
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Speculation at Fault: Modeling and Testing
Microarchitectural Leakage of CPU Exceptions

Jana Hofmann, Azure Research, Microsoft; Emanuele Vannacci,
Vrije Universiteit Amsterdam; Cédric Fournet, Boris Köpf,

and Oleksii Oleksenko, Azure Research, Microsoft
https://www.usenix.org/conference/usenixsecurity23/presentation/hofmann

Speculation at Fault: Modeling and Testing
Microarchitectural Leakage of CPU Exceptions

Jana Hofmann∗1, Emanuele Vannacci∗†2, Cédric Fournet1, Boris Köpf1, and Oleksii Oleksenko1

1Azure Research, Microsoft
2Vrije Universiteit Amsterdam

Abstract
Microarchitectural leakage models provide effective tools
to prevent vulnerabilities such as Spectre and Meltdown via
secure co-design: For software, they provide a foundation
for secure compilation and verification; for hardware, they
provide a target specification to test and verify against.

Unfortunately, existing leakage models are severely limited:
None of them covers CPU exceptions, which are essential
to implement security abstractions such as virtualization and
memory protection, and which are the source of critical vul-
nerabilities such as Meltdown, MDS, and Foreshadow.

In this paper, we provide the first leakage models for CPU
exceptions, together with new tools for testing black-box
CPUs against them. We run extensive experiments and suc-
cessively refine these models, until we precisely capture the
leakage for a representative subset of exceptions on four dif-
ferent x86 microarchitectures.

In the process, we contradict, refine, and corroborate a large
number of findings from prior work, and we uncover three
novel transient leaks affecting stores to non-canonical ad-
dresses, stores to read-only memory, and divisions by zero.

1 Introduction

Instruction set architectures (ISA) specify the functional be-
havior of CPUs but not their implementation details. This
layer of abstraction leaves room for various microarchitectural
optimizations, which often introduce hard-to-detect security
vulnerabilities. A prominent example are microarchitectural
effects of transient execution, which were exploited by the
Spectre [30] and Meltdown [31] attacks.

Microarchitectural Leakage Models. Leakage models ad-
dress this problem by augmenting the ISA with a speci-
fication of all observable side-effects of executing a pro-
gram [12, 16, 22]. For example, the constant-time program-
ming model specifies that an attacker can observe the control

*Equal contribution first authors.
†Work partially done while at Microsoft Research Cambridge.

flow as well as memory access patterns of the program execu-
tion. Similarly to the ISA, leakage models serve two purposes:

• For software, leakage models specify the expected leak-
age during program execution, and thereby enable princi-
pled development of secure software such as cryptographic
libraries. As summarized in [12], leakage models have been
applied to security testing and verification [16,22,35,37], and
to secure compilation [39].

• For hardware, leakage models document the microarchi-
tectural side-effects of instructions without disclosing details
of their hardware implementation. They have been applied to
validate mechanisms for secure speculation [13, 22, 52], and
to test commercial CPUs for unexpected leakage [7, 36–38].

Existing leakage models, however, are incomplete. They do
not model the possibility that instructions trigger exceptions,
due, for instance, to invalid arguments, page faults, or failed
permission checks. This is a serious limitation in practice:
CPU exceptions are instrumental in many security mech-
anisms such as virtualization and OS access control, and
they are involved in critical vulnerabilities such as Meltdown,
MDS, LVI, and Foreshadow. In this paper, we develop and
validate the first formal leakage models for CPU exceptions.

Challenges. Coming up with good models for CPU excep-
tions is challenging due to their diverse microarchitectural
behavior: Compared with, e.g., branch speculation [12], tran-
sient executions upon exceptions are idiosyncratic and not
well documented. The key experimental challenge is to sys-
tematically infer and document the leakage behavior of dif-
ferent exceptions and microarchitectures. The key conceptual
challenge is to define flexible formal models that concisely
capture these findings, especially when inferring the exact
microarchitectural behavior is impossible.

Approach. We use an empirical approach to build leakage
models for black-box CPUs: We (i) start out with a minimal
leakage model; (ii) falsify the model using automatic testing;
(iii) (manually) refine the model to account for the obtained
counterexamples; and (iv) repeat this process until no further
counterexamples are found.

USENIX Association 32nd USENIX Security Symposium 7143

We develop two techniques to make this approach work: a
family of increasingly precise leakage models for exceptions
and a tool for testing black-box CPUs against these models.
We present both techniques in more detail, and then summa-
rize our evaluation on four different x86 microarchitectures.

Leakage Models for CPU Exceptions. We rely on leakage
contracts [21], which formalize leakage as an ISA execution
semantics supplemented with observation labels. We build
models for three increasingly complex behaviors:

1. The CPU executes instructions (including exceptions)
and leaks their observation labels in program order.

2. The CPU executes transiently after an exception, for
a bounded number of steps, skipping any instruction that
depends on the missing result of the faulting instruction.

3. The CPU executes transiently after an exception, and
the missing result of the faulting instruction is replaced with
a speculative value, which may be leaked by subsequent in-
structions. We distinguish two variants of this behavior: (a)
the exact speculative value is known; or (b) it is unknown,
and instead we specify which parts of the state it depends on,
such as the operands of the faulting instruction.

Our experiments confirm that these contracts are expressive
enough to capture—and distinguish between—a wide range
of speculative behaviors.

Testing CPUs against Leakage Models. We rely on model-
based relational testing (MRT) [35, 37], which generates ran-
dom programs and compares the leakage they cause on the
CPU with the leakage predicted by the model. Our tool ex-
tends Revizor [37], an open-source implementation of MRT
for x86 CPUs. Extending Revizor involves two challenges:

• Controlling exceptions. To raise exceptions deterministi-
cally and consistently between the model and the CPU, we
create a sandbox environment. This enables us to control the
exceptions triggered during execution of test programs, and
to handle them with minimal microarchitectural noise.

• Managing microarchitectural state. MRT requires
pseudo-randomization of the initial microarchitectural state:
it has to be deterministic to support robust measurements and
diverse to trigger different transient leaks. We develop an
initialization algorithm that targets both issues.

While our design is general, our current implementation
supports three classes of exceptions: memory errors (includ-
ing page faults and microcode assists), opcode-based errors
(including invalid modes and undefined opcodes), and com-
putational errors (division).

Evaluation on x86 CPUs. We test 4 microarchitectures (In-
tel Kaby Lake and Coffee Lake, and AMD Zen+ and Zen 3)
against 5 leakage models. We investigate 12 variants of excep-
tions and microcode assists, including those known to cause
leakage, e.g., page faults, division errors, and assists triggered
by Accessed and Dirty bits in the page table entry. We run
a separate experiment for 24 hours for each combination of
CPU, exception variant, and leakage model.

While conducting these experiments, we uncovered undoc-
umented leakage behavior, summarized below.

• On Zen+, we identify a new speculative leak: Division-
by-zero can transiently return a result that depends on the
result of a prior division operation. This hidden state per-
sists across serializing instructions and system calls, but not
across privilege boundaries. This finding contradicts previous
claims that on AMD processors, division exceptions do not
speculatively forward data to dependent instructions [4].

• On Kaby Lake and Coffee Lake, we identify new ways to
trigger MDS: When a read-modify-write operation (e.g., an in-
memory increment) accesses read-only memory, the faulting
instruction triggers MDS. This behavior has so far only been
documented for faulting loads; here, the store faults.

• On Coffee Lake we identify a new variant of store for-
warding: Stores to a non-canonical address can be forwarded
to subsequent loads from canonical versions of that address.1

We discovered these leaks by analyzing violations of mod-
els that formalize claims from the literature. Whether they
cause practical vulnerabilities is out of scope of this paper.

Summary of Contributions. We define the first formal leak-
age models for CPU exceptions and propose an empirical
approach to infer the right model using model-based testing.
To implement this approach, we develop a tool for testing
black-box CPUs against these models. We evaluate this ap-
proach on x86 CPUs and uncover three new speculative leaks.

Responsible Disclosure. We reported our observations to
AMD and Intel, who acknowledged our findings and investi-
gated their security impact. Intel decided that no new mitiga-
tions are required; AMD issued CVE-2023-20588 and plans
to publish a security bulletin with mitigation information.

Availability. The source code, experiments, and executable
leakage models are available at
https://github.com/microsoft/sca-fuzzer

Structure of this Paper. §2 provides background on leak-
age contracts and MRT; §3 describes our platform for test-
ing CPU exceptions against leakage contracts; §4 defines a
baseline contract; §5 §6 and §7 define leakage contracts for
out-of-order execution and value speculation; §8 reports our
experiments on different x86 microarchitectures; §9 presents
applications of our contracts to software development; §10
discusses the architectural and microarchitectural coverage of
our approach; §11 reviews related work, and §12 concludes.

2 Background

This section provides background on modeling and testing
microarchitectural leakage. We first introduce leakage con-
tracts [22], a modeling framework that captures microarchi-
tectural leaks at the ISA level. We then explain how contracts

1A similar behavior was previously reported on AMD [34], albeit with
canonical stores being forwarded to non-canonical loads.

7144 32nd USENIX Security Symposium USENIX Association

https://github.com/microsoft/sca-fuzzer

can be used to detect unknown vulnerabilities and give an
overview of Revizor [37], a tool that implements model-based
relational testing for black-box CPUs.

2.1 Modeling Microarchitectural Leakage
As a CPU executes a program, it makes various changes
to its microarchitectural state. Some of these changes are
observable by an attacker via side channels [45, 51]. We call
such observable changes a hardware trace. On an abstract
level, hardware traces are the result of an unknown function
Measure operating on a program p, a program input σ, and
an initial microarchitectural state µ.

HTrace = Measure(p,σ,µ)

The input σ sets the initial contents of the registers and the
memory, whereas µ controls, e.g., the initialization of caches
and buffers. We keep p, σ, and µ abstract for now and delay
their formal definition to Section 4.1.

A program leaks information when its hardware traces
depend on its input (which potentially contains secrets) as
this enables an attacker to distinguish between different inputs
by observing different traces.

To develop software measures against such leakage, we
must predict how a program execution affects the hardware
traces. For example, it is well known that the control flow and
the addresses of memory operations affect shared caches.

Contracts [22] have been proposed as an abstract, ISA-
level specification of the expected leakage. As a counterpart
for the function Measure, the function Contract predicts any
information the CPU may leak as it executes a program p on
input σ. In contrast to Measure, however, it abstracts away
the microarchitectural details:

CTrace = Contract(p,σ)

We call the observations predicted by a contract a contract
trace. Contracts are defined by augmenting the ISA with
(a) an execution semantics that provides an abstraction of how
the CPU executes a program, and (b) observation labels that
describe the information disclosed by each instruction as it
is executed. We delay the formal definition of contracts to
Section 4.1 as well.

In this work, we use ‘CT’ observation labels to model
leakage via cache side channels. These labels are based on
the constant-time programming paradigm; they expose all
control flow decisions (branches, jumps, calls, . . .) and the
addresses of all memory accesses (loads and stores).

