
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Powering Privacy: On the Energy Demand and
Feasibility of Anonymity Networks on Smartphones

Daniel Hugenroth and Alastair R. Beresford, University of Cambridge
https://www.usenix.org/conference/usenixsecurity23/presentation/hugenroth

Powering Privacy: On the Energy Demand and Feasibility of
Anonymity Networks on Smartphones

Daniel Hugenroth
University of Cambridge

Alastair R. Beresford
University of Cambridge

Abstract
Many different anonymity networks have been designed

and implemented over the last 20 years. These networks pro-
tect communication and metadata through multi-layered en-
cryption and cover traffic. However, there is little research
on whether such networks are actually practical on smart-
phones with limited battery power. This is important as these
are the dominant computing devices today. Previous research
suggests that cryptographic operations and background ra-
dio transmissions are the two main contributors to energy
consumption when running such software on mobile devices.
We develop and open-source a test setup that measures ac-
tual energy consumption, including side-effects that evade
simple models. With this setup we explore the costs of cryp-
tography, radio communication, and background scheduling.
We find that radio communication dominates overall power
consumption, while cryptographic operations (asymmetric
and symmetric) are negligible for typical anonymity network
workloads. We also investigate the feasibility of running ano-
nymity networks continuously to protect the metadata of all
communication. For a 12-hour usage period, a mobile Tor
client on a 4G network requires an additional 4 percentage
points of battery charge which appears practical and is at least
as efficient as the commercial VPN clients that we tested.
However, a mix network client that continuously sends cover
traffic requires up to 30 percentage points for the same period.
Such costs are unlikely to be acceptable to many users.

1 Introduction

Over the last few years end-to-end (E2E) encryption has
reached mainstream popularity through mobile messaging ap-
plications such as Signal and WhatsApp with billions of users.
E2E encryption ensures that only the intended recipients can
read a message and that its content is hidden from anyone
else, including the messaging service provider. This comes
in addition to securing web-based communication through
widely adopted standards such as HTTPS.

However, as messages and packets are traveling through
third-party infrastructure, most systems still leak metadata
such as who is talking to whom, from where, and when.
This metadata is easy to capture and interpret for messag-
ing providers, network operators, and global adversaries. This
can be dangerous for a whistleblower who reaches out to a
journalist, an activist who is researching information online,
and diplomats corresponding between embassies.

These risks are even more pronounced when using smart-
phones. As these devices follow their owner throughout the
day, they leak sensitive location data through changing IP
addresses and other connection characteristics. Additionally,
smartphones roam freely between many different networks
such as WiFi and 4G. This exposes the user to many more in-
frastructure providers that they need to trust. The 2019 Hong
Kong protests are one example that shows a large group orga-
nizing themselves using mobile devices and requiring access
to secure, anonymous communication [1].

Anonymity networks protect metadata and we explore two
points in the solution space covering real-time web-based
and high-latency message-based communication. We include
VPN clients in our evaluation as a baseline benchmark.

Tor [15] is a popular deployment that disguises the real
sender and recipient of web-based communication by routing
it through multiple onion routers. Its encryption scheme en-
sures that each hop only learns about its direct predecessor
and successor along the chosen path. This makes it hard for
an adversary to follow messages through the system even if
they have compromised some of the onion routers.

However, a powerful adversary who suspects that two indi-
viduals in its influence area communicate with each other can
perform traffic analysis to confirm their hypothesis. To do this
the adversary captures the traffic patterns at both endpoints
A and B. If A is indeed talking to B, an adversary would
expect that messages sent by A result in messages received at
B shortly afterwards.

Other anonymity network designs, such as mix networks,
offer strong metadata privacy for message-based communica-
tion to counter such traffic analysis. This is achieved through

USENIX Association 32nd USENIX Security Symposium 5431

traffic shaping where clients pad messages to a common size
and inject additional cover packets. An adversary who is ob-
serving a participant in such a network will not be able to
tell if there is any meaningful communication happening at
all. In our work we investigate Loopix [37] which is a practi-
cal Mix design and the foundation for the commercial Nym
network [14] that runs on thousands of nodes.

However, anonymity networks have not been adequately
evaluated for mobile yet, despite smartphones being the dom-
inant computing devices today. Virtually all existing designs
have only been tested on stationary computers with reliable
Internet connections. Therefore, they overlook the critical
challenges of intermittent connectivity and limited energy
supply on mobile devices. While the former has been ad-
dressed in part by existing protocols, the latter has received
little attention. We believe an anonymity network is not practi-
cal if it drains the battery too quickly. Therefore, an evaluation
of energy consumption is crucial if we are to bring the benefits
of anonymity networks to everyone.

While there are existing energy measurement studies, we
have not found any that discuss and compare anonymity net-
works. Those who cover individual operations of interest
such as cryptography and radio communication, were done
on smartphones that are many generations old. We found
that they do not translate to modern smartphones with better
hardware and specialized instruction sets.

The current lack of evaluations can be explained by the
complexity of mobile energy consumption. First, individual
components such as the radio modules contain many internal
states. Each data transfer (no matter how small) will incur
costly state promotion from idle to connected where it will
stay for a while in anticipation of subsequent transfers. There-
fore, the bottom-line energy costs of a data transfer is also
influenced by operations before and after. This makes attribu-
tion difficult. Second, because these effects are global to the
device, the operating system coordinates background work to
maximize idle time and tries executing background tasks in
batches to make the best use of the radio states. This means
that we cannot examine just an app, but need to include the
interplay with the surrounding infrastructure. Third, hardware-
based power measurements often require extra equipment and
expertise which make evaluations appear expensive. We be-
lieve that we can make such measurements more accessible.

In this paper we make the following contributions:

1. We develop an open-hardware open-source test setup
for ground-truth energy measurements on modern An-
droid devices. Our approach makes it easier for other
researchers to perform energy measurements.

2. We provide up-to-date measurements for individual op-
erations (such as data transfer and cryptographic oper-
ations) and show that some of them have drastically
changed since previous studies were conducted.

3. We are the first to measure and compare the actual energy
consumption of anonymity networks on smartphones.

(a) We show that running Tor continuously in the back-
ground on a mobile device requires an additional 4
percentage points (pp) of battery charge during a
12-hour period.

(b) We show that Tor is at least as energy efficient as
two commercial VPN services that we tested.

(c) We show that anonymity networks with high-
frequency Loopix-style cover traffic reduce the
overall battery lifetime by more than 20 pp. Only
those with very infrequent messages are practical.

4. In the analysis of these measurements we find that run-
ning Tor in the background is feasible while low-latency
mix networks with cover traffic are not. This points to-
wards the need for new research and designs based on
our results.

2 Background and Related Work

We first introduce previous work on energy measurements on
smartphones (§2.1). They highlight the practical challenges
that motivate our case-studies and demonstrate that we are
missing data points from recent device generations. We also
give an introduction to anonymity networks (§2.2). Through-
out the paper we will use milli-Watt (1mW = 1mV ·A) as
the unit for power and milli-Joule (1mJ = 1mW · s) or milli-
Watthours (1mWh = 3600mJ) for energy.

2.1 Measuring Energy on Smartphones
Smartphones are ubiquitous and we expect them to do more
and more. Therefore, good battery life is key to their utility.
In this paper we provide example numbers which assume that
smartphones are charged overnight and then used as mobile
devices for 12 hours without easy access to charging opportu-
nities. For deciding feasibility we assume that users are able
to spend an extra 5% of battery per day. Our results can be
easily adjusted to different assumptions if required.

2.1.1 Hardware-Based and Model-Based Approaches

We divide the research field of mobile devices and energy con-
sumption based on measurement approach and scope. The for-
mer comprises of hardware-based measurements and model-
based approaches that are discussed below. Each of these
approaches can be used to examine either individual opera-
tions (micro study) or more complex scenarios (macro study).

For hardware-based measurements researchers place a
power monitor between the power source and the mobile
device. They then execute an operation under test while
recording the power consumption. Integrating over time (i.e.

5432 32nd USENIX Security Symposium USENIX Association

calculating the area under the curve) yields the total en-
ergy. Hardware-based measurements provide ground-truth
results and reflect actual real-world power consumption. Also,
hardware-based measurements do not influence the measure-
ments as no additional debugger or tracing software runs on
the device. On the downside, they do not attribute the energy
consumption to individual components – say measuring only
the CPU while ignoring radio communications.

We found that hardware-based setups are often used to cap-
ture individual operations. The work by Carrol et al. [6] and
Adrito et al. [3] cover many basic operations from display
illumination to phone calls. Other work examines specific
areas such as Wifi [39], 4G radio communication [18], and
machine learning [27]. The GreenMiner [17] project executes
pre-recorded app interaction sequences for regression track-
ing. However, we found that the mentioned existing work con-
cerning the energy consumption of algorithms and radio com-
munications lags multiple generations behind smartphones
that are in use today. The recent BatteryLab project [49] fo-
cuses on providing remote hardware-based measurements at
multiple locations. However, through the more general setup
they are less suitable for our research as they provide lim-
ited control over the device under test and do not provide
the high-resolution synchronization required for analyzing
short operations. In terms of equipment, previous work uses
either general-purpose power measurement appliances (e.g.
Mansoon) or build custom tools using power sensor chips like
we do.

