
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

AURC: Detecting Errors in Program Code
and Documentation

Peiwei Hu, Ruigang Liang, and Ying Cao, SKLOIS, Institute of Information
Engineering, Chinese Academy of Sciences, China, and School of Cyber Security,
University of Chinese Academy of Sciences, China; Kai Chen, SKLOIS, Institute of
Information Engineering, Chinese Academy of Sciences, China, School of Cyber

Security, University of Chinese Academy of Sciences, China, and Beijing Academy
of Artificial Intelligence, China; Runze Zhang, SKLOIS, Institute of Information

Engineering, Chinese Academy of Sciences, China, and School of Cyber Security,
University of Chinese Academy of Sciences, China

https://www.usenix.org/conference/usenixsecurity23/presentation/hu

AURC: Detecting Errors in Program Code and Documentation

Peiwei Hu1,2, Ruigang Liang1,2, Ying Cao1,2, Kai Chen1,2,3,∗ , and Runze Zhang1,2

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Beijing Academy of Artificial Intelligence, China
{hupeiwei,liangruigang,caoying,chenkai,zhangrunze}@iie.ac.cn

Abstract
Error detection in program code and documentation is a crit-
ical problem in computer security. Previous studies have
shown promising vulnerability discovery performance by
extensive code or document-guided analysis. However, the
state-of-the-arts have the following significant limitations: (i)
They assume the documents are correct and treat the code
that violates documents as bugs, thus cannot find documents’
defects and code’s bugs if APIs have defective documents or
no documents. (ii) They utilize majority voting to judge the
inconsistent code snippets and treat the deviants as bugs, thus
cannot cope with situations where correct usage is minor or
all use cases are wrong.

In this paper, we present AURC, a static framework for
detecting code bugs of incorrect return checks and document
defects. We observe that three objects participate in the API
invocation, the document, the caller (code that invokes API),
and the callee (the source code of API). Mutual corroboration
of these three objects eliminates the reliance on the above
assumptions. AURC contains a context-sensitive backward
analysis to process callees, a pre-trained model-based docu-
ment classifier, and a container that collects conditions of if
statements from callers. After cross-checking the results from
callees, callers, and documents, AURC delivers them to the
correctness inference module to infer the defective one. We
evaluated AURC on ten popular codebases. AURC discovered
529 new bugs that can lead to security issues like heap buffer
overflow and sensitive information leakage, and 224 new doc-
ument defects. Maintainers acknowledge our findings and
have accepted 222 code patches and 76 document patches.

1 Introduction
Nowadays, library-based programming has become the main-
stream software development model, aiming to improve devel-
opment efficiency, reduce program complexity, and simplify
operations such as development and maintenance. Libraries
expose Application Programming Interfaces (APIs) for easy

∗Corresponding Author

use by other developers. Also, library developers use docu-
mentation that describes the usage of APIs to help software de-
velopers understand how to use the APIs, which also includes
the example code sometimes. Lines 2~3 in Listing 1 show
the description of EVP_SealInit() in the documentation of
OpenSSL [4]. By stating zero is returned when errors happen,
the documentation guides the software developer to conduct
a return check and define the error-handling code for returned
zero while invoking EVP_SealInit(). Line 17 shows an in-
vocation of EVP_SealInit(). The function openssl_seal
is the caller since it invokes EVP_SealInit(). Lines 5~13
partially display the source code of EVP_SealInit(), dubbed
the callee. Thus, one can refer to the callee, the documen-
tation, or the other callers to learn the usage of APIs, and
we call them API Usage References (AURs). In Listing 1,
EVP_SealInit(), as an initialization function for encryption,
returns 0 and -1 while errors happen. However, both the caller
in the PHP interpreter [5] and the documentation of OpenSSL
omit the negative value. The callee is inconsistent with the
caller and the documentation, leading to a Denial of Service
(DoS) attack on the PHP interpreter (CVE-2017-11144).

1 // the document from OpenSSL(commit:8b9afb)
2 EVP_SealInit() returns 0 on error
3 or B<npupb> if successful.
4 // the callee from OpenSSL(commit:8b9afb)
5 int EVP_SealInit(EVP_CIPHER_CTX *ctx...) {
6 if (type) {
7 if(!EVP_EncryptInit_ex(ctx...))
8 return 0;
9 }

10 /* the error happens */
11 if (ekl[i] <= 0) return (-1);
12 return (npubk);
13 }
14 // the caller from PHP(commit:4b38fea)
15 PHP_FUNCTION(openssl_seal) {
16 /* ignore the return value -1 */
17 if (!EVP_SealInit(ctx...)) {
18 goto clean_exit;
19 }
20 }

Listing 1: Example of Inconsistent AURs

USENIX Association 32nd USENIX Security Symposium 1415

State-of-the-art approaches have found a lot of potential vul-
nerabilities based on consistency checks. However, they suffer
from three main problems. (i) Limited number of APIs are
covered by the documentation. Some approaches [41, 46, 48]
detect potential bugs by extracting usage from documents and
using it as the standard to locate the deviating code. How-
ever, many APIs are not documented and escape the detection.
What is worse, even the documentation itself may contain
defects. For example, the callees of 204 bugs we discovered
do not have documentation, whereas the callees of 91 bugs
have defective documentation. (ii) Majority voting may be
unexecutable or incorrect. Several studies [30, 31, 35, 55] per-
form extensive code analysis of callers and detect potential
bugs based on majority voting, i.e., the most frequent usage is
correct. Unfortunately, it is limited to APIs invoked multiple
times, and the most frequent usage may also be wrong. For
example, the callees of 104 bugs we discovered are invoked
too few to perform majority voting, whereas, in the callees of
311 bugs, the dominating usage is wrong. (iii) Correct usage
may not exist in the contextual scale. Some work [37, 40, 51]
tries to detect bugs based on similar function contexts. For ex-
ample, they are using similar execution paths within the same
function. However, it requires correct usages exist within the
context. We observe that all AURs can provide usage im-
plicitly or explicitly instead of utilizing only documents and
callers, as in previous studies. Especially the callee, i.e., the
source code of the API, exists even if the API is rarely invoked
or is undocumented. Therefore, we argue that collecting usage
from all AURs and inferring correctness by cross-checking
consistency among them can address the above limitations.
However, there are challenges in extracting usage and infer-
ring correctness from AURs as follows.
Challenges. C1: The intricate data flow makes it difficult
to predict usage from callees. To detect the incorrect return
checks by cross-checking among AURs, we entail predicting
the return values of callees. The intricate data flows influ-
ence this prediction. On the one hand, nested invocations are
commonly used for return value assignments. For example,
when predicting the return values of pkey_ec_ctrl_str()
in OpenSSL one has to look through at least 53 functions to
trace its origin. On the other hand, even inside the function,
the return statements appear in the tails of execution paths,
making the traditional analysis technologies, like value range
analysis, have to go through many statements before reach-
ing the return statements. Also, the pervasiveness of return
statements makes the already heavy analysis even more bur-
densome. For example, pkey_ec_ctrl_str() contains only
32 lines of code, it is surprising that it owns 16 execution
paths (ignore nested invocation) and 8 return statements.
C2: Documentation and code cannot be compared directly.
The documents are human-oriented and written in natural
language, while the callers and callees are code. We cannot
compare them directly. Since we use numbers to represent
the usage concluded from callees and callers, this challenge

equals how to convert the documents to numbers. During the
conversion, the fickle sentence structures in documentation
impede the extraction of usage-related sentences. Previous
studies [46, 48, 57] leverage manually designed templates
to filter out the sentences. However, they are labor-intensive
and difficult to cope with codebase migration. Moreover, the
fickle vocabularies that imply numbers or ranges decrease the
accuracy of the conversion. For example, “BIO_seek() and
BIO_tell() both return the current file position on success
and -1 for failure” is from the document of OpenSSL. De-
scriptive words that imply a range like position exist in the
sentences. Humans can understand them with a glance but
not for automatic analysis.
C3: Determining the defective one when inconsistency
happens is a dilemma. After extracting usage from all AURs,
finding a reasonable way to infer correctness when inconsis-
tencies occur is crucial. However, the document, the caller,
and the callee can all be defective. Assuming that one side
is correct is straightforward but not reliable. Several stud-
ies [46, 48] locate inconsistency and perform the correctness
inference manually, which is labor-consuming. Also, auto-
matic correctness inference is critical since it can be the ba-
sis of automatic patching. Some approaches [41] assume
one AUR (typically documentation) is correct, while oth-
ers [30, 31, 35, 55] make the assumption that the most com-
mon usage is correct. However, both strategies are frequently
incorrect, as we have found many bugs that violate them.
AURC. In this paper, we design an AUR consistency check
approach called AURC1, which aims to find the potential
defects in both code and documents. AURC focuses on in-
correct return checks, extracting the usage from all AURs
to detect inconsistency and sending the found inconsistency
to the correctness inference module to conclude the defec-
tive one. Also, AURC can overcome the above challenges
based on several observations. Specifically, we found that
most returned values can be determined by backtracking sev-
eral statements from return statements, so there is no need
to spend plenty of time analyzing the entire function from
front to back. Despite the popularity of nested invocations,
we can convert this into an intraprocedural problem by re-
placing invocations with their return values. In our research,
we designed a Context-sensitive Backtrace Prediction (CBP)
method based on the above observation. CBP predicts the
return values by iteratively searching backward in the exe-
cution path for assignments of the returned variable. It also
simplifies the nested invocations by predicting the invoked
functions in advance and replacing the invocations with their
return values. Our evaluation shows CBP can predict 90.8%
return values with an accuracy of 96.3% (Section 5.3).

In addition, we observed that while the linguistic struc-
ture and vocabulary of usage-related sentences keep chang-
ing, the semantics, which is closer to human understanding,

1AUR consistency Checker.

1416 32nd USENIX Security Symposium USENIX Association

remains constant. Thus, a semantic-based approach can bet-
ter cope with codebase migration. Therefore, we proposed a
pre-trained model-based classifier to filter out usage-related
sentences. We also leverage a mapping table to convert the vo-
cabularies that imply numbers or ranges into actual numbers
or ranges. Our experiments show that AURC works effectively
facing codebase migration (Section 5.3).

