and amplify for measurement with a
0.1 millisecond clock. Measurement of a trace takes approxi-
mately 0.34 seconds, resulting in a trace of 931 coalesced sam-
ples, which we further process. Overall, collecting 100 000
traces takes 9 hours and 40 minutes.

The limited number of samples means that we can only
observe a single segment of the exponent at a time. As in past
works [67, 71, 98], our aim is to collect a large number of
segments and then stitch them together.

Figure 11: A segment of samples of the square operation in
modular exponentiation. The bottom shows samples in which
we detect eviction. The top shows the sample density. Peaks
with density above 15 correspond to a square operation.

6.4 Trace Processing

After collecting the traces, we process them to recover the
sequence of square (S) and multiply (M) operations in the seg-
ments of the modular exponentiation that they cover. The bot-
tom part of Figure 11 shows an example of a trace. (Trimmed
to 400 samples for clarity.) Shaded areas indicate that our
Prime+Store attack detected activity in the set in the corre-
sponding coalesced sample. We clearly observe blocks of
cache activity that indicate a square operation. However, the
samples are noisy, with both gaps during square operations
and spurious activity between squares.

To detect the blocks, we measure the density of evictions
in an area. For each sample, we count the number of evictions
in the subsequent 9 and 15 samples, and multiply the counts
to obtain a measure of the density. The top part of Figure 11
shows the density measure for the displayed trace. We then
perform peak detection to identify the samples at which a
square operation starts. Specifically, we define a peak as a
sample that has a higher density than any of the preceding
and subsequent eight samples. Peaks with density above a
threshold of 12 indicates a start of a square operation.

After recovering the positions of the square operations
we use the distance between consecutive square operations.
Specifically, we find that when the exponent bit is 0, the dis-
tance between consecutive squares is about 30 samples, and
when the bit is 1, the distance is around 60 samples. As such,
we assume that peaks at a distance of 15–45 samples are con-
secutive square operations, whereas peaks at a distance of
46–75 samples are a square followed by a multiply. Thus, the
sequence of operations in the segment covered in Figure 11 is
SSSMSSSMSSSSM. We ignore peaks that are closer than 15
samples to the previous peak, and treat peak distances of
over 75 samples as unknown operations.

6.5 Key Recovery

The next step is to “stitch” the segments and recover the key.
For that we draw on an algorithm from DNA sequencing [90],
adapted to the binary case. Our stitching algorithm relies on

1966 32nd USENIX Security Symposium USENIX Association

the observation that long enough sequences of square and
multiply operations are unlikely to appear more than once
within the exponent. Thus, the algorithm iteratively extends a
guess of the sequence of square and multiply operations used
during exponentiation with the key. For the sake of exposition
we first explain a naive algorithm that assumes no errors in
the traces.
Naive Algorithm. Our naive algorithm starts from the
longest segment, which it uses as the current guess, and itera-
tively extends it to recover the full key. If there are multiple
longest segments, it just picks one arbitrarily. To extend the
guess, the algorithm searches all captured segment, looking
for the matching segment with the largest overlap with the
current guess. That is, it looks for a segment that when aligned
at some position, has matches on all the positions that over-
lap with the guess, and out of those it picks the one with the
longest overlap. It then merges the segment into the guess, ex-
tending the guess in the case that the segment extends beyond
the guess. The algorithm stops when running out of segments
or when the complete key is recovered.
Handling Trace Errors. The main problem with the naive
algorithm is that traces do contain errors. To handle errors
we modify the algorithm slightly. In the modified algorithm,
instead of just associating an operation with a position, we
track the likelihood for both operations, guessing the more
likely for each position. To generate the initial guess we search
for a segment that repeats the largest number of times in the
collected traces, and use it for initial guess.

Instead of keeping a single guess for each position, we
track the support for a square and a multiply operation. If
support for square is larger than support for multiply, we
predict that the operation is square. Otherwise, we predict
that the operation is multiply.

To extend the guess, the algorithm searches the collected
segments for the segment that has the largest match with
the prediction in the guess. It then calculates the weight of
the segment, which is the number of positions in which the
operation in the segment agrees with the operation predicted
for the matching location in the guess. Finally, the algorithm
updates the prediction by adding the weight of the segment to
the guess support in each position.

6.6 Evaluation
As discussed in Section 6.3, we collect 100 000 traces over a
period of almost 10 hours. Among those, 613 attempts fail,
leaving us with 99 387 traces.

