
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

One Server for the Price of Two: Simple and
Fast Single-Server Private Information Retrieval
Alexandra Henzinger, Matthew M. Hong, and Henry Corrigan-Gibbs, MIT;

Sarah Meiklejohn, Google; Vinod Vaikuntanathan, MIT
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger

One Server for the Price of Two:
Simple and Fast Single-Server Private Information Retrieval

Alexandra Henzinger
MIT

Matthew M. Hong
MIT

Henry Corrigan-Gibbs
MIT

Sarah Meiklejohn
Google

Vinod Vaikuntanathan
MIT

Abstract. We present SimplePIR, the fastest single-server
private information retrieval scheme known to date. Sim-
plePIR’s security holds under the learning-with-errors assump-
tion. To answer a client’s query, the SimplePIR server performs
fewer than one 32-bit multiplication and one 32-bit addition
per database byte. SimplePIR achieves 10 GB/s/core server
throughput, which approaches the memory bandwidth of the
machine and the performance of the fastest two-server private-
information-retrieval schemes (which require non-colluding
servers). SimplePIR has relatively large communication costs:
to make queries to a 1 GB database, the client must download a
121MB“hint” about the database contents; thereafter, the client
may make an unbounded number of queries, each requiring
242 KB of communication. We present a second single-server
scheme, DoublePIR, that shrinks the hint to 16 MB at the
cost of slightly higher per-query communication (345 KB) and
slightly lower throughput (7.4 GB/s/core). Finally, we apply
our new private-information-retrieval schemes, together with
a novel data structure for approximate set membership, to the
task of private auditing in Certificate Transparency.We achieve
a strictly stronger notion of privacy than Google Chrome’s
current approach with 13× more communication: 16 MB of
download per week, along with 1.5 KB per TLS connection.

1 Introduction
In a private information retrieval (PIR) protocol [19, 48], a
database server holds an array of 𝑁 records. A client wants to
fetch record 𝑖 ∈ {1, . . . , 𝑁} from the server, without revealing
the index 𝑖 that it desires to the server. PIR has applications to
systems for private database search [67,74], metadata-hiding
messaging [7, 8], private media consumption [40], credential
breach reporting [51,64,72,75], private contact discovery [46],
privacy-friendly advertising [9,39,44,69], and private blocklist
lookups [47], among others.
Modern PIR schemes require surprisingly little commu-

nication: with a single database server and under modest
cryptographic assumptions [14,35,62], the total communica-
tion required to fetch a database record grows only polylog-
arithmically with the number of records, 𝑁 . Unfortunately,
PIR schemes are computationally expensive: the server must
touch every bit of the database to answer even a single client
query [10], since otherwise the PIR scheme leaks information
about which database records the client is not interested in.

(A number of recent PIR schemes preprocess the database
such that the server can answer a query in time sublinear
in 𝑁 , but all known approaches require either client-specific
preprocessing [21,22, 47, 70, 76] or impractically large server
storage [10, 13, 15].) Thus, a hard limit on the throughput of
PIR schemes—that is, the ratio between the database size and
the server time to answer a query—is the speed with which the
PIR server can read the database from memory: roughly 12.4
GB/s/core on our machine [73].
In the standard setting, in which the client interacts with

a single database server, the performance of existing PIR
protocols is far from this theoretical limit: we measure that
the fastest prior single-server PIR schemes [59] achieve a
throughput of 259 MB/s/core, or 2% of our machine’s memory
bandwidth, on a database of hundred-byte records. It is possible
to push the performance up to 1.3 GB/s/core when the database
records are hundreds of kilobytes long, though that parameter
setting is not relevant for many PIR applications, including our
application to Certificate Transparency.
When the client can communicate with multiple non-

colluding database servers [19], there exist PIR schemes with
server-side throughput of up to 11.5 GB/s/core, or 93% of the
memory bandwidth (described in Table 1). However, these
multi-server PIR schemes are cumbersome to deploy, since they
rely on multiple coordinating yet independent infrastructure
providers. In addition, their security is brittle, as it stems from
a non-collusion assumption rather than from cryptographic
hardness. Thus, existing PIR schemes suffer from either poor
performance—in the single-server setting—or undesirable
trust assumptions—in the multi-server case.
In this paper, we present two new single-server PIR schemes

that exceed the throughput of all existing single-server PIR
protocols and approach the throughput of multi-server ones.
In addition, our schemes are relatively simple to explain and
easy to implement: our complete implementation of both
schemes, available at github.com/ahenzinger/simplepir,
requires roughly 1,400 lines of Go code, plus 200 lines of C,
and uses no external libraries.
More specifically, our first scheme, SimplePIR, achieves a

server throughput of 10 GB/s/core, or 81% of the memory
bandwidth, though it requires the client to download a relatively
large “hint” about the database contents before making its
queries. On a database of 𝑁 bytes, the hint has size roughly
4
√
𝑁 KB. The hint is not client-specific, and a client can reuse