On the other hand, there are model-based measurements
where researchers first create models based on execution
traces and then use these to predict the energy costs when run-
ning other apps in a second step. These models are simple and
effective when the power consumption is dominated by com-
putation as CPU energy consumption is well-documented and
their state (e.g. adaptive frequency) can be recorded cheaply.
However, radio communications are harder to model as the
radio module operates in different states (e.g. connected, idle)
with transition latencies depending also on the activity of
other apps. In general, models are bound to a specific training
device and therefore the model prediction becomes out-dated
together with that device. Their utility is further limited as
they often need modifications to the apps or operating system
(rooting), or use APIs that are no longer present in newer
devices. The removal of APIs is often performed by the oper-
ating system vendor to reduce side-channel attacks and im-
prove user privacy. For example, access to /proc/stat was
removed [21] in 2017 citing an attack that exploited interrupt
information to recover user input [42].

We found that model-based approaches are typically used
to capture complex scenarios that last multiple seconds. Pow-
erTutor [53] models the overall energy consumption of com-
ponents such as CPU, radio, and display individually. This
allows it to achieve high accuracy even for complex scenarios
that include GPS and radio usage. However, the calibration

devices are now more than 10 years old and many of the re-
quired APIs are no longer available. As radio communication
is the main driver for many applications, the EnergyBox [51]
project from 2014 focuses solely on predicting WiFi and ra-
dio energy consumption based on network packet captures.
This has been successfully used to examine mobile messaging
applications [50] and specific mobile Tor usage [25]. Similar
to other model-based approaches, EnergyBox suffers from
calibration to older devices and protocol versions.

This literature review is also summarized in Table 6 in
Appendix C.

2.1.2 Cryptographic Operations

Our literature review showed that there are no recent micro
studies examining cryptographic operations on smartphones.
However, such data is important for the design of new proto-
cols as anonymity network implementations make heavy use
of encryption, signatures, and key exchanges. The work by
Potlapally et al. [38] and Rifa-Pous et al [40] are some of the
first to investigate both individual cryptographic operations
and protocol executions on mobile devices (PDAs between
2006 and 2011). Montenegro et al. [28] compares the rela-
tive energy consumption of different cryptographic libraries
on Android. However, since they use the PowerTutor model,
their absolute energy predictions refer to Android devices
that are more than 10 years old. The most-recent measure-
ment of cryptographic operations that we found is a study
of Elliptic Curve Cryptography (ECC) on an ARM-based
Internet-of-Things (IoT) platform [29].

2.1.3 Radio Operations

Radio communication is an intrinsically hard area for energy
studies due to large numbers of internal states, delayed state
transitions, and inter-application effects. When a mobile de-
vice starts to communicate via a mobile internet connection
(e.g. 4G), the radio module will first promote the system from
an idle state (with low stand-by power consumption) to a
connected state (that requires more power to maintain). The
transition itself costs energy and time, which is why the device
will remain in the connected state for a while in anticipation
of a response or more data to send. This is referred to as
tail latency and its duration depends on the protocol and the
mobile provider’s network configuration. A delay of multiple
seconds is typical. As a result, sending two small packets 30
seconds apart requires more energy than sending one very
large packet without interruption.

The work by Huang et al. [18] examines 4G and its power
consumption in great detail. Pathak et al. [34] are able to
attribute energy costs to individual components, e.g. assigning
the resulting radio energy to the background service that
caused the transition to the connected state in the first place.

USENIX Association 32nd USENIX Security Symposium 5433

2.1.4 Android

Android is the largest mobile platform with over 3 billion ac-
tive devices [46]. Since the operating system is open-source,
many different manufactures produce and distribute Android
smartphones ranging from cheap low-end phones to flagship
devices. For the hardware, most manufacturers source compo-
nents from chipset suppliers such as Arm, MediaTek, Broad-
com, or Qualcomm. This allows us to compare smartphones
from different manufacturers based on the generation of their
internal components.

The operating system plays a key role in managing bat-
tery life, as the expectations of end-users and the number
of applications grow. One of the most crucial aspects is the
coordination of background services and tasks. Android 6
introduced Doze and App-Standby for this purpose [22]. Doze
pauses background execution when the device is idle except
for scheduled maintenance windows. By limiting the execu-
tion of background tasks to these windows, Android mini-
mizes the number of the state transitions of the radio module.
App-Standby further reduces access to background execution
for apps by learning which apps are used regularly by the user
and placing restrictions on all inactive applications. When
applications are found to be rarely used, the system might
defer their background tasks by up to 24 hours or restrict
background network access [23].

2.2 Anonymity Networks

End-to-end (E2E) encryption protects the content of mes-
sages from sender to recipient. However, an adversary can
still observe who is communicating with whom and when.
Anonymity networks protect this metadata and make it hard
for an adversary to learn any information at all. We focus on
designs that have smartphone implementations available or
that are designed with offline support in mind.

The simplest way to hide some Internet traffic metadata
from a local adversary is by using a VPN service. VPN clients
capture all outgoing traffic, encrypt it, and send it via the VPN
operator’s server. This technique is employed both by com-
panies which operate their own servers and individuals who
subscribe to commercial VPN providers. Individuals might
use a VPN service to protect their traffic on insecure WiFi
(e.g., in a public cafe) or to access streaming services in other
countries. However, it is easy for a rogue VPN provider to link
the traffic from its servers with individuals. Therefore, VPN
networks provide very limited anonymity against dedicated
adversaries. In our evaluation we measure two commercial
VPN services targeted at regular mobile users: ExpressVPN
and Proton VPN. Both have more than 10 million downloads
on the Google Play Store.

Decentralized anonymity networks avoid the design weak-
ness of trusting a single operator. Among these, Tor [15] is
the most popular and practical anonymity network design de-

ployed today. Clients hide their relationship with the other
party by sending their data via three onion routers. Each onion
router can only decrypt the outer-most layer of the message
to learn the address of the next hop and the inner (encrypted)
packet to forward. An attacker would need to compromise all
onion routers along the path to learn the full path between the
sender and recipient. We focus only on running end-user Tor
clients and not onion routers.

However, Tor is susceptible to traffic analysis [13, 30]. An
adversary who suspects that two specific individuals are com-
municating with each other can record their encrypted traffic
and then correlate timing patterns. If the adversary repeatedly
observes that, when A sends a packet, a packet arrive shortly
after at B, then the adversary might conclude that A and B
are likely communicating. Making this observation repeat-
edly increases the adversary’s confidence. Tor can make such
attacks more difficult by sending so called cover traffic on top
of the user-generated traffic [35]. While it does not provide
full protection, it increases the cost for the adversary [24].

For our evaluation we use the Orbot [44] app released by
the Guardian Project and endorsed by the Tor Project. It is a
popular app with more then 10 million downloads from the
Android Play Store. Besides providing anonymity, it can also
be used for censorship circumvention. The Orbot app includes
the official Tor client and emulates a VPN client on the device.
This allows the user to choose to send either all traffic or that
of selected apps through Tor. We use Orbot for our case study
(§4.5). Alternatives, such as the official Tor Browser app, only
protect traffic generated by the bundled browser and not for
other apps [45].

Other anonymity network designs can achieve unobserv-
able communication [36] where an adversary is unable to
tell whether any communication is happening at all. This is
typically done by using traffic shaping. With this technique
all messages are padded to a fixed size before being encrypted
and sent at pre-determined times. Those times can be at fixed
intervals or drawn from random distributions – the key re-
quirement is that they are chosen independently of whether
there is real data to send or not. If there is no real traffic (e.g.
the user is idle), an empty message is made-up and sent in-
stead. If multiple real messages arrive at once, they are queued
and sent one after the other.

Mix networks [5, 7, 8, 26, 37, 41] use this technique and
route messages independently through multiple mix nodes
— whereas in Tor all messages are sent via the same route.
Each mix node delays messages independently which makes
traffic analysis even more difficult. Both the message timings
at the clients and the delays at the Mix Nodes are drawn from
an exponential distribution resulting in a Poisson process.
Loopix [37] and Groove [5] are mix networks designed with
mobile devices in mind. Both account for mobile clients that
can be offline through inboxes at provider nodes that can
store incoming messages until the client comes online again.
We also chose Loopix in our evaluation, because its design is

5434 32nd USENIX Security Symposium USENIX Association

Name Ref. Year A
no

ny
m

ity

B
an

dw
id

th

L
at

en
cy

C
PU

M
ob

ile
D

ev
ic

es

Dissent [52] 2012 G# #1

Vuvuzela [48] 2015 #
Hornet [9] 2015 G# G# #
Riposte [11] 2015 G# G# #
cMix [8] 2017 # #
Loopix [37] 2017 G#2

Groove [5] 2022 G#

Table 1: Summary of evaluation metrics used in recent ano-
nymity network papers (= thoroughly covered, G# = cov-
ered,# = not covered); 1mentioned as important future work;
2offline support.

currently practically deployed as part of the Nym network [14]
with hundreds of mix nodes [33].

We have reviewed the evaluation methods used in widely-
cited and claimed to be practical anonymity network designs.
The results are summarized in Table 1. We limited ourselves
to recent publications which we would expect to cover mobile
devices. Most work focuses on the bandwidth and achievable
performance in terms of throughput and latency. The required
computational cost (i.e. CPU) is often only considered to
the extend necessary to rule it out as a potential bottleneck.
Private information retrieval (PIR) based networks [2, 10, 11,
16] are the exception in this regard as they typically require
costly computation from both the clients and servers. Most
publications also quantify the achieved anonymity in terms
of either anonymity set size or entropy.