We first filter collected segments to remove apparent trace
errors. Specifically, we ignore segments that contain 11 or
more consecutive square operations. We find that such se-
quences often appear due to capture errors, and their inclu-
sion confuses our stitching algorithm. We note that with a
457-bit ElGamal private key, we expect about one in five keys
to include such a sequence. Omitting these sequences means

Figure 12: Distribution of Stitched Key in Relation to Ground
Truth Location

that for such keys we will need an extra step of adding the
missing segments. Overall, there are 12 568 such segments.

To test the coverage of the trace collection, we compare
each collected segment with the ground truth. Figure 12 shows
the distribution of the positions at which the segments best
match the ground truth. Focusing on segments with length
of 20 or more operations, we find that 3 572 segments out
of the remaining 86 819, completely match the private key.
Furthermore, 9 467 long segments match the ground truth
with one operation error, and 14 007 match with two errors.
Running the stitching algorithm, we find that after merging
22 863 we recover the full key. The process takes 14 minutes
and 31 seconds.

7 Related Work

Early Attacks from the Browser. Genkin et al. [22] demon-
strate an LLC attack in WebAssembly, recovering the keys of
multiple cryptographic schemes. Oren et al. [51] implement a
cache attack in JavaScript, performing website fingerprinting.
Gras et al. [26] use a cache attack to break address space lay-
out randomization. All use high-resolution timers that were
available to JavaScript and WebAssembly at the time.

Alternative Timers. Several works investigate alternative
timers for use in web browsers [41, 63, 70]. Following
Wray [91], Schwarz et al. [70] propose a timer based on a
shared counter, which has been used for Spook.js [5]. Main-
stream browsers have eliminated the SharedArrayBuffer
feature which is used for implementing the shared counter [31,
56, 89]. While some browsers have since partially re-enabled
the feature, it is not fully enabled [48].

Cache Occupancy Attacks. The cache occupancy attack [74,
75] measures the access time to a cache-size buffer. The
timing differences between many and few cache misses can
be detected with a low-resolution clock. Moreover, the papers
show that by counting the number of times the buffer can
be accessed between clock ticks reveals information even
when the timer resolution is as low as 100 milliseconds. The
downside of the attack is that it has a low spatial resolution,
i.e., it provides a proxy of the amount of memory activity, but
does not reveal information on which memory addresses are

USENIX Association 32nd USENIX Security Symposium 1967

accessed. Under ideal conditions, the attack can be used for
cryptography [24], but it is not clear how this translates to real
environments. Moreover, due to the time it takes to access the
whole buffer, the temporal resolution of the attack is low.
Amplifying through Repetition. When the event that sets
the cache state can be repeated, repeating it multiple times
can amplify the difference between hits and misses. Such
amplification has been used for a Spectre attack, where the
attacker can repeat the attack as long as the leaked contents
do not change [30, 47, 71]. Theoretically, this approach could
also be used to find eviction sets, but we are not familiar with
any implementation of such approach and it would seem that
a naive implementation will be too noisy to be effective.
PLRU Attack. Röttger and Janc [66] propose an L1
cache attack that exploits the Pseudo-LRU replacement al-
gorithm used in the Intel L1 caches. L1 attacks do not apply
across cores, but it may be possible, in combination with the
Prime+Scope attack [59], to apply cross-core attacks. How-
ever, it is not clear if and how the technique can be used for
finding eviction sets with low-resolution timers.
Weird Gates. Evtyushkin et al. [18] describe “weird” gates
that use transient execution to compute over microarchitec-
tural state. They propose two types of gates. BP gates compute
a logical function of the state of the branch predictor and the
memory location that contains the code for the gate. They
store the result as a state of a location in the data cache. Due
to the differences between the types of states used for input
and output, BP gates are not composable and it is not clear
how to create gates from them.

The second type of gates, TSX gates, use Intel’s Transac-
tional Synchronization Extensions (TSX) [33] to implement
the gates. The feature is Intel-specific and is not supported
by other processors. Due to security issues [67, 69, 71], Intel
disabled the feature by default. Thus, TSX gates cannot work
on newer and patched processors. Moreover, JavaScript and
WebAssembly do not support TSX, hence TSX gates cannot
be implemented in these languages.