Also discovered in our research is that the mutual corrobora-
tion of three AURs eliminates the dependence on assumptions
that documents or majority voting are correct. Specifically, if
the callee and the document are consistent, the library devel-
oper’s work is self-consistent, so inconsistent callers should
be modified. If the callee and the caller are consistent, then
the existing code executes well, so the inconsistent document
should be updated. Based on these in-depth observations, we
summarized four rules of correctness inference to find AURs
with defects. Our correctness inference module has an excel-
lent performance based on statistics of patches approved by
maintainers (Section 5.3).

Discoveries. We implemented AURC and evaluated it on ten
popular codebases: OpenSSL, libwebsockets, libzip, GnuTLS,
net-snmp, mpg123, httpd, libgit2, libxml2, and curl. AURC
found 529 new code bugs and 224 new document defects
with an accuracy of 87.9%. These bugs can cause concerns
like heap-buffer overflow and sensitive information leakage.
Until now, maintainers have accepted 222 code patches and
76 document patches. We further detailed analyzed the dis-
covered bugs and found that the callees of 204 bugs have no
documents while another 91 callees have defective documents.
Also, the callees of 104 bugs are invoked too few to perform
majority voting. The callees of 311 bugs do not conform to
majority voting. The bug types prove AURC’s strength in
detecting defects compared to previous work.

Contributions. The contributions of this paper are summa-
rized as follows:

• New technique. We design a novel approach to automati-
cally detect code bugs and document defects based on cross-
checking AURs (documents, callers, and callees). Unlike pre-
vious work, we do not need to assume that documents or
majority voting are correct. Our approach can detect bugs that
have no documents and do not conform to majority voting.
These innovations enable unbiased cross-checking and analy-
sis capabilities between AURs, contributing to the codebase’s
code robustness and documentation reliability.

• Implementation and discoveries. We integrated our ideas
into a prototype called AURC [9]. After testing several well-
tested projects with AURC, we found 529 new bugs and 224
new document errors, of which 222 code patches and 76 doc-
ument patches have been merged into repositories by main-
tainers. We refine both code and documents of widely used
codebases and further improve the stability of applications
that rely on them. We plan to release our dataset and code to
help researchers in the community.

2 Background
2.1 Incorrect Return Checks
Due to the lack of primitive error handling mechanisms, C-
based projects often utilize return values to indicate the ex-
ecution status of functions. Since return values are diverse,
it is critical to use the correct way to perform return checks.
Otherwise, incorrect return checks happen. The return value
indicates the execution status of the callee. For example,
X509_STORE_CTX_get1_issuer() from OpenSSL could re-
turn a negative value in case of error, 0 in case of not found,
and a positive value in case of success. A programmer may
use the unary operator (!) to check the return value, which
confuses the existence of a certificate with an internal er-
ror. This increases the risk of the encrypted communication
process. Incorrect return checks can cause severe security
impacts, which has been extensively discussed in previous
studies [30, 31, 41, 55]. Thus, discovering incorrect return
checks is security-critical.

2.2 Related Work & Limitations
Recent years have witnessed numerous studies detecting the
defects in the codebases, which can be divided into the fol-
lowing classes.
Document/comment analysis. ❶ Some previous studies fo-
cus on detecting document errors. For example, Zhong et
al. [56] leverage traditional NLP techniques to dig out syntax
errors and inconsistent variable names between documents
and example code. Zhou et al. [57] convert code and docu-
ments to FOL expressions and check the inconsistency by
SMT solver to detect erroneous parameter constraints and
exception throwing declarations in documents. ❷ Some ap-
proaches utilize documents to infer APIs’ constraints and
detect the deviation. For example, aComment [48] designs an
annotation language and converts documents and code to this
language to detect concurrency bugs. Advance [41] extracts
IAs from documents and leverages the dereferenced IA to
generate the CodeQL query statements to detect API mis-
use. Jdoctor [24] and Toradocu [28] infer API specifications
through the Javadoc comments and generate test cases to dy-
namically detect the API violating the comments. ICON [42]
converts the documents to FOL expression and leverages se-
mantic graphs to infer the call order of APIs. Ren et al. [43]
extract knowledge from the documents and construct API-
constraint knowledge graphs to detect API misuse. However,
the above methods assume the documents are correct to ex-
tract API usage. They cannot cope with the APIs with defec-
tive documents or no documents. ❸ Several studies [44,46,50]
do not treat the documents or code as the oracle but discover
inconsistencies between code and documents through the
decision tree, predefined templates, and heuristic rules. How-
ever, they do not propose reliable inference rules to decide
the correct one when inconsistency happens.
Code analysis. ❶ Detection of error handling bugs is close
to our work since it can also discover some incorrect checks.

USENIX Association 32nd USENIX Security Symposium 1417

Table 1: Comparison of Tools.

Type
Document Code

AURC
❶ ❷ ❸

❶ ❷ ❸
ErrDoc EPEx APEx Ares Hero IPPO CPscan Arbitrar Crix Vanguard AutoISES Chucky

D1 ✓ — ✓ — — — — — — — — — — — — ✓

D2 — — — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D3 — — — — — — — — — — — — — — — ✓

D4 — ✓ ✓ ✓ ✓ — — ✓ ✓ ✓ ✓ — ✓ — — ✓

ErrDoc [49] and EPEx [30] identify error handling blocks
and corresponding bugs with predefined error specifications
and error report functions. However, providing prior knowl-
edge is labor-consuming for huge codebases. APEx [31] and
Ares [34] leverage heuristic rules and majority voting to au-
tomatically conclude the error specifications and find error
handling bugs, but majority voting degrades the accuracy.
Hero [51] leverages EHS stacks and function pairs to detect
disordered error handling and reduces the dependence on ma-
jority voting. Still, these methods are subject to bugs on error
handling paths, while AURC applies to a wider range. ❷ Not
limited to error handling, some other approaches avoid major-
ity voting. IPPO [37] assumes the subjects in similar execu-
tion paths should follow a similar operation to detect missed
security operations. CPscan [27] uses the Linux kernel as the
standard and reports the deleted security-critical operations
in IoT kernels. Arbitrar [36] involves humans to conclude the
correctness of inconsistencies, which owns higher accuracy
but is labor-consuming for extensive codebase analysis. Com-
pared with AURC, these approaches cannot detect incorrect
checks and defects of documents. ❸ Another set close to our
work is missing check detection [40, 45, 47, 54] since it also
censors the checks. However, they pay more attention to en-
suring the necessity of the existence of the checks while we
focus more on whether the checks are performed in the right
way. The existence of our targets shows their necessity.

In order to comprehensively and fairly evaluate the per-
formance of the existing work and better demonstrate the
effectiveness of AURC’s core concepts, we try to leverage
the principles of different static analysis frameworks to con-
struct a comparison focusing on several hard-to-detect defects
despite some of them do not focus on incorrect checks. Specif-
ically, we highlight the following defects:
D1 The defects of documents.
D2 The defects of callers, and the corresponding documents

are wrong or do not exist.
D3 The defects of callees.
D4 The defects of callers, and the majority voting is not

applicable. For example, majority use cases are wrong,
or use cases are too rare to perform majority voting.

We select the aforementioned studies as the targets and
evaluate whether they can cope with these defects. The results
are shown in Table 1. AURC handles these four types of
defects while most tools can only process two types. AURC

outperforms because of its ability to cross-check three AURs,
as introduced in the following.

3 Approach
In this section, we propose the design of AURC, a novel
approach to find the potential defects in both code and doc-
uments. We first give an overview of the whole design and
an example to show how it works and then elaborate on the
details of its components.

RDT

Callee

Document
Correctness

Inference

Fix code or
documents

Mapping
Table

Caller

CBP

AURs Detection

CoPS
Construction

Pre-trained
Classifier

Figure 1: Architecture of AURC. CBP = Context-sensitive
Backtrace Prediction, CoPS = Cut-off Point Set, RDT = Range
Deduction Tree.

3.1 Overview
Architecture. Figure 1 illustrates the architecture of AURC,
including six main modules: Context-sensitive Backtrace Pre-
diction (CBP), Cut-off Point Set (CoPS) Construction, Range
Deduction Tree (RDT), Pre-trained Classifier, Mapping Table,
Correctness Inference, together with its workflow. Specifi-
cally, CBP analyzes the callee, i.e., the source code of the
API, and concludes its return values. CoPS works on collect-
ing return checks from the caller, capturing the conditions
of if statements, and stores the operands and symbols of the
comparisons. RDT deduces the ranges of the return values
based on conditions in CoPS. Two modules are responsi-
ble for analyzing the documents: Pre-trained Classifier filters
out the sentences related to return values; Mapping Table
converts them into numbers for further comparison with the
usage from callees and callers. After analyzing the AURs (the

1418 32nd USENIX Security Symposium USENIX Association

process can be implemented in parallel), AURC performs a
cross-checking to locate inconsistencies and send them to the
Correctness Inference, which contains four rules to infer the
defective AUR.

j = BN_bn2binpad(ret, buf, num);
if (j < 0) {
 goto err;
}

prediction

int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen) {
 if(tolen < 0)
 return -1;
 return bn2binpad(a, to, tolen, big);
}

mapping table

BN_bn2binpad() returns the number of bytes written or -1 if the
supplied buffer is too small.

if(BN_bn2binpad(r1, rbuf, r1_len) <= 0)

if(BN_bn2binpad(s1, sbuf, s1_len) <= 0)

if(!BN_bn2binpad(bn, buf, sz))

......