USENIX Association 32nd USENIX Security Symposium 3889

github.com/ahenzinger/simplepir

the hint over many queries, so the amortized communication
cost per query can be small. Our second scheme, DoublePIR,
achieves slightly lower server throughput of 7.4 GB/s/core, but
shrinks the hint to roughly 16 MB for a database of one-byte
records—independent of the number of records in the database.
Our techniques.Wenow summarize the technical ideas behind
our results.
Recap: Single-server PIR. Our starting point is the single-
server PIR construction of Kushilevitz and Ostrovsky [48]. In
their scheme, the PIR server represents an 𝑁-record database
as a matrix D of dimension

√
𝑁 by

√
𝑁 . To fetch the database

record in row 𝑖 and column 𝑗 , the client sends the server
the encryption 𝐸 (q) of a dimension-

√
𝑁 vector that is zero

everywhere except that it has a “1” in index 𝑗 . If the encryption
scheme is linearly homomorphic, the server can compute the
matrix-vector product D · 𝐸 (q) = 𝐸 (D · q) under encryption
and return the result to the client. The client decrypts to recover
D ·qwhich, by construction, is the 𝑗-th column of the database,
as desired. The total communication grows as

√
𝑁 .

SimplePIR from linearly homomorphic encryption with pre-
processing. The PIR server’s throughput here is limited by the
speed with which it can compute the product of the plaintext
matrix D with the encrypted vector 𝐸 (q). Our observation in
SimplePIR (Section 4) is that, using Regev’s learning-with-
errors-based encryption scheme [68], the server can perform
the vast majority of the work of computing the matrix-vector
product D · 𝐸 (q) in advance—before the client even makes
its query. The server’s preprocessing depends only on the
database D and the public parameters of the Regev encryp-
tion scheme, so the server can reuse this preprocessing work
across many queries from many independent clients. After
this preprocessing step, to answer a client’s query, the server
needs to compute only roughly 𝑁 32-bit integer multiplications
and additions on a database of 𝑁 bytes. The catch is that the
client must download a “hint” about the database contents after
this preprocessing step—the hint accounts for the bulk of the
communication cost in SimplePIR.
DoublePIR from one recursive step. The idea behind Dou-
blePIR (Section 5) comes from the original Kushilevitz and
Ostrovsky paper [48]: in SimplePIR, the client downloads the
hint from the server, along with a dimension-

√
𝑁 encrypted

vector. However, to recover its record of interest, the client only
needs one small part of the hint and one component of this
vector. We show how the client can use SimplePIR recursively
on the hint and this vector to fetch its desired database record at
a reduced communication cost. To minimize the concrete costs,
we make non-black-box use of SimplePIR in this recursive
construction, which saves a factor of the lattice dimension,
which is 1024 for our parameters, over a naïve design.
Application to Certificate Transparency. Finally, we evaluate
our PIR schemes in the context of the application of signed cer-
tificate timestamp (SCT) auditing in Certificate Transparency.
In this auditing application, a server holds a set 𝑆 of strings and

a client (web browser) wants to test whether a particular string
𝜎, representing an SCT, appears in the set 𝑆, while hiding
𝜎 from the server. (The string 𝜎 reveals information about
which websites a client has visited.) Google Chrome currently
implements this auditing step using a solution that provides
𝑘-anonymity for 𝑘 = 1000 [26].
Along the way, we construct a new data structure (Section 6)

for more efficiently solving this type of private set-membership
problem using PIR, when a constant rate of false positives is ac-
ceptable (as in our application). In this setting, standard Bloom
filters [11] and approaches based on PIR by keywords [18]
require the client to perform PIR over a database of _𝑁 bits (if
the set 𝑆 has size 𝑁 and _ ≈ 128 is a security parameter). In
contrast, our data structure requires performing PIR over only
8𝑁 bits—giving a roughly 16× speedup in our application.
Google’s current solution to SCT auditing, which provides 𝑘-

anonymity rather than full cryptographic privacy, requires the
client to communicate 240 B on average per TLS connection.
Our solution, which provides cryptographic privacy, requires
1.5 KB and 0.003 core-seconds of server compute on average
per TLS connection, along with 16 MB of client download
and 400 KB of client storage every week to maintain the hint.
Limitations.Our new PIR schemes come with two main down-
sides. First, our client must download a “hint”: on databases
gigabytes in size, the hint is tens of megabytes. If a client makes
only one query, this hint download dominates the overall com-
munication. Second, our schemes’ online communication is on
the order of hundreds of kilobytes, which is 10× larger than in
some prior work. Nevertheless, we believe that SimplePIR and
DoublePIR represent an exciting new point in the PIR design
space: large computation savings, along with a conceptually
simple design and small, stand-alone codebase, at the cost of
modest communication and storage overheads.