While TSX gates are composable like ours, their accuracy
(about 99%) is significantly lower than some of our gates’
(over 99.9%). Consequently, Evtyushkin et al. [18] frequently
transfer gates’ output to the architectural state. For example,
their SHA-1 implementation exposes 41% of the intermedi-
ate values to the architectural state. In contrast, our SHA-1
implementation performs a full round without exposing any
intermediate values. Moreover, to increase robustness, the
software needs to execute each gate multiple times and per-
form statistical analysis to decide the likely correct outcome.
While our circuits also use redundant computation to increase
robustness, we use our majority gates to select the output
without exposing the intermediate values to the software.

Evtyushkin et al. [18] propose to use their gates to imple-
ment stealthy computation that is harder to detect and analyze
(e.g., a form of program obfuscation to prevent reverse en-
gineering). Similarly, our gates evaluation is also dependent

on the microarchitectural layer, which also stores their state.
Thus, the same analysis on stealthiness and program obfusca-
tion apply to our gates.
Concurrent Work. In a concurrent and independent work,
Kaplan [37] also shows how to use speculative execution to
create logical gates. The work mentions the possibility of
using branch prediction (which we exploit), but also shows
gates based on return address prediction, which require no
branch training. It also demonstrates how to combine gates
to create logical circuits, to speed up cache attacks, and to
amplify cache measurement up to 600 milliseconds.

8 Conclusions

We investigate using transient execution to improve cache at-
tacks. We present three types of logical gates that operate on
the state of the cache. Our gates are functional enough to per-
form Turing complete calculations, and are versatile enough
to work on a range of environments, including in browsers
and across multiple processor architectures. We demonstrate
that using our gates we can amplify the timing signal of cache
miss vs. hit by six orders of magnitude, achieving a timing dif-
ference of 100 milliseconds. Our amplification strategy works
well within a browser, and we demonstrate its use for building
eviction sets in Chrome, using no timing source other than
the JavaScript timer, whose resolution is 0.1 milliseconds. We
further present the Prime+Store attack, a variant of Prime+
Probe that decouples cache sampling from the timing mea-
surement. We demonstrate the power of Prime+Store by using
it to attack the modular exponentiation implementation in a
version of GnuPG. We show that we can sample at a rate that
is more than 100 times faster than our clock rate, allowing us
to obtain (secret) exponent bits from GnuPG. We believe that
our gates pave the way for implementing other primitives that
manipulate microarchitectural state.

Acknowledgements

We thank David Kaplan for the useful discussions and for
coordinating the publication of his concurrent work.

This project has been supported by an ARC Discovery
Early Career Researcher Award DE200101577; an ARC Dis-
covery Project number DP210102670; CSIRO’s Data61; the
Blavatnik ICRC at Tel-Aviv University; the Phoenix HPC
service at the University of Adelaide; and gifts by Google and
Intel.

References

[1] Game of life wiki. URL https://conwaylife.com/
wiki/T-tetromino. 8

[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert.
New branch prediction vulnerabilities in OpenSSL and

1968 32nd USENIX Security Symposium USENIX Association

https://conwaylife.com/wiki/T-tetromino
https://conwaylife.com/wiki/T-tetromino

necessary software countermeasures. In IMACC, pages
185–203, 2007. 1

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
Predicting secret keys via branch prediction. In CT-RSA,
pages 225–242, 2007. 1

[4] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher.
New results on instruction cache attacks. In CHES,
pages 110–124, 2010. 1

[5] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked
Yehezkel, Daniel Genkin, Eyal Ronen, and Yuval Yarom.
Spook.js: Attacking Chrome strict site isolation via spec-
ulative execution. In IEEE SP, 2022. 2, 13

[6] Mohammad Behnia, Prateek Sahu, Riccardo
Paccagnella, Jiyong Yu, Zirui Neil Zhao, Xiang
Zou, Thomas Unterluggauer, Josep Torrellas, Carlos
Rozas, Adam Morrison, Frank McKeen, Fangfei
Liu, Ron Gabor, Christopher W. Fletcher, Abhishek
Basak, and Alaa R. Alameldeen. Speculative in-
terference attacks: breaking invisible speculation
schemes. In ASPLOS, pages 1046–1060, 2021. doi:
10.1145/3445814.3446708. 2

[7] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. “Ooh aah... just a little bit”: A small
amount of side channel can go a long way. In CHES,
pages 75–92, 2014. 1