Example 1. CT-SEQ [22] is our baseline contract; it models
leakage through cache side channels during sequential, in-
order execution. Its execution semantics simply follows the
architecture, one instruction at a time, without speculation or
transient execution.

Example 2. Leaks may also occur during transient execu-
tion, i.e., the speculative execution of instructions that are
never retired [30]. We call them speculative leaks. A leakage
contract that captures Spectre V1 is obtained by choosing an
execution semantics that executes mispredicted branches (and
thus collects transient CT observations labels) for a certain
number of steps before continuing with the correct branch.

To experimentally validate contracts, or uncover new leaks,
we compare the leakage predicted by contract traces with the
leakage observed in hardware traces on a CPU under test.

Definition 1 (Contract Violation [22]). A CPU violates a
contract if there exists a program p, a pair of inputs (σ,σ′),
and a microarchitectural state µ such that Contract(p,σ) =
Contract(p,σ′) and Measure(p,σ,µ) ̸= Measure(p,σ′,µ).

We call the tuple (p,σ,σ′,µ) from Definition 1 a counterex-
ample: The contract predicts that an attacker cannot distin-
guish between inputs σ and σ′, whereas the tuple witnesses
that this is not true for some µ. A counterexample is an unex-
pected leak, which may or may not be a practical vulnerability.
Making this distinction requires a manual security analysis,
which is out of scope of this approach.

2.2 Testing against Leakage Models
Model-based tools [7, 35, 37] use contracts to systematically
search for unexpected leaks in CPUs. In this paper, we base
our work on one such tool, namely Revizor [37].

Revizor searches for contract counterexamples by gener-
ating random test cases. A test case consists of a random
program p and randomly generated inputs σ0,σ1, . . . ,σn. The
program is generated by creating a random control-flow graph
and filling it with instructions sampled from a predefined pool
of instructions; the inputs are generated by filling the memory
and the CPU registers with values generated by a pseudo-
random number generator. For each test case, Revizor collects
both the contract trace and the hardware trace:

• Contract traces are collected by the contract model, an
executable version of the Contract function. The contract
model is implemented with an ISA emulator (Unicorn [40],
based on QEMU), which is modified to follow the execution
semantics of the contract and to record its observation labels.

• Hardware traces are collected by the executor, which
implements the Measure function by executing program p on
input σ on the target CPU. As it is not possible to directly set
the microarchitectural state of a black-box CPU, the executor
instead performs warm-up computation to initialize it to some
deterministic microarchitectural state µ. The executor obtains
hardware traces by monitoring the microarchitectural changes
caused by each execution via a cache side-channel attack.

After collecting traces, Revizor checks for a contract viola-
tion according to Definition 1 (a program and two inputs for
which the contract traces agree but the hardware traces differ)
and reports them to the user.

USENIX Association 32nd USENIX Security Symposium 7145

3 Tooling for Testing Exception Leakage

We extend Revizor with a sandbox for deterministic triggering
and handling of exceptions, adapt the test-case generation,
add hooks for building leakage models for exceptions, and
develop techniques for a stable measurement environment.
These changes amount to ~2600 new lines of code.

Naming Convention. There are various names for the events
that cause a CPU to redirect its execution to the exception
handler, such as exceptions, traps, and faults. In this paper,
we refer to all of them as exceptions.

Scope. We focus on so-called synchronous exceptions, which
are directly caused by the executing thread. They are com-
monly used as a mechanism for enforcing security invariants,
which implies that unexpected leaks might expose sensitive
data. Our goal is to model the leakage of the CPU due to
transient execution in the time between the triggering of the
exception and the execution of the exception handling code.
The leakage due to the code of the exception handler itself is
out of scope (and presumably covered by contracts that are
not specific to exceptions).

3.1 Sandbox for Exceptions
Model-based relational testing requires exceptions to be raised
consistently by the leakage model and by the CPU under test.
However, the default exception handling mechanisms in both
the model and the executor do not meet this requirement: The
model will terminate upon an exception, while the executor
will jump to the OS-provided exception handler. To avoid
such inconsistencies, we create a sandbox environment for
testing exceptions that is uniform and controlled. Uniform
means that exceptions are thrown and handled identically on
the model and the executor. Controlled means that we can
determine which exceptions will be triggered during the tests,
despite the fact that test cases are randomly generated. In the
following, we explain how we achieve these goals.

3.1.1 Exception Handlers

As we consider the exception handling code out of scope, we
make all handlers empty; they simply terminate the test case.

• On the executor side, we overwrite the OS-provided In-
terrupt Descriptor Table (IDT) for the duration of the tests.
For each tested exception, we set the corresponding IDT entry
to the exit address of the test case. Hence, upon an exception,
the CPU pushes the program counter (PC) onto the stack,
reads the corresponding handler’s address from the IDT, and
then jumps to the executor, which collects the resulting hard-
ware traces. Such direct management of the IDT is possible
because Revizor’s executor runs in kernel mode.

• On the model side, we add a hook function executed after
the model throws an exception. To mimic the CPU pushing
the PC on the stack and dereferencing the IDT entry for this

exception, the function records the PC and the exception ID
in the contract trace, then it terminates the test case.

Handling Assists. In this paper, we also test speculative leaks
upon microcode assists, which are effectively exceptions han-
dled by firmware. Our implementation supports assists trig-
gered by the Accessed and Dirty bits of the page table. Their
firmware handler sets the corresponding bit and re-executes
the faulting instruction. As we cannot modify handlers in the
firmware, we include their effect in the model: We clear the
permissions on the page that triggered the fault (see §3.1.2)
and re-execute the instruction.

3.1.2 Exception Triggers

We next discuss how to deterministically trigger the three
classes of exceptions we consider in this paper.

To trigger memory-based errors (e.g., page faults), we man-
age the permissions on the memory sandbox. The working
memory of a test case consists of two pages initialized with
the values from input σ. The test case is instrumented such
that all memory accesses are forced into these pages. The
properties of the second page are configurable to create a con-
trolled environment for triggering memory exceptions while
still permitting a broad range of interactions between faulting
and other instructions. We implement this design as follows:

• In the executor, we create an interface to modify the page
table entry (PTE) of the second page (similar to the design of
Transynther [33]). For example, if we want to test writes to
read-only memory, we would clear the RW (read-write) bit in
the page table. With this configuration, any randomly gener-
ated test case will experience a page fault whenever it attempts
to store a value in the second page.

• In the model, we emulate the page table configuration by
making the second page either inaccessible or read-only. This
allows us to trigger the faults uniformly with the executor,
without having to represent the page table structure within σ.

To trigger opcode-based errors, we simply add the corre-
sponding opcodes/instructions to the list of instructions used
by the generator to create test cases. For computational errors,
we rely entirely on the fact that inputs σ are random, hence
some of the computations inherently experience errors (e.g.,
divisions by zero).

3.2 Test Case Generation
Next, we explain our adaptation of the program generation
and input generation of Revizor (described in §2.2). We refer
to §8.1 for the specific configurations used in each experiment.

• Since we focus on implicit control flows due to excep-
tions, the control-flow-graph generator is configured to pro-
duce straight-line code.

• The pool of instructions always includes the subset of
x86-64 ISA supported by Revizor excluding control-flow in-
structions and conditional moves. This pool is extended with

7146 32nd USENIX Security Symposium USENIX Association

instructions that are specific to each of the exceptions we test
(see Appendix A for a complete list).

• The input generator is adapted to fill the two pages of our
sandbox and set their PTE (see §3.1).

• To test exceptions caused by access attempts to non-
canonical addresses (i.e., virtual addresses whose bits 63 to
the most significant bit are not all zeros or all ones), we inject
instructions flipping random higher-order bits of addresses
used in memory accesses.

3.3 Hook for Leakage Models

From the software perspective, a transient information leak
upon an exception happens after the exception was thrown
and before the exception is handled. Therefore, to build a
contract for such a leak, we need a hook function executed
between these events.

The emulator used by Revizor to implement contracts, Uni-
corn [40], only provides hooks into exception handling. This
is too late; an exception may have already corrupted the em-
ulator’s state. To avoid this, we need to intercept the state
before the instruction faults, not after.

We achieve this by checkpointing the emulator’s state be-
fore every instruction. If an instruction faults, we roll back to
the last checkpoint and execute the hook that implements the
contract’s transient semantics. Afterwards, we either call the
exception handler or, in case of a microcode assist, re-execute
the instruction without the fault (see §3.1.1).

3.4 Initializing the Microarchitectural State

Model-based relational testing requires pseudo-randomization
of the microarchitectural state µ: The state has to be determin-
istic to check traces based on Definition 1, yet it also has to
be diverse to trigger different transient leaks.

Revizor’s current mechanism for pseudo-randomizing µ
(§2.1) has limitations for testing exceptions: (1) it primes
(and hence clears) the cache before execution (this prevents
leaks such as Foreshadow [8], which is triggered by page
faults on L1-cached addresses); (2) it introduces nondetermin-
ism in the hardware trace when transient instructions access
memory and return a value used to access memory again. We
address these issues with the following algorithm for collect-
ing hardware traces.

1. Invalidate caches (wbinv) and flush buffers (verw).
2. Load input σ into sandbox memory.
3. Set PTE as described in §3.1.2 and invalidate TLB.
4. Prime m < 64 L1D cache sets as a part of Prime+Probe.
5. Stabilize the CPU pipeline by executing a long sequence

of memory fences (mfence).
6. Execute the test case p.
7. Probe the m cache sets and return the hardware trace.

This algorithm reduces nondeterminism by isolating the
measurements from the side effects of previously-executed
code (steps 1–5) and by making the cache state dependent on
the input σ (steps 1–2).

A broader diversity of microarchitectural states is achieved
by steps 4–5: Priming only m (here: m = 60) out of 64 L1D
cache sets allows the data to remain cached in 64−m sets (we
call this mode Partial Prime+Probe). This enables four kinds
of memory accesses to appear in a test case: no exception +
L1D miss, no exception + L1D hit, exception + L1D miss,
and exception + L1D hit.

4 A Baseline Model for Exceptions

As a baseline, we extend the CT-SEQ contract defined by [22]
to support exceptions.

4.1 Baseline Model without Exceptions

Syntax. We formally describe programs with a toy ISA lan-
guage µASM based on [21] and adapted to our needs.

Basic Types
(Registers) x ∈ Regs
(Values) n, ℓ ∈ Vals = N∪{⊥}
Syntax
(Expressions) e := n | x | ⊖e | e1⊗ e2 | ite(e1,e2,e3)
(Instructions) i := x← e | load x,e | store x,e

spbarr | return | invalid
(Programs) p := i | p1; p2

Expressions e are built from register variables x, con-
stants n, labels ℓ, as well as unary and binary operators
and conditionals. Instructions i comprise assignments, loads,
stores, a speculation barrier, returns, and an invalid instruc-
tion. Programs are lists of instructions. Compared to [21],
our language contains a return instruction to return from an
exception handler. Additionally, the invalid instruction always
causes an exception (to model, e.g., invalid opcodes). As our
focus is on analyzing the leakage caused by exceptions, the
language does not feature branching instructions.