case1

case2

case3

case4

-1, >0

0, !0

correctness inference

inconsistency

documents callee

caller
rule 1: documents and callees are
consistent, fix callers

caller

documents

callee

Figure 2: Example of Incorrect Return Check

Example. Figure 2 shows the example of an incorrect return
check. The code snippets and documents are extracted from
a popular library named OpenSSL. BN_bn2binpad() con-
verts the absolute value of parameter a2 into the big-endian
form and stores it at parameter to. To analyze the callee,
i.e., the source code of BN_bn2binpad(), AURC deduces
its return values by CBP. CBP infers the return values can
be -1 or bn2binpad(). Similarly, AURC deduces the return
values of bn2binpad() contain -1 and >0. After taking the
intersection, the return values of BN_bn2binpad() are -1 and
>0. To analyze the documents, AURC first picks out the sen-
tence describing the return values of BN_bn2binpad() by the
fine-tuned pre-trained model-based classifier. The selected
sentence includes a phrase (the number of bytes) and a num-
ber (-1) to indicate the return values. Then, the mapping ta-
ble maps the phrase to range >0. Thus, the return values of
BN_bn2binpad() are -1 and >0. AURC collects conditions of
if statements to analyze the callers and picks out those contain-
ing comparisons with the callee’s return values to construct
CoPS, as shown in cases 1-4. Case 3 leverages a unary oper-
ator (!) for the return check. RDT further concludes that the
return values of BN_bn2binpad() contain zero and nonzero
based on this return check. They are inconsistent with the

2BIGNUM is a self-defined structure used for storing numbers.

results of the callee and documents, i.e., -1 and >0. Thus,
the correctness inference module starts working to solve the
inconsistency. In this case, the document and the callee are
consistent, which means the library developer’s work is self-
consistent. Thus, the correctness inference module concludes
that the caller is defective. In case 3, the caller cannot distin-
guish two different execution statuses of BN_bn2binpad(),
i.e., the success represented by positive return values and
the exception that the argument buf is too small represented
by the return value -1. There is a potential risk of operating
invalid data in buf and causing a program crash. Here we
present an example of the callee with one negative return
value. Sometimes, the caller uses a range to check multiple
return values of a callee. For example, the callee has two
negative return values including -1 and -2. If this callee is
checked by the symbol “< 0”, AURC will not report it since
these negative values are consistent with the range of less than
zero.

1 int cms_main(){
2 /* ... 946 lines of code ... */
3 ret = SMIME_write_CMS(out, cms);
4 if (ret <= 0) {
5 ret = 6;
6 goto end;
7 }
8 ret = 0;
9 end:

10 /* ret equals to 0 or 6 */
11 return ret;
12 }

Listing 2: Simplified cms_main from apps/cms.c of OpenSSL

3.2 Analysis of Callee
Value range analysis [29] is an existing approach for calcu-
lating variable values. It predicts the possible values of the
variable based on the variable type and operations conducted
on the variable. Value range analysis plays a role in redun-
dancy elimination and dead code elimination. However, two
characteristics hinder its usage in predicting return values.
First, value range analysis performs redundant analysis while
deducing return values. The return statement comes at the end
of the function and is influenced by the returned variable’s last
assignment. However, value range analysis calculates the vari-
able ranges from front to back and analyzes all assignments of
the returned variable. For example, in Listing 2, it is needless
to analyze the assignment expression on line 3 to infer the
return values, but value range analysis will analyze it. Sec-
ond, value range analysis has a low efficiency facing nested
invocations. For example, in Listing 2, value range analysis
has to step into the function SMIME_write_CMS() to analyze
the line 3. The workload of analysis increases exponentially
with the depth of the nested invocations. The return value, as
the medium for error propagation, tends to own a long call
chain to propagate internal errors, decreasing the efficiency
of value range analysis. Another technique that is capable of
deducing return values is symbolic execution [23, 25, 33]. It

USENIX Association 32nd USENIX Security Symposium 1419

also suffers from low efficiency. Symbolic execution aims to
explore more execution paths, leading to its high overhead on
solving constraints. However, solving constraints is not a must
for predicting return values. Our experiments in Section 5.2
show this low efficiency.

To address the above problems, we propose Context-
sensitive Backtrace Prediction (CBP), which predicts the re-
turn values of functions backwards. CBP is based on three
observations. (i) We can convert the nested invocations to the
intraprocedural problem by analyzing the invoked functions
in front of the callers and replacing the invocations with their
return values. (ii) Value range analysis extracts constraints
with constraint derivation rules to build the constraint graph
describing the variables’ range constraints. Similarly, we
summarize three types of path constraints of the returned
variable, which can decrease the false positives by excluding
unreasonable return values. (iii) Most returned values can
be predicted by backtracking some statements from return
statements instead of analyzing the whole function from front
to back. CBP contains three stages: order of function analysis
decision, path constraints extraction, and backtrace prediction.
Order of Function Analysis Decision. CBP analyzes the
invoked functions ahead of the caller to replace the invoca-
tions with their return values. This stage deduces the analysis
sequence to ensure the invoked functions are analyzed before
the callers. Specifically, CBP constructs the global call graph
and removes the nodes that own back edges, i.e., functions
that invoke themselves directly or indirectly, on the call graph.
Then, CBP calculates the topological sort of the call graph to
get the analysis order. According to this order, the following
two stages analyze each function.
Path Constraints Extraction. CBP generates the execu-
tion paths of the function by traversing the CFG and col-
lects the path constraints of each execution path. Specifically,
after analyzing abundant code, we summarize three types
of path constraints that appear frequently. (i) conditions of
if statements constraint. Suppose there is an if statement
i f (cond) {statement1} else {statement2} and an execu-
tion path P which returns the variable R. We also assume that
cond contains the variable R. If statement1 is in P, then R
should satisfy the condition cond. Otherwise, R should sat-
isfy not cond. We use Ci to represent the condition that R
should satisfy, i.e., cond or not cond. For the execution path
P that contains n if statements, the constraint is defined as
Equation 1: R satis f ies (C1∧C2∧ ...∧Cn) (1)
For example, in Listing 3, the execution path containing lines
3, 4, 5, and 6 has two if statements (lines 4 and 5). To reach
the line 6, both the two return statements in lines 4 and 5 will
not be executed. Thus, recvd should satisfy the negation of
two conditions, i.e., recvd != -1 and recvd != 0. In this
way, CBP will exclude the values -1 and 0 from the return
values of the current execution path.
(ii) subscript constraint, which is common in the functions
that perform searches or queries. CBP detects if the returned

value R originates from the subscript of an array with size S.
If so, the constraint is defined as Equation 2:

R ∈ [0, S) (2)

(iii) loop counter constraint. Sometimes, the returned variable
depends on the induction variable i of a loop. We try to cal-
culate the returned variable’s value by estimating the value
of i. As we know, calculating the lower and upper bounds of
the loop is still an open problem [32, 38, 39]. We estimate the
value of i from the loop and use i to calculate the value of the
returned variable. In particular, we observe that the value of
a loop’s induction variable is limited by the initialized value
(Loopinit) and the exit condition (Loopcond) of this loop. Thus,
we calculate the value of i (represented by Vi) using Loopinit
and Loopcond by getInterval (Loopinit , Loopcond), where get-
Interval calculates the interval consisting of two parameters.
Further, for the returned variable R, loop counter constraint is
defined as Equation 3:

R ∈ f (Vi) (3)

where f represents the calculations from i to R. For instance,
in Listing 3, the execution path labeled with arrows returns i
(line 21), which directly stems from an induction variable in
the loop. CBP can infer that the return value of this execution
path is within [0, size - 1].

Algorithm 1: Backtrace Prediction
Input: Path: Execution path;

C: Constraints from path constraints extraction
Output: R: Return values

1 R ← /0;
2 ReturnVar ← getReturnedVariable(Path);
3 do
4 if isPredictableOb ject(ReturnVar) then
5 R ← getValue(ReturnVar);
6 break;
7 end
8 if f indReachDe f (ReturnVar) then
9 ReturnVar ← getReachDe f (ReturnVar);

10 else
11 break;
12 end
13 while True;
14 R ← applyConstraints(R,C);
15 return R;

Backtrace Prediction. Given the execution paths with their
path constraints of the returned values, CBP predicts the re-
turn values backwards in this stage. The analysis of each
execution path is shown in Algorithm 1. CBP first gets the
returned variable of the execution path (line 2) and checks
whether its a predictable object (line 4). The predictable ob-
jects contain numeric literals, logic expressions representing
0 and 1, invocations whose values can be concluded from the

1420 32nd USENIX Security Symposium USENIX Association

return values of previously predicted functions, and the vari-
ables stem from the above objects. The values that predictable
objects represent are apparent and can be obtained by CBP
directly (line 5). If the returned variable is not predictable,
CBP backward searches the reaching definition3 until it finds
a predictable object (line 8). CBP excludes the values constra-
dicting with the constraints obtained from path constraints
extraction (line 14). The left values are the return values of
the execution path.
Example. In this part, we use ebcdic_gets() in Listing 3 as
an example to show the process of CBP. First, AURC extracts
the execution paths of ebcdic_gets(). We focus on the path
marked with arrows while predicting the returned ret. Then,
AURC collects the path constraints on the execution path. Two
conditions of if statements constraints exist in lines 14 (ret
<= 0) and 21 (ret < 0). After taking intersection, AURC
gets the range ret < 0 by path constraints. Further, AURC
starts searching reaching definition of ret iteratively and
discovers it in line 13 in the first round. Since ret is assigned
with a predictable object, AURC queries the return values of
ebcdic_read() in the previously predicted functions. The
return values of ebcdic_read() contains -2, -1, 0 and >0.
Considering the range ret < 0 from path constraints, AURC
discards 0 and >0. Thus, the final prediction result of this path
is -2 and -1.

1 /* Code details have been simplified */
2 int SocketRecv(int sockFd , char* buf, int sz){
3 int recvd = (int)recv(sockFd , buf, sz, 0);
4 if (recvd == -1) { return -1; }
5 else if (recvd == 0) { return -5; }
6 return recvd;
7 }
8 int ebcdic_gets(BIO *bp, ...) {
9 → int i, ret = 0;

10 → BIO *next = BIO_next(bp);
11 if (next == NULL) return 0;
12 → for (i = 0; i < size - 1; ++i) {
13 → ret = ebcdic_read(bp, &buf[i], 1);
14 → if (ret <= 0)
15 → break;
16 else if (buf[i] == ’\n’) {
17 ++i;
18 break;
19 }
20 }
21 → return (ret < 0 && i == 0) ? ret : i;
22 }

Listing 3: Code Example of CBP

3.3 Analysis of Caller
Return checks can implicitly reflect the callers’ un-
derstanding of callees. For example, in Listing 4,
__get_cur_name_and_parent() deems the return
values of gen_unique_name() contain two types (<0 and

3Reaching definition is commonly used in compiler theory. If a variable
is defined in statement A and used in statement B, and no other assignment
of this variable between A and B, A is the reaching definition of B [22].

