
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

ReUSB: Replay-Guided USB Driver Fuzzing
Jisoo Jang, Minsuk Kang, and Dokyung Song, Yonsei University
https://www.usenix.org/conference/usenixsecurity23/presentation/jang

ReUSB: Replay-Guided USB Driver Fuzzing

Jisoo Jang∗, Minsuk Kang∗, Dokyung Song†

Department of Computer Science
Yonsei University

Abstract

Vulnerabilities in device drivers are constantly threatening
the security of OS kernels. USB drivers are particularly con-
cerning due to their widespread use and the wide variety of
their attack vectors. Recently, fuzzing has been shown to be
effective at finding vulnerabilities in USB drivers. Numerous
vulnerabilities in USB drivers have been discovered by exist-
ing fuzzers; however, the number of code paths and vulnera-
bilities found, unfortunately, has stagnated. A key obstacle is
the statefulness of USB drivers; that is, most of their code can
be covered only when given a specific sequence of inputs.

We observe that record-and-replay defined at the trust
boundary of USB drivers directly helps overcoming the obsta-
cle; deep states can be reached by reproducing recorded exe-
cutions, and, combined with fuzzing, deeper code paths and
vulnerabilities can be found. We present ReUSB, a USB driver
fuzzer that guides fuzzing along two-dimensional record-and-
replay of USB drivers to enhance their fuzzing. We address
two fundamental challenges: faithfully replaying USB driver
executions, and amplifying the effect of replay in fuzzing.
To this end, we first introduce a set of language-level con-
structs that are essential in faithfully describing concurrent,
two-dimensional traces but missing in state-of-the-art kernel
fuzzers, and propose time-, concurrency-, and context-aware
replay that can reproduce recorded driver executions with
high fidelity. We then amplify the effect of our high-fidelity
replay by guiding fuzzing along the replay of recorded execu-
tions, while mitigating the slowdown and side effects induced
by replay via replay checkpointing. We implemented ReUSB,
and evaluated it using two-dimensional traces of 10 widely
used USB drivers of 3 different classes. The results show
that ReUSB can significantly enhance USB driver fuzzing; it
improved the code coverage of these drivers by 76% over a
strong baseline, and found 15 previously unknown bugs.

*Equal contribution.
†Corresponding author.

1 Introduction

Device drivers continue to pose a significant threat to the
security of OS kernels. They expose a wide, two-dimensional
attack surface—system call and peripheral interface—but they
are, unfortunately, too large to be bug-free and considered
trustworthy. A peripheral interface widely used by drivers to
interact with their corresponding peripheral devices is Uni-
versal Serial Bus (USB). The USB interface has constantly
attracted adversaries due to its ubiquity and the variety of
threats it can be exposed to [75]. Past attacks targeting the
USB interface range from the ones launched by adversaries
in proximity either with (e.g., evil maid attacks and social
engineering attacks [76]) or without contact (e.g., attacks via
wireless communication [8, 9, 11–14]), to even completely re-
mote ones (e.g., attacks through USB-over-Ethernet/IP [43]).

Recently, fuzzing has proved to be extremely effective at
finding vulnerabilities in kernel-mode device drivers [29, 46,
56, 62, 63], particularly in USB drivers [28, 56]. Despite their
early success in finding numerous vulnerabilities, however,
the effectiveness of existing USB driver fuzzers is less than
ideal. Syzkaller [29], a state-of-the-art USB driver fuzzer,
for example, suffers dismally low code coverage for most of
USB drivers in Linux. A key challenge is the statefulness
of USB drivers, which can be formulated as a dependency
challenge [33] for kernel fuzzers. Addressing this challenge
requires fuzzers to generate a specific sequence of input ac-
tions (e.g., system calls) such that the value and ordering
dependencies [32, 53] of each action have all been resolved
by the time it is invoked, but existing fuzzers, unfortunately,
fail to do so.

We observe that a natural yet promising direction towards
addressing the dependency challenge in kernel driver fuzzing
is record-and-replay. The idea is to record normal executions
of USB drivers at their two-dimensional trust boundary—
while they are operating with their corresponding devices
at the peripheral interface and user-mode programs at the
system call interface—and faithfully replay the resulting two-
dimensional traces to reconstruct deep USB driver states dur-

USENIX Association 32nd USENIX Security Symposium 2921

ing fuzzing. A faithful replay, when combined with fuzzing,
could potentially unlock, at the expense of one-time record-
ing efforts, many driver code paths whose execution is condi-
tioned on the driver being in deep normal operation states.

Although state-of-the-art kernel fuzzers can leverage
recorded inputs as initial seeds for evolutionary fuzzing [29,
53, 62], they are not designed to harness the full power of
input traces. As existing fuzzers focus heavily on evolving
the input corpus into a set of minimal inputs rather than re-
alistic ones, their input execution engines are not tailored to
accurately replaying lengthy, concurrent two-dimensional in-
put traces of USB drivers, and therefore fail to reconstruct
deep states of USB drivers observed during recording. Worse,
aggressive evolutionary fuzzing without accurate replay can
inadvertently discard valuable parts of input traces, or even
prune entire input traces, when executing them yields unstable
or previously seen coverage only.

This paper proposes and advocates a new principle dubbed
replay-guided fuzzing in USB driver fuzzing, which guides
fuzzing along an accurate replay of recorded USB driver exe-
cutions. This principle differs from evolutionary, trace-based
approaches [29, 53], in that it requires input traces be faith-
fully replayed to reconstruct deep driver states observed while
recording. Realizing this principle, however, poses the fol-
lowing challenges. First, the asynchronous and concurrent
nature of drivers often imposes temporal constraints on input
action invocations; that is, actions may not achieve the desired
effects depending on when they are invoked. Second, driver
executions could diverge across record and replay; there are
many code paths that can execute concurrently, which can
interleave differently during fuzzing. Third, normal opera-
tions of a driver as well as their replay tend to require long
execution time, which could significantly slowdown fuzzing.
Forth, input actions often make persisting side effects on the
system, which could influence subsequent fuzzing iterations.

We present ReUSB, a replay-guided USB driver fuzzer de-
sign that can address these challenges, thereby making USB
driver fuzzing significantly more effective than prior work. We
first introduce a set of language-level constructs—execution
context, dispatch mode, and post-dispatch delay—that are
lacking in the input program description language used by ex-
isting fuzzers, but essential in faithfully describing concurrent,
two-dimensional traces of USB driver executions. ReUSB
uses these new constructs, during replay, (i) to exercise timing
and concurrency control when dispatching recorded actions
for execution, and (ii) to dynamically schedule an execution
context based on the context of potentially unordered USB
request messages. These techniques, in effect, allow ReUSB
(i) to better satisfy temporal constraints of actions, and (ii) to
react to divergences across record and replay runs, thereby
increasing the fidelity of replay. We then amplify the effect
of faithful replay by strictly guiding fuzzing along the replay,
and by mitigating slowdown and side effects induced by pro-
longed and realistic replay via replay checkpointing. These

techniques together constitute replay-guided fuzzing that can
reach deeper USB driver code paths than the state-of-the-art.

The idea of using record-and-replay to aid software and
hardware analysis has been around for decades. Our work
distinguishes, however, from prior work in that we aim to
replay (i) USB driver executions, and (ii) by only invoking
input actions at their two-dimensional trust boundary with-
out intrusively interposing on driver executions. Prior record-
and-replay systems target different software/hardware—e.g.,
user-mode programs [51], virtual machines [17, 19, 24, 25],
and hardware [30, 54, 79]—and typically require much more
intrusive interposition during either record, replay, or both.
For example, record-and-replay systems for debugging or tol-
erating failures of concurrent, nondeterministic programs [7,
17, 27, 44, 55, 65], unlike ReUSB, typically interpose on all
synchronization events in addition to external program inputs.

We implemented ReUSB by modifying Syzkaller [29],
a state-of-the-art kernel fuzzer. Our evaluation shows that,
ReUSB, our approach that guides USB driver fuzzing along
accurate replay, can significantly enhance the effectiveness of
USB driver fuzzing: By fuzzing 10 inherently stateful USB
drivers using ReUSB, we increased the coverage of the driver
code by up to 76% over a strong baseline, and found 20 bugs,
of which 15 were previously unknown. These results demon-
strate the benefit of faithful replay in USB driver fuzzing. Be-
sides these end results of fuzzing, we also present a detailed,
systematic evaluation of the fidelity of our proposed record-
and-replay designed and implemented at the two-dimensional
trust boundary of USB drivers. In summary, we make the
following contributions.

• A New Approach. We propose a replay-guided USB driver
fuzzer design that uses two-dimensional record-and-replay
to enhance USB driver fuzzing. It works by (i) recording
thousands of actions invoked through the trust boundary of a
driver during its normal execution with user-mode programs
and hardware, and (ii) guiding fuzzing into deeper driver
code paths along the faithful replay of the recorded actions.

• Replay and Fuzzing Techniques. We identify and pro-
pose language-level constructs lacking in the input pro-
gram description language used by existing fuzzers, and
propose time-, concurrency-, and context-aware replay that
uses these constructs to faithfully reproduce USB driver ex-
ecutions. We also propose replay-guided fuzzing to amplify
the effect of faithful replay, and replay checkpointing to
mitigate the slowdown and side effects induced by replay.

• Practical Impact. We implemented ReUSB and evaluated
it using 10 inherently stateful USB drivers that implement
wireless communication protocols: Wi-Fi, Bluetooth, and
NFC. We increased the driver coverage by up to 76% over a
strong baseline, and found 15 previously unknown bugs. We
responsibly disclosed them along with patches to the kernel
community, and they were all confirmed and patched.

2922 32nd USENIX Security Symposium USENIX Association

User-mode Processes USB Driver USB Device

syscall enter

Peripheral Interface

syscall exit

Syscall Interface

Kernel ThreadsSyscall Contexts

USB response3

USB request2
1

4

Figure 1: USB driver execution flow.

2 Background

2.1 USB Device Drivers

As depicted in Figure 1, kernel-mode USB drivers have a
two-dimensional input space, comprising the system call and
peripheral interface, and work as follows. 1 User-mode pro-
cesses wishing to interact with the USB device make system
calls through the system call interface. 2 USB drivers make
USB requests to the USB device as a result of either system
calls or other events triggered by the kernel. 3 USB devices
reply by sending USB responses, and drivers receive these
via the peripheral interface. 4 Drivers can now hand over
the responses to the process context that has been waiting
for them in the kernel mode. Observe that there are multiple
concurrently running execution contexts (e.g., kernel threads)
in drivers, and that the aforementioned events that occur can
therefore be interleaved differently across driver executions.

The input space of USB drivers can be attacked by a wide
variety of adversaries: (i) the system call interface by local,
user-mode adversaries, and (ii) the peripheral interface by
nearby (via attacks with or without physical contact) or re-
mote (via attacks over network) adversaries. Wi-Fi drivers,
for example, expose a nearby, contactless attack surface that
can wirelessly be bypassed and compromised [9,13,14]. USB
drivers could also be exposed to remote adversaries as well,
via, e.g., USB-over-Ethernet/IP solutions that are nowadays
increasingly being adopted in work-from-home scenarios.

2.2 Kernel Fuzzing

Fuzzing is a dynamic testing technique widely used to find
bugs in USB drivers [28, 56, 64] and other kernel subsys-
tems [22,29,36,37,39,53,60,63,66,81]. Notationally, kernel
fuzzing can be described as iteratively (i) generating program
P that comprises an ordered set of input actions P = {a(i)}
for i = {1,2, ...}, and (ii) executing P to exercise kernel code
paths. For USB drivers, an input action could be either in-
voking a system call or responding to a USB request made
by the driver, which we denote by asyscall and ausb, respec-
tively. A key challenge for kernel fuzzers is how they gen-
erate P such that executing P triggers previously uncovered
code paths and unknown bugs in the kernel. Existing fuzzers
use a variety of techniques to generate programs: evolution-

ary fuzzing [16, 29, 82], symbolic execution [37, 38, 58, 62],
tracing [46, 53], and hand-written grammars [29]. Once an
input program has been generated, existing fuzzers consec-
utively execute the input actions [29] or consume the input
bytes [56, 63] in the order they appear in the program.