Our contributions. In summary, our contributions are:

• two new high-throughput single-server private information
retrieval protocols (Sections 4 and 5),

• a new data structure for private set membership using
PIR (Section 6) and its application to private auditing in
Certificate Transparency (Section 7), and

• the evaluation of these schemes, using a new open-source
implementation (Section 8).

2 Related work and comparison
Chor, Goldreich, Kushilevitz and Sudan [19] introduced PIR
in the multi-server setting and Kushilevitz and Ostrovsky [48]
gave the first construction of single-server PIR. Their scheme
uses a linearly homomorphic encryption scheme that expands
ℓ-bit plaintexts to ℓ ·𝐹-bit ciphertexts. We call 𝐹 the expansion
factor of the encryption scheme. Then, on a database of 𝑁
bits and any dimension parameter 𝑑 ∈ {1, 2, 3, . . . }, their
PIR construction has communication roughly 𝑁1/𝑑𝐹𝑑−1. The

3890 32nd USENIX Security Symposium USENIX Association

Scheme Se
rv
er
s

Co
m
m
un
ica
tio
n

No
pe
r-c
lie
nt
sto
rag
e

(o
n t
he
se
rv
er
)

po
ly

lo
g(
𝑛
) c
om
pu
te

ov
er
he
ad

M
ax
. a
ch
iev
ab
le

th
ro
ug
hp
ut
/co
re

DPF PIR [12,45] 2 log 𝑁 ✓ ✓ 5,381 MB/s
XOR PIR [19] 2

√
𝑁 ✓ ✓ 6,067 MB/s

XOR PIR fast♣ [19] 2
√
𝑁 ✓ ✓ 11,797 MB/s

SealPIR [7] (𝑑 = 2) 1
√
𝑁 ✗ ✓ 97 MB/s

MulPIR [6] (𝑑 = 2) 1
√
𝑁 ✗ ✓ 69 MB/s♦

FastPIR [4] 1 𝑁 ✗ ✓ 215 MB/s
OnionPIR [60] 1 log 𝑁 ✗ ✓ 104 MB/s
Spiral family [59] 1 log 𝑁 ✗ ✓ 1,314 MB/s

KO [48]+Paillier [63] 1 𝑁 𝜖 ✓ ✗ 0.131 MB/s
XPIR [3] (𝑑 = 2) 1

√
𝑁 ✓ ✓ 142 MB/s♥

FrodoPIR♠ [25] 1
√
𝑁 ✓ ✓ 1,256 MB/s

SimplePIR (§4) 1
√
𝑁 ✓ ✓ 10,305 MB/s

DoublePIR (§5) 1
√
𝑁 ✓ ✓ 7,622 MB/s

Table 1: A comparison of PIR schemes on database size 𝑁 and
security parameter 𝑛. The overhead column indicates whether the
server computation per database bit is at most polylogarithmic in
𝑛. The throughput column gives the maximum throughput we mea-
sured for any record size. The database and record sizes used are in
Appendix A. The throughput is normalized by the number of cores,
i.e., divided by two for two-server schemes. ♣This is a non-constant-
time implementation—each server’s running time depends on its
secret input. We include the performance for comparison, though a
side-channel-resistant production implementation might not use this
optimization. ♦No open-source code available; this throughput is re-
ported in the MulPIR paper [6]. ♥This XPIR throughput is reported by
SealPIR [7]. ♠FrodoPIR is concurrent work and is essentially identical
to SimplePIR, up to the choice of lattice parameters (see Section 2).

server must perform roughly 𝑁𝐹𝑑−1 homomorphic operations
in the process of answering the client’s query.
The Damgård-Jurik [24] cryptosystem has expansion fac-

tor 𝐹 ≈ 1 + 𝜖 for any constant 𝜖 > 0, which yields very
communication-efficient PIR schemes [53]. It is possible to
construct PIR with similar communication efficiency from
an array of cryptographic assumptions [14, 17, 29]. However,
these schemes are all costly in computation: for each bit of
the database, the server must perform work polynomial in the
security parameter.
Lattice-based PIR. To drive down this computational cost,
recent PIR schemes instantiate the Kushilevitz-Ostrovsky con-
struction using encryption schemes based on the ring learning-
with-errors problem (“Ring LWE”) [55]. In these schemes, for
each bit of the database, the server performs work polylog-
arithmic in the security parameter—rather than polynomial.
However, these savings in computation come at the cost of a
larger expansion factor (𝐹 ≈ 10), which increases the commu-
nication as the dimension parameter 𝑑 cannot be too large. For
example, XPIR [3] takes 𝑑 = 2. In addition, the client in the