[8] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,
Leon Groot Bruinderink, Nadia Heninger, Tanja Lange,
Christine van Vredendaal, and Yuval Yarom. Sliding
right into disaster: Left-to-right sliding windows leak.
In CHES, pages 555–576, 2017. 2

[9] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and
defenses. In USENIX Security, pages 249–266, 2019. 1,
4

[10] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van
Bulck, and Yuval Yarom. Fallout: Leaking data on
meltdown-resistant CPUs. In CCS, pages 769–784,
2019. 2

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten-Hwang Lai. SgxPectre:
Stealing intel secrets from SGX enclaves via speculative
execution. In IEEE EuroS&P, pages 142–157, 2019. 2

[12] Chitchanok Chuengsatiansup, Daniel Genkin, Yuval
Yarom, and Zhiyuan Zhang. Side-channeling the Kalyna
key expansion. In CT-RSA, 2022. 1

[13] Shaanan Cohney, Andrew Kwong, Shahar Paz, Daniel

Genkin, Nadia Heninger, Eyal Ronen, and Yuval
Yarom. Pseudorandom black swans: Cache attacks on
CTR_DRBG. In IEEE SP, pages 1241–1258, 2020. 1

[14] Patrick Cronin, Xing Gao, Haining Wang, and Chase
Cotton. An exploration of ARM system-level cache and
GPU side channels. In ACSAC, pages 784–795, 2021. 2

[15] Taher El Gamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. In CRYPTO,
pages 10–18, 1984. 11

[16] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B.
Abu-Ghazaleh. Jump over ASLR: attacking branch
predictors to bypass ASLR. In MICRO, pages 40:1–
40:13, 2016. 1

[17] Dmitry Evtyushkin, Ryan Riley, Nael B. Abu-Ghazaleh,
and Dmitry Ponomarev. BranchScope: A new side-
channel attack on directional branch predictor. In ASP-
LOS, pages 693–707, 2018. 1

[18] Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jef-
frey A. Eitel, Angelo Sapello, and Abhrajit Ghosh. Com-
puting with time: Microarchitectural weird machines.
In ASPLOS, pages 758–772, 2021. 2, 7, 8, 14

[19] Cesar Pereida García and Billy Bob Brumley. Constant-
time callees with variable-time callers. In USENIX
Security, pages 83–98, 2017. 1

[20] Martin Gardner. Mathematical games: the fantastic com-
binations of John Conway’s new solitaire game “life”.
Sci. Am., 223:120–123, 1970. 2, 7, 8

[21] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. J. Cryptogr.
Eng., 8(1):1–27, 2018. 1

[22] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval
Yarom. Drive-by key-extraction cache attacks from
portable code. In ACNS, pages 83–102, 2018. 13

[23] Daniel Genkin, Romain Poussier, Rui Qi Sim, Yuval
Yarom, and Yuanjing Zhao. Cache vs. key-dependency:
Side channeling an implementation of Pilsung. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):231–255,
2020. 1

[24] Daniel Genkin, William Kosasih, Fangfei Liu, Anna
Trikalinou, Thomas Unterluggauer, and Yuval Yarom.
CacheFX: A framework for evaluating cache security.
arXiv/2201.11377, 2022. 14

[25] Google. Spectre. https://leaky.page, 2021. 6

[26] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos,
and Cristiano Giuffrida. ASLR on the line: Practical
cache attacks on the MMU. In NDSS, 2017. 13

[27] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating

USENIX Association 32nd USENIX Security Symposium 1969

https://leaky.page

cache side-channel protections with TLB attacks. In
USENIX Security, pages 955–972, 2018. 1

[28] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In USENIX Security, pages 897–912,
2015. 1, 2

[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A fast and stealthy cache
attack. In DIMVA, pages 279–299, 2016. 1

[30] Noam Hadad and Jonathan Afek. Overcoming
(some) Spectre browser mitigations. https:
//alephsecurity.com/2018/06/26/spectre-
browser-query-cache/, 2018. Accessed: 2022-01-
25. 2, 14

[31] John Hazen. Mitigating speculative execution side-
channel attacks in Microsoft Edge and Internet Explorer.
https://blogs.windows.com/msedgedev/2018/
01/03/speculative-execution-mitigations-
microsoft-edge-internet-explorer/, 2018.
Accessed: 2022-01-25. 2, 13

[32] Wei-Ming Hu. Reducing timing channels with fuzzy
time. In IEEE SP, pages 8–20, 1991. 2