2.3 Record-and-Replay
Record-and-replay systems for concurrent, event-driven pro-
grams differ mainly in (i) where (i.e., the boundaries at which)
record-and-replay is defined (e.g., input boundaries or inter-
process synchronization boundaries), and (ii) what events are
recorded (e.g., input events or inter-process synchronization
events). Prior work makes different design choices depending
on the desired degree of (i) fidelity, i.e., how faithfully, in terms
of semantics and performance, a recorded execution shall be
reproduced, and (ii) intrusiveness, i.e., how intrusively the
target’s execution can be interposed during record-and-replay.
Fidelity vs. Intrusiveness. Record-and-replay designed for
retrospective analysis of concurrent programs such as debug-
ging [7, 24, 27, 50, 65], intrusion analysis [25], or answering
queries about past system state [23] typically aims to achieve
high semantic fidelity. Achieving this generally requires a
more intrusive interposition of the target; for example, a fully
deterministic replay would require interposing and record-
ing all nondeterministic events. On the other hand, record-
and-replay designed for performance benchmarking [77, 79]
aims for high performance fidelity, i.e., preserving, during
replay, the timing characteristics of a program’s execution
observed while recording [79]. This is often accomplished,
unlike semantic fidelity, with less intrusive interpositions dur-
ing record-and-replay, to minimize their run-time overheads.
Record-and-Replay for Kernel Fuzzing. Record-and-replay,
when used to enhance kernel fuzzing, is typically defined,
non-intrusively, at the trust boundary of the kernel—e.g., the
system call interface [53] or the PCI interface [46]—due to
following benefits. First, bugs triggered by only controlling
external inputs provided from outside of the trust boundary
directly constitute security threats that can be posed by adver-
saries at the boundary. Second, the less intrusive interposition,
the more applicability; this is because interposing on the
kernel’s execution typically requires instrumentation or modi-
fication at the source code level [34,54], which is not possible
for commercial-off-the-shelf OS kernels. Third, intrusive in-
terpositions could introduce significant run-time overheads
during replay [46, 63], which could slowdown fuzzing.

3 Motivation & Design Principle

3.1 Challenges
We now explain the challenges of finding deep bugs in USB
drivers by using CVE-2023-1380 as a running example. It is a
hard-to-reach, previously unknown kernel memory disclosure

USENIX Association 32nd USENIX Security Symposium 2923

a(1322)

a(1398)

request_usb_msg();

wait_timeout(RESP_TIMEOUT);

a(1328)

if(test_and_clear_bit(CONNECTING, state))

brcmf_get_assoc_ies();// Triggers CVE-2023-1380

a(1329)

usb.cUser-Mode
Processes

USB Messages

request_usb_msg();

...

cfg80211.c

1

2

3

Unordered requests

sendmsg

sendmsg

core.c

Syscalls
USB DeviceDriver Execu�on Flow

a(1334)

a(1323)

a(1335)
2

1

3

cfg80211.c

Blocking I/O with a �meout

An implicit dependency

...

set_bit(CONNECTING, state);

...

request_usb_msg();

if(err)

clear_bit(CONNECTING, state);

Figure 2: Execution flow of BCM43236’s Linux Wi-Fi driver that triggered CVE-2023-1380.

bug we found in BCM43236’s Linux Wi-Fi driver. Figure 2
shows the observed execution flow of the driver that triggered
this bug, annotated with (i) a subset of input actions invoked
(see §2.2 for notation), and (ii) a simplified version of the
relevant source code. The 1398th action a(1398)

usb triggers the
bug in brcmf_get_assoc_ies, which is called only when the
driver is in the CONNECTING state (3 in Figure 2). Putting the
driver into this state requires the driver to initialize itself, and
the network interface to be brought up; technically, it requires
transitively satisfying hundreds of a(1398)

usb ’s dependencies—
both implicit and explicit dependencies identified by prior
work [18, 32, 33, 53]—and, additionally, addressing the fol-
lowing challenges we identified.

C1. Temporal Constraints. The effect of invoking an input
action is often dependent on the passage of time as well; that
is, some actions can make their desired effects on the target
only when they are invoked in a certain time interval. Ac-
tions often need to be invoked after some delay, before some
timeout, or concurrently while previously invoked ones are
executing. Triggering this bug indeed requires several input
actions (e.g., a(1328)

syscall and a(1329)
usb in Figure 2) be concurrently

invoked, and before a timeout (see 1). If not, the driver simply
signals an error after the timeout, failing to initialize itself.

C2. Unordered Concurrent Requests. Triggering deep bugs
in USB drivers often also requires a set of input actions be
invoked in a nondeterministic order. Invoking a(1322)

syscall and

a(1328)
syscall , for example, makes the driver generate multiple un-

ordered USB requests concurrently from different execution
contexts (see 2), which requires a set of USB response ac-
tions be invoked in a specific order that is different in each
run (e.g., the actions starting from a(1329)

usb to a(1335)
usb in Fig-

ure 2). If the unordered USB requests were not served with
their expected responses, the driver would simply clear the
CONNECTING bit, putting itself into a state where the bug can
no longer be triggered.

C3. Lengthy Inputs. This bug also suggests that triggering
deep bugs in USB drivers requires a long sequence of input
actions be invoked, which takes a long time to execute; in fact,
the execution flow that triggered the bug involved invoking

Table 1: Comparison with state-of-the-art kernel fuzzers, il-
lustrating realistic driver executions enabled by ReUSB.

Syzkaller [29] MoonShine [53] USBFuzz [56] ReUSB
Input Action Types Syscall+USB Syscall USB Syscall+USB
Max. # of Actions 20 Dozens Dozens 12,000
Program Timeout Seconds Seconds Seconds Up to 5min

1,094 system calls and responding to 304 USB requests, which
in total lasted about 9.7 seconds. This poses a significant
challenge for USB driver fuzzers, because it implies that they
need to generate and execute large input programs, which
could make fuzzing less effective due to both the enlarged
mutation space and the reduced fuzzing throughput.

C4. Side Effects. Interacting with low-level device drivers
including this buggy USB driver requires making various
changes on low-level, global system states such as the net-
work interfaces exposed through device files. Input programs
generated by fuzzers need to access these files from user space
to interact with the driver, but doing so, unfortunately, could
make system state changes that outlive their execution, which,
in turn, could influence subsequent fuzzing iterations.

3.2 State-of-the-art

State-of-the-art kernel fuzzers [29,53,56] fall short in address-
ing the above challenges, and thus fail to reconstruct deep
driver states and trigger deep bugs, e.g., our running example.

Synchronous Execution. Existing fuzzers synchronously ex-
ecute each action in a program; that is, they invoke an action as
soon as the previously invoked one returns. Synchronous exe-
cution, however, cannot satisfy temporal constraints arising
from delays, timeouts, or concurrency used by USB drivers.
(C1). For instance, synchronous execution may result in star-
vation: When a program synchronously invokes a system call
action whose return requires a subsequent USB response ac-
tion be invoked, the program would starve—the USB action
can never be invoked. Some fuzzers such as Syzkaller pro-
vide an asynchronous mode of execution, but using this mode
without considering delayed realization of an action’s effects
may result in invoking subsequent actions too early.

2924 32nd USENIX Security Symposium USENIX Association

Sequential Execution. Existing fuzzers execute actions se-
quentially, in the order they appear in the program. Due to non-
deterministic interleavings of concurrently executing driver
code paths (C2), however, USB drivers can make USB re-
quests in a different order in each execution. This means that
sequentially providing USB responses in the order they ap-
pear in the program may not successfully serve the requests
that interleave differently during fuzzing. Failure to fulfill re-
quests may result in shallow or unstable code coverage, which
degrades the performance of existing fuzzers due to their ag-
gressive coverage-based input minimization and pruning.

Constrained Program Size and Execution Time. Existing
fuzzers highly constrain both the size (i.e., the number of
actions contained in a program) and the execution time of
input programs, as shown in Table 1, to prevent its execution
from causing prolonged delays while fuzzing (C3). As shown
earlier with the input program that triggers a real bug, however,
the constraints used by existing fuzzers—e.g., less than or
equal to 20 actions, and a timeout of several seconds in the
case of Syzkaller [29]—are not nearly enough to exercise
deep driver code paths, and bugs in them.

Constrained Program Behavior. To reduce interference be-
tween program executions caused by their system-wide side
effects while fuzzing (C4), existing fuzzers, e.g., Syzkaller,
confine the execution of each program with multiple process-
level sandboxes, which serve two purposes: First, they prevent
each program from making disruptive system state changes
that could affect subsequent program executions. Second, they
confine the lifetime of the resources created by each program;
they are automatically destroyed as the program finishes ex-
ecuting. Unfortunately, however, these sandboxes cannot be
employed when fuzzing low-level drivers, because programs
must be able to access system state to operate the drivers.

3.3 Design Principle & Goals

Motivated by the deficiencies of state-of-the-art fuzzers in
solving the challenges we identified, we propose a record-and-
replay approach to USB driver fuzzing. Record-and-replay
is a design principle that goes beyond using recorded inputs
merely as initial seeds [62] or as fragments [35] for input
generation during fuzzing, in that, under this principle, the
execution of the target observed during recording shall faith-
fully be reproduced by accurately replaying recorded inputs.
Fuzzing stateful targets such as USB drivers can greatly bene-
fit from deep states reconstructed via accurate replay, because
deep bugs in USB drivers—as we showed with our running
example—can only be triggered from deep states. Inspired by
this insight as well as the challenges we identified, we set the
following as the goals of our USB driver fuzzer design.

G1 Non-Intrusive, High-Fidelity Replay. We aim first to
achieve high-fidelity record-and-replay without intrusive in-
terpositions. High-fidelity replay, which can bring fuzzers

to deeper code paths, would require addressing (i) temporal
constraints imposed on input action invocations (C1), and
(ii) nondeterministic interleavings of unordered events (C2).
We aim to address them by only controlling external inputs,
because intrusive interpositions could complicate threat as-
sessment and make our fuzzer less applicable (see §2.3).

G2 High-Speed, Clean-State Fuzzing. We simultaneously
aim to mitigate the run-time overheads and side effects neces-
sarily caused by realistic driver executions reproduced with
replay; that is, we aim to execute a sequence of programs at
a high speed, even though each consists of more than thou-
sands of actions derived from traces of recorded executions
(C3), and, additionally, with no interference between program
executions, even though they are not contained within process-
level sandboxes and thus cause system-wide side effects (C4).

Non-Goals. We do not aim to achieve full determinism nor
high performance fidelity (see §2.3). Also, inferring a model
of operation of the target software/hardware from multiple
traces for the purpose of (i) rehosting the target software/hard-
ware [20, 26, 30, 31, 48, 54] or (ii) model-guided (or grammar-
guided) input mutation [18, 32, 62, 66] is not our goal.

4 ReUSB Design

We now present ReUSB, a replay-guided USB driver
fuzzer designed to leverage faithful yet non-intrusive two-
dimensional record-and-replay for an effective USB driver
fuzzing. ReUSB is designed, (i) given a trace program P
derived from the traces of recorded driver executions, to re-
produce them with high fidelity yet non-intrusively at the trust
boundary of USB drivers (achieving G1), and, (ii) given a
sequence of programs {P(1),P(2),P(3), ...} mutated from P
during fuzzing, to execute them at a high speed without any
interference between their executions (G2).