States σ range over tuples ⟨m,a⟩ of a memory m :N→ Vals
and a register assignment a : Regs→ Vals. We write σ(x)
instead of a(x) and σ(n) for m(n). When executing program
p, the program counter pc points to the current instruction, to
which we refer with p(σ(pc)). We write σ[x 7→ v] to assign
value v to register x in state σ.
Contracts. A contract defines the execution of a single in-
struction by a relation σ

τ−⇀ σ′ that transforms the architectural
state σ to σ′ and produces an observation label τ.

CT-SEQ is a contract that describes an in-order (sequential)
semantics with constant-time observation labels. This means
that the contract records in the observation label every mem-
ory access and every control-flow change. As an example,

USENIX Association 32nd USENIX Security Symposium 7147

we recall below their rule for the load instruction, where JeKσ

denotes the value of expression e in state σ (the definition is
given in Appendix C).

LOAD
p(σ(pc)) = load x,e x ̸= pc n = JeKσ

σ
load n−−−−⇀

seq
ct σ[pc 7→ σ(pc)+1,x 7→ σ(n)]

The state is updated by assigning the value at address n to reg-
ister x and setting pc to the next instruction. The observation
label load n states that the attacker can observe the address.
We refer to [22] for a detailed description of the contract.

A run of program p on input σ0 is the longest sequence
σ0

τ1−⇀ · · · τn−⇀ σn, where each τi is a label such as load n. The
function Contract(p,σ0) returns the trace τ1, . . . ,τn.

4.2 Baseline Model with Exceptions
We extend CT-SEQ to reason about exception triggers and
handlers. To do so, we first formalize exception conditions.
Exception Conditions. The ISA defines the conditions upon
which each instruction can trigger an exception. When these
conditions are satisfied, the CPU directs execution to corre-
sponding error handling code. We model the conditions under
which exceptions are triggered as a function EC(σ, p) that
takes as input the architectural state σ and the program p. If
p(σ(pc)) faults, EC(σ, p) returns the location ℓ of the corre-
sponding handler; otherwise it returns ⊥.

Example 3. To model page faults, we use a function mapped
that indicates whether an address is mapped in the virtual
address space. Let ℓ be the address of the page fault handler.
For p(σ(pc)) = load x,e, we set

EC(σ, p) =

{
⊥ if mapped(JeKσ)

ℓ otherwise

Contracts for Exceptions. When an exception is triggered,
the control flow is diverted to the exception handler, whose
code may execute a return instruction to return to the faulting
instruction. We extend CT-SEQ with two new rules for ex-
ceptions (presented in Figure 1): one that formalizes faulting
instructions and one for the return instruction. This is enabled
by augmenting the state σ with a return stack r. Faithful to the
constant-time paradigm, the new rules expose all control flow
changes. The rest of the contract (given in Appendix C) is as
in [22], except for the return stack in the state, and for an ad-
ditional condition EC(σ, p) =⊥ in the other rules modelling
normal (unexceptional) execution. In the following sections,
σ always refers to the triple ⟨m,a,r⟩.
Implementation. As CT-SEQ does not model transient exe-
cution, its implementation simply redirects the control flow
to the exception handler upon an exception. The handlers our
models define emulate a minimal CPU handler (see §3.1.1).

EXCEPTION
EC(σ, p) = ℓ

⟨σ,r⟩ exc, pc ℓ−−−−−⇀
seq

ct ⟨σ[pc 7→ ℓ],σ(pc) · r⟩

RETURN
p(σ(pc)) = return EC(σ, p) =⊥

⟨σ, ℓ · r⟩ pc ℓ−−⇀
seq

ct ⟨σ[pc 7→ ℓ],r⟩

Figure 1: Rules for exceptions in CT-SEQ. Upon an exception,
the program jumps to the handler at location ℓ and pushes the
location of the faulting instruction to the return stack r. The
return instruction resumes from the location at the top of the
stack. Both rules leak the new program counter ℓ together
with an exception label (exc) in the case of EXCEPTION.

5 Model for Transient Execution

The baseline leakage model of §4 assumes that the CPU ex-
ecutes instructions (including exceptions) in program order.
Instead, modern CPUs execute data-independent instructions
in parallel and out of program order. In particular, when an
instruction faults, a number of instructions are executed tran-
siently and leave microarchitectural traces [31, 34] before the
CPU finally handles the exception and flushes the pipeline.
This section presents the CT-DH contract, which accounts for
the delayed handling of exceptions.

Modeling Goals. CT-DH captures the microarchitectural
traces of transiently executing instructions that follow the
faulting instruction. The key assumption of this contract is
that instructions that depend on the result of the faulting in-
struction are not transiently executed.

Design. CT-DH behaves as CT-SEQ as long as no exception
occurs. Upon an exception, CT-DH snapshots the current ar-
chitectural state and transiently continues the execution of
independent instructions. After w steps, the contract restores
the saved architectural state and jumps to the exception han-
dler. Hence, the contract discards the architectural effect of
the transient execution while recording their microarchitec-
tural effects in the observation trace. The transient window
parameter w is bounded in practice by the size of the reorder
buffer on an out-of-order CPU.

We implement this idea by lifting the contract semantics to
operate on the top element of a stack of architectural states
(similar to the branch speculation contract in [22]). We use
this stack to push snapshots of the architectural state when
an exception happens, and to pop snapshots after w transient
execution steps. To skip instructions that depend on the result
of the faulting instruction, CT-DH maintains the a D of regis-
ters whose values are unavailable. This set is initialized with
the destination register of the faulting instruction. We then
add to D any register that would be assigned by a skipped

7148 32nd USENIX Security Symposium USENIX Association

STEP

p(σ(pc)) = i sregs(i)∩D = /0 EC(σ, p) =⊥ σ
τ−⇀

seq
ct σ

′

⟨σ,ω+1,D⟩ · s τ−⇀
dh
ct ⟨σ′,ω,D\dregs(i)⟩ · s

SKIP
p(σ(pc)) = i sregs(i)∩D ̸= /0

⟨σ,ω+1,D⟩ · s−⇀dh
ct ⟨σ[pc 7→ σ(pc)+1],ω,dregs(i)∪D⟩ · s

EXCEPTION

p(σ(pc)) = i EC(σ, p) = ℓ σ
exc, pc ℓ−−−−−⇀

seq

ct σ
′

⟨σ,∞, /0⟩ exc−−⇀dh
ct ⟨σ[pc 7→ σ(pc)+1],w,dregs(i)⟩ · ⟨σ′,∞, /0⟩

ROLLBACK

⟨σ,0,D⟩ · ⟨σ′,ω′,D′⟩ · s pc σ′(pc)−−−−−⇀
dh

ct ⟨σ′,ω′,D′⟩ · s

TRANSIENTEXCEPTION
p(σ(pc)) = i sregs(i)∩D = /0 EC(σ, p) = ℓ ω ̸= ∞

⟨σ,ω+1,D⟩ · s exc−−⇀dh
ct ⟨σ[pc 7→ σ(pc)+1],ω,dregs(i)∪D⟩ · s

Figure 2: CT-DH contract. Parameter ω (initially ∞) counts the remaining steps in the transient window; D (initially /0) is the set
of dependencies. dregs(i) is the set of registers i re-assigns ({x} for i ∈ {(load x,e),(x← e)} and /0 otherwise). sregs(i) is the set
of registers on which i depends (all registers occurring in i except the registers in dregs(i)).

instruction, and remove from D any register assigned in a
non-skipped instruction.

Formalization. The formal contract is given in Figure 2. If
an instruction does not depend on registers in D and if no
exception occurs, it is executed as in CT-SEQ (rule STEP),
possibly removing the destination register from D. If the in-
struction depends on a register in D, it is skipped (rule SKIP).
In case of an exception (rule EXCEPTION), the program is
transiently executed for w steps, after which we continue with
the exception handler (represented by σ′). The ROLLBACK
rule is triggered after w transient steps; it reverts the architec-
tural effects of the transient execution. Finally, TRANSIENT-
EXCEPTION describes exceptions during transient execution,
which we model to not induce a jump to the exception handler.
This translates the fact that exceptions trigger a machine clear
resulting a pipeline flush, i.e., no instruction from the handler
of the second exception will be executed. This behavior is
explicitly documented by Intel [28] and has been observed
for AMD machines as well [41].

Implementation. We implement CT-DH by extending the
CT-SEQ implementation with snapshotting and dependency
tracking. For the snapshotting, we use existing techniques in
Revizor that realize speculation after conditional jumps [37].
For the dependency tracking, we augment the state with a
dependency set that we update as described in Figure 2.

Discussion. The contract CT-DH defines a deterministic se-
mantics. This may seem at odds with its use to describe the
leakage of out-of-order execution, which is typically modeled
using nondeterminism. The reason why a deterministic def-
inition is adequate for this contract is that our experimental
hardware traces also abstract from potential nondeterminism
due to reorderings; they collect the cache sets that have been
accessed, but not the ordering of their access.

6 Model for Value Speculation

The leakage model presented in §5 describes a CPU that tran-
siently executes all instructions that do not depend on the
destination register of the faulting instruction. Vulnerabilities
such as Meltdown [8, 31] or MDS [11, 42, 46] demonstrate
that sometimes CPUs do transiently execute instruction de-
spite their dependencies on the faulting instruction. They
rely instead on various kinds of speculative values, including
stale values, constants, or values drawn from different of CPU
buffers. We call these behaviors value speculation (whether
or not they involve an explicit value predictor). This section
defines CT-VS, a first leakage model for value speculation.
Modeling Goals. CT-VS assumes that the faulting instruction
produces a transient result used by the following instructions,
and that we know how this transient result is produced. An
example is null-injection (LVI-NULL) [9], where a faulting
load transiently returns zero, a common dummy value used,
e.g., as a Meltdown patch [25].
Design. CT-VS behaves similarly to CT-DH and also uses the
same snapshotting mechanism. There are two key differences:

1. It assigns to the destination register of the faulty instruc-
tion the value given by a new function TV(·), which may
depend on the type of exception and the architecture.

2. Instead of skipping instructions that depend on the fault-
ing instruction, it executes them in a transient state that de-
pends on the value given by TV(·).
Example 4. To model an architecture vulnerable to LVI-
NULL, we define TV(·) as a function that returns 0 for page
faults triggered by load instructions

TV(σ, p, ℓ) = 0 if p(σ(pc)) = load x,e

Here, TV(·) takes the state σ, program p, and exception han-
dler location ℓ, and it returns the value to assign to the desti-

USENIX Association 32nd USENIX Security Symposium 7149

nation register (here x) of the faulting instruction. Passing the
handler location enables TV(·) to return different values for
instructions that may fault with different exceptions.