>=0) by using ret < 0 to perform the return check. Based
on this observation, AURC collects all return checks of the
invocations and uses them to construct the Cut-off Point
Set (CoPS). CoPS is a collection containing conditions of
if statements. By analyzing the symbols and operands of
the comparison within conditions, AURC can deduce the
correspondence between ranges of return values and different
execution statuses of the callee from the caller’s angle. The
element within CoPS is in the format (callee, symbol, value,
location). The items callee, symbol, and value stem from
the comparison within the conditions of if statements. They
record the callee, the symbol of comparison, and the operand
of a comparison. They work together for the deduction
above. The item location records where the checked
invocation happens and provides position information when
the return check is defective and reported. For example,
AURC will convert the return check in line 6 of Listing 4 to
(gen_unique_name, <, 0, __get_cur_name_and_parent:5)
and save it in CoPS. Conditions like if(!api()) and
if(api()) will be converted to if(api() == 0) and
if(api() != 0) to facilitate the collection.

1 int __get_cur_name_and_parent(...) {
2 ret = is_inode_existent(sctx , ino, gen);
3 if (ret < 0) goto out;
4 if (!ret) {
5 ret = gen_unique_name(sctx , ...);
6 if (ret < 0) goto out;
7 ret = 1;
8 goto out_cache;
9 }

10 out_cache: ...
11 out:
12 return ret;
13 }

Listing 4: Example of Separated Checks

if (ret < 0)

if (!ret)

ret < 0

ret == 0

ret > 0

ret >= 0

Figure 3: Example of Range Deduction Tree

The diversity of the code style hinders the construction
of CoPS. Listing 4 shows as an example. The caller may
separately check the invocation. Both lines 3 and 4 check
the invocation in line 2. If AURC only considers one of the
checks while deducing the ranges, the false positive will be
high. AURC constructs the CoPS based on the Data Depen-
dency Graph (DDG) to address the above problem to ensure
the completeness of captured checks. DDG is a graph that de-
scribes the data dependency relationships. The nodes of DDG
represent the statements. The edge between two nodes means
the variable in the end node originates from the start node.

USENIX Association 32nd USENIX Security Symposium 1421

Specifically, AURC traverses every node containing invoca-
tions in DDG. If the node contains a direct comparison like if
(gen_unique_name() < 0), AURC can convert and save
this in CoPS directly. Otherwise, if the node assigns the in-
vocation to another variable, AURC further traverses every
node that depends on this node to collect all comparisons
related to this variable. The invocations and comparisons will
be saved in CoPS too. This way, since both lines 3 and 4
depend on line 2, AURC can collect them as the return checks
for is_inode_existent() in line 2.

The separated checks also hinder concluding the ranges of
return values from the return checks. For example, ret < 0
in line 3 separates the range of return values into <0 and >=0,
whereas !ret in line 4 separates the range into 0 and !0. Since
these two checks check the invocation in line 2, they separate
the range of return values into <0, 0, and >0. The range >0 is
an implicit range since it can not be concluded by any single
check of the invocation. We observed that the key to capturing
this implicit range is to be aware that the precondition of
reaching line 4 is the condition in line 3, i.e., ret < 0, is not
satisfied, which means ret >= 0. Based on this observation,
we proposed Range Deduction Tree, or RDT for short, to
conclude the ranges of return values from the return checks.
Specifically, for all return checks of an invocation, AURC
first constructs the RDT based on the relationships of these
checks in CFG. If one check A is the parent or ancestor node
of another check B in CFG, they keep the same relationship
in RDT. Also, the edges in RDT label the preconditions of
going along these edges. Starting from the root node of RDT,
AURC concludes every check with the preconditions in edges
to deduce the final ranges. Figure 3 shows an example of
deducing the return values’ ranges of the invocation in line 2
by RDT. With the help of the preconditions on edges, AURC
concludes that the ranges include <0, 0, and >0.

3.4 Analysis of Document
Documents, as one of the AURs, describe return values of
APIs in natural language. Extracting return values from doc-
uments for comparison is nontrivial for two reasons. First,
documents lack strict writing norms. Sentences related to re-
turn values are hard to be filtered out since they interweave
with other sentences. Second, return value-related sentences
are human-oriented and contain phrases that the human can
easily understand but not for automatic comparison like “re-
turn the number of characters written”.

To address the first issue, previous work [46, 48, 57] pro-
posed methods that heavily depend on human observation.
People look through many pages and conclude some heuris-
tic rules for future extraction, which is laborious. It is also
powerless in coping with codebase migration. Advance [41]
employs sentiment analysis to address the above problems,
finding that desired sentences usually contain strong emotions.
Nevertheless, this finding is not universal. For example, doc-
uments describe return values of APIs as neutral. Although

sentence structures change with codebase migration, which
breaks the heuristic rules, the meanings of sentences remain
similar. Thus, AURC employs an embedding-based way to
identify the desired sentences. The pre-trained model in NLP
can convert the sentences in natural language to vector em-
beddings. The classification based on these embeddings elim-
inates the dependence on specific rules. Specifically, AURC
leverages BERT [26] for classification. We fine-tuned the
classifier with the manually labeled dataset that contains sen-
tences from documents. We also design the experiment to
show its ability to cope with codebase migration. After test-
ing, the classifier achieves 95.5% accuracy and 94.3% recall
on average (see Section 5).

Table 2: Part of Mapping Table

Word Range

nonzero (-, 0)
⋃

(0, +)
zero 0
length,size,amount,number,index (0, +)
negative (-, 0)

The analysis of callers and callees presents the deduced
return values in number or range formats. To enable the cross-
checking between AURs, we also convert the return values
expressed by documents to numbers or ranges. Specially, we
design a mapping table (as shown in Table 2) that maps return
values described in natural language to numbers. Given a
selected sentence, AURC first collects the numbers within it.
Then, AURC inspects the nouns within the sentence to find the
words in the mapping table. This way, the information hidden
in the documents is transformed into comparable forms for
further cross-checking between AURs.

3.5 Defects Detection
In the above step, AURC extracts the usage from the three
AURs and converts them into numerical form to enable di-
rect comparison. AURC then cross-checks these three AURs
to find inconsistencies, i.e., potential defects in the code or
documentation. It is nontrivial to determine which AUR is
correct when inconsistencies are found. Some previous stud-
ies [44, 57] have focused on detecting inconsistencies, such
as majority voting, but lacked methods to conclude the defec-
tive one. These approaches are limited to one or two AURs in
their analysis. Unlike them, AURC utilizes all three AURs and
has a more reasonable method to summarize the defects. We
summarize four rules for resolving inconsistencies through
extensive research and analysis of practical cases (focusing
on fixing inconsistencies when they occur), communicating
with senior maintainers of several widely used libraries, as
shown in Table 3.

Rule 1: The caller has bugs if it is inconsistent with the
callee and the document. From the perspective of API de-
velopers, their responsibility is to develop the callees and de-
scribe the usage in documents. If the documents and callees

1422 32nd USENIX Security Symposium USENIX Association

Table 3: Rules of Correctness Inference
Consistency Check Modified SubjectCaller Callee Document

✗ ✓ ✓ Caller
✓ ✓ ✗ Document
✗ ✓ / Caller

Others Manual Check

are consistent, the inconsistency is because the caller violates
the document usage described while invoking callees.

Rule 2: The document has bugs if it is inconsistent with the
callee and the caller. If the caller and the callee are consis-
tent, then the code is executed without defects. At this point,
updating the documentation will neither impact the existing
code nor leave inconsistencies unresolved. Furthermore, due
to the rapid evolution of code, it is common to fix outdated
documents.

Rule 3: When the document does not exist, the caller has
bugs if it is inconsistent with the callee. If the description of
the callee does not exist in the document, the callee’s source
code is the only reliable source for providing the usage. Thus,
the caller should follow the callee while inconsistency hap-
pens.

Rule 4: If the callee is inconsistent with the document
and the caller or all AURs are inconsistent, further manual
check is needed. In both cases, automatic analysis is helpless.
Inconsistencies will be collected for manual checking.

The stability of our correctness inference module is evalu-
ated in Section 5.3. During the 298 code or document patches
that are accepted by maintainers, 294 of them conform to
the correctness inference module, which shows its practical
effects.

4 Implementation

4.1 Code Analysis
AURC conducts code analysis based on LLVM infrastruc-
ture [18]. Adopting LLVM for code analysis is a common
choice [27, 37, 40, 51, 55]. It provides rich interfaces to meet
various analysis requirements and reduce development costs.
LLVM reads in bitcode files which are closer to what will be
executed. It could reduce the chance of compiler bugs that
change program semantics. We leverage wllvm [21] to con-
vert the source code to bitcode files. During the generation
of bitcode files, the compiler’s preprocessor will expand the
macros and convert the enumerations to numbers, which eases
the analysis of bitcodes. In total, AURC contains 2,500 lines
of C++ code for code analysis.
Analysis of callees. During the analysis of callees, CBP gen-
erates the execution paths for the backward analysis. We
achieve this by traversing the basic blocks along the CFG
of the function with the help of interfaces getEntryBlock,
getTerminator, and getSuccessor. One concern is the
loop statement which owns the backward edge in the CFG. We
unroll the loops by treating them as branch statements. This is

a widely used method in practice [27, 37, 40, 52, 53]. Besides,
CBP identifies path constraints to constrain the range of re-
turn values with the help of ICmpInst, GetElementPtrInst,
and LoopInfo classes. Currently, our implementation of loop
counter constraints only supports loops that define the initial-
ized value and the exit condition by numbers.
Analysis of callers. To address the concern that the caller
performs return checks of the same invocation in multiple
separated conditions of if statements, AURC leverages the
DDG to aggregate these checks. LLVM provides the interface
users to express the data dependency relationships in the
DDG. AURC also performs RDT deduction to infer the hid-
den checked ranges of the return values. To construct the RDT,
for each check C obtained above by the DDG, we first find
the BranchInst that uses it as the condition. By identifying
the jump targets of the BranchInst, we further collect the
checks executed under satisfying or not satisfying the check
C. The former performs checks within the range of satisfying
C. The latter is with the prerequisite that C is not true.