Overview. As depicted in Figure 3, ReUSB works in two
phases: recording and replay-guided fuzzing. To directly
model realistic threats posed by adversaries, we define
record-and-replay non-intrusively at the two-dimensional trust
boundary—the system call and peripheral interface—of USB
drivers. 1 During the recording phase, we interpose on all
actions invoked through both dimensions of the boundary,
recording their time, duration, execution context, payload, etc.
(§4.1). 2 The raw traces of recorded driver executions are
then compiled into a trace program, in which actions are an-
notated with our language-level constructs that facilitate their
accurate replay (§4.2). 3 Then, mutational fuzzing can be
started with ReUSB by using a set of such trace programs
as its initial seed corpus. 4 During fuzzing, each mutated
program is converted into our own per-context bytecode rep-
resentation (§4.3), which is then executed by our bytecode
executor that employs time-, concurrency-, and context-aware
replay for a faithful reproduction of recorded driver execu-
tions (§4.4). 5 To mitigate the impact of prolonged and side-

USENIX Association 32nd USENIX Security Symposium 2925

Recording

Compile

ioctl(...)
sendmsg(…)

23 F1 00 5F

23 01 FF 5F
23 01 FF 78

System Call
Tracing

Peripheral
Input Tracing

r0=T1->usb_connect
r1=T2->socket
T2->ioctl
T2->sendmsg
T1->usb_control_io
T1->usb_control_io
…

USB Driver

Fuzzing

Device

Mutate

…

…

… USB Driver

Bytecode Executor

USB Raw Gadget

Raw Traces Trace Program

2D Tracing
User programs

socket(...)

1 432 Bytecode Genera�on
& Execu�on

5 Checkpoint
& Restore

VMM

Bytecode Buffer

Device

Figure 3: ReUSB overview.

effecting replay of lengthy trace programs on fuzzing, ReUSB
uses replay-guided mutational fuzzing, and accelerates it by
checkpointing replay runs at fine-grained intervals, thereby
amplifying the effect of accurate replay on fuzzing (§4.5).

Key Techniques. ReUSB accomplishes the two design goals
with the following replay and fuzzing techniques.

• Time-, Concurrency-, and Context-Aware Replay. For a
high-fidelity replay, we introduce three language-level con-
structs: execution context, dispatch mode, and post-dispatch
delay. ReUSB uses (i) post-dispatch delays to control the
timing of each input action’s invocation, and (ii) both exe-
cution contexts and dispatch modes to control concurrency
between input actions invoked from different execution con-
texts; such time- and concurrency-aware replay increases
the likelihood of satisfying the temporal constraints of input
actions. In addition, ReUSB dynamically controls schedul-
ing of execution contexts at run time by using events gener-
ated by the driver as a contextual cue; such context-aware
replay allows ReUSB to react to diverging interleavings of
unordered events as they manifest at run time.

• Replay-Guided Fuzzing with Replay Checkpointing. To
amplify the effect of faithful replay on fuzzing, ReUSB
performs replay-guided fuzzing, which focuses CPU time
on fuzzing trace programs whose execution exercises deep
code paths of drivers that were exercised during their nor-
mal executions. ReUSB then accelerates replay-guided
fuzzing and, simultaneously, eliminates interference be-
tween program executions, by leveraging an incremental
VM checkpoint-and-restore [61, 64], with our replay check-
pointing policy that checkpoints reference replay runs at
small, fixed intervals. This policy, when applied to replay-
guided fuzzing, can frequently restore the VM to a check-
point that corresponds to a deep driver state during fuzzing,
thereby reducing the impact of faithful replay on the fuzzing
speed, and eliminating side effects of realistic replay.

4.1 Execution Recording
We record the full payload of all input actions invoked at the
two-dimensional trust boundary of a USB driver: the ones at
the peripheral interface (e.g., USB responses) and others at
the system call interface (e.g., system calls), thereby generat-

ing complete observations of external inputs for the recorded
driver execution. In addition, we record the timing and context
of these external inputs, e.g., USB requests corresponding to
USB responses. The resulting trace, when compiled and exe-
cuted with ReUSB, can recreate the recorded driver execution
with high fidelity, without physical devices.

Precisely, the following must be recorded: for each system
call, (i) the timestamp of its invocation and return, (ii) the
execution context that invoked the call (i.e., the thread ID),
(iii) a deep copy of all the arguments, and (iv) the return value;
for each USB response, we record (i) the creation time of its
corresponding request, (ii) the execution context where the
request was created (i.e., the ID of the kernel thread or the
workqueue that created the request), (iii) the arrival time of
the response message, and (iv) the full payload of the request
and response messages. Our execution recording comprises a
set of raw system call and USB message traces, which include
all the recorded values described above, plus the root filesys-
tem image. This image is required during replay when any
recorded system call accesses a file available in the filesystem.

4.2 Trace Compilation

The raw traces of a recorded execution are compiled into a
trace program, which is of a form that can easily be (i) mod-
ified, i.e., fuzzed, and (ii) executed to accurately reproduce
the recorded driver execution. We use, as the language used
to describe an input program, the syscall description lan-
guage of Syzkaller [29], which we augmented with a set
of new constructs—execution context, dispatch mode, and
post-dispatch delay—as described below.

Compiling Raw Traces. Each raw trace, either a system call
trace or a USB message trace, is first translated into a ReUSB
program. The translation process is largely straightforward:
Each system call is translated into a system call action asyscall ;
each USB response and its context (e.g., their corresponding
USB requests) is translated into a single USB response action
ausb. All the translated ReUSB programs are then merged into
a single trace program, where actions are chronologically or-
dered using the time at which they start influencing the driver
execution; a system call action is considered influencing the
driver execution at its invocation time, while a USB response

2926 32nd USENIX Security Symposium USENIX Association

T17->sendmsg$unix(r29, &(0x7f0000036500)={0x0, 0x0,
&(0x7f00000364c0)=[{&(0x7f00000363c0)="6c04010134000000...",
0x98}, {&(0x7f0000036480)="110000006f72672e...", 0x34}], 0x2},
0x4000) +258us

↪→
↪→
↪→
T17->poll(&(0x7f0000036540)=[{r23, 0x1}, {r24, 0x1}, {r29, 0x1},

{r30, 0x1}, {r31, 0x1}, {r37, 0x1}, {r38, 0x1}, {r39, 0x1},
{r43, 0x1}, {r44, 0x1}, {r45, 0x1}, {r46, 0x1}], 0xc,
0xffffffffffffffff) & +47482us

↪→
↪→
↪→
T2->syz_usb_control_io(r0, 0x0, &(0x7f0000029a00)={0x84,

&(0x7f00000299c0)={0x20, 0x0, 0x0, 0x0, 0x18, '\x00'/24}, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0}) +2066us

↪→
↪→
↪→
T1->syz_usb_ep_write(r0, 0x81, 0x6,

&(0x7f0000029ac0)="0e04010c2000") +450us↪→
T2->syz_usb_control_io(r0, 0x0, &(0x7f0000029b40)={0x84,

&(0x7f0000029b00)={0x20, 0x0, 0x0, 0x0, 0x18, '\x00'/24}, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0}) +503us

↪→
↪→
↪→
T7->syz_usb_ep_write(r0, 0x81, 0x6,

&(0x7f0000029c00)="0f0400010104") +509455us↪→

Figure 4: An example two-dimensional trace program.

action at the time of receipt from the host side.
Annotating Actions. During compilation, ReUSB annotates
each action using three constructs we introduce in the input
program description language, as follows.
• Execution Context: Each action is annotated with its ex-

ecution context logged while recording. This construct is
the key to solving problems caused by the concurrent, non-
deterministic nature of drivers executions: By switching
between execution contexts during replay, ReUSB can re-
act to diverging interleavings of unordered USB requests.

• Dispatch Mode: Each action is assigned a dispatch mode
of either asynchronous or synchronous; the dispatch mode
of an action is set asynchronous, if the duration of the action
completely overlaps with any action subsequently invoked
from a different execution context but returned earlier while
recording. ReUSB uses the dispatch mode to control the
concurrency between execution contexts during replay.

• Post-Dispatch Delay: Each action is annotated with a post-
dispatch delay, and ReUSB uses, as a post-dispatch delay
of an action, the duration from its return to the invocation of
its subsequent action; ReUSB enforces this delay between
action dispatches during replay, to account for temporal
constraints that require delays.

These annotations can be seen in Figure 4, which shows an
excerpt of the program compiled from two-dimensional traces
of a Wi-Fi driver. Observe that all actions begin with their
execution context (e.g., T1 and T2), and end with a potential
delay in realizing their effect; asynchronously dispatched
actions are marked with a symbol & after the call (e.g., poll);
actions without this symbol are synchronously dispatched.

4.3 Bytecode Generation
To execute a given input program P, it must be converted into
its bytecode representation. To facilitate context switches at
run time, ReUSB performs per-context bytecode generation,

Bytecode Executor

Bytecode Buffer

Main Thread

…
Header

Sec�on 1 Sec�on 2 Sec�on 3

Thread 1

…

Dynamic
Scheduler

r0=T1->usb_connect
r1=T2->socket
T2->ioctl
T2->sendmsg
T1->usb_control_io
T1->usb_control_io
T2->…
T3->…
T3->…

DispatchSchedule

Ac�on
DispatcherP:

User-Mode
Kernel-Mode USB Driver

1 2
a1:
a2:
a3:
a4:
a5:
a6:
a7:
a8:
a9:

a5

Execute3

USB Context

User-Context

Figure 5: Per-context bytecode generation and execution.

as illustrated in Figure 5: ReUSB splits the bytecode buffer
into sections, and assigns each execution context found in P
a unique section in the bytecode buffer. All actions recorded
in each context are serialized, in their bytecode form, into
the section assigned to that context. During bytecode genera-
tion, each action’s dispatch mode (of either asynchronous and
synchronous) and delay are also serialized into each action’s
bytecode representation, which are read by ReUSB’s bytecode
executor for a controlled action dispatch. This per-context or-
ganization of the bytecode buffer facilitates scheduling of the
execution contexts at run time, and switching between them.

4.4 Bytecode Execution

ReUSB’s bytecode executor is designed as a user-mode inter-
preter, which interprets and executes the bytecode representa-
tion of P. As illustrated in Figure 5, the executor repeatedly
1 schedules an execution context, 2 dispatches the action

found at the top of the scheduled context to the thread as-
signed to that context, and 3 executes the action from the
assigned thread. It is worth noting that, besides system call
actions asyscall , USB response actions ausb are also executed
by this user-mode executor via user-mode USB device emu-
lation. Unlike prior work that uses synchronous and sequen-
tial replay of recorded actions, ReUSB’s bytecode executor
performs time-, concurrency-, and context-aware replay to
enhance the fidelity of replay (i.e., G1), as follows.

Time- and Concurrency-Aware Dispatch. Recall that exe-
cuting a given input program either synchronously or asyn-
chronously without careful timing and concurrency control
over action executions may cause the program (i) simply fail
to reproduce the recorded execution, or (ii) be blocked in-
definitely, due to unsatisfied temporal constraints (see C1).
ReUSB addresses these two problems by using the post-
dispatch delay and dispatch mode annotations of each ac-
tion, whose values are set such that ReUSB reproduces, dur-
ing replay, timing and concurrency characteristics similar
to the ones observed while recording. Using these annota-
tions, ReUSB’s interpreter dispatches an action for execution
(i) only after the post-dispatch delay of its preceding action to

USENIX Association 32nd USENIX Security Symposium 2927

satisfy delay constraints, and (ii) asynchronously, i.e,. invok-
ing its subsequent actions in other execution contexts imme-
diately without waiting for its return, to satisfy concurrency
constraints between actions that could block the execution
when unsatisfied. Note that actions in the same execution
contexts are always invoked synchronously.
Context-Aware Dynamic Scheduling. Recall that drivers
have multiple concurrently running execution contexts, which
permits, during replay, them to make USB requests in an order
different from the order observed while recording (see C2).
ReUSB reacts to the diverging interleavings of such unordered
USB requests as they occur during replay, by reordering input
actions. To this end, we use the following context-aware dy-
namic scheduling policy. At each scheduling point at run time,
when (i) there is a USB request made by the driver, and (ii) the
request can be served by USB response actions ausb pending
in more than one execution contexts, ReUSB inspects the
context of the current request (i.e., the content and the execu-
tion context of the current as well as prior requests), and then
dynamically schedules the execution context whose pending
response, contextually, best matches the current request. If
this policy fails to find a matching response for the request,
ReUSB falls back to the scheduling policy that follows the
chronological order in which actions were observed while
recording. A context switch occurs when the newly scheduled
context differs from the current one.