[33] Intel. Intel 64 and IA-32 architectures soft-
ware developer’s manual volume 1: Basic ar-
chitecture. https://cdrdv2.intel.com/v1/dl/
getContent/671436, December 2021. 8, 14

[34] Intel. Performance monitoring impact of Intel transac-
tional synchronization extension memory ordering issue.
https://www.intel.com/content/dam/support/
us/en/documents/processors/Performance-
Monitoring-Impact-of-TSX-Memory-Ordering-
Issue-604224.pdf, 2021. 8

[35] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas
Eisenbarth, and Berk Sunar. Wait a minute! a fast, cross-
VM attack on AES. In RAID, pages 299–319, 2014.
1

[36] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and
Berk Sunar. S$a: A shared cache attack that works
across cores and defies VM sandboxing - and its appli-
cation to AES. In IEEE SP, pages 591–604, 2015. 1,
2

[37] David A. Kaplan. Optimization and amplification of
cache side channel signals. arXiv/2303.00122, 2023. 14

[38] Man Ho Kim, Suk Lee, and Kyung Chang Lee. Kalman
predictive redundancy system for fault tolerance of
safety-critical systems. IEEE Transactions on Indus-
trial Informatics, 6(1):46–53, 2009. 7

[39] Ofek Kirzner and Adam Morrison. An analysis of spec-
ulative type confusion vulnerabilities in the wild. In
USENIX Security, pages 2399–2416, 2021. 2

[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In IEEE SP, pages 1–19, 2019.
1, 4

[41] David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In USENIX Security, pages
463–480, 2016. 2, 13

[42] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. TagBleed: Breaking KASLR on the
isolated kernel address space using tagged TLBs. In
IEEE EuroS&P, pages 309–321, 2020. 1, 2

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In USENIX Security, pages 973–990,
2018. 1, 2, 4

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In IEEE SP, pages 605–622, 2015. 1, 2, 12

[45] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian
Zhang. A survey of microarchitectural side-channel
vulnerabilities, attacks, and defenses in cryptography.
ACM Comput. Surv., 54(6):122:1–122:37, 2021. 1

[46] Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In
CCS, pages 2109–2122, 2018. 2

[47] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L.
Titzer, and Toon Verwaest. Spectre is here to stay: An
analysis of side-channels and speculative execution. arX-
iv/1902.05178, 2019. 2, 14

[48] MDN Web Docs. Planned changes to shared
memory. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_
Objects/SharedArrayBuffer/Planned_changes,
2022. Accessed: 2022-01-30. 13

[49] National Institute of Standards and Technology.
FIPS 180-4: Secure hash standard (SHS), 2015.
https://nvlpubs.nist.gov/nistpubs/fips/
nist.fips.180-4.pdf. 2, 7, 8

[50] Noam Nisan and Shimon Schocken. The Elements of
Computing Systems: Building a Modern Computer from
First Principles. MIT press, second edition, 2021. ISBN
9780262539807. 2, 7

[51] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadha-
van, and Angelos D. Keromytis. The spy in the sandbox:
Practical cache attacks in JavaScript and their implica-
tions. In CCS, pages 1406–1418, 2015. 13

1970 32nd USENIX Security Symposium USENIX Association

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf

[52] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In CT-
RSA, pages 1–20, 2006. 1, 2, 3

[53] Colin Percival. Cache missing for fun and profit. In
Proceedings of BSDCan, 2005. URL https://www.
daemonology.net/papers/htt.pdf. 1, 2

[54] Cesar Pereida García, Billy Bob Brumley, and Yuval
Yarom. “make sure DSA signing exponentiations really
are constant-time”. In CCS, pages 1639–1650, 2016. 1

[55] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom.
To BLISS-B or not to be: Attacking strongSwan’s imple-
mentation of post-quantum signatures. In CCS, pages
1843–1855, 2017. 1

[56] Chromium Project. Mitigating side-channel attacks.
https://www.chromium.org/Home/chromium-
security/ssca/. Accessed: 2022-01-25. 2, 13

[57] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan
Capkun. Frontal attack: Leaking control-flow in SGX
via the CPU frontend. In USENIX Security, pages 663–
680, 2021. 1

[58] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede. Systematic analysis of randomization-
based protected cache architectures. In IEEE SP, pages
987–1002, 2021. 2