Overall, there is little consideration for the practicalities
of running these networks on mobile devices. Notable excep-
tions are Groove [5] which measures its power consumption,
Loopix [37] which provides support for offline clients, Dis-
sent [52] which flags this as important future work, and Hy-
dra [41] which highlights the difficulties of precisely schedul-
ing background execution on Android (see §2.1.4). Groove
is the only one to provide measurements of its energy con-
sumption on a smartphone. Unfortunately, their methodology
limits the comparability and reproducibility of their results.
Their setup measures the charging rate of the device instead
of the power drawn by its components. In addition, apps and
OS might undertake more work when they detect the device is
charging. Their measured idle power consumption of 310 mW
makes the discrepancy clear as it is much higher than a typ-
ical smartphone idle consumption of <100 mW. Also, their
sampling frequency (once per second) is too low to capture
peaks from cryptographic operations and transmissions.

3 Measuring Energy Consumption

We use a hardware-based approach for our measurements
for three main reasons. First, we have not found any model
for recent smartphones that covers both CPU and radio com-
munication. Second, in our case studies we are interested in
real-world battery life which must include the interference
with the operating system scheduler, all utilized components,
and side-effects. Third, we are interested in overall execu-
tion profiles that include the lowest standby states. Running
software-based debuggers or tracers in the background would
prevent the smartphone from entering these.

In our setup we install a Texas Instruments INA219 [43]
power sensor between the smartphone and its battery. This
sensor records 2,000 power measurements per second with
1% accuracy using a shunt resistor. An Arduino polls these
samples via an I2C bus and forwards them via USB to a
computer that records timestamps and power values into a
power measurement CSV file.

For our multi-second macro studies this setup is already
practical as the operator can start and stop the measurement
manually. However, for micro studies where individual op-
erations only run for a few milliseconds we automate this
process by creating the custom app EnergyRunner that ex-
ecutes the individual operations and records timestamps in
an execution log on the device. We synchronize the time on
the smartphone and the power measurement logs using an
USB-to-Serial dongle (FTDI FT231X) that is connected to
the smartphone’s USB port. Its ground is connected to the
common ground of the Arduino and one serial control line
(we use RTS) is connected to a digital input port of the Ar-
duino. The Arduino reports changes to the digital input via the
same USB connection that is used for the power measurement
samples. The synchronization sequence is executed before
the experiment so that we can later correct for differences
in clock offset. We found that differences in clock speed are
negligible (less than 0.001ms per hour). The USB dongle
is disconnected before the measurement of the actual opera-
tions start to ensure that its own power consumption does not
influence our measurements.

Our choice of smartphones and hardware allows the tests
to be done without permanent hardware modification and
requires minimal technical skills. This is especially true for
our smartphone where the battery can be removed without
tools and placed into our 3D printed battery holder. The full
hardware setup is illustrated in Figure 1.

We now describe the protocol for running an experiment
with our setup. First, our instrumentation app EnergyRunner
loads a scenario file which describes the order and parameters
of the operations that we want to execute. It automatically
adds the synchronization sequence at the beginning of the
execution schedule. We first start the recording software on
the PC and then start the execution on the smartphone. During
execution, EnergyRunner records the timestamps of operation

USENIX Association 32nd USENIX Security Symposium 5435

Battery

INA219

Digital In

I²C

USB-to-TTL

A
rd

ui
no

Figure 1: Schematic and photograph of our hardware setup.

start and end. Pauses between individual operations are de-
scribed in the scenario file as well. After the entire execution
schedule has finished, the execution log with the timestamps
is saved and uploaded. Finally, our processing scripts will
read both the execution log from the Android device and the
power measurement CSV file. The processing code identifies
the synchronization patterns to adjust for clock differences
and then extracts the power measurements for each individual
operation based on the timestamps in the execution log.

We prepare the device under test by uninstalling and deac-
tivating all apps that can cause background activity such as
Google Play Services. With the start of the execution of the
scenario files the display and all radio connections are turned
off unless needed by the operations under test.

Using this setup we can test individual operations semi-
automatically, efficiently, and accurately. As we hope that
such energy measurements become more common in pa-
pers that introduce (mobile) protocols, we put a lot of effort
into making sure that this setup can be easily replicated by
other researchers. All of our software for executing opera-
tions, logging the data, and analyzing the results is shared
as open-source. It also includes an interactive logging tool
that shows incoming data in a live plot. Likewise, all our

hardware specifications, 3D printing files, and assembly in-
structions are part of the repository. All is available at https:
//github.com/lambdapioneer/powering-privacy un-
der an MIT license. The hardware components are widely
available, cheap, and easy to assemble.

All studies are performed using the setup described in
this section and we use a Motorola Moto E6 Plus (Released
September 2019) smartphone running Android 9. It comes
with an MT6762 Helio P22 chipset, a 2.0 GHz Cortex-A53
CPU, and 2 GiB RAM. We have updated the smartphone to
the most recent OS update and have uninstalled and disabled
all other applications.

4 Evaluation

We start our evaluation by studying individual cryptographic
operations (§4.1), background scheduling (§4.2), and radio
transmission (§4.3). These are the important building blocks
for anonymity network protocols and help interpreting the
results of the macro studies.

In the first macro study we investigate the impact of Or-
bot [44]. We are interested in the effect on battery life for
different configuration and scenarios. The second macro study
measures a mix network with cover traffic. For this we im-
plement a mobile client for Loopix and evaluate different
sets of parameters. In total, our evaluations cover more than
100 hours of recorded power samples. The raw data and eval-
uation scripts are available from our repository and can be
used to reproduce the results shown in this paper.

For short operations with a clearly defined start and end we
provide the energy consumed in milli-Joule (1mJ = 1mW · s).
Battery capacity is provided in milli-Watthours (1mWh =
3600mJ). For continuous applications (e.g. running an ano-
nymity network in the background) we provide the average
power in milli-Watt (1mW = 1mV ·A). Where helpful, we
also translate the average power into how many percentage
points of the total battery capacity this application will con-
sume per hour (pp/h). For the remainder of the paper we
use an effective battery capacity of 8000 mWh for our cal-
culations. This is a typical battery size found in a range of
mid-to-high-end smartphones [47].

4.1 Micro Study: Cryptographic Operations
In this micro study we evaluate to total energy (mJ) impact of
individual cryptographic operations. All results are summa-
rized in Table 2.

Asymmetric operations

Asymmetric cryptography is frequently used in anonymity
network protocols for signatures and encryption of the pay-
load. At the same time it has a reputation for being computa-
tionally intensive. Many anonymity networks use a message

5436 32nd USENIX Security Symposium USENIX Association

https://github.com/lambdapioneer/powering-privacy
https://github.com/lambdapioneer/powering-privacy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0

200

400

600

800

Po
we

r [
m

W
]

st
ar

t

en
d

Figure 2: Power trace of generating a 2048-bit RSA key pair.
The power rises between 0.0 s and 0.4 s as the system in-
creases the core frequencies. The light blue line shows the
raw measurements while the dark line is a rolling average.

based architecture (as opposed to a channel based one) where
typically no key agreement between communication partners
occurs. This means that every message that is sent or received
involves asymmetric operations. Also, in multi-hop based ar-
chitectures encrypting messages for each hop along the path
further increases the number of asymmetric operations.

RSA is an established asymmetric cryptographic scheme
that is still in common use. Its key generation algorithm in-
volves finding prime numbers which can lead to long runtimes
(see Figure 2) and high variance due to non-determinism. Key
generation for 4096-bit RSA can require up to 2800 mJ which
translates to just 14,500 executions with one battery charge.
However, once a key is available, sign and verify operations
are cheap. As RSA implementations use a high exponent for
the private key and a small one for the public key, verify oper-
ations are much faster. If the exponent sizes are swapped (e.g.
DSA), signing become cheaper.

In the last 20 years RSA has been slowly phased out in
favor of Elliptic Curve (EC) cryptography. Its smaller key
sizes generally allow fast execution, compact representation,
and it does not require expensive prime-number search for
key generation. We find that all operations are (negligibly)
cheap and more efficient than those of equivalent RSA key
sizes (256-bit EC is considered equivalent to 3072-bit RSA).
We tested the four different EC curves commonly available on
all Android versions through the built-in Android OpenSSL
provider [19]. The prime256v1/secp256r1 cipher is notably
faster than the others.

It is possible to build a packet format for mix networks us-
ing these EC operations. However, actual implementations use
specialized cryptographic constructions such as Sphinx [12]
which allow for more compact packets and additional security
properties. We evaluate a modern Rust implementation of
Sphinx [32] (git commit: c494250) that is used in the com-
mercial mix network Nym [14]. Nym is based on Loopix [37]
which also uses the Sphinx packet format. For our experiments
we add a JNI binding to the library to allow calling it in our

0.00 0.05 0.10
Time [s]

0

200

400

600

800

Po
we

r [
m

W
]

st
ar

t

en
d

Figure 3: Power trace of a single Sphinx packet creation exe-
cution including JNI overhead.

Android app. Since the JNI boundary adds a non-negligible
overhead for such small operations, we add an iteration pa-
rameter so we can execute multiple rounds without leaving
the native code. Each round we call SphinxPacket::new()
which internally uses Curve25519 primitives. We found that
this Sphinx implementation is efficient (see Figure 3) and
comparable to a few EC operations. The JNI overhead is up
to 15% based on the difference between the configurations
with 1× and 100× iterations.