4.2 Text Analysis
We introduce the technologies adopted in text analysis in this
subsection. First, we write scripts to extract the sentences
for later classification according to the document formats.
Note that these scripts can be reused. Also, we utilized the
“bert-base-case” pre-trained tokenizer and model provided by
HuggingFace [6] as the basis of our classifier. Specifically,
we selected the model pre-trained on dataset “ft-sst3” for our
downstream task. We also fine-tuned the model with sentences
from the documents of OpenSSL [4], libwebsockets [2], and
libzip [3] with the learning rate 2e−5 and 2 training epochs.

Moreover, for the functions that return macros and enu-
merations, the documents may describe their return values
in the format of macros and enumeration values instead of
the numbers they represent. This hinders the comparison be-
tween code and documents. To solve this, AURC contains a
tree-sitter-based [1] script as a complement to the mapping
table. In particular, this script searches for the macro and enu-
meration definitions in the source code. It further appends
the values of macros and enumerations and the numbers they
represent to the mapping table. In this way, the mapping table
is able to convert the macro and enumeration values in the
sentences to numbers.

5 Evaluation
In this section, we evaluate the effectiveness of AURC. First,
we tested the overall performance of AURC and the effective-
ness of its individual components, such as CBP, correctness
inference, and pre-trained model based classifier. Then, we
compared it with state-of-the-arts before presenting the ex-
citing findings. All our experiments were conducted on a
64-bits server running Ubuntu 20.04 with 8 processors (In-
tel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz), 3TB hard

USENIX Association 32nd USENIX Security Symposium 1423

drive, 128GB memory, and 2 GPUs (RTX 3090) with CUDA
11.

5.1 Effectiveness
To evaluate the effectiveness of AURC, we chose ten popular
and widely used codebases in the real world. They belong
to different areas, including TLS/SSL protocol and cryptog-
raphy (OpenSSL [4] and GnuTLS [13]), HTTP server and
client (libwebsockets [2] and httpd [14]), SNMP protocol
support (net-snmp [20]), version control (libgit2 [16]), file
parser (libxml2 [17] and libzip [3]), data transport (curl [11]),
and audio player (mpg123 [19]). The diversity of codebases
demonstrates that AURC can work out of the box on various
programs/libraries. During the evaluation process, the callees,
the callers, and the documents are from the same codebase.
Moreover, AURC is fully automatic. We provide the extrac-
tion scripts for popular document formats, including Groff
format and Doxygen format. The code analysis on callees and
callers is also automatic.

Table 4 shows the results of the evaluation. The average
running time of ten codebases is 103 seconds. Even for a
huge library like OpenSSL, which owns 695,242 lines of
code, AURC can finish the analysis in 4 minutes. Moreover,
80.5% of all detected inconsistencies belong to the first three
inference rules, which avoid the human-involved analysis.
We submitted the reported documents and code bugs to the
maintainers to help them refine the documents’ reliability and
the codebases’ robustness. So far, 76 of document patches
and 222 of code patches have been accepted by maintainers.
We publish the accepted patches in [9] .
False Positives. Up to now, AURC has reported 857 inconsis-
tencies. We determine the true and false positives by manual
analysis. First, we check whether AURC extracts the wrong
information from AURs and causes the reported bugs. Second,
we check whether the mishandled return values are possible to
be returned in the reported position. We treat the reported case
as a true positive if it satisfies the above two conditions. Oth-
erwise, it is a false positive. After the manual analysis, 753 of
which are code or document defects. The overall false positive
rate for AURC is 12.1%, which is much lower than previous
studies such as 65% of Crix [40], 63.5% of IPPO [37], and
32.6% of APEx [31]4, according to the statistics these studies
provide. We found that it appeared false positive for the fol-
lowing main reasons. (i) Nonexistent execution path (40%).
AURC generates the execution paths by traversing the CFG
and deduces the return values on the execution path. However,
some paths are virtually nonexistent, so the corresponding
return values do not exist. These nonexistent return values
lead to unnecessary constraints on return checks and further
cause false positives. (ii) The mapping table fails to convert
return value-related sentences to numbers (22%). To convert

4The false positive rates of IPPO and Crix are directly provided by their
authors. The false positive rate of APEx is calculated by the found bugs the
authors provide.

the sentences within documents to comparable numbers for
further cross-checking, AURC performs the mapping by the
mapping table. However, some words do not exist in the map-
ping table. This omission leads to incomplete information
extraction from documents and the misunderstanding that
documents are defective. A potential solution to address this
limitation is complementing the mapping table during the
application of AURC. (iii) Separation between API and its
description (13%). The document is prepared for humans and
loosely structured. Thus, different APIs, with their descrip-
tions, may mix thoroughly, hindering the association between
the descriptions and their corresponding APIs.
False Negatives. To evaluate the false negative rate of AURC,
we constructed a dataset containing 450 defects. They equally
distribute in documents, callers, and callees. For documents,
we randomly selected 150 pages and modified the words
describing return values. These pages do not overlap with
the sentences for fine-tuning the pre-trained model. We also
randomly selected 150 functions and changed their return
statements to simulate the faults of callees. For callers, we
randomly chose 150 functions containing return checks and
modified the symbols of checks. After testing, AURC omit-
ted 20 document defects and 21 code defects. The overall
false negative rate is 9.1%. Moreover, we analyzed the results
of AURC and found that it appeared false negative for the
following reasons. (i) Return value-related sentences lack
clear subjects (48.8%). As discussed in the last subsection,
the document is prepared for humans and loosely structured.
Thus, different APIs, with their descriptions, may mix thor-
oughly, hindering the association between the descriptions
and their corresponding APIs. “All other functions return 1
on success, 0 on error” from OpenSSL is an example. Its
unclear subject makes AURC fail to gather the descriptions of
some APIs. (ii) Indirect calls hinder the prediction of return
values (34.1%). The issue of indirect calls is still an open
problem and is closer to the dataflow analysis scope instead
of our core idea. (iii) Other reasons. There are some other
reasons leading to false negatives. For example, the return
values stem from the structure member of the parameter. The
return values depend on an invocation to an extern function
that the library does not contain its source code. Under these
situations, the return values can not be statically predicted.

5.2 Comparison with the State-of-the-Art
Comparison with other detectors. To evaluate the effective-
ness of AURC, we selected three state-of-the-art tools [30,31,
41] that also detect incorrect return checks and experimented
with how many defects they can find among all defects that
AURC found. Note that the ten codebases we selected are also
the codebases that prior work performs well. For example,
according to the statistics from the previous studies, Advance
found the second-most and third-most bugs on libxml2 and
OpenSSL, respectively. EPEx found the most and second most
bugs on OpenSSL and GnuTLS, respectively. APEx found

1424 32nd USENIX Security Symposium USENIX Association

Table 4: Effectiveness of AURC.

Codebase Inconsistency Detection Inconsistency Type Running Time (s)
Report Code/True Doc/True Acc Rule 1 Rule 2 Rule 3 Rule 4 Classification CBP CoPS Detection

OpenSSL 534 424/403 110/83 0.910 178 67 135 106 22.80 222 71 0.55
libzip 2 2/2 0/0 1 0 0 2 0 1.47 4 1 0.003

libwebsockets 8 0/0 8/8 1 0 8 0 0 1.75 34 8 0.047
GnuTLS 35 22/22 13/8 0.857 0 8 20 2 3.29 63 21 0.19

curl 2 2/2 0/0 1 0 0 2 0 12.65 46 11 0.064
mpg123 7 5/5 2/2 1 0 1 5 1 1.71 13 2 0.029

httpd 20 0/0 20/16 0.800 0 12 0 4 8.13 172 32 0.077
libgit2 129 46/37 83/73 0.852 5 46 31 28 14.02 57 16 0.155

libxml2 106 60/51 46/29 0.754 41 29 5 5 26.36 69 13 0.12
net-snmp 14 9/7 5/5 0.857 5 4 2 1 4.37 58 18 0.087
Average – – – – – – – – 9.65 74 19 0.135

All 857 570/529 287/224 0.879 229 175 202 147 – – – –

second most and third most bugs on OpenSSL and GnuTLS,
respectively. Table 5 shows the results, and the experiment
steps are discussed in the Appendix.

Table 5: Comparison with Other Approaches. Since APEx,
EPEx, and Advance cannot detect the defects of documents,
the listing results are code bugs. N∗ means Advance can find
N bugs at most, see Appendix A.

Codebase AURC APEx EPEx Advance

OpenSSL 403 0 80 16
libzip 2 0 0 0∗

libwebsockets 0 0 0 0∗

GnuTLS 22 0 0 0∗

curl 2 0 0 0∗

mpg123 5 0 0 0∗

httpd 0 0 0 0∗

libgit2 37 timeout 0 5∗

libxml2 51 0 10 9
net-snmp 7 0 2 0∗

All 529 0 92 30∗

Advance [41] detects code defects based on the usage ex-
tracted from documents. Take OpenSSL as an example. While
AURC found 403 code bugs of OpenSSL, Advance only ex-
tracted 37 bug-related sentences. Two reasons lead to this.
First, documents lack the description of many APIs. Sec-
ond, sentiment analysis is not the silver bullet to extracting
security-critical sentences from documents since they may
be in neutral sentiment. Moreover, 21 of extracted sentences
provide incorrect knowledge, which indicates it is untenable
to assume the documents are always correct.

APEx [31] found no code bugs. APEx first infers the error
specifications from the callers based on the return checks’
statistical features, which include the number of subsequent
paths and statements. However, when return checks are too
less to infer, or the statistical features deviate from the infer-
ence rules, APEx fails to get the error specifications, which

hinders the following bug detection. After the above infer-
ence, APEx leverages majority voting to dig out the callers
that check the return values incorrectly. However, our analysis
in Section 5.4 shows that majority voting does not apply to
58.5% of code bugs that AURC found.