Kushilevitz-Ostrovsky scheme must upload 𝑁1/𝑑 ciphertexts,
and each ring-LWE ciphertext is at least thousands of kilobytes
in size. This imposes large absolute communication costs (e.g.,
tens of MB per query, on a database of hundreds of MB).
SealPIR [7] shows that the client can compress the cipher-

texts in an XPIR-style scheme before uploading them. The
server can then expand these ciphertexts using homomor-
phic operations. (FastPIR [4] uses a similar idea to compress
responses.) This optimization reduces the communication
costs by orders of magnitude, though it requires the server
to store some per-client information (“key-switching hints”)—
essentially, encryptions of the client’s secret decryption key—
that is megabytes in size and that the client must upload to the
server before it makes any queries.
MulPIR [6], OnionPIR [60], and Spiral [59] additionally use

fully homomorphic encryption [33] to reduce the communica-
tion cost. In Spiral [59], for example, the cost grows roughly
as 𝑁1/𝑑𝐹, where the exponent on the 𝐹 term is now 1 instead
of 𝑑 − 1. Building on ideas of Gentry and Halevi [34], Spiral
shows how to decrease the communication cost while keeping
the throughput high: up to 259 MB/s on a database of short
records. (With long database records, Spiral does not use the
SealPIR query compression technique and gets throughput as
large as 1,314 MB/s, at the cost of increased communication.)
Plain learning with errors. We base our PIR schemes on
the standard learning-with-errors (LWE) problem—not the
ring variant. The expansion factor of the standard LWE-based
encryption scheme, Regev encryption [68], is roughly 𝐹 =

𝑛 ≈ 1024, where 𝑛 is the lattice security parameter. This large
expansion factor means that a direct application of Regev
encryption to the Kushilevitz-Ostrovsky PIR scheme would be
disastrous in terms of communication and computation. Our
innovation is to show that the server can do the bulk of its work
in advance, and reuse it over multiple clients.
Aside from the fact that our scheme is based on a weaker

cryptographic assumption, namely plain LWE as opposed to
ring LWE, this strategy yields multiple benefits:
1. Our LWE-based schemes are simple to implement: they
require no polynomial arithmetic or fast Fourier transforms.

2. Our schemes do not require the server to store any extra
per-client state. In contrast, many schemes based on Ring
LWE [6, 7, 59, 60] rely on optimizations that require the
server to store one “key-switching hint” for each client.

3. Our schemes are faster. We avoid the costs associated with
ciphertext compression and expansion. In addition, since
we only need our encryption scheme to be linearly (not
fully) homomorphic, we can use smaller and more efficient
lattice parameters.
The drawback of our schemes is that they have larger com-

munication cost, especially when the client makes only a single
query (so the client cannot amortize the offline download cost
over multiple queries) or when the database records are long.
Concurrent work: FrodoPIR. FrodoPIR [25] is independent

USENIX Association 32nd USENIX Security Symposium 3891

concurrent work that constructs a PIR scheme that is essentially
identical to SimplePIR. The default configuration of FrodoPIR
has communication cost 𝑂 (𝑁), on database size 𝑁 , though
rebalancing the scheme gives a 𝑂 (𝑛

√
𝑁)-cost, on lattice di-

mension 𝑛, as in SimplePIR. The additional contributions of
our work are: the more communication-efficient DoublePIR
scheme, our new data structure for private set-membership
queries (Section 6), the application to certificate transparency
(Section 7), and an optimized implementation of our schemes.
Preprocessing and PIR. The server in our PIR schemes
performs some client-independent preprocessing. Prior work
uses server-side preprocessing—either one-time [10,13,15] or
per-client [21, 22,47,70,76]—to build PIR where the server
online work is sublinear in the database size. Prior work also
proves strong lower bounds on the performance of any such PIR
with preprocessing schemes [10,21,22,66]. In contrast, in this
work, we use preprocessing to build PIR where the amortized
per-query server work is still linear, but it is concretely efficient.
Multi-server PIR. In our PIR schemes, the client commu-
nicates with a single database server. In multi-server PIR
schemes [19], the client communicates with multiple database
servers and client privacy holds only as long an attacker can-
not compromise some number of them. In Table 1, we give
the throughput of an optimized implementation [45] of a
two-server PIR scheme based on distributed point functions
(“DPF PIR”) [12, 36]. We also report the throughput of a