Formalization. As for CT-DH, we keep track of the specula-
tion window, and we distinguish between exceptions thrown
during normal execution and transient execution. If an ex-
ception occurs on an instruction that would update a regis-
ter (load x,e or x← e), we now assign x the value defined
by TV(·). For the load instruction, the resulting rule for a
(non-transient) exception is the following.

EXCEPTION
p(σ(pc)) = load x,e EC(σ, p) = ℓ

σ
exc, pc ℓ−−−−−⇀

seq

ct σ
′ TV(σ, p, ℓ) = n

⟨σ,∞⟩ exc−−⇀vs
ct ⟨σ[x 7→ n,pc 7→ σ(pc)+1],w⟩ · ⟨σ′,∞⟩

The TRANSIENTEXCEPTION rule is adapted similarly. The
CT-VS contract also has rules ROLLBACK and STEP anal-
ogous to the CT-DH contract (but without the dependency
set D). Similar rules can be defined for faulting instructions
other than memory accesses.
Implementation. The snapshotting mechanisms for transient
execution is implemented as in the CT-DH contract. To enable
different implementations of TV(·), we define a different CT-
VS contract class for each exception, which we discuss in §8.

7 Model for Unknown Value Speculation

The CT-VS contract assumes that we can define a function that
predicts the transient values assigned by faulting instructions.
For many exceptions, this transient value is unknown and may
thus a priori contain any secret from the architectural state. In
this section, we describe how to obtain meaningful contracts
in the presence of unknown transient values—as long as we
can identify what these values depend on.
Modeling Goals. Our goal is to express how dependencies
of transient values on varying components of the architec-
tural state change the possible microarchitectural leakage of
delayed exception handling.

We use the code snippet displayed in Figure 3 as a mo-
tivating example to illustrate how information about these
dependencies can be used for characterizing leakage of CPUs.
For this, assume that the dividend a is a public constant, and
that division by zero assigns an unknown transient value to
register x. We distinguish between two cases:

1. If the transient value in x depends only on the (non-
secret) operands of the division, the memory access in line 2
does not leak secret information.

2. If the transient value in x depends on additional, un-
known components of the architectural state, the memory
access in line 2 may leak their secret information.
In both cases, the memory access in line 3 leaks information
from an unknown memory location.

1 x← a div 0 # assigns unknown value to x
2 load y,x # leaks x
3 load z,y # leaks value from memory

Figure 3: Program demonstrating leakage through unknown
value speculation. The first instruction attempts to divide the
value stored in a by 0, which causes an exception and tran-
siently assigns an unknown value to x. The next instructions
are executed transiently. The first leaks the value of x and the
second that of the location x points to.

In this section, we develop a contract that can bound the
potential leakage of unknown speculation mechanisms and
can thus distinguish between these two cases. This contract
also gives insights for the placement of speculation barriers.

Design. The core idea behind the CT-VS-Unknown contract
is to keep a record of all the values on which a transient value
depends and to delay their exposure until some derivative of
that transient value appears in a contract observation.2

We implement this idea using a form of forward taint track-
ing, where the taint consists of the set of all values a register
may depend on. When a fault occurs, we initialize the taint
of destination register. Depending on this initialization, we
obtain contracts of varying permissiveness. For this paper, we
consider two variants:

1. The CT-VS-Ops contract initializes the taint with the
value of all source operands of the faulting instruction. For
example, for a faulting division x← a div b, these are the
values of a and b. A violation of CT-VS-Ops indicates that the
CPU injects data beyond the operands into the destination.

2. The contract CT-VS-All initializes the taint with the en-
tire architectural state (technically, we use its hash). It is the
most permissive contract considered in this paper; it can only
be violated by leaking data that is not contained in the current
architectural state, e.g., some value from a different thread.

Formalization. The formalization of the dependency track-
ing algorithm is given in Appendix D. Here, we summarize
the key features:

• We taint registers and addresses with a set {d1,d2, . . .} of
dependencies. Each dependency d consists of an instruction i,
another location l (l can be a register or a memory address),
and the value v that l had when executing i.

• When a fault occurs, the taint of the destination register
is initialized either with the source operands (CT-VS-Ops) or
the hash of the architectural state (CT-VS-All).

• If a tainted register is used as a source operand, we prop-
agate its taint to the destination register. To correctly collect
all dependencies, we also add the values of the other (non-
tainted) source operands to the taint of the destination. For

2An alternative would be to immediately expose the dependencies as
observations, akin to the treatment of operands of variable-latency instruc-
tions in constant-time leakage models [2]. However, this coarser approach
precludes software defenses such as speculation barriers.

7150 32nd USENIX Security Symposium USENIX Association

example, if x is tainted with t(x) and we execute z← x+ y,
then z now depends on all values in t(x) and on the value of y.

• If we store the content of a tainted register x to address
n, then the taint of x propagates to address n. If we load
from n, the taint propagates back to the destination register.
We decided to taint memory locations because, even though
speculative stores will not retire, they can be forwarded to
loads from the same address.

• If we access a memory location represented by expres-
sion e, and we cannot evaluate e because it contains a tainted
register (whose value we don’t know), then we taint the desti-
nation with the full architectural state, represented by hash(σ).
This models that we cannot give any guarantee about the con-
tent of the destination. The taints in expression e are exposed
as observation.

• If a register or address is the destination in an instruction
without tainted source operands, we remove its taint.
Implementation. We implement CT-VS-Ops and CT-VS-
All for all exceptions considered in §8. For CT-VS-Ops, we
define that the operand of a load is the accessed address, not
the value stored at that address. We also use the hash of the
program input instead of the hash of the entire architectural
state. From an information flow perspective, these two are
equivalent under the assumption that the attacker knows the
program and that the microarchitectural state is reset between
two executions of the program.

8 Evaluation

In our evaluation, we test a diverse range of exceptions on x86
CPUs against a series of increasingly permissive contracts.
The experiments target two goals: to evaluate our tooling for
testing exceptions and to showcase our approach of creating
valid leakage models by incremental refinement.
Testing Targets. We test the following machines:

• Int1: Intel Core i7-7700 (Kaby Lake), ucode 0xf0

• Int2: Intel Xeon E-2288G (CoffeeLake), ucode 0xf0

• AMD1: AMD Ryzen 5 2600X (Zen+), ucode 0x800820d

• AMD2: AMD EPYC 7543P (Zen 3), ucode 0xa001143

Methodology. We test the exceptions described in §8.1 on
each of the testing targets with the tool described in §3. For
each exception, we start with the least permissive contract
(CT-SEQ) and test the exception for 24 hours or until the tool
detects a violation. Upon detection, we manually inspect the
counterexample to determine the root cause. Then, we repeat
the experiment with a more permissive contract that allows
the detected counterexample. We repeat this process until we
find a contract for which our tool does find a violation.
Configuration. The program generator is configured to pro-
duce programs with 32 instructions and 8 memory accesses
from the instruction pool in Appendix A. The executor is
in Partial Prime+Probe mode (§3.4). Contract-driven input
generation and the speculation filter are enabled (see [38]).

As our models (so far) can handle only one type of excep-
tion at a time, we make the following adjustments: To prevent
Spectre, we configure the generator to produce straight-line
code. To prevent LVI-Null from triggering divisions by zero,
we exclude divisions when testing Int2 and Int1. To prevent
Spectre V4, we enable microcode patches.

On False Positives. We call any situation in which two
program executions produce matching contract traces but mis-
matching hardware traces a positive. This is a false positive
when the mismatch is not due to differences in program inputs
(and hence does not constitute an information leak). A false
positive can be caused by a difference in the initial microarchi-
tectural state (due to imperfect initialization), or by external
noise corrupting a hardware trace. Revizor applies several
heuristics to eliminate false positives [37]. We observed no
false positives in our testing campaigns, i.e., we could identify
a genuine information leak for all detected violations.

8.1 Tested Exceptions
We test three classes of exceptions, which we describe next.

Memory Errors. Memory errors are essential mechanisms
for providing security. They facilitate isolation between vir-
tual machines and memory protection in the operating system,
e.g., page faults are crucial to maintaining access control. In
line with previous work [33], we consider microcode assists
equivalent to exceptions since they enable Meltdown-like
leaks [9, 11, 42, 46]. We test the following memory errors.

• Page Not Present (#PF): Present bit is 0 for the second
page in the sandbox (see §3.1).

• Write to Read-Only Page (#PF): Read/Write bit is 0.
• SMAP Fault (#PF): User bit is 1, and SMAP is enabled.
• Page Accessed (microcode assist): Accessed bit is 0.
• Page Dirty (microcode assist): Dirty bit is 0.
• Non-canonical Access (#GP): Memory accesses to ad-

dresses in non-canonical form are inserted in the test case at
generation time (see §3.2)

Computational Errors. This class includes the exceptions
caused by impossible or wrong computations. Speculation on
such errors can introduce unexpected values in the program
data flow. Here we focus on divisions and test the following:

• Division by Zero (#DE): Divisions are instrumented to
prevent overflows but not divisions by zero.

• Division Overflow (#DE): Divisions are instrumented to
prevent divisions by zero but not overflows.
In both cases, some of the randomly generated test cases throw
#DE. Even though this does not happen in all test cases, our
tool quickly discards the test cases without exceptions due to
the speculation filter introduced in [38].

Opcode-based Errors. This class includes the exceptions
triggered by undefined, invalid, and debug instructions. These
exceptions are critical for security because they prevent un-
expected events from happening in the system. For example,

USENIX Association 32nd USENIX Security Symposium 7151

#UD (undefined opcode exception) is thrown when non-VM
code attempts to execute a VM management instruction (e.g.,
VMCALL). We test the following faults (details in Appendix A):

• Invalid Opcode (#UD): The UD2 instruction and the 32-bit
instruction opcodes (invalid in 64-bit mode) are added to the
instruction pool; the first to execute throws #UD.

• Incompatible CPU Mode (#UD): Virtualization instruc-
tions are added to the instruction pool. On Intel, this corre-
sponds to the VTX extension [26] and on AMD to the SVM

extension [5]. Since our tests run in a non-virtualized CPU
mode, the first such instruction to execute throws #UD.

• Breakpoint: INT1 and INT3 are added to the instruction
pool to trigger Debug (#DB) and Breakpoint exceptions (#BP).

8.2 Testing Results

Our results are summarized in Table 1. We first describe the
new speculative leaks we discovered and then proceed to
explain the model refinement process.

8.2.1 Discovered Speculative Leaks

We discovered three novel leaks, i.e., leaks that were not re-
ported previously in the literature or even contradict previous
reports. Our approach cannot automatically answer whether
these leaks can be exploited in practice.