EPEx [30] leverages provided error specifications to detect
error-handling bugs. We first ran EPEx with the error specifi-
cations predefined by the authors, but it found no bugs that
AURC reported because the error specifications cover few
APIs. We then manually define the error specifications of the
callees of the incorrect checks AURC reported, which costs
about 2 hours. EPEx found 92 code bugs. Two reasons limit
EPEx in detecting bugs. First, EPEx heavily depends on pre-
defined knowledge. One entails manually defining the error
specification of the functions, which is pretty labor-consuming
since it is normal for codebases to own thousands of func-
tions. Second, EPEx adopts majority voting to detect bugs.
Once finding a potential bug, EPEx will ignore this bug if it is
consistent with the most frequent usage. For example, EPEx
found two code bugs in mpg123 but later filtered out findings
because of majority voting. Majority voting is untenable, as
discussed in APEx.
Comparison with symbolic execution engines. We compare
CBP with two existing symbolic execution engines focusing
on the ability to conclude return values. One is KLEE [25],
which is widely used and famous for generating inputs to thor-
oughly explore the execution paths. The other is APEx [31],
an under-constrained symbolic engine aiming to reveal error
specifications based on heuristic rules. In particular, we ran-
domly extract 200 functions with integer return types from
ten codebases. The selected functions make up the test suite.
For KLEE, we leverage scripts to generate the invocation
of the target function and deliver symbolic arguments by
klee_make_symbolic. The process accords to [15]. The
setup of APEx follows the instructions of [8]. As presented in
Table 6, the results show that CBP is 5 times and 1000 times
faster than APEx and KLEE, respectively. Moreover, CBP
outperforms KLEE and APEx in terms of prediction accuracy.

USENIX Association 32nd USENIX Security Symposium 1425

Table 6: The Ability of Predicting Return Values

Name Accuracy Time (s)

CBP(AURC) 93% 26
APEx 35% 156
KLEE 51% 26703

KLEE is very time-consuming compared with APEx and
AURC. KLEE aims to generate inputs to execute as many
paths as possible. Thus, it spends much time tracing call
chains and solving constraints to produce the inputs that sat-
isfy the constraints. The inaccuracy of KLEE is because the
unsolvable constraints hinder the generation of the inputs
for the corresponding paths. APEx predicts the return values
based on the checks in the callers. If the callers do not check
all possible return values of the callee or contain errors, APEx
will fail to find the correct return values of the callee. The
results show that CBP, which is specially designed for pre-
dicting return values, can better cope with this task compared
with KLEE and APEx.

5.3 Evaluation of Indivudial Components
Performance of CBP. To evaluate the performance of CBP,
we manually analyzed 300 functions of ten codebases and
found that AURC mistakenly predicted only 11 functions. The
overall accuracy is 96.3%. Specifically, 9 functions are be-
cause CBP searches the wrong reaching definition or cannot
find the reaching definition of the returned variable, and an-
other two stem from the virtually non-existent execution paths.
They reflect the inherent limitation of static analysis. Also,
we counted the return values that AURC cannot deduce while
testing it on the ten codebases. CBP can predict 90.8% of all
return values in total. Regarding the return values that AURC
failed to deduce, 43.9% of them are due to the return values
stemming from the arithmetic calculation. 33.4% of them are
because the return values are affected by the global variables
or parameters, leading to failure to search for the reaching
definition. Moreover, indirect call causes 13.2% of failures,
and access to the pointers and fields of structures leads to
9.5% of failed cases. These failures are mainly because of the
inherent limitations of static analysis.

To quantitatively represent the role of backward analysis
in CBP, for each function, we define:

Cov =
LC(return statement)−LC(CBP f inishes)

LC(return statement)

where LC(N) represents the Lines of Code from the function
entry to the statement N except the comments and blank lines.
“LC(return statement)−LC(CBP f inishes)” represents how
many lines the backward analysis needs to scan to predict the
return values, while “ LC(return statement) ” represents how
many lines the forward analysis needs to scan. We calculated
Cov of ten codebases. The average values is 12%, which
shows that 88% of code does not need to be analyzed. In

this way, CBP can effectively skip unimportant statements
compared with the forward analysis.

As discussed in Section 3.2, CBP can overcome the prob-
lem of path explosion caused by nested invocations by replac-
ing the invocations with their return values. We counted the
difference in the number of paths due to the replacement. In
particular, we define:

PathRate =
NumberO f Paths(replacement)

NumberO f Paths(no replacement)

where NumberO f Paths(replacement) represents the number
of execution paths for analysis with nested invocation re-
placement, NumberO f Paths(no replacement) represents no
replacement. During the evaluation, the maximum nesting
depth is limited to three. The average value of PathRate on
ten codebases is 0.06%, which means that CBP can save the
analysis of 99.94% paths by nested invocation replacement.
Since it is common for a function to own a call chain longer
than three, PathRate is smaller than 0.06% in practice.
Performance of correctness inference. We evaluate cor-
rectness inference with the patches accepted by codebase
maintainers. During the 298 patches, 294 of them conform
to the rules of correctness inference. The other 4 patches are
inconsistencies between the callers and the callees, with no ex-
isting document. According to rule 3, the caller should follow
the callee. However, in these cases, the callees are rarely-
used internal APIs, owning only one invocation in the whole
codebase. Thus, maintainers decide to patch them unusually,
i.e., ignoring the other callers that depend on the callees and
modifying the callees directly.
Performance of model-based classifier. We also evaluated
the performance of the pre-trained model-based classifier.
We randomly divided ten codebases under testing into three
groups to construct the datasets: Group1 contains OpenSSL,
mpg123, and httpd; Group2 consists of GnuTLS, libgit2, and
libwebsockets; Group3 includes libzip, net-snmp, curl, and
libxml2. Each group is composed of 1,000 sentences describ-
ing return values and 1,000 irrelevant sentences. It cost 172
minutes to label the sentences. Manual labeling is an one-
time effort and does not need to be performed for each new
codebase. We also divided each group into training, testing,
and validation sets in the ratio of 8:1:1.

Table 7: Performance of classifier.

Group1 Group2 Group3

Acc Recall Acc Recall Acc Recall

Group1 99.5% 99.2% 89.5% 82.3% 95.2% 91.8%
Group2 90.8% 98.8% 99.9% 99.8% 94.8% 94.8%
Group3 97.4% 96.1% 92.5% 86.0% 99.9% 100%

The main goal of our evaluation is to evaluate the model’s
ability to cope with codebase migration, i.e., the model trained

1426 32nd USENIX Security Symposium USENIX Association

on one codebase also works on another codebase. This abil-
ity makes our method superior to those based on heuristic
rules. Thus, we designed a cross-checking experiment. We
trained the model on one dataset and tested its performance
on another two datasets. Table 7 shows the results. The three
groups in the first column show the dataset used for training
in the corresponding row. The groups in the first row show
the dataset used for testing. For example, 89.5% in the fourth
column of the third row represents the accuracy while us-
ing Group1 for training and Group2 for testing. The average
accuracy and recall are 95.5% and 94.3%, respectively. The
results show the classifier has decent performance even when
the training datasets are different from the testing datasets,
showing the generalizability of our approach. In practice, we
can use the model fine-tuned on a diverse dataset to achieve
higher accuracy and recall.

5.4 Findings
Bug types. We found plenty of bugs from the ten codebases,
although they experienced thorough tests by previous work.
To find out the reason, we analyzed the bugs’ distribution. The
column “Inconsistency Type” in Table 4 shows the character-
istics of the bugs grouped by the correctness inference rules.
229 conform to rule 1 while 175, 202, and 147 conform to
rule 2, rule 3, and rule 4, respectively. Besides, we find that
the callees of 204 bugs have no documents while the other 91
callees have defective documents. Moreover, 104 bugs do not
have enough cases to perform majority voting, and 311 bugs
do not conform to majority voting. Thus, the majority voting
is not applicated to 415 bugs. The distribution accounts for
why previous work which depends on majority voting and
documents cannot find these bugs. Moreover, we further break
down the found bugs focusing on whether they come from
different root causes. We assume that two bugs share the same
root cause if the callers of these two bugs incorrectly check
the same callee in the same way. After manual analysis, 184
of these bugs don’t share the same root cause, which shows
AURC’s ability to detect unique issues.
Security impacts. To evaluate the security impacts of find-
ings, we adopted the Common Weakness Enumeration [10]
as our standard and manually analyzed 100 bugs to evalu-
ate the security impacts of AURC’s findings. We found the
bugs AURC reported conform to a wide range of CWE’s
categories. First, all code bugs conform to CWE-253: In-
correct Check of Function Return Value, which reveals the
practical value of the issue AURC concentrates on. Besides,
we further found that 27% of bugs conform to one of the
following categories: CWE-1270: Generation of Incorrect
Security Tokens (5%), CWE-122: Heap-based Buffer Over-
flow (1%), CWE-330: Use of Insufficiently Random Values
(3%), CWE-226: Sensitive Information in Resource Not Re-
moved Before Reuse (1%), CWE-295: Improper Certificate
Validation (1%), CWE-393: Return of Wrong Status Code
(5%), CWE-703: Improper Check or Handling of Exceptional

Conditions (11%). We present five case studies in Appendix
to show the security impacts.

6 Discussion
Lessons from Incorrect Checks. After studying numerous
cases of incorrect return checks, we summarize four rules
from the aspects of API developers and users to mitigate the
occurrence. (i) Use a uniform error specification. We found
many errors in OpenSSL compared to other codebases in
our experiment because it is designed with two different er-
ror specifications; OpenSSL should adopt a uniform error
specification to reduce error return checking. (ii) Make all
APIs follow the error specification. After defining the error
specification, the codebase should ensure all APIs follow
it. Otherwise, API users may check for functions that devi-
ate from the error specification in a way that conforms to it.
(iii) Return enumerated values to indicate errors. We found
curl [11] implements an elegant mechanism to indicate er-
rors by returning enumerated values. The enumeration limits
the API users to perform return checks within the range of
this structure. (iv) Code and documents should be updated
simultaneously. Documents should be carefully maintained
and updated promptly as an essential guide to API usage.
Port to Missing Resource Release. The proposed CBP can
also be ported to check for missing resource releases. To
find the missing resource releases, one needs to collect the
functions that allocate the resources. The function malloc()
is a primitive function to allocate resources. However, mature
software customizes the resource allocation functions to fit
specific situations. For example, one self-defined allocation
function may invoke malloc() and then return the allocated
pointer. In this situation, CBP can conclude the source of the
returned variable backwards and infer the current function is
a resource allocation function if the returned variable stem
from another resource allocation function.