√
𝑁-

communication two-server PIR scheme (“XOR PIR”) [19]. It
is possible to speed these schemes up by roughly 2× if the
server’s running time can depend on the Hamming weight of
the client’s query vector (“XOR PIR fast”). The downside of
this optimization is that it could potentially leak information
about one server’s secret query vector to another server via
timing information, thereby breaking client privacy. Whether
such a performance-leakage trade-off is acceptable in practice
likely depends on the application scenario.
Hardware acceleration for PIR. Recent work improves the
throughput of both single-server [52] and multi-server [41] PIR
using hardware acceleration. This approach is complementary
to ours, as it may further speed up our new PIR protocols.
Privacy and certificate transparency. Lueks and Gold-
berg [54] and Kales, Omolola, and Ramacher [45] propose
using multi-server PIR for auditing in certificate transparency.
We work in the single-server setting, where the client communi-
cates with a separate audit server (e.g., Google, in the applica-
tion to Chrome). Further, we introduce a new set-membership
data structure to reduce the cost of auditing (Section 6). We
discuss existing approaches to auditing in Section 7.

3 Background and definitions
Notation. For a probability distribution 𝜒, we use 𝑥 ←R 𝜒 to
indicate that 𝑥 is a random sample from 𝜒. For a finite set 𝑆, we
use 𝑥 ←R 𝑆 to denote sampling 𝑥 uniformly at random from 𝑆.

We use N to represent the natural numbers and Z𝑝 to represent
integers modulo 𝑝. All logarithms are to the base two. For
𝑥 ∈ N, we let [𝑥] denote the set {1, . . . , 𝑥}. Throughout, we
assume that values like

√
𝑁 are integral, wherever doing so is

essentially without loss of generality. Algorithms are modeled
as RAM programs and their runtime is measured in terms of
the number of RAM instructions executed. We use the symbols
MB and GB to denote 220 and 230 bytes, respectively.

3.1 Learning with errors (LWE)
The security of our PIR schemes relies on the decision version
of the learning-with-errors assumption [68]. The assumption
is parameterized by the dimension of the LWE secret 𝑛 ∈ N,
the number of samples 𝑚 ∈ N, the integer modulus 𝑞 ≥ 2,
and an error distribution 𝜒 over Z. The LWE assumption then
asserts that for a matrix A←R Z𝑚×𝑛

𝑞 , a secret s←R Z𝑛
𝑞 , an error

vector e←R 𝜒𝑚, and a random vector r←R Z𝑚
𝑞 , the following

distributions are computationally indistinguishable:

{(A,As + e)} 𝑐≈ {(A, r)}.

More specifically, the (𝑛, 𝑞, 𝜒)-LWE problem with 𝑚 sam-
ples is (𝑇, 𝜖)-hard if all adversaries running in time 𝑇 have
advantage at most 𝜖 in distinguishing the two distributions. In
Section 4.2, we give concrete values for the LWE parameters.
Secret-key Regev encryption. Regev [68] gives a secret-key
encryption scheme that is secure under the LWE assumption.
With LWE parameters (𝑛, 𝑞, 𝜒) and a plaintext modulus 𝑝, the
Regev secret key is a vector s←R Z𝑛

𝑞 . The Regev encryption of
a message ` ∈ Z𝑝 is

(a, 𝑐) = (a, a⊺s + 𝑒 + ⌊𝑞/𝑝⌋ · `) ∈ Z𝑛
𝑞 × Z𝑞 ,

for 𝑒 ←R 𝜒. To decrypt the ciphertext, anyone who knows the
secret s can compute 𝑐− a⊺s mod 𝑞 and round the result to the
nearest multiple of ⌊𝑞/𝑝⌋. Decryption succeeds as long as the
absolute value of the error sampled from the error distribution
𝜒 is smaller than 1

2 · ⌊𝑞/𝑝⌋. We say that a setting of the Regev
parameters supports correctness error 𝛿 if the probability of a
decryption error is at most 𝛿 (over the encryption algorithm’s
randomness). Regev encryption is additively homomorphic,
since given two ciphertexts (a1, 𝑐1) and (a2, 𝑐2), their sum
(a1+a2, 𝑐1+𝑐2) decrypts to the sum of the plaintexts, provided
again that the error remains sufficiently small.

3.2 Private information retrieval with hints
We now give the syntax and security definitions for the type of
PIR schemes we construct. Our form of PIR is very similar to
the standard single-server PIR schemes [19,48]. The primary
distinction is that we allow the PIR server to preprocess the
database ahead of time and to output two “hints”: one that the
server stores locally, and another that the server sends to each
client. This preprocessing allows the PIR server to push much
of its computational work into an offline phase that takes place

3892 32nd USENIX Security Symposium USENIX Association

before the client makes its query. In our constructions, both
hints are small—they have size sublinear in the database size.
In addition, all clients use the same hint and a client can reuse
the same hint for all of its of PIR queries.
Remark 3.1 (Handling database updates). As PIR schemeswith
preprocessing perform some precomputation over the database,
the server inherently needs to repeat some of this work if
the database contents change. Related work investigates how
to minimize the amount of computation and communication
that such database updates incur, in both a black-box [47] and
a protocol-specific [56] manner. We address how to handle
updates in our schemes in the full version of this paper [42].