4.5 Replay-Guided Fuzzing
The key premise of ReUSB is that, from the normal code paths
exercised through record-and-replay, many new neighboring
yet deep code paths can further be exercised when combined
with fuzzing. Using record-and-replay in fuzzing, however,
comes at the expense of an enlarged mutation space, increased
overheads caused by prolonged replay, and side effects caused
by realistic replay. We address these problems by employing
a principle dubbed replay-guided fuzzing. We realize this prin-
ciple in ReUSB by employing our own (i) mutational fuzzing
algorithm, (ii) checkpointing algorithm, and (iii) the program
generation and execution constraints, proposed below.
Replay-Guided Fuzzing. We first propose a new mutational
fuzzing algorithm, dubbed replay-guided fuzzing, which
strictly guides fuzzing along the replay. This algorithm devi-
ates from evolutionary fuzzing algorithms used by most of
state-of-the-art fuzzers, in the following respects. First, while
existing fuzzers select, in each fuzzing iteration, a program
from the corpus for mutation, typically prioritizing the ones
with high coverage yet small execution time and program size,
ReUSB always selects one among trace programs to explic-
itly prioritize the depth of exploration over breadth. Second,
ReUSB fuzzes the selected ones with small-scope mutations
only—insert, mutate, and delete—whereas existing fuzzers
frequently generate programs which substantially differ from
the original, e.g., Syzkaller’s generating random programs or

concatenating completely different programs [29]. Third, ex-
isting fuzzers heavily focus on evolving the corpus into a set
of deterministic and small programs through aggressive prun-
ing and minimization; that is, when they find an input program
that leads to new coverage, they add it to the corpus only if
the coverage is stable, and only after exhaustively minimizing
it. ReUSB, by contrast, does not minimize programs, because
such minimization attempts cause a prohibitive overhead for
lengthy trace programs, and likely fail due to prevalent or-
dering dependencies in them. These principled deviations
effectively make ReUSB guide USB driver fuzzing along the
replay of recorded executions of the drivers, and, therefore,
towards their deeper code paths and vulnerabilities.

Replay Checkpointing. To reduce the impact of faithful re-
play on the overall fuzzing speed and persisting side effects
(i.e., G2), we employ VM checkpoint-and-restore in ReUSB,
following prior work [61, 64]. Our contribution here is a new
checkpointing policy. The checkpointing policies proposed
and used by prior work [61, 64] are not optimal for fuzzing
drivers with lengthy traces of recorded executions. We pro-
pose a new checkpointing policy dubbed replay checkpoint-
ing: This policy performs checkpointing (i) only during replay
runs, i.e., while executing trace programs as-is without mu-
tating them, and (ii) at small, fixed intervals. In contrast to
prior work that may checkpoint any execution producing new
coverage [61, 64], our policy strictly bounds the number of
checkpoints created during fuzzing, which has the following
benefits. First, it reduces the run-time and memory overheads
associated with checkpoint creation. Second, with enough
checkpoint storage, it obviates the need for checkpoint re-
placement, eliminating potential thrashing problems that the
checkpointing policy used by prior work could face [64].

Relaxing Constraints. An additional benefit of ReUSB’s
using a VM checkpoint-and-restore mechanism is that vari-
ous constraints imposed by existing fuzzers on both program
generation and execution can be relaxed in support of more
realistic replay. As described in §3.2, the contraints employed
by state-of-the-art fuzzers are too strict to exercise deep code
paths, and to find vulnerabilities in their neighboring paths.

• Program Size and Execution Time: ReUSB uses signifi-
cantly looser program size and execution time constraints
than existing fuzzers. This could inadvertently result in
(i) a lower fuzzing speed (see C3), and (ii) a bloated search
space for mutational fuzzing. ReUSB mitigates the former
by accelerating fuzzing via replay checkpointing, and the
latter by focusing fuzzing on trace programs.

• Program Behavior: ReUSB additionally lifts the sandbox-
ing policies employed by existing fuzzers. Each input pro-
gram execution, whose behavior is not constrained by sand-
boxes, can produce system-wide side effects that persist its
lifetime (see C4). ReUSB eliminates such side effects, by
always restoring the entire VM back to a clean, known state
from a checkpoint after executing each program.

2928 32nd USENIX Security Symposium USENIX Association

Table 2: A list of USB devices and their corresponding drivers.
Class Vendor Device Driver Source Code (drivers/...)

Wi-Fi

Broadcom BCM43236 net/wireless/broadcom/brcm80211
Qualcomm AR9271 net/wireless/ath/ath9k
Ralink RT5370 net/wireless/ralink/rt2x00

Realtek
RTL8812BU github.com/morrownr/88x2bu-20210702*

RTL8821AU github.com/aircrack-ng/rtl8812au*

Mediatek
MT7601U net/wireless/mediatek/mt7601u
MT7610U net/wireless/mediatek/mt76/mt76x0

Blue-
tooth

Broadcom BCM20702 bluetooth/btbcm.c
CSR CSR8510 bluetooth/btusb.c

NFC NXP PN533 nfc/pn533
*Out-of-tree drivers whose source code is available at the shown URL.

5 Implementation

Recording. We implemented our execution recording envi-
ronment using a VM hosted by QEMU 4.0.0 [10], and acceler-
ated with Linux KVM [52]. We used an XHCI USB controller
available in QEMU [71] as our virtual peripheral bus to which
physical USB devices to record were forwarded. We created a
hypercall for hot-plugging the USB device to the virtual bus,
and another for unplugging it, and used these hypercalls to
control recording entirely from user space within the guest
VM. We recorded the entire driver executions from the mo-
ment the device starts to interact with the kernel. Specifically,
we let the driver operate normally with user-mode programs
and the hot-plugged device, during which we recorded (i) sys-
tem calls using STRACE [4], and (ii) USB messages using
Wireshark [5] and USBMON [70]. To compile raw STRACE
traces and Wireshark PCAP [3] traces into a trace program
we used an improved version of TRACE2SYZ [53], and a
tool dubbed PCAP2SYZ that we authored, respectively.

Replay and Fuzzing. We based our implementation of USB
driver replay and fuzzing on Syzkaller [29]. We extended
Syzkaller’s bytecode instructions with multiple new instruc-
tions, and modified Syzkaller’s bytecode interpreter to sup-
port our time-, concurrency-, and context-aware replay. We
implemented our replay-guided fuzzing by modifying the
fuzzing algorithm of Syzkaller. We implemented our replay
checkpointing based on Agamotto [64] such that ReUSB pe-
riodically checkpoints the VM during replay, and restores
it to a checkpoint before executing each program. Like
Syzkaller [28], our interpreter also uses USB devices em-
ulated in the user space (via Linux’s raw gadget [41]) as a
mechanism to replay and fuzz the USB interface.

6 Evaluation

Target Drivers. Table 2 shows our evaluation targets: 10
wireless USB drivers of 3 classes—Wi-Fi, Bluetooth, and
Near-Field Communication (NFC)—found either in the Linux
kernel v5.14 or in the latest out-of-tree drivers at the time of
writing. We chose these drivers, because they (i) implement in-
herently stateful wireless networking protocols, (ii) expose an

Table 3: Wireless networking configurations instantiated in
our dual-VM driver execution recording environment.

Configuration VM A VM B
Wi-Fi Client & AP (§A.1) Client station Access point

Bluetooth Peer-to-Peer (§A.2) Observer (Master) Advertiser (Slave)
NFC Peer-to-Peer (§A.3) Initiator (Master) Target (Slave)

Table 4: A list of generated traces in each VM per configu-
ration. All the listed devices were traced twice, once in each
VM, except for MT7601U, as it does not support an AP mode.

VM A VM B
Duration

(sec.)Device # of Actions
(Syscall/USB) Device # of Actions

(Syscall/USB)

Wi-Fi

BCM43236 1,894 (1,495/ 399) MT7610U - 20
AR9271 8,143 (1,577/ 6,566) MT7610U - 19
RT5370 6,311 (1,568/ 4,743) MT7610U - 19
RTL8812BU 24,529 (2,761/21,768) MT7610U - 23
RTL8821AU 9,328 (2,550/ 6,778) MT7610U - 23
MT7601U 4,099 (1,494/ 2,605) MT7610U 9,489 (2,047/ 7,442) 20
MT7610U 15,011 (2,639/12,372) BCM43236 1,484 (1,051/ 433) 20
MT7610U - AR9271 11,094 (2,600/ 8,494) 24
MT7610U - RT5370 11,272 (2,244/ 9,028) 22
MT7610U - RTL8812BU 12,577 (1,104/11,473) 21
MT7610U - RTL8821AU 6,728 (1,104/ 5,624) 19

Blue-
tooth

BCM20702 6,108 (3,866/ 2,242) CSR8510 1,219 (1,037/ 182) 21
CSR8510 9,219 (6,423/ 2,796) BCM20702 2,004 (1,035/ 969) 24

NFC PN533 475 (437/ 38) PN533 528 (484/ 44) 4

additional wireless attack surface, and (iii) operate real USB
devices available on the market at an affordable price. That
is, they are challenging fuzzing targets, and vulnerabilities,
when found, can have a significant real-world impact.

6.1 Recorded Executions
Dual-VM Recording Environment. To record executions of
the wireless USB drivers targeted in our evaluation, we cre-
ated a dual-VM recording environment, which comprises two
VMs configured to wirelessly communicate with each other
on a single host: Each VM runs a full wireless networking
software stack including the target driver that corresponds to
the physical USB device forwarded to it, and the two VMs
wirelessly communicate with each other through these de-
vices. We recorded the target wireless driver’s execution in
each VM, using the mechanisms described in §5.

Wireless Networking Configurations. We wrote pairs of
configuration scripts, where each pair instantiates a typical
wireless communication scenario, shown in Table 3, between
two VMs in our recording environment. That is, in each con-
figuration, two devices of the same kind, either Wi-Fi, Blue-
tooth, or NFC, are attached to a single host, and forwarded
to different VMs (i.e., VM A and VM B). The script run-
ning in each VM then (i) configures the forwarded device and
the corresponding driver, and (ii) drives wireless communica-
tion with the other VM. We provide further details about the
recorded wireless communication scenarios in Appendix A.

Generated Traces. Using our configuration scripts, we gener-

USENIX Association 32nd USENIX Security Symposium 2929

Table 5: The fidelity of two-dimensional record-and-replay
measured in basic block coverage. The percentages enclosed
in the parentheses denote the ratio of the coverage of re-
play runs w.r.t. the original recording run. TCAD refers to
“Time- and Concurrency-Aware Dispatch”, and CADS refers
to “Context-Aware Dynamic Scheduling”.