Our results show a significant reduction in energy costs
compared to two other studies that use a hardware-based ap-
proach. Rifà-Pous et al. measured RSA and EC operations
on PDA devices in 2010 [40], and Mössinger et al. measured
EC operations a ARM-based development board in 2016 [40].
Compared to our results, the energy costs of the RSA opera-
tions on the PDAs are higher by factor ×3 (Verify RSA-1024)
to ×20 (Sign RSA-2048). The costs for EC-224 operations on
the PDAs are higher by factor ×30. The ARM-based board
using the optimized MicroECC library requires around ×20
times more energy than our test device. More data points are
available in Table 5 in Appendix B.

Other operations

We found that all standard hash operations are negligibly
cheap. This is due to the low computational complexity and
the wide availability of specialized CPU instructions such as
SHA256H2 and AESE on Arm64 [4, p.1556]. For completeness
we also measured the energy required to hash a 16 KiB byte
array with SHA-256/512 resulting in energy costs of 0.26 mJ
and 0.27 mJ respectively.

4.2 Micro Study: Scheduling
In this micro study we quantify mechanisms for executing
code while the phone is not actively used. These allow appli-
cations to perform message synchronization and background
computations. Anonymity networks use them for sending
cover traffic during idle mode. This is critical for hiding
whether a user is currently communicating or not. We focus

USENIX Association 32nd USENIX Security Symposium 5437

Operation Energy [mJ] StdDev

Gen RSA-4096 2898.43 2042.77
Sign RSA-4096 26.73 4.68

Verify RSA-4096 0.75 0.10

Gen EC-256 0.51 0.05
Sign EC-256 0.83 0.18

Verify EC-256 1.54 0.08

Sphinx (1×) 9.66 0.31
Sphinx (100×) 842.44 11.40

Table 2: Average energy consumption of different asymmetric
cryptography operations.

10 20 30 40 50 60
Interval Δt [s]

10

20

30

40

Po
we

r [
m

W
]

WakeLock
AlarmManager

Figure 4: Average power consumption when using the Fore-
groundService with WakeLock and AlarmManager strategies.

on the two main strategies for Android: ForegroundService
with WakeLock and AlarmManager. Devices running iOS
have similar, albeit more restrictive, mechanisms [20].

For our purposes we discuss these mechanisms as they
were intended by the operating system design. Many smart-
phone vendors make modifications and add restrictions to
achieve higher battery life which can interfere with the proper
operation of apps [31]. We verified that the device we use in
our studies follows the specified behaviors.

The ForegroundService with WakeLock strategy holds a
lock that prevents the phone from entering full idle mode.
As this affects background power consumption, the operating
system requires the app to show a notification to the user
by running as a ForegroundService. This approach provides
the greatest flexibility and accuracy, as pauses can be imple-
mented as simple Thread#sleep calls. Typically, this mode
of operation is used by music apps and GPS navigation. How-
ever, even without active computation, the WakeLock causes
higher energy consumption than regular idle mode.

The AlarmManager strategy allows the phone to go into
full idle mode and registers our intended execution with an
alarm service. The alarm service then wakes up the device
and starts our application. While this allows the phone to en-
ter full idle mode between executions, every wake-up comes
with overhead as the system restores state and (re-)delivers

the invocation arguments to our application. The AlarmMan-
ager’s intended use are events that happen only a few times
per hour. We found that the lowest reliable inter-execution
pause is 10 seconds and that the execution times are impre-
cise. We compensate for the latter by measuring the time
between the scheduled and the actual execution, and then ap-
plying this delta when scheduling the next alarm. However,
this compensation is imperfect as the effective delays vary.

We use ∆t to denote the duration between the start times of
two consecutive operations. We expect that using WakeLocks
is more efficient for smaller ∆t. While keeping the CPU awake
generally raises power consumption, WakeLocks do not cause
extra overhead for every execution. On the other hand, the
AlarmManager should perform better for larger ∆t as it allows
the phone to reduce power consumption during longer pauses.

In our experiment we trigger regular execution for various
intervals ∆t with both the WakeLock and the AlarmManager
approach. Each experiment runs for 5 minutes and is repeated
5 times. The results are shown in Figure 4. As expected,
the WakeLock approach incurs constant cost (≈ 27mW) re-
gardless of the chosen interval. The AlarmManager approach
is more efficient for ∆t > 20s. Generally, it does not differ
more than ≈ 10mW from the WakeLock approach in either
direction. We have included annotated power traces for both
approaches in Appendix A. These highlight the additional
power consumption that happens before and after execution
of our code for the WakeLock approach.

4.3 Micro Study: Radio Operations

We evaluate radio operations such as sending and receiving
data via WiFi and mobile network to measure the impact of
connection type, payload size, and schedule. The results from
this study guide us in parameterizing and evaluating a mix
network client with cover traffic in §4.6.

As mentioned in §2.1.3, radio communication, and in par-
ticular mobile networks, are complex due to their internal
state machine and tail latencies. This means that their behav-
ior applies globally to the smartphone and not for each app
independently. Hence, we cannot consider transfers individu-
ally, but need to include the effects of previous and concurrent
transfers. Figure 7 shows an annotated measurement of a TCP
data transfer via 4G. While WiFi has negligible tail latencies,
we found that it is more susceptible to noise from other de-
vices, as the smartphone is woken up regularly to process
incoming broadcast packets.

In this study we connect to a 4G mobile network using a
prepaid SIM card from the UK provider GiffGaff which uses
the O2 network. We have decided not to include results for
3G since 4G is widely supported and more popular. Before
each experiment we verified that the mobile phone has good
reception. For the WiFi measurements, we setup a private
access point that is secured using WPA2-PSK which is a
typical setup for many consumer routers.

5438 32nd USENIX Security Symposium USENIX Association

0 10 20 30 40 50 60
Interval Δt [s]

0
50

100
150
200
250
300
350

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

1K 10K 100K 1M
Payload [KiB]

0
50

100
150
200
250
300
350

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

Figure 5: Top: average power consumption when sending and
receiving 100 KiB with increasing interval times over 4G. Bot-
tom: average power consumption when sending and receiving
increasing payload sizes at a fixed interval of ∆t = 30seconds.

We execute data transfers using the EnergyRunner app.
The app uses the WakeLock method to control the schedul-
ing of background operations. We chose the WakeLock over
AlarmManager, as its average power consumption is constant
regardless of the chosen interval length. This allows us to
subtract it from the measured data in order to separated out
the costs for radio communication. The network operations
connect to a custom server that we run on a virtual machine
which is located in a nearby city (ping < 100ms). In our pro-
tocol the message consists of a 16 byte secret token (this is
to reduce abuse by third-parties), a 4 byte client length field,
and a 4 byte server length field. The server continues reading
until it has consumed all data specified by the client length
field and then responds with data as specified by the server
length field. We always set both to the same size.

We test three protocols: TCP, TCP (keep-alive), and UDP.
In TCP mode a new connection is established for each indi-
vidual transfer. In TCP (keep-alive) mode the app maintains
a global socket connection that is used for subsequent trans-
fers. The latter can reduce the total number of round-trips by
avoiding the handshakes for each separate transfer.

We evaluate both different intervals and different payload
lengths. For the former we increase the interval from 5 sec-
onds to 60 seconds with a fixed payload size of 100 KiB. The
different payload lengths range from 1 KiB to 1 MiB with a
fixed interval of 30 seconds. Each configuration is tested via
4G and WiFi for 5 minutes each. We repeat all experiments 5
times and randomize their order to account for noise.

0 10 20 30 40 50 60
Interval Δt [s]

0

10

20

30

40

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

1K 10K 100K 1M
Payload [KiB]

0

10

20

30

40

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

Figure 6: Same as in Figure 5, but for WiFi.

Our results for 4G are summarized in Figure 5. Generally,
for increasing interval times, the average power consump-
tion drops. Notably, there is an exception for ∆t ≈ 10s. With
this configuration the device reconnects right after the tail la-
tency has expired, hence maximizing power consumption. We
found that payload sizes up to 100 KiB had little impact on the
average power consumption. Our WiFi results are shown in
Figure 6. We found that WiFi has much lower power consump-
tion compared to 4G. Without the connection establishment
and tail latency, the effect of increasing intervals shows more
directly. Similarly, the payload size has a more direct impact.

4.4 Macro Study: VPN

In this section we examine the question of how much VPN
clients impact battery life. For this we examine two popular,
commercial services ExpressVPN (version 10.89) and Proton
VPN (version 4.6.12) which are marketed for personal use on
mobile devices. We randomly blind them as V PNA and V PNB.
We created paid-for subscription accounts with both providers
and then installed their most-recent apps on our test device.
Where possible we use the default configuration and connect
to an end-point in New York. For Proton VPN we changed
the protocol from Wireguard UDP to Wireguard TCP, as the
former was less reliable in our setup.