Divider State Sampling (DSS). While testing divisions by
zero, we discovered unexpected cross-instruction leakage. We
observed that the data processed by non-faulting divisions im-
pacts the speculative values returned by subsequent divisions
by zero. We suspect that the vulnerable CPUs return a stale
state of the divide unit (although we are not able to confirm).
We managed to trigger this behavior only on AMD1. Consider
the following instruction sequence:

1 # rax, rdx, or rbx contain a secret
2 DIV rbx # rbx != 0, non-faulting division
3 ...
4 MOV rcx, 0 # trigger division by zero
5 DIV rcx
6 MOV rdi, [array_base + rdx] # leak remainder

At line 2, a division is performed on secret data. The instruc-
tion at line 5 attempts to divide the content of rdx:rax by
the value in rcx; the division faults and returns a speculative
value. This value is dependent on the operands of the division
at line 2. Line 6 exposes the value through the cache state.

Notably, the divisions at line 2 and 5 do not have to be
close. We verified that the leak persists even if we replace line
3 with a long sequence of serializing instructions or even a
system call. However, we were unable to reproduce the leak
across privilege levels: When executing the faulting division
(i.e., line 5) in user mode, we verified that it does not leak
data from previous divisions executed in kernel mode.

Read-Modify-Write Speculation. While testing page faults
and microcode assists triggered by writes to read-only mem-
ory, we discovered a new way of triggering MDS, LVI, and
Foreshadow that affects read-modify-write instructions. These
leaks have been previously reported for faulting loads but not
for stores. Consider the following instruction sequence:

1 # rax = read-only address
2 XADD [rax], rbx # fault; rbx = speculative value
3 MOV rcx, [array_base + rbx] # leak into cache

Line 2 exchanges the content of [rax] with rbx and stores
their sum into [rax]; as rax points to read-only memory,
the store faults. However, the first load is also treated as if
it experienced a fault—even though loading is permitted—
and it returns a speculative value. The value is assigned to
rbx, and then leaked in line 3. On Int1, we verified that the
speculative value depends on previously accessed data as in
Foreshadow [8] and MDS [11, 42, 46]. On Int2, we observe
zero injection (i.e., the load returns zero) as in LVI-Null [9].

Non-canonical Store Forwarding. While testing non-
canonical memory accesses, we discovered that values stored
to a non-canonical address can be forwarded to subsequent
loads from the canonical version of that address. We observed
this behavior on Int1 and Int2. Consider the following
instruction sequence:

1 # rax = non-canonical address
2 # rbx = canonical address with matching bits [0:47]
3 MOV [rax], secret # faulting store
4 MOV rcx, [rbx] # forwarding; rcx = secret
5 MOV rcx, [array_base + rcx] # leak into cache

In line 3, the store triggers an exception. The secret value is
forwarded to line 4 and assigned to rcx. Line 5 reveals the
value by modifying the cache state.

Note that similar leaks were previously reported: Canoni-
cal stores being forwarded to non-canonical (faulting) loads
was reported on both AMD [34] for Intel [11] CPUs. Data
forwarding when writing to and reading from a non-canonical
address was reported on Intel [11].

Exception Chaining. Anecdotally, we found interesting
cases where an exception caused a “chain reaction”. Consider
a division with a memory operand pointing to a non-present
page: When it is executed on Int2 or Int1, the corresponding
load may speculatively return zero. This zero is then used as
a divisor, it causes a division-by-zero exception, which also
triggers speculation, and it yields another speculative value.

8.2.2 Model Refinement for Memory Errors

Our results are given in Table 1. Due to considerable differ-
ences between the tested CPUs, we describe the refinement
process for each of them separately.

AMD. To model memory errors on AMD1 and AMD2, we first
attempt to use CT-SEQ. We find violations of this model for

7152 32nd USENIX Security Symposium USENIX Association

Fault Variant CT-SEQ CT-DH CT-VS CT-VS-Ops CT-VS-All
Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2

#PF invalid ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓NI ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

read-only ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓NI ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SMAP ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓NI ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

#GP non-canonical ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓CI ✓CI ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

#BR MPX ✗ ✗ n/a n/a ✓ ✓ n/a n/a ✓ ✓ n/a n/a ✓ ✓ n/a n/a ✓ ✓ n/a n/a
uCode assist A-bit ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓NI ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D-bit ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓NI ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

#DE div by zero ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
div overflow ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

#UD undef. opcode ✓
invalid mode ✓

#DB + #BP - ✓

Table 1: Summary of the testing results. Here, ✗- contract violation; ✓- contract compliance; ✓- contract compliance through
a weaker contract; ✓NI - compliance CT-VS-NI, a variant of CT-VS that returns zero for speculative loads; ✓CI - compliance
CT-VS-CI, a variant of CT-VS that executes a speculative canonical access upon a non-canonical one; n/a - “not applicable“
(Memory Protection Extension (MPX) is not supported by AMD CPUs).

page faults and non-canonical accesses, but not for microcode
assists. The violations contain memory access instructions
that occur after the faults (in program order) and are executed
before the exception is caught. This behavior corresponds to
delayed exception handling (§5).1

We refine our model to account for delayed exception han-
dling mechanisms with CT-DH. Our experiments do not find
violations of the contract for page faults and assists; non-
canonical accesses, however, violate CT-DH. Our investiga-
tion reveals that the violations are caused by the speculative
behavior previously described by Musaev et al. [34].

Finally, to model non-canonical accesses, we test them
against CT-VS-CI, a CT-VS variant with loads returning values
from the canonical version of the faulting address. The testing
campaign does not find violations of this contract.

Intel CoffeeLake. We start with CT-SEQ and find violations
similar to AMD. We next move to CT-DH. MPX exceptions
do not produce violations (in line with previous research [10]),
but the tool finds violations for all other exceptions. For load-
based exceptions, they appear to be caused by zero injection
in faulting loads (LVI-Null [9]). For store-based exceptions,
we find that a speculative value gets forwarded, which leads to
the discovery of Read-Modify-Write Speculation, see §8.2.1.

We next attempt to model zero injection with CT-VS-NI, a
variant of CT-VS, where faulting loads speculatively return
zero. This time, the contract is violated only by non-canonical
accesses. Our investigation of the violation leads to the dis-
covery of Non-canonical Store Forwarding, see §8.2.1.

Intel Kaby Lake. We start with CT-SEQ and find violations
similar to AMD. We then test CT-DH and find violations too;
They appear to be caused by MDS and Foreshadow.

1The same behavior does not cause violations with assists, however, be-
cause assists do not terminate execution of test cases, hence this information
is exposed by non-speculative execution.

We next implement a number of versions of CT-VS, each
corresponding to a hypothesis about the value returned by
faulting loads, but we continue to observe violations.

Therefore, we move on to testing the CPU against the CT-
VS-Ops contract. It successfully filters out violations caused
by value forwarding from the L1D cache (i.e., Foreshadow).
However, we continue to discover violations since, in MDS,
the speculative value depends not only on the address operand
but also on previously stored or loaded values. Thus, we resort
to an even more permissive contract, CT-VS-All. This time,
we do not find violations on page faults and assists, but non-
canonical accesses still cause violations. Our investigation
reveals that they are caused by Non-canonical Store Forward-
ing (§8.2.1). The tainting algorithm of CT-VS-All only taints
the destination address of the non-canonical store, it does
not taint the canonical version of the address. If the tainted
address is not accessed afterwards, the taint is never exposed,
which results in the described leak.

8.2.3 Model Refinement for Computational Errors

We again begin with CT-SEQ and find violations similar to
those from memory errors. We then test against CT-DH and
find violations as well. Our investigation reveals that both
types of division errors return speculative values.

Based on previous work [10], we expect the speculative
value to be zero, and we implement the corresponding version
of CT-VS. We test against it, but surprisingly, we find vio-
lations, and the counterexamples reveal that the speculative
value is often non-zero. We attempt to reverse-engineer the
speculative value, but we fail to find a pattern.

Using CT-VS-Ops, we test the hypothesis that the specu-
lative value depends entirely on the division operands. This
contract is satisfied on most targets, except for AMD1. An in-
vestigation of the violation leads to the discovery of Divider

USENIX Association 32nd USENIX Security Symposium 7153

State Sampling, see §8.2.1. Specifically, the violation is trig-
gered because DSS introduces an information flow between
division instructions, which is not allowed by CT-VS-Ops.

Finally, we model DSS with CT-VS-All, and we do not
observe any violations anymore.

8.2.4 Model Refinement for Opcode-based Errors

We begin with CT-SEQ and, for the first time, we do not find
violations for any of the exceptions. This either means that
the faulting opcodes are treated as serializing events—and
indeed the AMD security advisory suggests that for INT3 [3]—
or that the exceptions are detected at the early stages of the
pipeline, which makes the speculation window too short to
cause observable changes to the microarchitectural state. This
finding shows that at least some of the exceptions exhibit
a strictly sequential behavior and can thus be used without
concerns regarding speculative attacks. It also confirms the
results of the manual investigation of invalid opcode reported
by Canella et al. [10].

8.3 Detection Time and Performance

Lastly, we provide a summary of the detection time and the
testing speed (complete results are given in Appendix B).

The number of test cases needed to find a violation var-
ied significantly between the tested contracts and exceptions,
ranging from less than 10 and up to 80k test cases. We ob-
served the fastest detection when testing against CT-SEQ,
with most of the violations detected after just a few test cases
(seconds of testing). Such fast detection is caused by the fact
that any speculative memory access in a test case leads to
a violation. Detection of both CT-DH and CT-VS violations
required several hundred test cases for most targets (at most
nine thousand), which corresponds to less than an hour of
testing. Detection of CT-VS-Unknown violations required the
most test cases as the contract exposes a large amount of in-
formation, making it difficult to find a test case that exhibits
leakage not exposed by the contract. The violations were
detected within several thousand of test cases (at most 80k),
corresponding to several hours of testing (at most 11 hours).

The testing speed also varied between different targets and
contracts. In most cases, the speed was in the range of 2k–20k
test cases per hour. The speed tended to be higher when test-
ing non-speculating exceptions against simple contracts: The
highest testing speed was 54k test cases per hour when testing
#DB and #BP exceptions against CT-SEQ on the high-end CPU
Int2. The speed tended to be slower for more complicated
contracts (e.g., CT-VS-All) and for configurations that trig-
gered a lot of speculation (e.g., #PF), as both of these factors
increased the modeling complexity and made contract trace
collection into a performance bottleneck. We observed the
lowest speed of 1k test cases per hour when testing #PF against
CT-VS-Unknown on a desktop CPU Int1.

9 Programming against Exception Contracts

In this section, we discuss the software-facing consequences
of our exception contracts. We show how contracts help to
define, test, and patch information leakage of a program.
Contract-based Noninterference. The security of a pro-
gram w.r.t. information leaks is typically defined as a non-
interference property. In the context of side channels, a pro-
gram is noninterferent if its secrets do not influence the hard-
ware traces observable by an attacker. As contracts over-
approximate these observations, we can check noninterfer-
ence by checking if the contract traces depend on the secrets.

To define noninterference, the program’s input is split in
a part containing secret data (H for high-security) and a part
containing public data (L for low-security). Formally, this is
described with a function π : N→{L,H} that assigns labels
L and H to each memory location of the initial state σ. We say
that two program inputs are low-equivalent (σ≃L σ′) if and
only if they agree on the content of their low-labeled memory.