Record Replay
Baseline After TCAD After CADS

BCM43236
Client 3,533 1,346 (38.1%) 2,507 (71.0%) 3,441 (97.4%)

AP 3,205 1,295 (40.4%) 1,440 (44.9%) 2,827 (88.2%)

AR9271
Client 4,956 1,709 (34.5%) 2,808 (56.7%) 2,808 (56.7%)

AP 4,311 1,447 (33.6%) 2,721 (63.1%) 2,721 (63.1%)

RT5370
Client 4,232 1,269 (30.0%) 1,832 (43.3%) 1,933 (45.7%)

AP 3,724 1,005 (27.0%) 2,073 (55.7%) 2,831 (76.0%)

RTL8812BU
Client 11,440 3,852 (33.7%) 6,716 (58.7%) 6,716 (58.7%)

AP 10,508 3,835 (36.5%) 7,676 (73.0%) 7,676 (73.0%)

RTL8821AU
Client 7,381 2,434 (33.0%) 3,809 (51.6%) 3,821 (51.8%)

AP 6,945 2,115 (30.5%) 3,544 (51.0%) 3,561 (51.3%)
MT7601U Client 3,492 1,384 (39.6%) 1,824 (52.2%) 1,853 (53.1%)

MT7610U
Client 4,458 1,629 (36.5%) 1,762 (39.5%) 2,265 (50.8%)

AP 3,976 1,326 (33.4%) 1,437 (36.1%) 2,240 (56.3%)

BCM20702
Master 2,921 2,302 (78.8%) 2,302 (78.8%) 2,302 (78.8%)
Slave 2,683 2,428 (90.5%) 2,634 (98.2%) 2,634 (98.2%)

CSR8510
Master 2,872 1,400 (48.7%) 2,297 (80.0%) 2,297 (80.0%)
Slave 2,598 2,566 (98.8%) 2,566 (98.8%) 2,566 (98.8%)

PN533
Master 700 326 (46.6%) 677 (96.7%) 677 (96.7%)
Slave 631 321 (50.9%) 607 (96.2%) 607 (96.2%)

Geometric mean 42.0% 62.5% 69.7%

ated 19 unique traces using a combination of 10 USB devices,
which are summarized in Table 4. Even though we recorded
driver executions under typical wireless communication sce-
narios whose duration is mostly less than a minute (measured
from the invocation of the first recorded action to the last),
the number of recorded actions mostly exceeds thousands.
These actions have many ordering dependencies reflecting
their statefulness (see 3.1), which, when unresolved, make
replay fail to reproduce the recorded driver execution.

6.2 Record-and-Replay Fidelity
Using 19 trace programs created using our dual-VM record-
ing setup (see §6.1), we first thoroughly examine the fidelity
of ReUSB’s record-and-replay. We measure the fidelity using
the stable basic block coverage obtained as follows. We per-
formed, for each trace program, 3 independent replay runs,
and conservatively counted the resulting coverage that were
(i) invariant across these runs, and (ii) also found in the origi-
nal record runs. We only counted the coverage of the target
drivers and the common networking code shared by them by
limiting coverage instrumentation to their source code.
Experimental Setup. We used Syzkaller’s executor as a base-
line (referred to as Baseline), which is used by most of prior
work. Baseline synchronously and sequentially executes ac-
tions found in a trace program (see §2.3), without ReUSB’s
time-, concurrency-, context-aware replay. Starting from this
baseline, we incrementally applied the techniques we pro-
posed for faithful driver execution replay: our time-and con-

Table 6: Basic block coverage achieved through one- vs. two-
dimensional replay. The percentages enclosed in the paren-
theses denote the ratio w.r.t. the two-dimensional one.

System Call
Only [53]

USB Message
Only [56] Two-Dimensional

BCM43236
Client 136 (4.0%) 1,280 (37.2%) 3,441

AP 152 (5.4%) 1,278 (45.2%) 2,827

AR9271
Client 136 (4.8%) 1,401 (49.9%) 2,808

AP 152 (5.6%) 1,417 (52.1%) 2,721

RT5370
Client 136 (7.0%) 543 (28.1%) 1,933

AP 152 (5.4%) 968 (34.2%) 2,831

RTL8812BU
Client 136 (2.0%) 3,819 (56.9%) 6,716

AP 152 (2.0%) 3,835 (50.0%) 7,676

RTL8821AU
Client 136 (3.6%) 2,058 (53.9%) 3,821

AP 152 (4.3%) 2,074 (58.2%) 3,561
MT7601U Client 136 (7.3%) 1,098 (59.3%) 1,853

MT7610U
Client 136 (6.0%) 1,304 (57.6%) 2,265

AP 152 (6.8%) 1,320 (58.9%) 2,240

BCM20702
Master 278 (12.1%) 670 (29.1%) 2,302
Slave 278 (10.6%) 670 (25.4%) 2,634

CSR8510
Master 278 (12.1%) 605 (26.3%) 2,297
Slave 278 (10.8%) 602 (23.5%) 2,566

PN533
Master 30 (4.4%) 163 (24.1%) 677
Slave 26 (4.3%) 163 (26.9%) 607

Geometric mean 5.5% 39.6%

currency-aware dispatch (TCAD), and context-aware dynamic
scheduling (CADS). For a conservative evaluation, the con-
straints imposed by Syzkaller were relaxed in all configura-
tions including Baseline. The results are shown in Table 5.
Time- and Concurrency-Aware Dispatch. Most of the tar-
get drivers of our evaluation benefited from our proposed
time- and concurrency-aware dispatch (TCAD) during two-
dimensional replay. Quantitatively, ReUSB’s TCAD improves
the coverage of the driver source code from 42.0% to 62.5%
on average (geometric mean). This means (i) that there are
indeed many temporal constraints that require actions be in-
voked in a delayed manner or concurrently while previously
invoked actions are executing (see §3.1), and (ii) that ReUSB’s
TCAD can help better satisfy such temporal constraints.
Context-Aware Dynamic Scheduling. Although the effec-
tivenss of our context-aware dynamic scheduling (CADS) is
not as dramatic as TCAD, it does increase the coverage of
the driver source code, from 62.5% to 69.7%. In particu-
lar, ReUSB’s CADS significantly improves the coverage of
BCM43236 and MT7610U over TCAD that uses sequential
execution. These two drivers benefited most from ReUSB’s
CADS because of their high degree of concurrency support;
that is, there are many concurrently running code paths in
these drivers making USB requests without ordering them,
which effectively allows the requests to interleave differently
with each other between record and replay runs.
Two-Dimensional Record-and-Replay. We now ablate all
of either system calls or USB messages from trace programs
to quantify the effectiveness of two-dimensional record-and-
replay relative to one-dimensional ones. All of the techniques
we proposed were applied in these experiments. The one-
dimensional baselines could be thought of as stronger ver-

2930 32nd USENIX Security Symposium USENIX Association

Table 7: Errors hit while fuzzing the target drivers using our
proposed techniques.

Device Role(s) Error Type Prev.
Unknown

Upstream
Patch

Buggy Kernel
Code Loc.

BCM43236

Client&AP Slab out-of-bounds ✓ 4920ab1 Driver
Client&AP Slab out-of-bounds ✓ 4920ab1 Driver
Client&AP Stack out-of-bounds ✓ 0a06cad Driver
Client&AP Stack out-of-bounds ✓ 660145d Driver
Client&AP Null pointer deref. ✓ 683b972 Driver
Client&AP Shift out-of-bounds ✓ 81d17f6 Driver
Client&AP Slab out-of-bounds ✓1 6788ba8 Driver

Client Slab out-of-bounds ✓2 0da40e0 Driver

AR9271

Client&AP Stack out-of-bounds ✓ 8a2f35b Driver
Client&AP Null pointer deref. ✗3 - Driver
Client&AP Null pointer deref. ✗3 - Driver
Client&AP Use-after-free ✓ f099c5c Driver

AP Divide-by-zero ✗3 - Driver
MT7610U Client&AP Null pointer deref. ✓ bd5dac7 Driver
MT7601U Client Null pointer deref. ✓ 803f317 Driver

CSR8510
Master Slab out-of-bounds ✗4 - BT subsystem
Master Corrupted list ✗4 - BT subsystem

PN533
Master Slab out-of-bounds ✓ 9f28157 Driver

Master&Slave Use-after-free ✓ 9dab880 Driver
Slave Use-after-free ✓ 4bb4db7 NFC subsystem

1Assigned CVE-2022-3628. 2Assigned CVE-2023-1380.
3Previously discovered by Syzbot [78], using manually-written system call descriptions

tailored to AR9271’s driver.
4Previously discovered by Syzbot [78], using a custom harness and manually-written

system call descriptions.

sions of MoonShine [53] (for syscall only) and USBFuzz [56]
(for USB message only). The results are shown in Table 6,
which highlights the importance of two-dimensionality; with-
out replaying system calls, only 39.6% of basic blocks, on
average (geometric mean), were covered; without USB mes-
sages, only 5.5% of basic blocks were covered on average.

6.3 Fuzzing Effectiveness

We now quantify the effect of our proposed techniques on
USB driver fuzzing, conservatively, over multiple strong base-
lines. To this end, we conducted a series of mutational fuzzing
experiments, using, as an initial seed corpus, the trace pro-
grams obtained via our execution recording described in §6.1.
Following the guidance provided by prior work [40, 49], we
use the number of bugs found as the primary metric of our
evaluation, and employ code coverage metrics as necessary for
demonstrating the effect of ReUSB’s individual techniques.

Experimental Setup. We configured ReUSB considering
realistic threats posed by adversaries on the peripheral side of
USB drivers’ trust boundary, meaning that we let the fuzzer
fuzz only USB response actions invoked through the USB
interface. That said, if one wishes to find vulnerabilities under
a different threat model, the mutation scope can be confined
differently, e.g., confined to system calls when considering
threats by local adversaries. We performed parallel fuzzing
using 32 instances of the fuzzer. To detect manifestations
of bugs as they are triggered by ReUSB, we used Kernel
AddressSanitizer [42] and UndefinedBehaviorSanitizer [59].

Table 8: Constraint relaxations accomodated by ReUSB.
Syzkaller [29]’s Default Relaxed to ...

Max. # of actions in P (Prog. Size) 20 12,000
Timeout for executing P (Prog. Exec. Time) 5 seconds 300 seconds
Sandboxes for P’s exec. (Prog. Behavior) Multiple namespaces No namespace

Results. While fuzzing the target drivers using ReUSB, we
found 20 bugs, summarized in Table 7, of which 15 were
previously unknown. Many of them were found in the main-
line kernel, even though the mainline USB drivers have been
heavily fuzzed by Google’s Syzbot [78]. Bugs were found in
a variety of components: the target drivers themselves and the
Linux’s Bluetooth [15] and NFC [68] subsystems, demonstrat-
ing that ReUSB’s replay-guided fuzzing with our enhanced
record-and-replay is effective at finding bugs in wireless net-
working drivers and the common networking code shared by
them, which are among the most stateful components in the
kernel. Of the known bugs, two in the Linux Bluetooth subsys-
tem (not in the individual drivers) were previously discovered
by Syzbot [78]. Our inspection of Syzbot’s reports for these
bugs revealed that Syzbot triggered these bugs by injecting
malformed packets directly into Linux’s Bluetooth subsystem,
using (i) a Bluetooth-specific packet injection mechanism,
and (ii) system call descriptions manually written to use that
custom injection mechanism. By contrast, ReUSB triggered
these bugs by merely interacting with the driver at their trust
boundary, without requiring human experts to write any har-
ness, nor custom system call descriptions.