Our measurement setup captures the total device power con-
sumption while the VPN service is running. This ensures that
we include all direct and indirect effects that affect battery life.
We run an idle scenario where no user action is simulated and

USENIX Association 32nd USENIX Security Symposium 5439

0 1 2 3 4 5
Time [s]

0

1000

2000

3000

Po
we

r [
m

W
]

op
en

se
nd

re
ad

clo
se

Figure 7: Power trace of sending and receiving 1 MiB over
TCP on a 4G mobile network. When comparing with other
the power traces note the larger range on the Y-Axis.

a web browsing scenario where an instrumented web browser
loads the start page of the New York Times every 60 seconds
using the AlarmManager scheduling strategy. The news site
was chosen as it has a typical size (≈ 3MiB) and requires mul-
tiple connections to different domains. The AlarmManager
strategy was chosen to allow return to idle. Our implemen-
tation holds a temporary WakeLock while loading the page
until the Chromium-based WebView signals completion.

We run all combinations of activities (idle and web brows-
ing), radio (4G and WiFi), and network configuration (direct,
V PNA, and V PNB). Each run lasts 10 minutes and similarly
to the previous studies we deactivate all other apps and keep
the screen off.

Our results are summarized in Figure 8. First we look at the
baseline measurements without any VPN service (direct). The
idle scenario shows that smartphones can achieve very low
power operations when there is no background activity. No-
tably, the active loading of the website has a strong effect for
4G, but not on WiFi. This is likely due to the aforementioned
connection state changes and tail latency.

Both VPN providers have similar overhead. Where they
differ we pick the lower power consumption, as we are inter-
ested in a competitive baseline to compare Tor and Loopix
against. During the idle scenario, a VPN adds around 40 mW
or 0.5 percentage points per hour (pp/h) on 4G. This is
less pronounced on WiFi due to negligible tail latencies:
8 mW (0.1 pp/h). For web browsing, the overhead increases
to 80 mW (1.0 pp/h) on 4G and 20 mW (0.2 pp/h) on WiFi.

We expected a smaller overhead from the VPN apps – es-
pecially when the device is idle. Inspection of the acquired
power traces shows that while the clients are running, the
device does not reach low-power mode, but instead regularly
wakes up to send and receive data. This is surprising, as the
tested Tor client (§4.5) is able to run with slightly less power
overhead. We have cross-checked the results with an Open-
VPN client and a self-hosted server which led to similar mea-
surements. We suggest future work to explore the VPN client
implementation and configuration space in full detail.

4G

WiFi

Idle

0 50 100 150 200 250 300 350 400 450
Power [mW]

4G

WiFi

Web (.com)

Direct VPNA VPNB

Figure 8: Relative power usage of the tested VPNs compared
to direct network connections.

4.5 Macro Study: Tor
In this section we examine the question of how much Tor
impacts battery life of mobile devices. For this we examine
Orbot [44], which uses the official Tor client under the hood.
We downloaded version 16.6.0-RC-4 from the official repos-
itory and added an option to force off connection padding
(see below). The app is compiled in release mode and then
installed on the test device. For our evaluation we run Orbot
in VPN mode which emulates a VPN client on the device and
ensures that all communication is routed through Tor. This
is different to the behavior of the Tor Browser which only
protects the communication of the bundled browser. We use
the same measurement setup as for the VPN services in §4.4.

Tor supports rudimentary cover traffic through connection
and circuit padding [35]. Connection padding affects the con-
nection to the first hop (the Guard node). When active each
payload packet causes both ends (i.e. the client and the Guard
node) to sample a timeout between 1.5 and 9.5 seconds. If
no other payload packet is sent before the timeout expires at
either end, a single padding cell packet is sent and the time-
outs are reset. To reduce the overall overhead, the client may
negotiate a reduced mode where the Guard node does not
send padding cells and the client samples a timeout between
9.0 and 14.0 seconds. A client may also completely disable
connection padding. We test all three variations (full, reduced,
disabled) of connection padding as they have a large impact
on radio communication.

Circuit padding is independent of connection padding and
aims to obfuscate the setup phase of onion circuits. The client
will send obfuscated packet sequences so that different circuit
types result in similar looking packet exchanges. We verified
that circuit padding has negligible impact regardless of the
chosen connection padding. Hence, we do not include it as a
parameter for our experiments.

5440 32nd USENIX Security Symposium USENIX Association

As in §4.4, we run all combinations of activities (idle and
web browsing), radio (4G and WiFi), and network configura-
tion (direct and the various Tor connection padding modes).
We exclude the initial connection phase to the Tor network as
this a one-time cost. The Tor Consensus document (≈ 600KiB
compressed) needs to be updated every three hours. We argue
that it is negligible small compared to other web traffic.

Our results are summarized in Figure 9. For discussion of
the direct connection without any services running, see §4.4.
Using Tor without any padding has little effect on the idle
scenarios. From our measurements we calculate an average
power consumption of 59 mW or 0.7 percentage points (pp)
per hour (WiFi: 0.3 pp/h). For 4G the power consumption
increases by <30 mW compared to not using Tor whereas the
impact is negligible on WiFi. However, for the web browsing
scenario, enabling Tor increases the average costs by around
150 mW (WiFi: 60 mW). This is mostly due the lower band-
width and high latency which both increase the time website’s
loading time and hence the time the radio module is active.

Enabling full connection padding in Tor has a significant
effect on battery life. On 4G the average idle power consump-
tion increases to 2.9 pp/h (WiFi: 1.1 pp/h). The relative factor
for 4G (7×) is higher than that of WiFi (3.5×). The difference
can be explained by the costs on 4G for the connection state
changes. With reduced padding the average power costs are
lower than the average increase of the interval would suggest.
We found that this is because the longer gaps allow the entire
system to enter a low-power state from which it often does not
wake up again itself. Examination of the source code showed
that Orbot itself does not use WakeLocks or AlarmManager
– so it does not prevent the system from entering idle mode.
Note that our web browsing scenario wakes up the entire sys-
tem including Tor which then stays active for a while. This
explains why the impact of Tor is larger in the Web scenarios.

Tor can also be used to access Onion Services by using their
.onion address. Through a directory look-up and an anony-
mous rendezvous point, the client establishes an anonymous
connection with the service without learning its server IP or
location. The New York Times offers such an Onion Service.
Overall we observe a slightly increased power consumption
compared to opening the regular homepage via Tor, which
can be explained by the multi-round connection setup and the
longer path to connect to an onion service.

4.6 Macro Study: Mix Network

Finally, we evaluate mix networks operations based on the
Loopix [37] design. We chose it because of its integrated
support for devices that are temporarily offline and note that it
is successfully deployed in a commercial mix network called
Nym [14]. In Loopix the provider node manages access to the
network and maintains an inbox of messages for the client.
This allows the client to retrieve messages later when it was
offline. Hence, all connections of the client go through one

4G

WiFi

Idle

4G

WiFi

Web (.com)

0 50 100 150 200 250 300 350 400 450
Power [mW]

4G

WiFi

Web (.onion)

Direct
Tor w/o Padding

Tor w/ Red. Padding
Tor w/ Full Padding

Figure 9: Relative power usage of different Tor modes com-
pared to direct network connections.

provider node which simplifies our setup as we can ignore
the rest of the network. Loopix clients use traffic shaping to
hide whether actual communication is happening or not. Inter-
packet delays are drawn from an exponential distribution with
parameter λ (messages per second). If there is at least one
message in the outgoing payload queue, the oldest one is sent
(FIFO). If there is no payload message, a cover message is
created and sent instead. This means that in our evaluation we
can ignore the presence of actual payload messages, as they
neither influence the number of cryptographic operations nor
have an influence on the sent traffic schedule and bandwidth.
Hence, all cryptographic operations and radio transmission
solely depend on the message rate λ and message size p.

Our evaluation uses the WakeLock approach for background
scheduling. For each round we execute Sphinx once for the
outgoing packet and transmit a message of size p (the en-
crypted packet) via UDP to a provider node. The provider
replies with p bytes (the inbox content). Afterwards we draw
a pause from the exponential distribution with parameter λ

and wait for the remaining time until the start of the next
operation. Each scenario is executed for 20 minutes on both
4G and WiFi. For our parameter choice of λ and p we first
identify practical limits. On our test device a Sphinx opera-
tion and sending a UDP packet takes around 20 ms. Using a
speed test we measured that our 4G connection provides up
to 2 Mbits/s upload (WiFi: 50 Mbit/s) and exclude configura-
tions exceeding these limits. We pick 2 KiB as our smallest

USENIX Association 32nd USENIX Security Symposium 5441

20
ms

20
0m

s 2s 20
s

20
0s

200 KiB

20 KiB

2 KiB

7.3 2.2 1.0

9.9 2.9 1.8 0.8

13.3 5.4 2.5 1.5 1.0

4G

20
ms

20
0m

s 2s 20
s

20
0s

200 KiB

20 KiB

2 KiB

5.5 1.3 0.5 0.4

5.6 2.5 0.7 0.7 0.5

4.0 2.0 0.8 0.5 0.4

WiFi

Figure 10: Measured energy consumption of a Loopix-style
anonymity network for given mean message intervals (1/λ)
and packet size (p). The color scale ranges from 0 pp/h to

5 pp/h. Blank squares indicate excluded configurations.

packet size. This is also the size used by Nym. For λ = 20 ms
the theoretical throughput is 100 KiB/s (40 % of the available
bandwidth). In the Sphinx implementation each packet has
a constant overhead of 365 bytes resulting in an application
level goodput of 82 KiB/s. Larger packet sizes improve the
goodput to throughput ratio.