Accordingly, for a CPU that has been shown to satisfy a
contract Contract(·), the program is noninterferent if chang-
ing the content of high-labeled memory does not influence
the resulting contract traces:

Definition 2 (Noninterference wrt a Contract (NI) [22]).
A program p is noninterferent with respect to a contract
Contract(·) and a policy π if for all pairs of inputs (σ,σ′)
with σ≃L σ′, we have Contract(p,σ) = Contract(p,σ′).

Testing Security of Programs. Executable leakage contracts
can be used to check if a program p satisfies Definition 2.
To do so, one executes Contract(p, ·) on different pairs of
low-equivalent states and checks if their contract traces agree.

These tests can be done independently of the target CPU,
or even on multiple CPUs simultaneously, as long as they
satisfy the same contract. Therefore, contracts enable us to
decouple the testing of CPUs for information leakage primi-
tives (which is the topic of this paper) from checking whether
these primitives could expose program secrets. Modern high-
performance CPUs can be costly and lengthy to test. However,
testing needs to be done only once per model (with local re-
tests after microcode patches). Program testing should be
done after every update, but it is much cheaper due to the
contract’s intentional minimalism and white-box nature.
Enforcing Security of Programs. There is a growing body
of work on enforcing NI or related properties in programs
via compilation [39], code transformation [47], and using
program analysis techniques that can detect violations of
noninterference in source or binary code [13, 22]. While an
exploration of how to extend each of these approaches to
exception contracts is out of scope, we follow a proposal
in [21] and discuss how programs may achieve NI based on
our contracts:

• The sequential contract (CT-SEQ) leads to a generaliza-
tion of the constant-time programming model, which achieves

7154 32nd USENIX Security Symposium USENIX Association

NI by not branching on secrets and not accessing memory in
a secret-dependent way. CT-SEQ adds that the conditions that
trigger exceptions should not depend on a secret.

• To guarantee NI for programs based on the delayed ex-
ception handling contract (CT-DH), instructions located after
an exception (in program order) should be prepended with
a speculation barrier if they may expose a secret. Alterna-
tively, they may artificially be made dependent, in spirit of
Speculative Load Hardening [14].

• The value speculation contracts (CT-VS) imply that in-
structions following an exception may process unexpected
values. This leaves the programmer only with speculation
barriers to achieve NI; as for the LVI mitigations proposed
by Intel [27]. However, with a contract that predicts the exact
speculative value, program analysis tools could be developed
to optimize such patches.

• The unknown value speculation contracts (CT-VS-Ops
and CT-VS-All) describes the MDS world, where faulty in-
structions return an unknown value. For MLPDS-vulnerable
CPUs, this translates into an attacker being able to leak values
loaded in previous instructions. In such cases, speculation bar-
riers have to be inserted before all instructions that operate on
values that depend on the faulting instruction. There is a fine
difference, however, between CT-VS-Ops and CT-VS-All in
this context. In CT-VS-All, the speculative value might contain
any (secret) value from the architecture. To prevent leakage,
every instruction that triggers such an exception must have a
speculation barrier. With CT-VS-Ops, however, the value is
known to be derived from the faulting instruction’s operands.
Unless the operands contain secrets, placing a barrier only
after loads based on speculative values is sufficient.

10 Coverage and Limitations

We distinguish between two kinds of coverage: microarchi-
tectural coverage, which accounts for the explored features of
the CPU implementation, and architectural coverage, which
accounts for the explored ISA features.

Microarchitectural Coverage. As we do not have access to
CPU internals in black-box testing, microarchitectural cover-
age is impossible to measure. We believe that our evaluation
covered a large portion of the microarchitecture: Each experi-
ment ran for 24 hours; most violations were detected within
one hour of testing, and the longest took 11 hours (see §8.3).

Architectural Coverage. The x86-64 architecture supports
256 exceptions types, each mapping to a unique entry in the
IDT [26]. Therefore, we did not aim for completeness, and
focused on demonstrating our approach’s effectiveness on 7
different exceptions. They represent a diverse set of behaviors
and include those exceptions that are most notorious regarding
speculative information leaks.

Table 2 summarizes the supported exceptions and lists the
missing Revizor features for those not supported so far. The

Name IDT Exception Support /
Vector Missing Requirement

#DE 0 Division Error ✓

#DB 1 Debug ✓

#BP 3 Breakpoint ✓

#BR 5 Bound Range ✓

#UD 6 Undefined Opcode ✓

#GP 13 General Protection ✓

#PF 14 Page Fault ✓

#OF 4 Overflow 32-bit Mode
- 10–12 Segment Exceptions 32-bit Mode
#AC 17 Alignment Check User Mode
#VE 20 Virtualization Exception Guest VM Mode
#NM 7 Device Not Available FP or SIMD
#MF 16 x87 Exception FP
#XM 19 SIMD Exception SIMD
#CP 21 Control Protection CFI
- 2 NMI Interrupt Asynch. Exception
- 32-255 User Defined Interrupts Asynch. Exception
#DF 8 Double Fault Exception Handler
#MC 18 Machine Check HW failure
- 9 Deprecated -
- 15, 22–32 Reserved -

Table 2: Supported exceptions and the missing features re-
quired to support the remaining exceptions.

missing features can be divided into the following groups:
• Unsupported Execution Mode: Exceptions #OF, #TS,

#NP, #SS are possible only in the 32-bit legacy mode, which is
not supported by Revizor. Similarly, #AC can be triggered only
in user mode and #VE only if the test case is executed within
a VM. Adding support for these execution modes would re-
quire considerable changes to Revizor’s executor and is left
to future work.

• Unsupported Instruction Type: Exceptions #NM, #MF, #XM,
and #CP require support for floating-point, SIMD, and CFI
instructions, respectively. So far, there does not exist a leak-
age model or any testing support for these instructions (even
without considering exceptions). Hence, we did not include
them in our study.

• Unsupported Triggers: Some exceptions require special
setups to be triggered. #DF can be triggered only within an
exception handler, which in our setup is not part of the test
case. #MC is a hardware fault and cannot be triggered by our
software-only setup.

• Asynchronous Exceptions: We did not target asyn-
chronous exceptions (software and hardware interrupts) for
two reasons. (1) Software interrupts (generated by the INT

instruction) do not trigger transient execution according to the
Intel manuals [26]; this is consistent with out investigation of
#DB and #BP in §8. Hardware interrupts can trigger transient
execution [41], but no such vulnerability has been reported
so far. (2) While our contracts can be extended to model
asynchronous exceptions, testing them would be challenging:
The CPU may handle interrupts at unpredictable points; this
nondeterminism would have to be resolved by mapping the

USENIX Association 32nd USENIX Security Symposium 7155

observed hardware trace to the right contract trace.
Tested Microcode Assists. We also tested microcode assists
in this paper, namely those related to Access and Dirty page
table bits. There are several other types of assists mentioned
in the Intel documentation [28], including those caused by x87
instructions, transitions between SSE and AVX code, AVX
store instructions, and Intel SGX [15]. We did not cover them
as Revizor lacks support for the corresponding instructions
and execution modes. Besides, assists are not part of the ISA,
which is why we cannot be more specific about coverage.
Reproduced Leaks. Our tool was able to detect all known
speculative leaks for the exceptions we support, as shown
in §8. Namely, it reproduced the leaks underlying Fore-
shadow [8], MDS [11,42,46], LVI-Null [9], Spectre V1.2 [29],
the SMAP version of Meltdown [10], zero result for divi-
sion errors [10], delayed MPX exception handling [10], and
transient handling of non-canonical accesses [34]. All of the
above leaks were reproduced through pure random testing,
without explicitly searching for them. Naturally, we did not
reproduce leaks in exceptions that are not covered by Revi-
zor (e.g., LazyFP [43] requires floating-point operations, and
the original version of Meltdown [31] requires a page fault
triggered from user space).
Exception Handlers. The exception handler within Revi-
zor’s executor is always located at the same address in mem-
ory. In principle, however, some CPUs could use a branch
predictor-like module to predict the address of handler. This
would lead to speculative leaks similar to Spectre V2. Simi-
larly, we only used an empty exception handler. Even though
so far, there has not been any speculative leak that would tar-
get exception handlers specifically, it would still be preferable
to test program executions with handlers.

11 Related Work

We discuss related work that models and tests for leakage via
microarchitectural side channels (related attack papers are
discussed above).

We begin with the two existing tools for model-based black-
box testing, which are most closely related to our work. We
then discuss template-based and white-box approaches. We
finally discuss models and tools for microarchitectural side
channels that do not involve transient execution.
Black-box Modelling and CPU Testing. Two tools imple-
ment model-based black-box testing for CPUs: Revizor [37]
(described in §2) and Scam-V [7, 35]. These tools rely on
random testing to probe the CPU for microarchitectural leaks
and compare the observed leakage to the leakage predicted
by a formal (ISA-based) leakage model. Revizor supports
x86, while Scam-V supports Arm. Unlike Revizor, Scam-V
leverages symbolic execution to automatically generate in-
puts that yield the same formal leakage. Both tools focus on
programs with a range of instructions for memory access and

explicit control flows (e.g., conditional branches) to detect
Spectre-like leakage. They do not support exceptions.

Our work is the first to develop leakage models for excep-
tions and the implicit control flows they induce. It is thus also
the first to extend a model-based tool to systematically test
CPUs against them.

Template-based CPU Testing. Another class of tools takes
as input code templates known to trigger transient execution
attacks to discover attack variants. Transynther [33] is a tool
that focuses on MDS (and thus also targets leakage caused
by exceptions). It uses combinations of known MDS building
blocks and microcode assists to detect new MDS leaks. In
order to verify the leakage, the observed values are compared
to those used to fill the microarchitectural buffer in a previous
phase. SpeechMiner [50] focuses on Meltdown; it quantifies
the exploitability of different vulnerabilities by measuring the
outcome of race conditions like data fetching latency on a
given CPU.

Our model-based testing approach is less restricted in the
program generation and can thus uncover new leaks. In con-
trast, Transynther and SpeechMiner can only detect variants
that follow a predefined template. As empirical evidence, al-
though both papers tested read-only faults in their evaluation,
none detected read-modify-write speculation (see §8.2.1).

White-box CPU Testing. Other tools analyze open-source
hardware designs for pre-silicon detection of speculative leaks.
Since the microarchitecture is known, more general valida-
tion techniques apply. Unlike black-box approaches, they
are not applicable to commercial off-the-shelf CPUs. Check-
Mate [44] is based on a microarchitectural specification in
terms of happens-before relations. IntroSpectre [18] relies
on an RTL description of the CPU to detect Meltdown-type
leaks; it randomly combines templates and detects the leakage
of a known secret nonce inserted into a security domain.