Bug Finding Capability. The key component of ReUSB that
enabled the discovery of these previously unknown bugs is
replay-guided fuzzing (§4.5). We were not able to discover
any of these bugs with an unmodified Syzkaller, given (i) the
same number of fuzzer instances, (ii) the same amount of
fuzzing time, and (iii) the same initial seed corpus, for the
following reasons. First, Syzkaller constrains the execution
time, size, and behavior of a program to an extent that it can-
not reach driver code paths beyond initialization, when most
of the bugs found were triggered during or after a successful
initialization. Second, Syzkaller exhaustively minimizes any
program that finds new coverage, which led to (i) a prohibitive
overhead without much gain (i.e., most of minimization at-
tempts failed due to prevalent ordering dependencies), and
(ii) inadvertently discarding important actions when Syzkaller
fails to faithfully replay them. ReUSB, in contrast, did not
suffer from these problems, as it used (i) looser constraints as
described in Table 8, (ii) trace programs as-is without mini-
mizing them, and (iii) high-fidelity replay.

Code Coverage. We now study ReUSB’s capability in reach-
ing deeper code paths in the target drivers. To this end, we
conducted two controlled fuzzing experiments by using, as
an initial seed corpus, (i) all of our 19 trace programs, and
(ii) a single trace program generated with BCM43236 in its
client mode, whose driver had the highest number of bugs

USENIX Association 32nd USENIX Security Symposium 2931

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4920ab131b2dbae7464b72bdcac465d070254209
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4920ab131b2dbae7464b72bdcac465d070254209
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0a06cadcc2a0044e4a117cc0e61436fc3a0dad69
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=660145d708be52f946a82e5b633c020f58f996de
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=683b9728f28895660c66da250cd31654b8fcbc6e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=81d17f6f3331f03c8eafdacea68ab773426c1e3c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6788ba8aed4e28e90f72d68a9d794e34eac17295
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0da40e018fd034d87c9460123fa7f897b69fdee7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8a2f35b9830692f7a616f2f627f943bc748af13a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f099c5c9e2ba08a379bd354a82e05ef839ae29ac
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd5dac7ced5a7c9faa4dc468ac9560c3256df845
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=803f3176c5df3b5582c27ea690f204abb60b19b9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9f28157778ede0d4f183f7ab3b46995bb400abbe
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9dab880d675b9d0dd56c6428e4e8352a3339371d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4bb4db7f3187c6e3de6b229ffc87cdb30a2d22b6

0 4 8 12 16 20 24
0

2,000
4,000
6,000
8,000

Time (hours)

C
ov

er
ag

e

ReUSB 9,689 (+76%)

ReUSB¬Replay 8,349 (+52%)

ReUSB¬Replay-Guided 5,501

(a) Using all of our 19 trace programs as an initial seed corpus.

0 4 8 12 16 20 24
0

1,000

2,000

3,000

Time (hours)

C
ov

er
ag

e

ReUSB 3,008 (+75%)

ReUSB¬Replay 2,442 (+42%)

ReUSB¬Replay-Guided 1,715

(b) Using BCM43236’s client mode trace program as an initial seed corpus.

Figure 6: Basic block coverage measured while fuzzing the
drivers with different initial seed corpora. The plots depict the
results of 5 independent runs, and the numbers in the legends
are the final coverage results averaged over the runs.

Table 9: The amount of VM execution time saved via replay
checkpointing. The percentages enclosed in the parentheses
denote the ratio w.r.t. the total amount of VM time that would
have taken if there were no replay checkpointing support.

of Execs. VM Exec. Time Throughput VM Time Saved
ReUSB 262091.00 992.61 hrs 4.40/min 279.42 hrs (28.15%)
ReUSB¬Replay-Guided 514047.40 757.94 hrs 11.30/min 19.52 hrs (2.58%)

(see Table 7). Figure 6 depicts the coverage results of these
two experiments. Like prior experiments, we only counted
the coverage of the target drivers and the common network-
ing code shared by them. To individually evaluate ReUSB’s
techniques, we used the following configurations: (i) ReUSB,
(ii) ReUSB¬Replay that ablates time-, concurrency-, and con-
text-aware replay from ReUSB, and (iii) ReUSB¬Replay-Guided

that additionally ablates ReUSB’s replay-guided mutational
fuzzing algorithm, and, instead, uses Syzkaller’s evolutionary
one. In both experiments, ReUSB¬Replay-Guided achieves the
lowest coverage. A primary reason is that actions not faith-
fully replayed are simply considered having no effect and,
therefore, discarded during Syzkaller’s minimization process.
The coverage improves after applying ReUSB’s fuzzing al-
gorithm (see ReUSB¬Replay), which further improves after
applying ReUSB’s high-fidelity replay techniques (ReUSB).

Fuzzing Throughput. A major drawback of combining faith-
ful replay with fuzzing is that it necessarily increases the
execution time of each program, which, in turn, could reduce
the overall fuzzing throughput. We proposed replay check-
pointing to mitigate the effects of prolonged replay of lengthy
trace programs, and, here, we quantify its effectiveness by
measuring the total amount of VM time saved via check-
point restoration during the ReUSB and ReUSB¬Replay-Guided

fuzzing runs using all of our 19 trace programs as an ini-
tial seed corpus. Table 9 summarizes the results; we can

0 4 8 12 16 20 24
0

5,000

10,000

Time (hours)

C
ov

er
ag

e USBFuzzTrace+ReUSB 10,702 (+17%)

USBFuzzTrace 9,125

Figure 7: AFL-style edge coverage achieved by USBFuzz
with and without ReUSB’s accurate replay. The plots depict
the results of 5 independent runs, and the numbers in the
legends are the final coverage results averaged over the runs.

observe that ReUSB’s replay-guided fuzzing benefits signifi-
cantly more from replay checkpointing than Syzkaller’s evo-
lutionary fuzzing, saving 28.15% of the VM execution time
replay-guided fuzzing could have spent in total without re-
play checkpointing (see “VM Time Saved”). Although the
fuzzing throughput of replay-guided fuzzing is lower than
Syzkaller’s evolutionary fuzzing, we argue that the benefit
(e.g., 76% coverage increase Figure 6a) outweights the cost.

USBFuzz with Accurate Replay. We further show the ben-
efit of accurate replay on USB driver fuzzing with USB-
Fuzz [56]. To ensure a conservative comparison, we sub-
stantially modified USBFuzz’s implementation so that it can
leverage our BCM43236’s client mode trace. In particular,
we added support for invoking system calls in USBFuzz, by
extracting the system calls in the trace and invoking them
from USBFuzz’s user agent. We also translated the USB
messages in the trace into a format that can be consumed
by AFL [82], USBFuzz’s fuzzing engine. Using this trace-
enhanced configuration of USBFuzz as the baseline (denoted
by USBFuzzTrace), we created a replay-enhanced configura-
tion of USBFuzz that incorporates ReUSB’s accurate replay
atop (USBFuzzTrace+ReUSB). Instead of implementing a na-
tive replay support in USBFuzz, which requires all of our
engineering efforts be duplicated for USBFuzz, we chose to
emulate this configuration by leveraging ReUSB’s replay en-
gine. Specifically, when USBFuzz generates an input whose
prefix matches a prefix of the trace, we let (i) ReUSB’s re-
play engine replay the longest matching prefix first, and then
(ii) USBFuzz consume the rest. Figure 7 depicts the results.
Replay-enhanced USBFuzz outperforms the trace-enhanced
one (by 17% on average), demonstrating that USBFuzz can
benefit from accurate replay as well, even without some opti-
mizations we proposed such as replay checkpointing.

6.4 Analysis of Bugs Found
We draw further insights from the bugs we found with ReUSB
by examining their attack vectors, causes, and manifestations.

Attack Vector Analysis. The key benefit of defining record-
and-replay as well as fuzzing at the trust boundary is that the
bugs, when found, constitute direct security threats posed by
adversaries facing the boundary (see §2.3). In an effort to

2932 32nd USENIX Security Symposium USENIX Association

find bugs that could be triggered in real USB attack scenarios,
we targeted the peripheral attack surface of USB drivers by
operating under a threat model where adversaries are on the
device side who only control USB responses, and not system
calls (see §6.3). Observe that, even though the adversaries can-
not directly control system calls, they can still induce normal
system call activities by impersonating a normal device, until
they are able to trigger the target bug by sending a crafted
USB message. Most of the bugs found by ReUSB can be trig-
gered by inserting or removing only a single USB response
from recorded traces, which means that they can indeed be
triggered by adversaries who only control the peripheral side.

Root Cause Analysis. The majority of bugs were caused
by failing to sanitize device-provided values, though they
must not be trusted in many real-world USB attack scenarios.
ReUSB triggered this class of bugs by sending a USB message
that contains values unexpected by the driver. Another cause
of the bugs was failing to consider all possible orders in which
actions can be invoked. ReUSB triggered this class of bugs by
sending a USB message at a point unexpected by the driver.
For example, a bug found in the NFC subsystem was caused
by failing to coordinate actions that reference the same ob-
ject, when invoked in an order different from recorded traces:
an object deallocated by a USB disconnect action was later
referenced by system calls through a dangling pointer, caus-
ing a use-after-free error. Yet another cause of the bugs was
failing to handle missing USB responses: ReUSB triggered
this class of bugs by not sending a USB message expected
by the driver, e.g., the one found in MT7610U. We identified
other causes of bugs (i.e., other programming errors) as well.
For instance, a previously unknown use-after-free bug found
in AR9271 was caused by incorrectly ordered deallocations
of cross-referencing objects. This bug had been lurking unde-
tected so far before ReUSB found it, simply because existing
fuzzers had never reached the erroneous code.

Memory Safety Violations. A bug in the driver may mani-
fest, perhaps in the most dangerous way, as a memory safety
violation. ReUSB found many such dangerous bugs that man-
ifested as either spatial or temporal memory safety violations.
Some bugs manifested as slab or stack out-of-bounds er-
rors, either when device-provided values were used in pointer
arithmetic operations without sanitization, or when device-
provided strings were used by the driver to call string manip-
ulation functions without checking whether a null character
exists at their end. Several other bugs manifested as use-after-
free errors, whose root cause is either missing or incorrect
ordering between use and free operations, as they were trig-
gered by sending USB messages in an unexpected order.

Other Safety Violations. The bugs triggered by ReUSB man-
ifested as other safety violations as well. For example, a bug
was triggered, as a driver used malformed values as an argu-
ment of Linux’s socket buffer API call whose semantics is
to return a null pointer when unexpected values are provided.

The driver then dereferenced this null pointer without any
check, causing a null-pointer dereference error. Another inter-
esting bug was found in AR9271, which uses a value received
from the device as the denominator of a division operation
without checking, leading to a division-by-zero error.

7 Discussion & Limitations

Improving Replay Fidelity. Further improving semantic fi-
delity could potentially uncover more bugs during replay-
guided fuzzing. Future work could explore different designs
than ours, such as a design with a more intrusive record-and-
replay, which can increase the semantic fidelity. Future work
could also explore designs that can achieve higher perfor-
mance fidelity, which could potentially help detect concur-
rency bugs, especially when combined with dynamic concur-
rency bug detection tools such as KCSAN [21].
Diversifying Recording Scenarios. We evaluated ReUSB
with multiple classes of devices, but, for a conservative evalu-
ation, only with a limited number of trace programs recorded
under standard wireless communication scenarios (see §A).
ReUSB could potentially uncover more bugs with driver exe-
cutions recorded under a more diverse set of usage scenarios.
USB drivers other than wireless networking ones could also
be recorded during their normal operation, and fuzzed with
ReUSB to uncover bugs in them. We intend to expand the
corpus of traces both in variety and in size in our future work.
Supporting Other OSs. ReUSB’s record-and-replay, as it is
defined at the trust boundary of USB drivers, requires inter-
posing on both system calls and USB messages. Interposing
on system calls can entirely be done in userspace, whereas
doing so for USB messsages requires support from the ker-
nel. Although we only implemented ReUSB for Linux using
USBMon [70] and USB raw gadget [41], we believe that the
ReUSB design can be applied to closed-source OSs such as
Windows, because interposing on the USB layer (and not in-
dividual drivers) can be done by using USBPcap [2] or by
writing USB Device Emulation (UDE) drivers [6].
Supporting Other Peripheral Buses. We designed ReUSB
for fuzzing USB drivers, but our replay techniques could be
applied when fuzzing drivers that use other peripheral buses
such as PCI or I2C. We acknowledge, however, that the I/O
interception mechanism of record-and-replay needs changing.
A recent study demonstrates that intercepting I/O of a DMA-
capable PCI device is feasible [46]. We intend to extend
ReUSB for other peripheral buses in our future work.