Our results are shown in Figure 10. By using the same
factors for both parameter scales, data points on diagonals (up
and to the right) share the same bandwidth. For 1

λ
= 20 ms on

4G both CPU and network are consistently active and deplete
the entire battery in 7.5 hours. The results also show that
for the same bandwidth, larger intervals lead to significant
energy savings. For example, with 10 KiB/s of bandwidth, the
energy used decreases from 5.4 pp/h (p = 2 KiB, 1

λ
=200ms)

to 2.2 pp/h (p = 200 KiB, 1
λ
= 20 s) in the 4G case and from

2.0 pp/h to 0.5 pp/h for the same parameters in the Wifi case.
However, this comes at the cost of increased latency.

4.7 Macro Study: Daily Driver
The results from our macro studies suggest that some config-
urations can be run continuously during normal daily usage.
To validate these conclusions, we devise a “Daily Driver” sce-
nario that mimicks typical smartphone usage while running
anonymity networks. Assuming an informed user, who prefers
the most energy-efficient configuration, we choose V PNA and
Tor without padding. For the mix network we pick two pa-
rameters from the Loopix paper as Loopix f ast (1

λ
= 2 s) and

Loopixslow (1
λ
= 20 s). As the paper does not mention concrete

packet sizes, we choose p = 20 KiB which can handle long
text messages. We also include the default Nym configuration
(1

λ
= 20 ms, p = 2 KiB) as LoopixNym. All are compared to a

Base configuration without any anonymity network client.
Our experiments are performed continuously for 14 hours

simulating a typical day from 7 am to 9 pm. The smartphone
has been reset to factory state, fully charged, and the following
applications are installed: Google Mail, Signal, YouTube. The
device is connected to WiFi most of the day, except for 7-8am,
12-1pm, and 5-8pm when it then connects via 4G. We send an
email to the Gmail app every hour and a text message using

07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00
50
55
60
65
70
75
80
85
90
95

100

Ba
tte

ry
 le

ve
l (

%
)

Loopix…

slow

fast

Nym

Base
Tor
VPNA

Figure 11: Measured energy consumption as estimated bat-
tery levels during our 14 hour daily driver scenario. A white
background indicates connection via WiFi (gray: 4G).

Signal every 15 minutes. Both wake up the device to show a
notification. In addition, we play a 10-minute YouTube video
every two hours starting at 7am to simulate longer Internet
sessions with multiple HTTP requests. The display brightness
is set to 75%.

Our results are shown in Figure 11. Unsurprisingly, most
energy is consumed when the screen is active (around
1,000 mW). Push-notifications appear as small drops every
15 minutes. Overall, the findings agree with our previous ex-
periments. In this specific scenario the overall energy over-
head for Tor and V PNA are 0.2 pp/h and 0.3 pp/h respectively.
Hence, both appear practical. The change in the gradients for
Loopix make the power consumption differences between
WiFi and 4G clear (see e.g. Loopix f ast around 12 noon). The
high-latency Loopixslow configuration has an average over-
head 0.6 pp/h (Loopix f ast : 1.3 pp/h) which is almost practical
when there is WiFi for most of the day. The LoopixNym pa-
rameters drain the battery completely after 12 hours.

4.8 Discussion on Feasibility

We discuss the feasibility of VPNs, Tor, and mix networks
with cover traffic based on our assumptions from §2.1: smart-
phones are used without charging for a 12-hour period and
using less than an extra 5 percentage points of battery during
this time is acceptable. Our results can be easily adjusted if
required. We benchmark the anonymity networks against an
idle phone with active network connection which consumes
around 0.4 percentage points per hour.

We evaluate whether it is feasible to run Tor without
padding in the background by considering the idle scenario on
4G. This gives us a lower bound of the actual costs. Note that
active usage and background communication will experience
additional overhead due to higher latency and lower band-
width. For a 12-hour usage period running Tor without connec-

5442 32nd USENIX Security Symposium USENIX Association

tion padding on 4G requires an extra 3.6 pp1 (WiFi <0.1 pp).
This is less overhead than from the tested VPN clients (§4.4).
We conclude that Tor without connection padding is feasible
on modern smartphones and can be run continuously with-
out large drawbacks. However, full connection padding has
a large impact. This configuration increases energy costs by
30.0 pp on 4G and 9.6 pp on WiFi which is no longer practical.

We evaluate the Loopix-style mix network using the same
methodology. In contrast to Tor, active usage does not increase
the overall energy overhead of the mix network client as the
scheduling and size of packets does not change. We consider a
packet size of 20 KiB for both a medium-latency (1

λ
= 2 s) and

a high-latency (1
λ
= 20 s) configuration. A 2 second latency

would be acceptable for text-based chats and our evaluation
shows that it requires an additional 30.0 pp on 4G for a 12-
hour period. The high-latency configuration fares better with
16.8 pp for 12 hours. While the numbers are acceptable on
WiFi (both 4.8 pp), using local networks can not fully compen-
sate for the high energy costs of 4G networks, as we expect
smartphone users to use their devices in many different lo-
cations. Only very high-latency parameters (e.g. 1

λ
= 200 s)

would have a small enough overhead (4G: 6 pp, WiFi: 2.4 pp)
to be considered almost practical.

5 Limitations and Threats to Validity

Our evaluation uses only one smartphone which limits how
well our results generalize. We chose the Motorola phone
as our test device because of the easy battery access so that
others can easily replicate our setup and results. As it runs a
mostly unmodified version of Android it reflects the intended
behavior of the operating system. We verified this by running
the DontKillMyApp [31] benchmark which schedules and
later verifies various background operations. Our test device
received a perfect score. Other vendors add custom battery
saving techniques which can introduce bugs or restrict back-
ground services [31]. This applies also to iOS devices which
are more restrictive on background activities. Therefore, our
results may not directly generalize to other devices in terms of
functionality and power consumption. Running background
cover traffic over long periods of time might even be pre-
vented by the operating system on some platforms without
explicit intervention by users. Similarly, differences in mo-
dem hardware and configuration affect the obtained power
measurements. However, we believe that results for devices
with similar functionality are comparable, with newer devices
generally being more energy efficient.

We chose GiffGaff as the mobile network provider as they
offer pre-paid SIM cards. While it appears representative to
us based on our observations, the results do not necessarily
translate to other providers. For instance, the duration of tail-

1We calculate 12h× (0.8pp/h−0.4pp/h) = 4.8pp using data from Ta-
ble 4 in Appendix B. Similar for the other numbers.

latency demotion is a parameter that is set by the network
provider and can change over time. The GiffGaff configura-
tion has a fairly short tail-latency which appears favorable
for regular small messages. Therefore, the results for mix net-
works can be seen as a lower-bound estimate and we might
expect it to be higher for other providers.

For our macro studies we use a public website hosted by a
third-party. Changes to the website will inadvertently change
the obtained absolute measurements. Likewise, mobile net-
work conditions are not perfectly reproducible. For example,
upgrades by the provider and testing in different locations
will lead to slightly different numbers. As a mitigation, we
always (re-)ran all VPN and Tor experiments together at the
same location to ensure comparability of the results.

6 Conclusion

Our paper shows that there has been little attention to the
viability of anonymity networks on smartphones. In particular,
energy measurements are a blind spot in the evaluation of
anonymity networks. This is concerning as smartphones have
become our primary computing devices. We hope that our
work motivates other researchers to evaluate their designs and
implementations on real devices to determine their feasibility.
Our open-source hardware setup and analysis tools reduce the
barrier to do so and make results easier to compare.

Our evaluation highlights the dominance of radio trans-
missions for overall power consumption. At the same time
we find that cryptographic operations have become negligi-
bly cheap in the latest generation of devices. Hence, it is the
scheduling of messages and their impact on latency that are
critical when creating and evaluating new anonymity network
designs. This is especially true for networks that provide un-
observable communication through the use of cover traffic.
We would find it interesting to see protocols that address this
issue by reducing radio communication through batching of
messages and using traffic scheduling that is more adaptable.
However, doing so with minimal impact on the provided meta-
data privacy guarantees and perceived end-user performance
is a challenging problem.

As cryptography only contributes little to the overall en-
ergy impact of mix networks, pre-computation (e.g. of the
cover traffic messages) does not seem worth the additional
complexity. However, this might be different for other kinds
of anonymity networks or on embedded devices with tighter
or more volatile energy constraints.

We believe that anonymity networks need to be practical
on smartphones in order to reach widespread adoption. Tor
works, but other designs that have become popular in aca-
demic discussion currently require too much energy to be
practical in many cases. This opens up the opportunity for in-
teresting new designs that take these constraints into account
and explore solutions that work on mobile.

USENIX Association 32nd USENIX Security Symposium 5443

Acknowledgements

We would like to thank the anonymous reviewers and the
excellent shepherd. Daniel Hugenroth is supported by Nokia
Bell Labs and the Cambridge Trust.

References

[1] Martin R Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková. Collective information security
in large-scale urban protests: the case of Hong Kong. In
30th USENIX Security Symposium (USENIX Security
21), pages 3363–3380, 2021.

[2] Sebastian Angel and Srinath TV Setty. Unobservable
communication over fully untrusted infrastructure. In
OSDI, volume 16, pages 551–569, 2016.

[3] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano,
and Giuseppe Migliore. Profiling power consumption
on mobile devices. ENERGY, pages 101–106, 2013.

[4] Arm Limited. Arm Instruction Set Reference Guide,
2018. Version 1.0 (100076_0100_00_en).