A PIR-with-preprocessing scheme [10], over plaintext
space D and database size 𝑁 ∈ N, consists of four routines,
which all take the security parameter as an implicit input:
Setup(db) → (hint𝑠 , hint𝑐). Given a database db ∈ D𝑁 ,
output preprocessed hints for the server and the client.

Query(𝑖) → (st, qu). Given an index 𝑖 ∈ [𝑁], output a secret
client state st and a database query qu.

Answer(db, hint𝑠 , qu) → ans. Given the database db, a server
hint hint𝑠 , and a client query qu, output an answer ans.

Recover(st, hint𝑐, ans) → 𝑑. Given a secret client state st, a
client hint hint𝑐, and an answer ans, output a record 𝑑 ∈ D.

Correctness. When the client and the server execute the
PIR protocol faithfully, the client should recover its desired
database record with all but negligible probability in the
implicit correctness parameter. Formally, we say that a PIR
scheme has correctness error 𝛿 if, on database size 𝑁 ∈ N,
for all databases db = (𝑑1, . . . , 𝑑𝑁) ∈ D𝑁 and for all indices
𝑖 ∈ [𝑁], the following probability is at least 1 − 𝛿:

Pr

𝑑𝑖 = 𝑑𝑖 :

(hint𝑠 , hint𝑐) ← Setup(db)
(st, qu) ← Query(𝑖)

ans← Answer(db, hint𝑠 , qu)
𝑑𝑖 ← Recover(st, hint𝑐, ans)

 .
For the PIR scheme to be non-trivial, the total client-to-server

communication should be smaller than the bitlength of the
database. That is, it must hold that |hint𝑐 | + |qu| + |ans| ≪ |db|.
Security. The client’s query should reveal no information
about its desired database record. That is, we say that a PIR
scheme is (𝑇, 𝜖)-secure if, for all adversaries A running in
time at most 𝑇 , on database size 𝑁 ∈ N, and for all 𝑖, 𝑗 ∈ [𝑁],��Pr[A(1𝑁 , qu) = 1 : (st, qu) ← Query(𝑖)]

− Pr[A(1𝑁 , qu) = 1 : (st, qu) ← Query(𝑗)]
�� ≤ 𝜖 .

Remark 3.2 (Stateless client). The client in our PIR schemes
does not hold any secret state across queries. In contrast, in
SealPIR [7] and related schemes, the client builds its queries
using persistent, long-term cryptographic secrets. We show
in the full version of this paper [42] that, in certain settings,
a malicious PIR server can perform a state-recovery attack

against these schemes and thus break client privacy for both past
and future queries. Our stateless schemes are not vulnerable to
such attacks.

4 SimplePIR
In this section, we present our first PIR scheme, SimplePIR.
SimplePIR is the fastest single-server PIR scheme known to
date in terms of throughput per second per core (Table 1). In
particular, we prove the following theorem:

Informal Theorem 4.1. On database size 𝑁 , let 𝑝 ∈ N be a
suitable plaintext modulus for secret-key Regev encryption with
LWE parameters (𝑛, 𝑞, 𝜒), achieving (𝑇, 𝜖)-security for

√
𝑁

LWE samples and supporting
√
𝑁 homomorphic additions with

correctness error 𝛿 (cf. Section 4.2). Then, for a random LWE
matrix A ∈ Z

√
𝑁×𝑛

𝑞 , SimplePIR is a (𝑇 −𝑂 (
√
𝑁), 2𝜖)-secure

PIR scheme on database size 𝑁 , over plaintext space Z𝑝 , with
correctness error 𝛿.

We give a formal description of SimplePIR in Figure 2; we
prove its security and correctness in the full version of this
paper [42].
Remark 4.1 (Concrete costs of SimplePIR). Using the param-
eters of Informal Theorem 4.1, we give SimplePIR’s concrete
costs, with no hidden constants, in terms of operations (i.e.,
integer additions and multiplications) over Z𝑞 . In a one-time
public preprocessing phase, SimplePIR requires:
• the server to perform 2𝑛𝑁 operations in Z𝑞 , and
• the client to download 𝑛

√
𝑁 elements in Z𝑞 ,

where our implementation takes 𝑛 = 210 and 𝑞 = 232 to achieve
128-bit security against the best known attacks [5].
On each query, SimplePIR requires

• the client to upload
√
𝑁 elements in Z𝑞 ,

• the server to perform 2𝑁 operations in Z𝑞 , and
• the client to download

√
𝑁 elements in Z𝑞 .