[59] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the observer effect for high-
precision cache contention attacks. In CCS, pages 2906–
2920, 2021. 1, 2, 14

[60] Hany Ragab, Enrico Barberis, Herbert Bos, and Cris-
tiano Giuffrida. Rage against the machine clear: A sys-
tematic analysis of machine clears and their implications
for transient execution attacks. In USENIX Security,
pages 1451–1468, 2021. 2

[61] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CrossTalk: Speculative
data leaks across cores are real. In IEEE SP, pages
1852–1867, 2021. 2

[62] Xida Ren, Logan Moody, Mohammadkazem Taram,
Matthew Jordan, Dean M. Tullsen, and Ashish Venkat. I
see dead µops: Leaking secrets via Intel/AMD micro-op
caches. In ISCA, pages 361–374, 2021. 1

[63] Thomas Rokicki, Clémentine Maurice, and Pierre Laper-
drix. SoK: In search of lost time: A review of JavaScript
timers in browsers. In EuroS&P, pages 472–486, 2021.
doi: 10.1109/EuroSP51992.2021.00039. 13

[64] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir.
Pseudo constant time implementations of TLS are only
pseudo secure. In CCS, pages 1397–1414, 2018. 1

[65] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi
Shamir, David Wong, and Yuval Yarom. The 9 lives

of Bleichenbacher’s CAT: new cache attacks on TLS
implementations. In IEEE SP, pages 435–452, 2019. 1

[66] Stephen Röttger and Artur Janc. A Spec-
tre proof-of-concept for a Spectre-proof web.
https://security.googleblog.com/2021/03/a-
spectre-proof-of-concept-for-spectre.html,
2021. 2, 14

[67] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: rogue in-
flight data load. In IEEE SP, pages 88–105, 2019. 2, 12,
14

[68] Stephan van Schaik, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. SGAxe: How SGX fails in practice.
https://sgaxeattack.com/, 2020. 2

[69] Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. CacheOut: Leaking
data on Intel CPUs via cache evictions. In IEEE SP,
pages 339–354, 2021. 2, 14

[70] Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic timers and where to
find them: High-resolution microarchitectural attacks in
JavaScript. In Financial Cryptography, pages 247–267,
2017. 2, 13

[71] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van
Bulck, Julian Stecklina, Thomas Prescher, and Daniel
Gruss. ZombieLoad: Cross-privilege-boundary data
sampling. In CCS, pages 753–768, 2019. 2, 12, 14

[72] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Ken-
ton Varda, Thomas Schuster, Daniel Gruss, and Michael
Schwarz. Dynamic process isolation. arXiv/2110.04751,
2021. 2

[73] Aria Shahverdi, Mahammad Shirinov, and Dana
Dachman-Soled. Database reconstruction from noisy
volumes: A cache side-channel attack on SQLite. In
USENIX Security, pages 1019–1035, 2021. 1

[74] Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval
Yarom. Robust website fingerprinting through the cache
occupancy channel. In USENIX Security, pages 639–
656, 2019. 2, 13

[75] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell,
Daniel Genkin, Yossi Oren, and Yuval Yarom.
Prime+Probe 1, JavaScript 0: Overcoming browser-
based side-channel defenses. In USENIX Security,
pages 2863–2880, 2021. 2, 13

[76] Julian Stecklina and Thomas Prescher. LazyFP: Leak-
ing FPU register state using microarchitectural side-
channels. arXiv/1806.07480, 2018. 2

[77] Charles E Stroud and Ahmed E Barbour. Design for

USENIX Association 32nd USENIX Security Symposium 1971

https://www.daemonology.net/papers/htt.pdf
https://www.daemonology.net/papers/htt.pdf
https://www.chromium.org/Home/chromium-security/ssca/
https://www.chromium.org/Home/chromium-security/ssca/
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://sgaxeattack.com/

testability and test generation for static redundancy sys-
tem level fault-tolerant circuits. In Proceedings.’Meeting
the Tests of Time’., International Test Conference, pages
812–818. IEEE, 1989. 7

[78] Jakub Szefer. Survey of microarchitectural side and
covert channels, attacks, and defenses. J. Hardw. Syst.
Secur., 3(3):219–234, 2019. 1

[79] Robert M Tomasulo. An efficient algorithm for exploit-
ing multiple arithmetic units. IBM Journal of research
and Development, 11(1):25–33, 1967. 3