[5] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad,
and Nickolai Zeldovich. Groove: Flexible metadata-
private messaging. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 735–750, 2022.

[6] Aaron Carroll, Gernot Heiser, et al. An analysis of
power consumption in a smartphone. In USENIX annual
technical conference, volume 14, pages 21–21. Boston,
MA, 2010.

[7] David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 24(2), 1981.

[8] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate,
Anna Krasnova, Joeri De Ruiter, and Alan T Sherman.
cmix: Mixing with minimal real-time asymmetric cryp-
tographic operations. In International conference on
applied cryptography and network security, pages 557–
578. Springer, 2017.

[9] Chen Chen, Daniele E Asoni, David Barrera, George
Danezis, and Adrain Perrig. HORNET: High-speed
onion routing at the network layer. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1441–1454, 2015.

[10] Raymond Cheng, William Scott, Elisaweta Masserova,
Irene Zhang, Vipul Goyal, Thomas Anderson, Arvind
Krishnamurthy, and Bryan Parno. Talek: Private group

messaging with hidden access patterns. In Annual Com-
puter Security Applications Conference, pages 84–99,
2020.

[11] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling
millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321–338. IEEE, 2015.

[12] George Danezis and Ian Goldberg. Sphinx: A compact
and provably secure mix format. In 2009 30th IEEE
Symposium on Security and Privacy, pages 269–282.
IEEE, 2009.

[13] George Danezis and Andrei Serjantov. Statistical disclo-
sure or intersection attacks on anonymity systems. In
International Workshop on Information Hiding, pages
293–308. Springer, 2004.

[14] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The
Nym network (whitepaper), 2021.

[15] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical
report, Naval Research Lab Washington DC, 2004.

[16] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Za-
haria, Dan Boneh, et al. Express: Lowering the cost
of metadata-hiding communication with cryptographic
privacy. In USENIX Security Symposium, pages 1775–
1792, 2021.

[17] Abram Hindle, Alex Wilson, Kent Rasmussen, E Jed
Barlow, Joshua Charles Campbell, and Stephen Roman-
sky. Greenminer: A hardware based mining software
repositories software energy consumption framework.
In Proceedings of the 11th working conference on min-
ing software repositories, pages 12–21, 2014.

[18] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. A close
examination of performance and power characteristics
of 4G LTE networks. In Proceedings of the 10th interna-
tional conference on Mobile systems, applications, and
services, pages 225–238, 2012.

[19] Daniel Hugenroth. Android Support for Elliptic Curves
(EC) in KeyPairGenerator, 2021. https://www.dani
elhugenroth.com/posts/2021_07_ec_curves_on
_android.

[20] Apple Inc. Choosing Background Strategies for Your
App, 2022. https://developer.apple.com/docu
mentation/backgroundtasks/choosing_backgro
und_strategies_for_your_app.

[21] Google Inc. Android O prevents access to /proc/stat ,
2017. https://issuetracker.google.com/issues
/37140047#comment2.

5444 32nd USENIX Security Symposium USENIX Association

https://www.danielhugenroth.com/posts/2021_07_ec_curves_on_android
https://www.danielhugenroth.com/posts/2021_07_ec_curves_on_android
https://www.danielhugenroth.com/posts/2021_07_ec_curves_on_android
https://developer.apple.com/documentation/backgroundtasks/choosing_background_strategies_for_your_app
https://developer.apple.com/documentation/backgroundtasks/choosing_background_strategies_for_your_app
https://developer.apple.com/documentation/backgroundtasks/choosing_background_strategies_for_your_app
https://issuetracker.google.com/issues/37140047#comment2
https://issuetracker.google.com/issues/37140047#comment2

[22] Google Inc. Optimize for Doze and App Standby, 2021.
https://developer.android.com/training/mon
itoring-device-state/doze-standby.

[23] Google Inc. Power management restrictions, 2021. ht
tps://developer.android.com/topic/performa
nce/power/power-details.

[24] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz,
and Matthew Wright. Toward an efficient website finger-
printing defense. In European Symposium on Research
in Computer Security, pages 27–46. Springer, 2016.

[25] Stephan A Kollmann and Alastair R Beresford. The
cost of push notifications for smartphones using Tor
hidden services. In 2017 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pages
76–85. IEEE, 2017.

[26] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: strong metadata security for voice calls. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 211–224, 2019.

[27] Andrea McIntosh, Safwat Hassan, and Abram Hindle.
What can Android mobile app developers do about the
energy consumption of machine learning? Empirical
Software Engineering, 24(2):562–601, 2019.

[28] José A Montenegro, Mónica Pinto, and Lidia Fuentes.
What do software developers need to know to build
secure energy-efficient Android applications? IEEE
Access, 6:1428–1450, 2017.

[29] Max Mössinger, Benedikt Petschkuhn, Johannes Bauer,
Ralf C Staudemeyer, Marcin Wójcik, and Henrich C
Pöhls. Towards quantifying the cost of a secure IoT:
Overhead and energy consumption of ECC signatures
on an ARM-based device. In 2016 IEEE 17th Interna-
tional Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pages 1–6. IEEE,
2016.

[30] Steven J Murdoch and George Danezis. Low-cost traffic
analysis of Tor. In 2005 IEEE Symposium on Security
and Privacy, pages 183–195. IEEE, 2005.

[31] Petr Nalevka and Jiří Richter. Don’t kill my app!, 2022.
https://dontkillmyapp.com/.

[32] NymTech. A Sphinx packet implementation in rust,
2021. https://github.com/nymtech/sphinx.

[33] NymTech. Nym Network Explorer a distributed power
monitoring platform for mobile devices, 2022. https:
//explorer.nymtech.net/.

[34] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Where
is the energy spent inside my app? fine grained energy
accounting on smartphones with Eprof. In Proceed-
ings of the 7th ACM european conference on Computer
Systems, pages 29–42, 2012.

[35] Mike Perry and George Kadianakis. Tor padding speci-
fication, September 2021. https://github.com/tor
project/torspec/blob/main/padding-spec.txt.

[36] Andreas Pfitzmann and Marit Hansen. A terminology
for talking about privacy by data minimization: Ano-
nymity, unlinkability, undetectability, unobservability,
pseudonymity, and identity management, August 2010.
v0.34, http://dud.inf.tu-dresden.de/literatu
r/Anon_Terminology_v0.34.pdf.

[37] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The Loopix anonymity
system. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1199–1216, 2017.

[38] Nachiketh R Potlapally, Srivaths Ravi, Anand Raghu-
nathan, and Niraj K Jha. A study of the energy con-
sumption characteristics of cryptographic algorithms
and security protocols. IEEE Transactions on mobile
computing, 5(2):128–143, 2005.

[39] Andrew Rice and Simon Hay. Measuring mobile phone
energy consumption for 802.11 wireless networking.
Pervasive and Mobile Computing, 6(6):593–606, 2010.

[40] Helena Rifa-Pous and Jordi Herrera-Joancomart. Com-
putational and energy costs of cryptographic algorithms
on handheld devices. Future internet, 3(1):31–48, 2011.

[41] David Schatz, Michael Rossberg, and Guenter Schaefer.
Hydra: Practical metadata security for contact discovery,
messaging, and dialing. In ICISSP, pages 191–203,
2021.

[42] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t
interrupt me while I type: Inferring text entered through
gesture typing on Android keyboards. In 16th Privacy
Enhancing Technologies Symposium (PETS), 2016.

[43] Texas Instruments. INA219 Zero-Drift, Bidirec-
tional Current/Power Monitor With I2C Interface
(SBOS448G), 12 2015. Rev. G.

[44] The Guardian Project. Orbot: Proxy with Tor, 2022.
https://guardianproject.info/apps/org.torp
roject.android/.

[45] The Tor Project. FAQ: Do i need both Tor Browser for
Android and Orbot, or only one?, 2022. https://supp
ort.torproject.org/tormobile/tormobile-6/.

USENIX Association 32nd USENIX Security Symposium 5445

https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/topic/performance/power/power-details
https://developer.android.com/topic/performance/power/power-details
https://developer.android.com/topic/performance/power/power-details
https://dontkillmyapp.com/
https://github.com/nymtech/sphinx
https://explorer.nymtech.net/
https://explorer.nymtech.net/
https://github.com/torproject/torspec/blob/main/padding-spec.txt
https://github.com/torproject/torspec/blob/main/padding-spec.txt
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://guardianproject.info/apps/org.torproject.android/
https://guardianproject.info/apps/org.torproject.android/
https://support.torproject.org/tormobile/tormobile-6/
https://support.torproject.org/tormobile/tormobile-6/

[46] The Verge. There are over 3 billion active Android
devices, 2021. https://www.theverge.com/2021/
5/18/22440813/android-devices-active-numbe
r-smartphones-google-2021.

[47] Robert Triggs. Fact check: Is smartphone battery ca-
pacity growing or staying the same? , 2018. https:
//www.androidauthority.com/smartphone-batte
ry-capacity-887305.

[48] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
pages 137–152, 2015.

[49] Matteo Varvello, Kleomenis Katevas, Mihai Plesa,
Hamed Haddadi, and Benjamin Livshits. BatteryLab:
a distributed power monitoring platform for mobile de-
vices. In HotNets ’19, 2019.

[50] Ekhiotz Jon Vergara, Simon Andersson, and Simin
Nadjm-Tehrani. When mice consume like elephants:
Instant messaging applications. In Proceedings of the
5th international conference on Future energy systems,
pages 97–107, 2014.