4.1 Technical ideas
We now discuss the SimplePIR construction in more detail.
The simplest non-trivial single-server PIR schemes [16,

48, 53] take the following “square-root” approach: given an
𝑁-element database, the server stores this database as a

√
𝑁-by-√

𝑁 square matrix. Meanwhile, a client who wishes to query
for database entry 𝑖 ∈ [𝑁] decomposes index 𝑖 into the pair
of coordinates (𝑖row, 𝑖col) ∈ [

√
𝑁]2. Then, the client builds a

unit vector u𝑖col in Z
√
𝑁

2 (i.e., the vector of all zeros with a
single ‘1’ at index 𝑖col), element-wise encrypts it with a linearly
homomorphic encryption scheme, and sends this encrypted
vector to the server. The server computes the matrix-vector
product between the database and the query vector and returns
it to the client. Finally, the client decrypts element 𝑖row of the
server’s answer vector—which corresponds exactly to the inner

USENIX Association 32nd USENIX Security Symposium 3893

Construction: SimplePIR. The parameters of the con-
struction are a database size 𝑁 , LWE parameters (𝑛, 𝑞, 𝜒),
a plaintextmodulus 𝑝 ≪ 𝑞, and aLWEmatrixA ∈ Z

√
𝑁×𝑛

𝑞

(sampled in practice using a hash function). The database
consists of 𝑁 values in Z𝑝 , which we represent as a matrix
in Z

√
𝑁×
√
𝑁

𝑝 . Define the scalar Δ := ⌊𝑞/𝑝⌋ ∈ Z.

Setup(db ∈ Z
√
𝑁×
√
𝑁

𝑝) → (hint𝑠 , hint𝑐).
• Return (hint𝑠 , hint𝑐) ← (⊥, db · A ∈ Z

√
𝑁×𝑛

𝑞).

Query(𝑖 ∈ [𝑁]) → (st, qu).
• Write 𝑖 as a pair (𝑖row, 𝑖col) ∈ [

√
𝑁]2.

• Sample s←R Z𝑛
𝑞 and e←R 𝜒

√
𝑁 .

• Compute qu← (As + e +Δ · u𝑖col) ∈ Z
√
𝑁

𝑞 , where u𝑖col
is the vector of all zeros with a single ‘1’ at index 𝑖col.

• Return (st, qu) ← ((𝑖row, s), qu).

Answer(db ∈ Z
√
𝑁×
√
𝑁

𝑝 , hint𝑠 , qu ∈ Z
√
𝑁

𝑞) → ans.

• Return ans← db · qu ∈ Z
√
𝑁

𝑞 .

Recover(st, hint𝑐 ∈ Z
√
𝑁×𝑛

𝑞 , ans ∈ Z
√
𝑁

𝑞) → 𝑑.
• Parse (𝑖row ∈ [

√
𝑁], s ∈ Z𝑛

𝑞) ← st.
• Compute 𝑑 ← (ans[𝑖row] − hint𝑐 [𝑖row, :] · s) ∈ Z𝑞 ,
where ans[𝑖row] denotes component 𝑖row of ans and
hint𝑐 [𝑖row, :] denotes row 𝑖row of hint𝑐.

• Return 𝑑 ← RoundΔ (𝑑)/Δ ∈ Z𝑝 , which is 𝑑 rounded
to the nearest multiple of Δ and then divided by Δ.

Figure 2: The SimplePIR protocol.

product of database row 𝑖row and encrypted unit vector u𝑖col , or,
equivalently, the encrypted database entry at (𝑖row, 𝑖col). In this
scheme, the server and the client exchange 2

√
𝑁 ciphertext ele-

ments, while the server performs 𝑁 ciphertext multiplications
and additions to answer each PIR query.
Our starting point is to instantiate this “square-root” ap-

proach with the secret-key version of Regev’s LWE-based
encryption scheme [68]. Let (𝑛, 𝑞, 𝜒) be LWE parameters.
Then, the Regev encryption of a vector 𝝁 ∈ Z𝑚

𝑝 consists of a
pair of a matrix and a vector:

Enc(𝝁) = (A, c) = (A,As + e + ⌊𝑞/𝑝⌋ · 𝝁),

for some LWE matrix A←R Z𝑚×𝑛
𝑞 , secret s←R Z𝑛

𝑞 , and error
vector e←R 𝜒𝑚.
We make three crucial observations about Regev encryption:

1. First, a large part of the ciphertext—namely, the matrix
A—is independent of the encrypted message. It is thus
possible to generate the matrix A ahead of time.