7 Conclusion
In this paper, we present AURC to detect code and document
defects based on cross-checking of AURs. Leveraging the
classifiers, CBP, and CoPS collection, AURC collects usage
from three AURs. Running on the ten famous open-source
codebases, AURC successfully detected 529 new bugs and
224 new document defects. Maintainers have accepted 222
code patches and 76 document patches, proving that AURC
refines both the codebases’ code robustness and document
reliability.

Acknowledgments
We want to thank our shepherd and reviewers for their insight-
ful comments which highly improve our paper. The authors
are supported in part by NSFC (U1836211, 92270204), Bei-
jing Natural Science Foundation (No.M22004), Youth Inno-
vation Promotion Association CAS, Beijing Academy of Arti-
ficial Intelligence (BAAI) and a research grant from Huawei.

USENIX Association 32nd USENIX Security Symposium 1427

References

[1] Tree-sitter. https://tree-sitter.github.io/
tree-sitter/, 2020.

[2] libwebsockets. https://github.com/warmcat/
libwebsockets, 2021.

[3] libzip. https://github.com/nih-at/libzip, 2021.

[4] Openssl. https://github.com/openssl/openssl,
2021.

[5] The php interpreter. https://github.com/php/
php-src, 2021.

[6] Transformers. https://huggingface.co/
transformers, 2021.

[7] Advance datasets. https://github.com/
lvtao-sec/Advance, 2022.

[8] Apex implementation. https://github.com/
yujokang/APEx, 2022.

[9] Aurc online. https://github.com/PeiweiHu/AURC,
2022.

[10] Common weakness enumeration. https://cwe.
mitre.org/, 2022.

[11] curl. https://github.com/curl/curl, 2022.

[12] Epex implementation. https://github.com/
yujokang/EPEx, 2022.

[13] Gnutls. https://www.gnutls.org/, 2022.

[14] httpd. https://github.com/apache/httpd, 2022.

[15] Klee tutorials. http://klee.github.io/
tutorials/testing-regex/, 2022.

[16] libgit2. https://github.com/libgit2/libgit2,
2022.

[17] libxml2. https://github.com/GNOME/libxml2,
2022.

[18] Llvm. https://llvm.org/, 2022.

[19] mpg123. http://mpg123.org/, 2022.

[20] net-snmp. https://github.com/net-snmp/
net-snmp, 2022.

[21] wllvm. https://github.com/travitch/
whole-program-llvm, 2022.

[22] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jef-
frey D Ullman. Compilers: principles, techniques, &
tools. Pearson Education India, 2007.

[23] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia,
Camil Demetrescu, and Irene Finocchi. A survey of sym-
bolic execution techniques. ACM Computing Surveys
(CSUR), 51(3):1–39, 2018.

[24] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov,
Alessandra Gorla, Michael D Ernst, Mauro Pezzè, and
Sergio Delgado Castellanos. Translating code comments
to procedure specifications. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 242–253, 2018.

[25] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[27] Lirong Fu, Shouling Ji, Kangjie Lu, Peiyu Liu, Xuhong
Zhang, Yuxuan Duan, Zihui Zhang, Wenzhi Chen,
and Yanjun Wu. Cpscan: Detecting bugs caused
by code pruning in iot kernels. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 794–810, 2021.

[28] Alberto Goffi, Alessandra Gorla, Michael D Ernst,
and Mauro Pezzè. Automatic generation of oracles
for exceptional behaviors. In Proceedings of the
25th international symposium on software testing and
analysis, pages 213–224, 2016.

[29] William H. Harrison. Compiler analysis of the value
ranges for variables. IEEE Transactions on software
engineering, (3):243–250, 1977.

[30] Suman Jana, Yuan Jochen Kang, Samuel Roth, and
Baishakhi Ray. Automatically detecting error handling
bugs using error specifications. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages
345–362, 2016.

[31] Yuan Kang, Baishakhi Ray, and Suman Jana. Apex:
Automated inference of error specifications for c apis.
In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages
472–482, 2016.

[32] Yuriy Kashnikov, Pablo de Oliveira Castro, Emmanuel
Oseret, and William Jalby. Evaluating architecture
and compiler design through static loop analysis. In
2013 International Conference on High Performance
Computing & Simulation (HPCS), pages 535–544.
IEEE, 2013.

1428 32nd USENIX Security Symposium USENIX Association

https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://github.com/warmcat/libwebsockets
https://github.com/warmcat/libwebsockets
https://github.com/nih-at/libzip
https://github.com/openssl/openssl
https://github.com/php/php-src
https://github.com/php/php-src
https://huggingface.co/transformers
https://huggingface.co/transformers
https://github.com/lvtao-sec/Advance
https://github.com/lvtao-sec/Advance
https://github.com/yujokang/APEx
https://github.com/yujokang/APEx
https://github.com/PeiweiHu/AURC
https://cwe.mitre.org/
https://cwe.mitre.org/
https://github.com/curl/curl
https://github.com/yujokang/EPEx
https://github.com/yujokang/EPEx
https://www.gnutls.org/
https://github.com/apache/httpd
http://klee.github.io/tutorials/testing-regex/
http://klee.github.io/tutorials/testing-regex/
https://github.com/libgit2/libgit2
https://github.com/GNOME/libxml2
https://llvm.org/
http://mpg123.org/
https://github.com/net-snmp/net-snmp
https://github.com/net-snmp/net-snmp
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

[33] James C King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[34] Chi Li, Min Zhou, Zuxing Gu, Ming Gu, and Hongyu
Zhang. Ares: Inferring error specifications through
static analysis. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), pages 1174–1177. IEEE, 2019.

[35] Zhenmin Li and Yuanyuan Zhou. Pr-miner: automati-
cally extracting implicit programming rules and detect-
ing violations in large software code. ACM SIGSOFT
Software Engineering Notes, 30(5):306–315, 2005.

[36] Ziyang Li, Aravind Machiry, Binghong Chen, Mayur
Naik, Ke Wang, and Le Song. Arbitrar: User-guided
api misuse detection. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1400–1415. IEEE,
2021.

[37] Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhen-
guang Liu, Jianhai Chen, and Qinming He. Detecting
missed security operations through differential check-
ing of object-based similar paths. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1627–1644, 2021.

[38] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and
Peter Marwedel. A fast and precise static loop analysis
based on abstract interpretation, program slicing and
polytope models. In 2009 International Symposium
on Code Generation and Optimization, pages 136–146.
IEEE, 2009.

[39] Paul Lokuciejewski and Peter Marwedel. Combining
worst-case timing models, loop unrolling, and static loop
analysis for wcet minimization. In 2009 21st Euromicro
Conference on Real-Time Systems, pages 35–44. IEEE,
2009.

[40] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
missing-check bugs via semantic-and context-aware crit-
icalness and constraints inferences. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages
1769–1786, 2019.

[41] Tao Lv, Ruishi Li, Yi Yang, Kai Chen, Xiaojing Liao,
XiaoFeng Wang, Peiwei Hu, and Luyi Xing. Rtfm!
automatic assumption discovery and verification deriva-
tion from library document for api misuse detection. In
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1837–
1852, 2020.

[42] Rahul Pandita, Kunal Taneja, Laurie Williams, and
Teresa Tung. Icon: Inferring temporal constraints
from natural language api descriptions. In 2016 IEEE

International Conference on Software Maintenance and
Evolution (ICSME), pages 378–388. IEEE, 2016.

[43] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia,
Xiwei Xu, Liming Zhu, and Jianling Sun. Api-misuse
detection driven by fine-grained api-constraint knowl-
edge graph. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), pages 461–472. IEEE, 2020.

[44] Cindy Rubio-González and Ben Liblit. Expect the unex-
pected: error code mismatches between documentation
and the real world. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 73–80, 2010.

[45] Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao,
and Xuandong Li. Vanguard: Detecting missing checks
for prognosing potential vulnerabilities. In Proceedings
of the Tenth Asia-Pacific Symposium on Internetware,
pages 1–10, 2018.

[46] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou.
/* icomment: Bugs or bad comments?*. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 145–158, 2007.

[47] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and
Yuanyuan Zhou. Autoises: Automatically inferring secu-
rity specification and detecting violations. In USENIX
Security Symposium, pages 379–394, 2008.

[48] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. acom-
ment: mining annotations from comments and code to
detect interrupt related concurrency bugs. In 2011 33rd
International Conference on Software Engineering
(ICSE), pages 11–20. IEEE, 2011.

[49] Yuchi Tian and Baishakhi Ray. Automatically di-
agnosing and repairing error handling bugs in c.
In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 752–762,
2017.

[50] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and
Michele Lanza. A large-scale empirical study on code-
comment inconsistencies. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension
(ICPC), pages 53–64. IEEE, 2019.

[51] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen
McCamant, and Kangjie Lu. Understanding and de-
tecting disordered error handling with precise func-
tion pairing. In 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

USENIX Association 32nd USENIX Security Symposium 1429

[52] Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and
Wolfram Schulte. Fitness-guided path exploration
in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems &
Networks, pages 359–368. IEEE, 2009.

[53] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detec-
tion of double-fetch bugs in os kernels. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 661–
678. IEEE, 2018.

[54] Fabian Yamaguchi, Christian Wressnegger, Hugo Gas-
con, and Konrad Rieck. Chucky: Exposing missing
checks in source code for vulnerability discovery. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 499–510,
2013.

[55] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang,
Taesoo Kim, and Mayur Naik. Apisan: Sanitizing
{API} usages through semantic cross-checking. In 25th
{USENIX} Security Symposium ({USENIX} Security
16), pages 363–378, 2016.

[56] Hao Zhong and Zhendong Su. Detecting api docu-
mentation errors. In Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented
programming systems languages & applications, pages
803–816, 2013.