Testing Other Microarchitectural Side Channels. Other
tools explore leaks on black-box CPUs that are not caused by
transient execution. ABSynthe [19] synthesizes contention-
based side-channel attacks by inferring interactions between
several x86 instructions. Osiris [49] is a tool that searches
for new side channels by observing timing differences in
randomly generated code snippets. Plumber [24] is a re-
cent approach based on abstractions of code snippets that
are known to cause leakage. These tools are complementary
to our work; they focus on the extraction of microarchitec-
tural traces, whereas we focus on the speculation that leaks
information into microarchitectural state.

Speculative Leakage Models. A number of leakage models
have been proposed to detect instances of Spectre in software,
such as InSpectre [20], Spectector [21], SpecuSym [23], and
KLEESpectre [48]; see the SoK by Cauligi et al. [12] for
an extensive overview. Most of these models target Spectre
V1, and none of them models exceptions. Moreover, the cor-
rectness of these models has not been tested on real CPUs,

7156 32nd USENIX Security Symposium USENIX Association

and there are instances where a key assumption of the model
has been disproven in practice (e.g., KLEESpectre assumes
that store-based Spectre V1 is impossible, which was shown
incorrect in [44] and [37]).

Other Leakage Models. Besides speculative execution, leak-
age models have been extensively used for detecting classi-
cal microarchitectural side channels (e.g., CacheAudit [17],
Casym [6]), timing channels (e.g., Jasmin [1]), and physical
channels (e.g., Miracle [32]). These models, however, do not
consider speculative execution and thus cannot be used to
detect leaks caused by speculation upon exceptions.

12 Conclusion

In this paper, we have provided a family of formal leakage
models for CPU exceptions together with tool support for
testing black-box CPUs against them. We have run exten-
sive experiments to iteratively refine these leakage models to
faithfully capture the leakage of four different x86 microar-
chitectures. In the process, we have uncovered three novel
transient leaks and have contradicted, refined, and corrobo-
rated a large number of findings from prior work.

Acknowledgments. We thank the shepherd and the anony-
mous reviewers for their comments. This work was supported
by the NWO through project “Intersect”.

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance and
high-speed cryptography. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. Verifying constant-time implementations.
In 25th USENIX Security Symposium, 2016.

[3] AMD. Software techniques for managing speculation on AMD
processors. https://www.amd.com/system/files/documents/
software-techniques-for-managing-speculation.pdf, 2018.

[4] AMD. Speculation behavior in AMD micro-architectures.
https://www.amd.com/system/files/documents/security-
whitepaper.pdf, 2019.

[5] AMD. AMD64 Architecture Programmer’s Manual. 2023.

[6] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut
Kandemir. Casym: Cache aware symbolic execution for side channel
detection and mitigation. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2019.

[7] Pablo Buiras, Hamed Nemati, Andreas Lindner, and Roberto Guanciale.
Validation of side-channel models via observation refinement. In 54th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2021.

[8] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to
the intel SGX kingdom with transient out-of-order execution. In 27th
USENIX Security Symposium, 2018.

[9] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: hijacking transient execution through microar-
chitectural load value injection. In 2020 IEEE Symposium on Security
and Privacy (S&P), 2020.

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A Systematic Evaluation of Transient Execution
Attacks and Defenses. In 28th USENIX Security Symposium, 2019.

[11] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[12] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. Sok: Practical foundations for software spectre defenses.
In 43rd IEEE Symposium on Security and Privacy (S&P), 2022.

[13] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Mor-
rison. Speculative privacy tracking (SPT): Leaking information from
speculative execution without compromising privacy. In 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2021.

[14] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J.
Comput. Secur., 18(6), 2010.

[15] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR
Cryptol. ePrint Arch., 2016.

[16] Hernán Ponce de León and Johannes Kinder. Cats vs. spectre: An
axiomatic approach to modeling speculative execution attacks. In 43rd
IEEE Symposium on Security and Privacy (S&P), 2022.

[17] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
Cacheaudit: A tool for the static analysis of cache side channels. ACM
Transactions on Information and System Security (TISSEC), 18(1),
2015.

[18] Moein Ghaniyoun, Kristin Barber, Yinqian Zhang, and Radu Teodor-
escu. INTROSPECTRE: A pre-silicon framework for discovery and
analysis of transient execution vulnerabilities. In 48th ACM/IEEE
Annual International Symposium on Computer Architecture (ISCA),
2021.

[19] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. ABSynthe: Automatic blackbox side-channel synthesis on com-
modity microarchitectures. In 27th Annual Network and Distributed
System Security Symposium (NDSS), 2020.

[20] Roberto Guanciale, Musard Balliu, and Mads Dam. InSpectre: Break-
ing and fixing microarchitectural vulnerabilities by formal analysis. In
2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020.

[21] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. Spectector: Principled detection of speculative information
flows. In 2020 IEEE Symposium on Security and Privacy (S&P), 2020.

[22] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation. In 42nd IEEE Symposium
on Security and Privacy (S&P), 2021.

[23] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang,
Meng Wu, and Zhiqiang Zuo. Specusym: Speculative symbolic execu-
tion for cache timing leak detection. In ACM/IEEE 42nd International
Conference on Software Engineering, 2020.

[24] Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer,
and Christian Rossow. Microarchitectural leakage templates and their
application to cache-based side channels. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022.

USENIX Association 32nd USENIX Security Symposium 7157

https://www.amd.com/system/files/documents/software-techniques-for-managing-speculation.pdf
https://www.amd.com/system/files/documents/software-techniques-for-managing-speculation.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf

[25] Intel. Speculative Execution Side Channel Mitigations - Revision
3.0. https://www.intel.com/content/dam/develop/external/
us/en/documents/336996-speculative-execution-side-
channel-mitigations.pdf, 2018.

[26] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
2019.

[27] Intel. Load Value Injection. https://www.intel.com/content/
www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/load-value-
injection.html, 2020.

[28] Intel. Intel® 64 and IA-32 Architectures Optimization Reference Man-
ual. 2023.

[29] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. CoRR, abs/1807.03757, 2018.

[30] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 2019 IEEE Symposium on Security and
Privacy, (S&P), 2019.

[31] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium, 2018.

[32] Ben Marshall, Dan Page, and James Webb. Miracle: Micro-architectural
leakage evaluation. Cryptology ePrint Archive, 2021.

[33] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural data leakage via automated attack syn-
thesis. In 29th USENIX Security Symposium, 2020.

[34] Saidgani Musaev and Christof Fetzer. Transient execution of non-
canonical accesses. CoRR, abs/2108.10771, 2021.

[35] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto Guanciale, and
Swen Jacobs. Validation of abstract side-channel models for computer
architectures. In 32nd International Conference on Computer-Aided
Verification (CAV), 2020.

[36] Hamed Nemati, Roberto Guanciale, Pablo Buiras, and Andreas Lindner.
Speculative leakage in ARM cortex-a53. CoRR, abs/2007.06865, 2020.

[37] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein.
Revizor: testing black-box cpus against speculation contracts. In 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2022.

[38] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein.
Hide and seek with spectres: Efficient discovery of speculative informa-
tion leaks with random testing. In 2023 IEEE Symposium on Security
and Privacy (S&P), 2023.

[39] Marco Patrignani and Marco Guarnieri. Exorcising spectres with
secure compilers. In 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2021.

[40] Nguyen Anh Quynh and Dang Hoang Vu. Unicorn: Next generation
CPU emulator framework. In BlackHat USA, 2015.

[41] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage against the machine clear: A systematic analysis of machine
clears and their implications for transient execution attacks. In 30th
USENIX Security Symposium, 2021.

[42] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-
privilege-boundary data sampling. In 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[43] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking FPU register
state using microarchitectural side-channels. CoRR, abs/1806.07480,
2018.

[44] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. CheckMate:
Automated synthesis of hardware exploits and security litmus tests. In
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[45] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on aes, and countermeasures. J. Cryptol., 23(1):37–71, 2010.

[46] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: rogue in-flight data load. In 2019 IEEE Symposium on Security
and Privacy (S&P), 2019.

[47] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kici, Ranjit Jhala, Dean M. Tullsen, and Deian
Stefan. Automatically eliminating speculative leaks from cryptographic
code with blade. In 48th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), 2021.

[48] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika
Mitra, and Abhik Roychoudhury. KLEESpectre: Detecting information
leakage through speculative cache attacks via symbolic execution. ACM
Transactions on Software Engineering and Methodology (TOSEM),
29(3):1–31, 2020.

[49] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and
Christian Rossow. Osiris: Automated discovery of microarchitectural
side channels. In 30th USENIX Security Symposium, 2021.

[50] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. SPEECHMINER: A
framework for investigating and measuring speculative execution vul-
nerabilities. In 27th Annual Network and Distributed System Security
Symposium (NDSS), 2020.

[51] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolu-
tion, low noise, L3 cache side-channel attack. In 23rd USENIX Security
Symposium, 2014.

[52] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Tor-
rellas, and Christopher W. Fletcher. Speculative taint tracking (STT):
A comprehensive protection for speculatively accessed data. In 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2019.

A Instruction Set Tested in Evaluation

Our evaluation (§8) used the following instruction pool:
(LOCK) ADD/ADC, (LOCK) SUB/SBB, (LOCK) INC, (LOCK)

DEC, (LOCK) NEG, (I)DIV, (I)MUL, (LOCK) AND, (LOCK)

NOT, (LOCK) OR, (LOCK) XOR, BSF, BSR, (LOCK) BT,

(LOCK) BTC, (LOCK) BTR, (LOCK) BTS, BSWAP, MOV,

MOVSX, MOVZX, XCHG, CMP, TEST, CBW, CDQ, CWD, CWDE,

CLC, CLD, CMC, LAHF, SAHF, STC, STD, LEA, NOP, SET*.

Some experiments added instructions to trigger exceptions:
• #DB+#BP: INT1, INT3.
• #UD (undef. opcode): UD2, DAA/DAS, AAA/AAS,

PUSHA/POPA, BOUND, CALLF/JMPF, LES, AAM/AAD,

PUSH/POP (32-bit-only opcodes).
• #UD (inv. mode), Intel: INVEPT(PID), VMXOFF,

VMLAUNCH(RESUME/CALL/CLEAR/READ/WRITE/PTRLD/PTRST).
• #UD (inv. mode), AMD: VMRUN, VMLOAD, VMSAVE, CLGI,

VMMCALL, INVLPGA.

B Performance Details

Table 3 details the testing campaign presented in §8.2.