[80] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Mine-
matsu, and Hiroshi Hiyauchi. Cryptanalysis of block
ciphers implemented on computers with cache. In ISITA,
2002. 1

[81] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In USENIX
Security, pages 991–1008, 2018. 2

[82] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yuval
Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: hijacking transient execution through microarchi-
tectural load value injection. In IEEE SP, pages 54–72,
2020. 2

[83] Stephan van Schaik, Kaveh Razavi, Ben Gras, Herbert
Bos, and Cristiano Giuffrida. RevAnC: A framework
for reverse engineering hardware page table caches. In
EUROSEC, pages 3:1–3:6, 2017. 2

[84] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Malicious management unit: Why
stopping cache attacks in software is harder than you
think. In USENIX Security, pages 937–954, 2018. 1

[85] Bhanu Chandra Vattikonda, Sambit Das, and Hovav
Shacham. Eliminating fine grained timers in xen. In
CCSW, pages 41–46, 2011. 2

[86] Pepe Vila, Boris Köpf, and José F. Morales. Theory
and practice of finding eviction sets. In IEEE SP, pages
39–54, 2019. 2, 10

[87] Krishnaswamy Viswanathan. Disclosure of hardware
prefetcher control on some intel® processors. https:
//www.intel.com/content/www/us/en/develop/
articles/disclosure-of-hw-prefetcher-
control-on-some-intel-processors.html,
2014. 7

[88] John Von Neumann. Probabilistic logics and the synthe-
sis of reliable organisms from unreliable components.
In Automata Studies.(AM-34), Volume 34, pages 43–98.
Princeton University Press, 2016. 7

[89] Luke Wagner. Mitigations landing for new class of tim-
ing attack. https://blog.mozilla.org/security/
2018/01/03/mitigations-landing-new-class-
timing-attack/, 2018. Accessed: 2022-01-25. 2, 13

[90] Mike J. Wilkinson, Claudia Szabo, Caroline S. Ford,
Yuval Yarom, Adam E. Croxford, Amanda Camp, and
Paul Gooding. Replacing Sanger with Next Generation
Sequencing to improve coverage and quality of refer-
ence DNA barcodes for plants. Scientific Reports, 7(1):
46040, 2017. doi: 10.1038/srep46040. 12

[91] John C. Wray. An analysis of covert timing channels.
In IEEE SP, pages 2–7, 1991. doi: 10.1109/RISP.1991.
130767. 13

[92] Wenjie Xiong and Jakub Szefer. Survey of transient
execution attacks and their mitigations. ACM Comput.
Surv., 54(3):54:1–54:36, 2021. 1

[93] Wenjie Xiong, Stefan Katzenbeisser, and Jakub Szefer.
Leaking information through cache LRU states in com-
mercial processors and secure caches. IEEE Trans. Com-
puters, 70(4):511–523, 2021. 1

[94] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher W. Fletcher, Roy H. Campbell, and Josep
Torrellas. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In IEEE SP, pages
888–904, 2019. 1, 2

[95] Mengjia Yan, Christopher W. Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn DNN architectures. In USENIX Security, pages
2003–2020, 2020. 1

[96] Yuval Yarom and Katrina Falkner. Flush+Reload: A
high resolution, low noise, L3 cache side-channel attack.
In USENIX Security, pages 719–732, 2014. 1, 2, 12

[97] Tao Zhang, Kenneth Koltermann, and Dmitry Ev-
tyushkin. Exploring branch predictors for constructing
transient execution Trojans. In ASPLOS, pages 667–682,
2020. 1

[98] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-VM side channels and their
use to extract private keys. In CCS, pages 305–316,
2012. 2, 12

1972 32nd USENIX Security Symposium USENIX Association

https://www.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/

	Introduction
	Background
	Gates
	Computational Model
	NOT Gate
	More Complex Gates
	NAND Gate
	NOR Gate

	Multiple Inputs and Outputs
	Gates With a Fixed Branch Delay
	Gates Without Branch Training
	Gates Evaluation

	Circuits
	ALU
	SHA-1
	Game of Life

	Probe Amplification
	Single-Gate Amplification
	Probe Time Amplification Tree
	Amplification Hyper-tree
	Experimental Verification
	Eviction Set Creation

	Prime+Store: Fast Attacks with Slow Clocks
	Prime+Store
	Attacking ElGamal
	Trace Acquisition
	Trace Processing
	Key Recovery
	Evaluation

	Related Work
	Conclusions