[57] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang,
Sebastiano Panichella, and Harald Gall. Analyzing
apis documentation and code to detect directive defects.
In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 27–37. IEEE,
2017.

Appendix
A - Experiment Steps

We compare AURC with three bug detectors, including APEx,
EPEx, and Advance, to evaluate the effectiveness of AURC,
as presented in Section 5.2. In this section, we explain the
details of implementing these experiments. In particular, we
define the callees of all incorrect return checks that AURC
reported as F .

APEx. The authors provide the implementation [8] of APEx.
To use APEx, one needs to define a function list containing
the names of functions for analysis and the exit functions. We
collect the names of functions in F and combine them with
the exit functions that APEx provided. Other steps strictly
follow the guides of implementation.

EPEx. The authors provide EPEx’s implementation [12].
EPEx detects error-handling bugs based on predefined error
specifications. We first ran EPEx with the error specifications
predefined by the authors, but it found no bugs that AURC re-
ported because the error specifications cover few APIs. Thus,
we manually construct the error specifications of functions
in F according to the format EPEx defines. Note that by this
step we already indicate the error specifications of incorrectly
checked APIs, which benefits EPEx a lot. This is impossible
if one evaluates EPEx on a new codebase. Other steps strictly
follow the guides of implementation.

Advance. The authors of Advance provide datasets [7] that
contain two of our codebases (OpenSSL and libxml2) in-
stead of executable tools. Thus, for these two codebases, we
check whether the documents in provided datasets correctly
describe the return values of functions in F . If yes, we treat
the corresponding incorrect return checks as successfully de-
tected. This is because Advance leverages the description
in documents as the oracles to detect bugs. More specifi-
cally, Advance detects defects according to the Integration
Assumptions (IAs) in documents. The callees in F that have
no documents or defective documents must not be detected.
We define T to represent all bugs that AURC reported and N
to represent bugs whose callees have no documents or defec-
tive documents. We can ensure that Advance can find at most
(T − N) bugs. Thus, we use (T − N) as a conservative way
to represent the bugs that Advance can detect on left eight
codebases. Moreover, we label these results with the mark
“∗”.

B - Case Studies
Case 1 - Heap-based buffer overflow (CWE-122). AURC
found a potential heap buffer overflow bug in OpenSSL, as
shown in Listing 5. EC_POINT_bn2point (line 2) decodes
a curve point from the given BIGNUM format and is used in
elliptic curve cryptography. The successful execution of it
ensures the strength of the crypto. EC_POINT_bn2point
invokes BN_bn2binpad (line 8) to convert the object of

1430 32nd USENIX Security Symposium USENIX Association

BIGNUM to big-endian form but omits to check the negative
return values, which indicate the execution is defective
and the content in buf is unexpected. After BN_bn2binpad
returns negative values, EC_POINT_bn2point continues
the execution and transfers the buf to BN_bin2bn (line
20) along with the call chain EC_POINT_oct2point,
ossl_ec_GF2m_simple_oct2point, and BN_bin2bn.
BN_bin2bn accesses the buf, which contains random
contents, in the loop until meeting the nonzero element (line
23). The len also fails to prevent breaking the bound of
buf since it is not set to the length of buf. The heap buffer
overflow happens.

1 /* crypto/ec/ec_deprecated.c */
2 EC_POINT *EC_POINT_bn2point(...) {
3 ...
4 if ((buf = OPENSSL_malloc(buf_len)) ==

NULL) {
5 ECerr(...);
6 return NULL;
7 }
8 → if (!BN_bn2binpad(bn, buf, buf_len)) {
9 OPENSSL_free(buf);

10 return NULL;
11 }
12 ...
13 → if (!EC_POINT_oct2point(..., buf, ...)) {
14 ...
15 }
16 OPENSSL_free(buf);
17 return ret;
18 }
19 /* crypto/bn/bn_lib.c */
20 BIGNUM **BN_bin2bn(unsigned char *s, ...) {
21 ...
22 /* Skip leading zero’s. */
23 → for (; len > 0 && *s == 0; s++, len --)
24 continue;
25 ...
26 }

Listing 5: Example of Case 1
Case 2 - Sensitive information in resource not removed
before reuse (CWE-226). AURC found the sensitive informa-
tion leakage caused by incorrect return checks in OpenSSL,
as shown in Listing 6. The function cipher_init (line 2) in-
vokes EVP_EncryptInit_ex (line 4) to set up the context for
encryption. In particular, the parameter key is the symmetric
key, which is critical to be secret to ensure the effectiveness of
encryption. However, cipher_init omits to check the neg-
ative return values of EVP_CIPHER_CTX_set_key_length
(line 9) and continues execution while ctx->key_len equals
to default value zero. After encryption, krb5kdf_reset (line
16) invokes OPENSSL_clear_free (line 18) to reset the sym-
metric key according to the key length ctx->key_len. Since
it keeps the default value zero, ctx->key is not cleaned, caus-
ing the leakage of the symmetric key.

1 /* providers/implementations/kdfs/krb5kdf.c */
2 static int cipher_init(...) {
3 ...
4 ret = EVP_EncryptInit_ex(..., key, NULL);
5 if (!ret)

6 goto out;
7 klen = EVP_CIPHER_CTX_get_key_length(ctx);
8 if (key_len != (size_t)klen) {
9 → ret = EVP_CIPHER_CTX_set_key_length(ctx

, key_len);
10 if (!ret)
11 goto out;
12 }
13 ...
14 }
15 /* providers/implementations/kdfs/krb5kdf.c */
16 static void krb5kdf_reset(void *vctx) {
17 ...
18 → OPENSSL_clear_free(ctx->key,ctx->key_len);
19 ...
20 }

Listing 6: Example of Case 2

Case 3 - Use of insufficiently random values (CWE-330).
The randomness of the seed is the basis of reliable crypto.
AURC found the function BN_generate_dsa_nonce (line
2), which is intended for generating a random number within
the specified range for DSA and ECDSA, invokes another
random number generator RAND_priv_bytes_ex incorrectly
in OpenSSL, as shown in Listing 7. RAND_priv_bytes_ex
(line 4) returns negative values to indicate that the execu-
tion is defective and the content within random_bytes keeps
the unchanged default value instead of the random number.
BN_generate_dsa_nonce fails to catch negative return val-
ues and treats random_bytes as a random number for the
following generation (line 11). The use of insufficiently ran-
dom seed breaks the reliability of the subsequent crypto and
gives the attackers a chance to guess the secret key.

1 /* crypto/bn/bn_rand.c */
2 int BN_generate_dsa_nonce(...) {
3 ...
4 → if (!RAND_priv_bytes_ex (... random_bytes))
5 goto err;
6

7 if (!EVP_DigestInit_ex (...)
8 || !EVP_DigestUpdate (...)
9 || !EVP_DigestUpdate (...)

10 || !EVP_DigestUpdate (...)
11 → || !EVP_DigestUpdate (... random_bytes)
12 || !EVP_DigestFinal_ex (...)
13 goto err;
14 ...
15 }

Listing 7: Example of Case 3

Case 4 - Generation of Incorrect Security Tokens (CWE-
1270). Besides, we found an incorrect return check of
OBJ_obj2txt() in CMS_SignerInfo_sign() in OpenSSL.
It is worth noting that OBJ_obj2txt() has no document and
the majority of invocations are defective, which means both
document-based and majority voting-based approaches can
not detect it. AURC discovered it since we do not limit our-
selves to documents and callers but also leverage the callees.
Listing 8 shows the definition of CMS_SignerInfo_sign().
CMS_SignerInfo_sign() fails to handle the negative return
value of OBJ_obj2txt() and continues using the invalid data

USENIX Association 32nd USENIX Security Symposium 1431

in md_name to perform signature generation, which is defec-
tive. To detect this, AURC leveraged CBP and found that
the return values of OBJ_obj2txt() contain -1 to indicate
errors. However, RDT deduces the ranges of return values of
the return check in line 3 are 0 and !0, which confuses the
positive and negative numbers. The signature, as the basis of
authentication, plays an important role in crypto. Detecting
the generation of the insecure signature has practical signifi-
cance.

1 int CMS_SignerInfo_sign(CMS_SignerInfo *si) {
2 char md_name[OSSL_MAX_NAME_SIZE];
3 if (!OBJ_obj2txt(md_name , ...))
4 return 0;
5 EVP_MD_CTX_reset(mctx);
6 if (EVP_DigestSignInit_ex(mctx , md_name ,

...) <= 0)
7 goto err;
8 if (EVP_DigestSignUpdate(mctx , ...) <= 0)
9 goto err;

10 if (EVP_DigestSignFinal(mctx , ...) <= 0)
11 goto err;
12 }

Listing 8: Example of Case 4

Case 5 - Latent document error. During the evaluation, we
found a long-hidden bug that has existed for over 20 years in
OpenSSL. BIO_free() is a frequently used release function
for BIO structure. With the help of path constraints in CBP,
the predicted return values contain a negative range. However,
the document states it return 1 for success and 0 for failure.,
and we submitted the patch of BIO_free(), and the main-
tainers accept it. It is worth noting that the implementation
of BIO_free() that returns negative values has existed in
OpenSSL since 1999, and the inconsistent document descrip-
tion was added in 2000, which has been a mistake for over
20 years, showing a lack of community focus on document
reliability.

Table 8: Version of Codebases

Codebase Version/Commit Id

OpenSSL 3.0.0/1ef526
libzip 1.8.0/547d98
libwebsockets 4.3.0/c19dc9
GnuTLS 3.7.6/dbfbaa
curl 7.85.0/2481db
mpg123 1.30.2/7ca057
httpd 2.4.54/8ea5f4
libgit2 1.5.0/9286e5
libxml2 2.10.2/e2bae1
net-snmp 5.9.3/10dd27

1432 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Incorrect Return Checks
	Related Work & Limitations

	Approach
	Overview
	Analysis of Callee
	Analysis of Caller
	Analysis of Document
	Defects Detection

	Implementation
	Code Analysis
	Text Analysis

	Evaluation
	Effectiveness
	Comparison with the State-of-the-Art
	Evaluation of Indivudial Components
	Findings

	Discussion
	Conclusion