8 Related Work

Finding Bugs in Device Drivers. Researchers have proposed
a plethora of techniques to find bugs in OS kernels, which
include static [45, 58, 80], dynamic [18, 29, 32, 34, 47, 57,
63, 64, 67, 81], and hybrid [22, 37, 38, 53, 62, 83] analysis.

USENIX Association 32nd USENIX Security Symposium 2933

Many [57, 62, 67], like ReUSB, enhance dynamic analysis of
device drivers. For instance, EASIER replaces I/O with stub
functions [57], Charm relays I/O to remote devices [67], and
Drifuzz uses symbolic I/O [62], in an effort to enhance driver
fuzzing with minimal or no hardware requirement. ReUSB,
using a different record-and-replay approach that requires
hardware only while recording, also facilitates driver fuzzing.

Defending against USB Attacks. The USB interface has
been known notoriously for its unique attack surface and inse-
curity [75]. Unfortunately, their attack surface is still expand-
ing; for example, with an increasing demand for work-from-
home, the host-side USB stack is nowadays getting exposed to
devices attached over network via USB-over-Ethernet/IP [69].
Researchers have proposed (i) fine-grained access control
mechanisms to defend against attacks [72–74], and (ii) anal-
ysis techniques (e.g., using custom hardware [1] and hybrid
fuzzing [38]) to find vulnerabilities in the USB software stack.
ReUSB’s replay and fuzzing techniques also enhance dy-
namic analysis of the host-side USB software stack.

9 Conclusion

We presented ReUSB, a replay-guided USB driver fuzzer
design that can significantly enhance the effectiveness of
USB driver fuzzing. The guiding principles of our ReUSB
design are non-intrusive yet high-fidelity record-and-replay,
as well as high-speed, clean-state fuzzing. ReUSB realizes
(i) non-intrusive yet faithful replay with new language-level
constructs that enable time-, concurrency-, and context-aware
replay of recorded executions, and (ii) high-speed, clean-state
fuzzing with replay-guided mutational fuzzing accelerated
by replay checkpointing. These techniques allow ReUSB to
fuzz deep driver code paths at a high speed, leveraging trace
programs consisting of thousands of system calls and USB
messages. We evaluated ReUSB by fuzzing 10 USB drivers
in Linux, where we found 15 bugs confirmed to be previously
unknown, and increased their code coverage by 76%.

Acknowledgments

The authors would like to thank the anonymous shepherd
and reviewers for their valuable feedback. This material
is based upon work partly supported by the National Re-
search Foundation (NRF) grant funded by the Korea gov-
ernment’s Ministry of Science and ICT (MSIT) under the
award 2022R1C1C1003551. We also gratefully acknowledge
the awards 2022-22-0103 and 2023-22-0108 from the Yonsei
University Research Fund of 2022 and 2023, respectively.

References

[1] Facedancer11. http://goodfet.sourceforge.net/
hardware/facedancer11.

[2] Open source USB packet capture for Windows. https:
//desowin.org/usbpcap.

[3] PCAP capture file format. https://tools.ietf.org/
id/draft-gharris-opsawg-pcap-00.html.

[4] strace. https://strace.io.

[5] Wireshark. https://www.wireshark.org.

[6] Write a UDE client driver. https://docs.microsoft.
com/en-us/windows-hardware/drivers/usbcon/
writing-a-ude-client-driver.

[7] Gautam Altekar and Ion Stoica. ODR: Output-
deterministic replay for multicore debugging. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2009.

[8] Armis Labs. BlueBorne vulnerabilities, 2017. https:
//armis.com/blueborne.

[9] Ian Beer. An iOS zero-click radio prox-
imity exploit odyssey, 2020. https://
googleprojectzero.blogspot.com/2020/12/
an-ios-zero-click-radio-proximity.html.

[10] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In Proceedings of the USENIX Annual Tech-
nical Conference, FREENIX Track, 2005.

[11] Gal Beniamini. Over the air - vol. 2, pt. 2: Exploiting
the Wi-Fi stack on Apple devices, 2017. https:
//googleprojectzero.blogspot.com/2017/10/
over-air-vol-2-pt-2-exploiting-wi-fi.html.

[12] Gal Beniamini. Over the air - vol. 2, pt. 3: Exploiting
the Wi-Fi stack on Apple devices, 2017. https:
//googleprojectzero.blogspot.com/2017/10/
over-air-vol-2-pt-3-exploiting-wi-fi.html.

[13] Gal Beniamini. Over the air: Exploiting Broad-
com’s Wi-Fi stack (part 1), 2017. https:
//googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html.

[14] Gal Beniamini. Over the air: Exploit-
ing Broadcom’s Wi-Fi stack (part 2), 2017.
https://googleprojectzero.blogspot.com/2017/
04/over-air-exploiting-broadcoms-wi-fi_11.
html.

[15] BlueZ Project. BlueZ: Official Linux Bluetooth protocol
stack. http://www.bluez.org.

[16] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

2934 32nd USENIX Security Symposium USENIX Association

http://goodfet.sourceforge.net/hardware/facedancer11
http://goodfet.sourceforge.net/hardware/facedancer11
https://desowin.org/usbpcap
https://desowin.org/usbpcap
https://tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html
https://tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html
https://strace.io
https://www.wireshark.org
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/writing-a-ude-client-driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/writing-a-ude-client-driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/writing-a-ude-client-driver
https://armis.com/blueborne
https://armis.com/blueborne
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
http://www.bluez.org

[17] Thomas C Bressoud and Fred B Schneider. Hypervisor-
based fault tolerance. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), 1995.

[18] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun
Qian. SyzGen: Automated generation of syscall specifi-
cation of closed-source macOS drivers. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security (CCS), 2021.

[19] Jim Chow, Tal Garfinkel, and Peter M Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2008.

[20] Abraham A. Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. HALucinator: Firmware re-hosting through
abstraction layer emulation. In Proceedings of the
USENIX Security Symposium, 2020.

[21] Jonathan Corbet. Finding race conditions with KCSAN,
2019.

[22] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. DIFUZE: Interface aware fuzzing
for kernel drivers. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
2017.

[23] David Devecsery, Michael Chow, Xianzheng Dou, Jason
Flinn, and Peter M Chen. Eidetic systems. In Proceed-
ings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[24] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim
Leek, and Ryan Whelan. Repeatable reverse engineering
with PANDA. In Proceedings of the Program Protection
and Reverse Engineering Workshop, 2015.

[25] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza A. Basrai, and Peter M. Chen. ReVirt: Enabling
intrusion analysis through virtual-machine logging and
replay. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2002.

[26] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and hardware-independent firmware testing via au-
tomatic peripheral interface modeling. In Proceedings
of the USENIX Security Symposium, 2020.

[27] Dennis Michael Geels, Gautam Altekar, Scott Shenker,
and Ion Stoica. Replay debugging for distributed appli-
cations. In Proceedings of the USENIX Annual Techni-
cal Conference (ATC), 2006.

[28] Google. External USB fuzzing for Linux kernel.
https://github.com/google/syzkaller/blob/
master/docs/linux/external_fuzzing_usb.md.

[29] Google. syzkaller - kernel fuzzer. https://github.
com/google/syzkaller.

[30] Liwei Guo and Felix Xiaozhu Lin. Minimum viable
device drivers for ARM TrustZone. In Proceedings of
the ACM European Conference on Computer Systems
(EuroSys), 2022.

[31] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Davide
Balzarotti, Aurélien Francillon, Yung Ryn Choe, Christo-
pher Kruegel, and Giovanni Vigna. Toward the analysis
of embedded firmware through automated re-hosting.
In Proceedings of the International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID),
2019.

[32] HyungSeok Han and Sang Kil Cha. IMF: Inferred
model-based fuzzer. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
2017.

[33] Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun
Qian, and Ardalan Amiri Sani. Demystifying the depen-
dency challenge in kernel fuzzing. In Proceedings of
the International Conference on Software Engineering
(ICSE), 2022.

[34] Felicitas Hetzelt, Martin Radev, Robert Buhren, Math-
ias Morbitzer, and Jean-Pierre Seifert. VIA: Analyzing
device interfaces of protected virtual machines. In Pro-
ceedings of the Annual Computer Security Applications
Conference (ACSAC), 2021.

[35] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with code fragments. In Proceedings of the
USENIX Security Symposium, 2012.

[36] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: Finding
kernel race bugs through fuzzing. In Proceedings of the
IEEE Symposium on Security and Privacy (IEEE S&P),
2019.

[37] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. HFL:
Hybrid fuzzing on the Linux kernel. In Proceedings
of the Network and Distributed System Security Sympo-
sium (NDSS), 2020.

[38] Kyungtae Kim, Taegyu Kim, Ertza Warraich, By-
oungyoung Lee, Kevin Butler, Antonio Bianchi, and
Dave (Jing) Tian. FuzzUSB: Hybrid stateful fuzzing of
USB gadget stacks. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (IEEE S&P), 2022.

USENIX Association 32nd USENIX Security Symposium 2935

https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller
https://github.com/google/syzkaller

[39] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding semantic bugs
in file systems with an extensible fuzzing framework.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[40] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security (CCS), 2018.

[41] Andrey Konovalov. USB raw gadget, 2021.
https://www.kernel.org/doc/html/v5.14/usb/
raw-gadget.html.

[42] Andrey Konovalov and Dmitry Vyukov. KernelAddress-
Sanitizer (KASan): A fast memory error detector for the
Linux kernel. LinuxCon North America, 2015.

[43] Ignat Korchagin. Exploiting USB/IP in Linux. Black
Hat ASIA, 2017.

[44] Dongyoon Lee, Benjamin Wester, Kaushik Veeraragha-
van, Satish Narayanasamy, Peter M Chen, and Jason
Flinn. Respec: Efficient online multiprocessor replay
via speculation and external determinism. In Proceed-
ings of the International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2010.

[45] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna. Dr.
Checker: A soundy analysis for Linux kernel drivers. In
Proceedings of the USENIX Security Symposium, 2017.

[46] Dominik Maier and Fabian Toepfer. BSOD: Binary-
only scalable fuzzing of device drivers. In Proceedings
of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2021.

[47] A. Theodore Markettos, Colin Rothwell, Brett F. Gut-
stein, Allison Pearce, Peter G. Neumann, Simon W.
Moore, and Robert N. M. Watson. Thunderclap: Ex-
ploring vulnerabilities in operating system IOMMU pro-
tection via DMA from untrustworthy peripherals. In
Proceedings of the Network and Distributed System Se-
curity Symposium (NDSS), 2019.

[48] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
DICE: Automatic emulation of DMA input channels for
dynamic firmware analysis. In Proceedings of the IEEE
Symposium on Security and Privacy (IEEE S&P), 2021.

[49] Jonathan Metzman, László Szekeres, Laurent Simon,
Read Sprabery, and Abhishek Arya. FuzzBench: An
open fuzzer benchmarking platform and service. In
Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE),
2021.

[50] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Ger-
ard Basler, Piramanayagam Arumuga Nainar, and Iulian
Neamtiu. Finding and reproducing heisenbugs in con-
current programs. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2008.

[51] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for HTTP. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2015.

[52] Open Virtualization Alliance. Linux kernel virtual ma-
chine. https://www.linux-kvm.org.