7158 32nd USENIX Security Symposium USENIX Association

https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html

Fault Variant CT-SEQ CT-DH CT-VS CT-VS-Ops CT-VS-All
Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2 Int1 Int2 AMD1 AMD2

#PF invalid ✗ 1 ✗ 2 ✗ 1 ✗ 1 ✗ 120 ✗ 49 ✓ 30k ✓ 182k ✗ 4.4k ✓ 25k - - ✗ 1.3k - - - ✓ 26k - - -
read-only ✗ 3 ✗ 1 ✗ 1 ✗ 3 ✗ 37 ✗ 289 ✓ 37k ✓ 21k ✗ 416 ✓ 52k - - ✗ 5.3k - - - ✓ 29k - - -

SMAP ✗ 1 ✗ 1 ✗ 3 ✗ 1 ✗ 3 ✗ 65 ✓ 32k ✓ 187k ✗ 930 ✓ 25k - - ✗ 246 - - - ✓ 27k - - -
#GP non-canonical ✗ 1 ✗ 2 ✗ 3 ✗ 2 ✗ 155 ✗ 46 ✗ 30 ✗ 137 ✗ 229 ✗ 30 ✓ 70k ✓ 60k ✗ 49k ✗ 8.8k - - ✗ 35k ✗ 12k - -
#BR MPX ✗ 49 ✗ 172 - - ✓ 225k ✓ 714k - - - - - - - - - - - - - -
uCode assist A-bit ✗ 3 ✗ 1 ✓ 188k ✓ 45k ✗ 7 ✗ 3 - - ✗ 295 ✓ 44k - - ✗ 572 - - - ✓ 116k - - -

D-bit ✗ 1 ✗ 3 ✓ 51k ✓ 33k ✗ 7 ✗ 25 - - ✗ 1k ✓ 45k - - ✗ 2k - - - ✓ 115k - - -
#DE div by zero ✗ 82 ✗ 25 ✗ 23 ✗ 12 ✗ 9k ✗ 4k ✗ 785 ✗ 312 ✗ 37k ✗ 386 ✗ 2.3k ✗ 1.7k ✓ 127k ✓ 168k ✗ 80k ✓ 112k - - ✓ 168k -

div overflow ✗ 3 ✗ 18 ✗ 1 ✗ 1 ✗ 4 ✗ 91 ✗ 13 ✗ 66 ✗ 102 ✗ 1.4k ✗ 1.8k ✗ 29 ✓ 31k ✓ 73k ✓ 72k ✓ 43k - - - -
#UD undef. opcode ✓ 254k ✓ 727k ✓ 580k ✓ 298k - - - - - - - - - - - - - - - -

invalid mode ✓ 90k ✓ 96k ✓ 114k ✓ 214k - - - - - - - - - - - - - - - -
#DB + #BP - ✓ 332k ✓ 1.3M ✓ 649k ✓ 325k - - - - - - - - - - - - - - - -

Table 3: Additional details for Table 1. This table shows the number of rounds executed within 24 hours (performance) for tests
without a violation (✓) and the number of rounds executed before the violation (detection time) for tests with a violation (✗).

C Semantics of CT-SEQ with Exceptions

The full CT-SEQ contract with exceptions is presented in Fig-
ure 4. It is largely similar to CT-SEQ without exceptions [22]
and builds on the plain semantics of µASM [21]. The eval-
uation of expressions (written JeKσ) is straightforward. All
rules except the EXCEPTION rule assume that no exception
occurs during the execution of the instruction (EC(σ, p) =⊥).
LOAD, RETURN and EXCEPTION are described in §4. Rule
BARRIER ignores the speculation barrier instruction, which
has no effect in sequential execution. ASSIGN updates a reg-
ister x with the value of an expression e. TERMINATE models
the case that the end of the program is reached. STORE moves
the value stored in register x to memory location n = JeKσ

and, similarly to the LOAD instruction, exposes n.

D Definition of CT-VS-Unknown

In this section, we provide further formal details of the CT-
VS-Unknown contract.
Representation of Taints. A taint is a set of triples (i, l,v),
where i denotes a program location, l is either a register, a flag,
or a memory location, and v is the value stored at l before the
execution of instruction i. We use Taints to denote the type of
taints, which are sets over N× (Regs∪N)×Vals.
Evaluating Tainted Expressions. We define a few functions
that facilitate the taint propagation in the formal semantics.
Let t : Regs∪N→ Taints be a function that maps registers
and memory locations to taints. For l ∈ Regs∪N, we define
t(l) = /0 if l is not tainted. For an expression e, we use the
predicate tainted(e) if e contains a tainted register. Function
taint(e, t, i) generates the taint for an expression e with respect
to taints t and instruction i. It aggregates the values of the
registers in e. If a register is tainted, it uses the taint instead:

taint(n, t, i) := /0

taint(x, t, i) := {(i,x,JxKσ)} if t(x) = /0

taint(x, t, i) := T if t(x) = T ̸= /0

taint(⊖e, t, i) := taint(e, t, i)

taint(e1⊗ e2, t, i) := taint(e1, t, i)∪ taint(e2, t, i)

taint(ite(e1,e2,e3), t, i) := taint(e1, t, i)∪ taint(e2, t, i)

∪ taint(e3, t, i)

Operational Semantics. In Figure 5, we present the main
rules of the CT-VS-Ops instance of the contract. We focus on
the rules that formalize memory accesses, the initialization
of taints, and their exposure as observation labels. Rules that
do not interact with the memory are defined as in CT-VS, just
with the additional taint propagation we describe in §7.

Transient execution is handled similarly to CT-DH using
a speculation window w, after which the transient state is
rolled back. The state consists of the architectural state σ, the
mapping t of current taints, and a counter ω.

The EXCEPTION rule describes how to generate the taint
upon an exception. Here, we consider a fault occurring during
a non-transient assignment instruction; the definition is simi-
lar for other instructions and nested exceptions. The taint T is
generated according to the definition of taint(·) by collecting
the values of all registers in e.

For loads and stores, we need to distinguish two cases, de-
pending on whether e contains a tainted register. If it does
not, then we propagate the taint (if it exists) from the source
operand to the destination (rules LOAD and STORE): Loads
propagate the taint of the accessed address to the register, and
stores propagate the taint from the register to the address. If
the taint T is empty, the rules also implicitly remove a previ-
ous taint from the destination. If e is tainted (TAINTEDLOAD
and TAINTEDSTORE), then taint T is exposed. Loads addi-
tionally taint x with hash(σ), indicating that the register might
depend on an arbitrary memory location. For stores, we do
not know the address we write to (as e is tainted), so we taint
the entire memory with hash(σ), indicating that we cannot
give any guarantees about the memory contents anymore.

USENIX Association 32nd USENIX Security Symposium 7159

Expression Evaluation

JnKσ = n JxKσ = σ(x) J⊖eKσ =⊖JeKσ Je1⊗ e2Kσ = Je1Kσ⊗ Je2Kσ Jite(e1,e2,e3)Kσ = if Je1Kσ then Je2Kσ else Je3Kσ

CT-SEQ Contract
BARRIER
p(σ(pc)) = spbarr EC(σ, p) =⊥
⟨σ,r⟩−⇀seq

ct ⟨σ[pc 7→ a(pc)+1],r⟩

ASSIGN
p(σ(pc)) = x← e x ̸= pc EC(σ, p) =⊥
⟨σ,r⟩−⇀seq

ct ⟨σ[pc 7→ σ(pc)+1,x 7→ JeKσ],r⟩

TERMINATE
p(σ(pc)) =⊥ EC(σ, p) =⊥
⟨σ,r⟩−⇀seq

ct ⟨σ[pc 7→ ⊥],r⟩

RETURN
p(σ(pc)) = return EC(σ, p) =⊥

⟨σ, ℓ · r⟩ pc ℓ−−⇀
seq

ct ⟨σ[pc 7→ ℓ],r⟩

EXCEPTION
EC(σ, p) = ℓ

⟨σ,r⟩ exc, pc ℓ−−−−−⇀
seq

ct ⟨σ[pc 7→ ℓ],σ(pc) · r⟩

LOAD
p(σ(pc)) = load x,e x ̸= pc n = JeKσ EC(σ, p) =⊥

⟨σ,r⟩ load n−−−−⇀
seq
ct ⟨σ[pc 7→ σ(pc)+1,x 7→ σ(n)],r⟩

STORE
p(σ(pc)) = store x,e n = JeKσ EC(σ, p) =⊥

⟨σ,r⟩ store n−−−−⇀
seq
ct ⟨σ[n 7→ σ(x)],σ[pc 7→ σ(pc)+1],r⟩

Figure 4: CT-SEQ contract for µASM programs with exceptions.

EXCEPTION

p(σ(pc)) = x← e EC(σ, p) ̸=⊥ σ
exc, pc ℓ−−−−−⇀

seq

ct σ
′ taint(e, /0,σ(pc)) = T

⟨σ, t,∞⟩ τ−⇀
vs9ops
ct ⟨σ[pc 7→ σ(pc)+1], t[x 7→ T],w⟩ · ⟨σ′, t,∞⟩

LOAD

p(σ(pc)) = load x,e EC(σ, p) =⊥ σ
τ−⇀

seq
ct σ

′ ¬tainted(e) t(JeKσ) = T

⟨σ, t,ω+1⟩ τ−⇀
vs9ops
ct ⟨σ′, t[x 7→ T],ω⟩ · s

TAINTEDLOAD

p(σ(pc)) = load x,e EC(σ, p) =⊥ σ
τ−⇀

seq
ct σ

′ tainted(e) taint(e, t,σ(pc)) = T

⟨σ, t,ω+1⟩ T−⇀
vs9ops
ct ⟨σ′, t[x 7→ hash(σ)],ω⟩ · s

STORE

p(σ(pc)) = store x,e EC(σ, p) =⊥ σ
τ−⇀

seq
ct σ

′ ¬tainted(e) JeKσ = n t(x) = T

⟨σ, t,ω+1⟩ τ−⇀
vs9ops
ct ⟨σ′, t[n 7→ T],ω⟩ · s

TAINTEDSTORE

p(σ(pc)) = store x,e EC(σ, p) =⊥ σ
τ−⇀

seq
ct σ

′ tainted(e) taint(e, t,σ(pc)) = T

⟨σ, t,ω+1⟩ T−⇀
vs9ops
ct ⟨σ′, t[1 7→ hash(σ),2 7→ hash(σ), . . .],ω⟩ · s

Figure 5: Excerpt from the CT-VS-Ops contract.

7160 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Modeling Microarchitectural Leakage
	Testing against Leakage Models

	Tooling for Testing Exception Leakage
	Sandbox for Exceptions
	Exception Handlers
	Exception Triggers

	Test Case Generation
	Hook for Leakage Models
	Initializing the Microarchitectural State

	A Baseline Model for Exceptions
	Baseline Model without Exceptions
	Baseline Model with Exceptions

	Model for Transient Execution
	Model for Value Speculation
	Model for Unknown Value Speculation
	Evaluation
	Tested Exceptions
	Testing Results
	Discovered Speculative Leaks
	Model Refinement for Memory Errors
	Model Refinement for Computational Errors
	Model Refinement for Opcode-based Errors

	Detection Time and Performance

	Programming against Exception Contracts
	Coverage and Limitations
	Related Work
	Conclusion
	Instruction Set Tested in Evaluation
	Performance Details
	Semantics of CT-SEQ with Exceptions
	Definition of CT-VS-Unknown