[51] Ekhiotz Jon Vergara, Simin Nadjm-Tehrani, and Mihails
Prihodko. EnergyBox: Disclosing the wireless transmis-
sion energy cost for mobile devices. Sustainable Com-
puting: Informatics and Systems, 4(2):118–135, 2014.

[52] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 179–182, 2012.

[53] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang
Wang, Robert P Dick, Zhuoqing Morley Mao, and
Lei Yang. Accurate online power estimation and au-
tomatic battery behavior based power model genera-
tion for smartphones. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 105–
114, 2010.

A Background Overhead

We show the execution of a test operation (100ms sleep) using
WakeLock in Figure 12. Even while idle, the base power
consumption is higher than when using the AlarmManager.
Also, by holding the WakeLock, other background timers and
checks can run. These are visible as the small peaks.

Figure 13 shows the execution of the same operation us-
ing AlarmManager. Outside the execution the baseline power

−1.0 −0.5 0.0 0.5 1.0 1.5
Time [s]

0

200

400

600

800

Po
we

r [
m

W
]

st
ar

t
en

d

Figure 12: Execution of a test operation (100ms sleep) using
WakeLock.

−1.0 −0.5 0.0 0.5 1.0 1.5
Time [s]

0

500

Po
we

r [
m

W
]

sc
he

d.

st
ar

t
en

d

Figure 13: Execution of a test operation (100ms sleep) using
AlarmManager.

drops to the technical minimum. However, for every execu-
tion we pay with an overhead to wake up (before start) and a
period of time where the system delays going back to idle (af-
ter start). Also, note that the actual start of execution happens
after the scheduled time sched.

B Measurements Data

This appendix contains the numerical results for the graphs in
the main part of the paper. Tables 3 and 4 provide the detailed
numbers from the macro studies on VPN and Tor, respectively,
in Sections 4.4, 4.5, and 4.6. The battery life-time calculations
use the a typical battery capacity of 8000 mWh (see §4).

C Literature Review

We summarize our literature review in Table 6 (last page). It
contains the most significant papers related to our approach
and experiments. We note that the most-recent study on cryp-
tographic operations on mobile devices is from 2011.

D Additional Figures

We provide additional photographs of our setup in Figure 14.

5446 32nd USENIX Security Symposium USENIX Association

https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://www.androidauthority.com/smartphone-battery-capacity-887305
https://www.androidauthority.com/smartphone-battery-capacity-887305
https://www.androidauthority.com/smartphone-battery-capacity-887305

Figure 14: Photographs showing the 3D printed battery holder
and inlet.

Network Power[mW] Battery[pp/h]

Idle

4G Direct 29.3 0.4
4G V PNA 73.7 0.9
4G V PNB 135.3 1.7

WiFi Direct 24.1 0.3
WiFi V PNA 32.0 0.4
WiFi V PNB 41.0 0.5

Web (.com)

4G Direct 102.5 1.3
4G V PNA 202.3 2.5
4G V PNB 227.4 2.8

WiFi Direct 48.6 0.6
WiFi V PNA 71.4 0.9
WiFi V PNB 81.0 1.0

Table 3: Average power consumption of Direct Internet access
compared to using the two tested VPNs V PNA and V PNB for
different scenarios. See Section 4.4

Network Power[mW] Battery[pp/h]

Idle

4G Direct 29.1 0.4
4G Tor w/o Padding 61.1 0.8
4G Tor w/ Red. Padding 71.2 0.9
4G Tor w/ Full Padding 230.8 2.9

WiFi Direct 25.0 0.3
WiFi Tor w/o Padding 26.0 0.3
WiFi Tor w/ Red. Padding 24.7 0.3
WiFi Tor w/ Full Padding 84.5 1.1

Web (.com)

4G Direct 122.1 1.5
4G Tor w/o Padding 269.0 3.4
4G Tor w/ Red. Padding 326.0 4.1
4G Tor w/ Full Padding 378.1 4.7

WiFi Direct 50.0 0.6
WiFi Tor w/o Padding 111.9 1.4
WiFi Tor w/ Red. Padding 106.9 1.3
WiFi Tor w/ Full Padding 121.2 1.5

Web (.onion)

4G Tor w/o Padding 369.1 4.6
4G Tor w/ Red. Padding 360.2 4.5
4G Tor w/ Full Padding 390.3 4.9

WiFi Tor w/o Padding 90.7 1.1
WiFi Tor w/ Red. Padding 76.6 1.0
WiFi Tor w/ Full Padding 172.3 2.2

Table 4: Average power consumption of Direct Internet access
compared to using Tor for different scenarios. See Section 4.5.

Operation PDA 2011 ARM IoT Ours
[40] 2016 [29]

Gen RSA-1024 1186.79 × 116.47
Sign RSA-1024 24.05 × 1.88
Verify RSA-1024 1.35 × 0.34
Gen RSA-2048 × × 116.47
Sign RSA-2048 102.08 × 6.22
Verify RSA-2048 3.17 × 0.50

Gen EC-224 29.05 24 1.11
Sign EC-224 38.24 27 1.43
Verify EC-224 48.71 29 1.52

Table 5: Comparison of energy costs for cryptographic opera-
tions between two previous studies and our results. All data
in mJ. Where multiple data points are available we chose the
smallest one. × incidcates missing data: the 2011 paper does
not include the key generation for 2048-bit RSA and the 2016
paper only measured EC operations. See Section 4.1.

USENIX Association 32nd USENIX Security Symposium 5447

Year Title Authors Summary

Papers with direct measurements

2005 *Energy Analysis of Public-Key Cryptography for Wire-
less Sensor Networks.

Wander et al. Measured radio communications and cryptographic
operations on an ATMega128.

2006 A Study of the Energy Consumption Characteristics of
Cryptographic Algorithms and Security Protocols

Potlapally et al. Measured cryptographic operations and SSL on a
PDA.

2010 Measuring mobile phone energy consumption for 802.11
wireless networking

Rice et al. In-depth WiFi power analysis on an Android smart-
phone.

2010 *An analysis of power consumption In a smartphone Carrol et al. Measures various energy components on multiple
Android devices.

2010 Exhausting battery statistics: understanding the energy
demands on mobile handsets

Vallina-Rodriguez
et al.

Measured battery of devices of volunteers.

2011 Computational and Energy Costs of Cryptographic Al-
gorithmson Handheld Devices

Rifa-Pous et al. Measured cryptographic operations on a PDA.

2012 *A close examination of performance and power char-
acteristics of 4G LTE networks

Huang et al. In-depth 4G power analysis on mobile devices.

2013 Profiling Power Consumption on Mobile Devices Adrito Measured different scenarios on Android phones
(calls, MP3 playback, . . .).

2014 GreenMiner: A hardware based mining software reposi-
tories software energy consumption framework.

Hindle et al. Measured apps in a highly-automated setup.

2016 Towards quantifying the cost of a secure IoT: Overhead
and energy consumption of ECC signatures on an ARM-
based device

Mössinger et al. Measured ECC signatures on IoT devices.

2019 What can Android mobile app developers do about the
energy consumption of machine learning?

McIntosh et al. Measured different ML algorithms on Android.

2019 BatteryLab: A Distributed Power Monitoring Platform
For Mobile Devices

Varvello et al. Framework for remote controlled measurements
and measured browser efficiency

Papers which create models

2010 *Accurate online power estimation and automatic bat-
tery behavior based power model generation for smart-
phones

Zhang et al. Created PowerTutor which can estimate the power
consumption of apps.

2014 EnergyBox: Disclosing the wireless transmission energy
cost for mobile devices.

Vergara et al. Created EnergyBox which can estimate the power
consumption for 3G and WiFi based on captured
packets.

Papers which use models

2012 *Where is the energy spent inside my app? fine grained
energy accounting on smartphones with eprof.

Pathak et al. Enhanced existing models by tracking which app
components are responsible.

2013 How much energy can we save from prefetching ads?:
Energy drain analysis of top 100 apps

Chen et al. Used Pathak et al.’s work to show that pre-fetching
of Ads has negligible impact.

2014 When Mice Consume Like Elephants: Instant Messag-
ing Applications

Vegara et al. Used EnergyBox to compute savings of improved
schedulers for Instant Messaging apps.

2017 The Cost of Push Notifications for Smartphones using
Tor Hidden Services

Kollmann et al. Used EnergyBox to investigate the feasibility of
push notifications over Tor.

2017 What Do Software Developers Need to Know to Build
Secure Energy-Efficient Android Applications?

Montenegro Used PowerTutor to compare different cryptogra-
phy libraries on Android.

Table 6: Literature grouped by methodology and sorted by year. Papers marked with * have more than 500 citations.

5448 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background and Related Work
	Measuring Energy on Smartphones
	Hardware-Based and Model-Based Approaches
	Cryptographic Operations
	Radio Operations
	Android

	Anonymity Networks

	Measuring Energy Consumption
	Evaluation
	Micro Study: Cryptographic Operations
	Micro Study: Scheduling
	Micro Study: Radio Operations
	Macro Study: VPN
	Macro Study: Tor
	Macro Study: Mix Network
	Macro Study: Daily Driver
	Discussion on Feasibility

	Limitations and Threats to Validity
	Conclusion
	Background Overhead
	Measurements Data
	Literature Review
	Additional Figures