[53] Shankara Pailoor, Andrew Aday, and Suman Jana.
Moonshine: Optimizing OS fuzzer seed selection with
trace distillation. In Proceedings of the USENIX Secu-
rity Symposium, 2018.

[54] Heejin Park and Felix Xiaozhu Lin. GPUReplay: A
50-kb GPU stack for client ML. In Proceedings of
the International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2022.

[55] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory
Lueck, and James Cownie. Pinplay: A framework for de-
terministic replay and reproducible analysis of parallel
programs. In Proceedings of the IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), 2010.

[56] Hui Peng and Mathias Payer. USBFuzz: A framework
for fuzzing USB drivers by device emulation. In Pro-
ceedings of the USENIX Security Symposium, 2020.

[57] Ivan Pustogarov, Qian Wu, and David Lie. Ex-vivo
dynamic analysis framework for Android device drivers.
In Proceedings of the IEEE Symposium on Security and
Privacy (IEEE S&P), 2020.

[58] Matthew J. Renzelmann, Asim Kadav, and Michael M.
Swift. SymDrive: Testing drivers without devices. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012.

[59] Andrey Ryabinin. UBSan: Run-time undefined behavior
sanity checker, 2014.

[60] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-assisted feedback fuzzing for OS kernels. In
Proceedings of the USENIX Security Symposium, 2017.

2936 32nd USENIX Security Symposium USENIX Association

https://www.kernel.org/doc/html/v5.14/usb/raw-gadget.html
https://www.kernel.org/doc/html/v5.14/usb/raw-gadget.html
https://www.linux-kvm.org

[61] Sergej Schumilo, Cornelius Aschermann, Andrea Jem-
mett, Ali Abbasi, and Thorsten Holz. Nyx-Net: Network
fuzzing with incremental snapshots. In Proceedings of
the ACM European Conference on Computer Systems
(EuroSys), 2022.

[62] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt.
Drifuzz: Harvesting bugs in device drivers from golden
seeds. In Proceedings of the USENIX Security Sympo-
sium, 2022.

[63] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. PeriScope: An effective probing and fuzzing
framework for the hardware-OS boundary. In Proceed-
ings of the Network and Distributed System Security
Symposium (NDSS), 2019.

[64] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim,
Brent ByungHoon Kang, Jean-Pierre Seifert, and
Michael Franz. Agamotto: Accelerating kernel driver
fuzzing with lightweight virtual machine checkpoints. In
Proceedings of the USENIX Security Symposium, 2020.

[65] Sudarshan M Srinivasan, Srikanth Kandula, Christo-
pher R Andrews, Yuanyuan Zhou, et al. Flashback:
A lightweight extension for rollback and deterministic
replay for software debugging. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2004.

[66] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu,
Yu Jiang, Ting Chen, and Aiguo Cui. HEALER: Rela-
tion learning guided kernel fuzzing. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), 2021.

[67] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating dynamic analysis of
device drivers of mobile systems. In Proceedings of the
USENIX Security Symposium, 2018.

[68] The kernel development community. Linux NFC sub-
system, 2021. https://www.kernel.org/doc/html/
v5.14/networking/nfc.html.

[69] The kernel development community. USB/IP protocol,
2021. https://www.kernel.org/doc/html/v5.14/
usb/usbip_protocol.html.

[70] The kernel development community. usbmon,
2021. https://www.kernel.org/doc/html/v5.14/
usb/usbmon.html.

[71] The QEMU Project Developers. USB emula-
tion. https://qemu-project.gitlab.io/qemu/
system/devices/usb.html.

[72] Dave Jing Tian, Adam Bates, and Kevin Butler. Defend-
ing against malicious USB firmware with GoodUSB. In
Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC), 2015.

[73] Dave Jing Tian, Grant Hernandez, Joseph I. Choi,
Vanessa Frost, Peter C. Johnson, and Kevin R. B. Butler.
LBM: A security framework for peripherals within the
Linux kernel. In Proceedings of the IEEE Symposium
on Security and Privacy (IEEE S&P), 2019.

[74] Dave Jing Tian, Nolen Scaife, Adam Bates, Kevin Butler,
and Patrick Traynor. Making USB great again with
USBFILTER. In Proceedings of the USENIX Security
Symposium, 2016.

[75] Jing Tian, Nolen Scaife, Deepak Kumar, Michael Bai-
ley, Adam Bates, and Kevin Butler. SoK: “plug &
pray” today–understanding USB insecurity in versions
1 through C. In Proceedings of the IEEE Symposium on
Security and Privacy (IEEE S&P), 2018.

[76] Matthew Tischer, Zakir Durumeric, Sam Foster, Sunny
Duan, Alec Mori, Elie Bursztein, and Michael Bailey.
Users really do plug in USB drives they find. In Proceed-
ings of the IEEE Symposium on Security and Privacy
(IEEE S&P), 2016.

[77] Richard A. Uhlig and Trevor N. Mudge. Trace-driven
memory simulation: A survey. ACM Computing Survey
(CSUR), 29(2):128–170, jun 1997.

[78] Dmitry Vyukov. Syzbot and the tale of thousand kernel
bugs. Linux Security Summit, 2018.

[79] Zev Weiss, Tyler Harter, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. ROOT: Replaying multi-
threaded traces with resource-oriented ordering. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[80] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in OS kernels. In Proceedings of
the IEEE Symposium on Security and Privacy (IEEE
S&P), 2018.

[81] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning
Tseng, and Taesoo Kim. Fuzzing file systems via two-
dimensional input space exploration. In Proceedings
of the IEEE Symposium on Security and Privacy (IEEE
S&P), 2019.

[82] Michał Zalewski. American Fuzzy Lop. https://
lcamtuf.coredump.cx/afl.

USENIX Association 32nd USENIX Security Symposium 2937

 https://www.kernel.org/doc/html/v5.14/networking/nfc.html
 https://www.kernel.org/doc/html/v5.14/networking/nfc.html
https://www.kernel.org/doc/html/v5.14/usb/usbip_protocol.html
https://www.kernel.org/doc/html/v5.14/usb/usbip_protocol.html
https://www.kernel.org/doc/html/v5.14/usb/usbmon.html
https://www.kernel.org/doc/html/v5.14/usb/usbmon.html
https://qemu-project.gitlab.io/qemu/system/devices/usb.html
https://qemu-project.gitlab.io/qemu/system/devices/usb.html
https://lcamtuf.coredump.cx/afl
https://lcamtuf.coredump.cx/afl

[83] Wenjia Zhao, Kangjie Lu, Qiushi Wu, and Yong Qi.
Semantic-informed driver fuzzing without both the hard-
ware devices and the emulators. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), 2022.

A Wireless Networking Configurations

A.1 Wi-Fi Client & AP
A common Wi-Fi communication scenario is connecting a
device as a client station to a nearby access point (AP). In
this setup, we configure VM A as a client and VM B as
an AP. VM B starts hostapd, a user-mode service in Linux
that can manage APs, configuring the device as an AP and
scannable. After the configuration of VM B , VM A starts
wpa_supplicant, a user-mode service in Linux that imple-
ments a Wi-Fi client station, which scans nearby APs and
associates itself with VM B ’s device using a predefined con-
figuration of SSID and password. After association, each side
can perform actions using command-line tools: wpa_cli in
VM A and hostapd_cli in VM B . Using these tools, we check
the status of the AP and client, change the network configu-
ration, etc. We then kill user-mode services, and unplug the
devices from the VMs.

A.2 Bluetooth Peer-to-Peer
In this setup, each VM is configured to run BlueZ [15], the
official Linux Bluetooth protocol stack and vendor-specific
Bluetooth device drivers, by using bluetoothctl, a user-mode
command-line interface to BlueZ. Both VM A and VM B

starts bluetoothd, a user-mode Bluetooth service for Linux.
VM A is configured as an observer, which scans nearby ad-
vertisers. VM B is configured as an advertiser, which makes
itself as discoverable. After scanning, VM A discovers the
advertiser run by VM B , and it initiates the pairing process.
After pairing, each side can perform actions using bluetoothctl.
We then kill user-mode services, and unplug the devices from
the VMs.

A.3 NFC Peer-to-Peer
Near Field Communication (NFC) is widely used for many
short-range communication such as payment and authentica-
tion. This setup configures each VM to run the Linux NFC
subsystem [68] for a P2P communication via NFC. Because
of the range restriction of NFC, this setup places two devices
less than 4cm from each other. Both VM A and VM B starts
neard, a user-mode NFC service for Linux. Using nfctool,
VM A is configured as an initiator, which sends commands
to the target run by VM B . VM B is configured as a tar-
get, which responds to the commands. Afterwards, user-mode
services are killed and the devices are unplugged.

B CVE Details

B.1 CVE-2022-3628
This CVE was assigned to an intra-object buffer overflow bug
we found in BCM43236’s Wi-Fi driver in Linux. This bug can
be triggered by an attacker who controls the USB device; in
particular, ReUSB triggered this bug after sending 219 USB
messages, followed by another message that contains a manip-
ulated index value (i.e., event->emsg.bsscfgidx). This bug

ifp = drvr->iflist[event->emsg.bsscfgidx]; // intra-object buffer
overflow↪→

err = brcmf_fweh_call_event_handler(drvr, ifp, event->code,
&emsg, event->data);

allows the attacker to read a value at an attacker-controlled
location past the end of the vulnerable buffer drvr->iflist.
This value read from an attacker-controlled location is in-
terpreted as a pointer (i.e., ifp). This pointer is passed as
an argument to brcmf_fweh_call_event_handler, which,
unfortunately, uses this pointer to locate an event handler func-
tion (i.e., a code pointer) and eventually invokes that function
through an indirect call. This means that the attacker controls
the target of this indirect call, and, with knowledge of the code
layout (i.e., KASLR needs bypassing) the attacker can call
arbitrary functions with attacker-controlled arguments.

B.2 CVE-2023-1380
This CVE was assigned to a slab out-of-bounds read bug we
found in BCM43236’s Wi-Fi driver in Linux, which could
lead to the leakage of sensitive kernel data. This bug can be
triggered by an attacker who controls the USB device; in
particular, ReUSB triggered this bug by sending 304 USB
messages where the 302th message contains a manipulated
length value, i.e., assoc_info->req_len. The bug occurs

req_len = le32_to_cpu(assoc_info->req_len);
conn_info->req_ie_len = req_len;
conn_info->req_ie = kmemdup(cfg->extra_buf, conn_info->req_ie_len,

GFP_KERNEL); // slab out-of-bounds read

when the driver duplicates a source buffer cfg->extra_buf
to a new buffer as part of the multicasting process through a
call to kmemdup, where the attacker-controlled req_len value,
unfortunately, determines how much of the source buffer to
duplicate. This means that the attacker can fill the duplicated
buffer with the content of the source buffer, plus whatever
that follows. This duplicated buffer passes through multiple
functions, whose content, which may contain sensitive kernel
data located past the end of the source buffer, is eventually
sent to a user-space socket.

2938 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	USB Device Drivers
	Kernel Fuzzing
	Record-and-Replay

	Motivation & Design Principle
	Challenges
	State-of-the-art
	Design Principle & Goals

	ReUSB Design
	Execution Recording
	Trace Compilation
	Bytecode Generation
	Bytecode Execution
	Replay-Guided Fuzzing

	Implementation
	Evaluation
	Recorded Executions
	Record-and-Replay Fidelity
	Fuzzing Effectiveness
	Analysis of Bugs Found

	Discussion & Limitations
	Related Work
	Conclusion
	Wireless Networking Configurations
	Wi/Fi Client & AP
	Bluetooth Peer-to-Peer
	NFC Peer-to-Peer

	CVE Details
	CVE-2022-3628
	CVE-2023-1380