2. Second, Regev encryption remains secure even when the
same matrix A is used to encrypt polynomially many mes-

√
𝑁

√
𝑁

db ×

𝑛

A

,

1

qu →

𝑛

hint𝑐

,

1

ans

one-time, offline preprocessing

per-query, online computation

Figure 3: The server computation in SimplePIR. Each cell represents a
Z𝑞 element, and× denotes matrix multiplication. The server performs
the bulk of its work in a one-time preprocessing step. Thereafter, the
server can answer each client’s query with a lightweight online phase.

sages, provided that each ciphertext uses an independent
secret vector s and error vector e [65]. (We give a proof of
this fact in the full version of this paper [42].)

3. Finally, we can take A to be pseudorandom (rather than
random) at a negligible loss in security, allowing us to
succinctly represent A by a short random seed.
In SimplePIR, we leverage these three observations as fol-

lows. Consider a client who wishes to retrieve the database
entry at (𝑖row, 𝑖col). At a conceptual level, the client’s query to
the server consists of Enc(u𝑖col) = (A, c)—the Regev encryp-
tion of the vector in Z

√
𝑁

𝑝 that is zero everywhere but with a
“1” at index 𝑖col. The server then represents the database as a
matrix D ∈ Z

√
𝑁×
√
𝑁

𝑝 and computes and returns the matrix-
vector product of the database with the client’s encrypted query,
i.e., (D · A,D · c). From the server’s reply, the client can use
standard Regev decryption to recover D · u𝑖col ∈ Z

√
𝑁

𝑝 , which
is exactly the 𝑖col-th column of the database, as desired.
Now, we make the following modifications:

1. We have the server compute the value D · A ahead of time
in a preprocessing phase. This preprocessing step requires
2𝑛𝑁 operations in Z𝑞 , on lattice dimension 𝑛 ≈ 210 and
database size 𝑁 . Then, to answer the client’s query, the
server needs to compute the valueD · c, which requires only
2𝑁 operations in Z𝑞 . So, an 𝑛/(𝑛 + 1) fraction (i.e., 99.9%)
of the server’s work can happen ahead of time—before the
client even decides which database record it wants to fetch.

2. We have all clients use the same matrix A to build each of
their queries. Then, the server only precomputesD ·A once.
The server sends this one-time “hint” to all clients. Thus, the
server amortizes the cost of computing and communicating
D · A over many clients and over many queries.

3. As an optimization, we compress A using pseudorandom-
ness. Specifically, the server and the clients can derive A as
the output of a public hash function, modelled as a random
oracle, applied to a fixed string in counter mode. This saves
on bandwidth and storage, as the server and the clients
communicate and store only a small seed to generate A.
The security of the SimplePIR construction follows almost

immediately from the security of Regev encryption [68] with a

3894 32nd USENIX Security Symposium USENIX Association

reused matrix A [65], which in turn follows from the hardness
of LWE. SimplePIR’s correctness follows from the correctness
of Regev’s linearly homomorphic encryption scheme and of
Kushilevitz and Ostrovsky’s “square-root” PIR template.

4.2 Parameter selection
Picking the LWE parameters (𝑛, 𝑞, 𝜒) and the plaintext
modulus 𝑝 requires a standard (though tedious) analysis. We
choose our parameters to have 128-bit security, according
to modern lattice-attack-cost estimates [5]. In particular, we
set the secret dimension 𝑛 = 210, use modulus 𝑞 = 232 (as
modern hardware natively supports operations with this
modulus), set the error distribution 𝜒 to be the discrete
Gaussian distribution with standard deviation 𝜎 = 6.4, and
allow correctness error 𝛿 = 2−40. We obtain the following
trade-off between database size 𝑁 and plaintext modulus 𝑝:

Database size 𝑁: 226 228 230 234 238 242

Plaintext modulus 𝑝: 991 833 701 495 350 247

We discuss parameter selection further in the full version [42].

4.3 Extensions
Finally, we extend our SimplePIR construction to meet the
requirements of realistic deployment scenarios:
Supporting databases with larger record sizes. The basic
SimplePIR scheme (Figure 2) supports a database in which
each record is a single Z𝑝 element—or, roughly 8-10 bits with
our parameter settings. Our main application (Section 7) uses
a database with one-bit records, though other applications of
PIR [4, 7, 8, 40, 59] use much longer records.
To handle large records, we observe that the client in Sim-

plePIR can retrieve an entire column of the database at once.
Concretely, after executing a single online phase with the server
to query for database element (𝑖row, 𝑖col), the client can run the
Recover procedure

√
𝑁 times—once for every row in [

√
𝑁]—

to reconstruct the entire column 𝑖col of the database matrix. So,
to support large records, we encode each record as multiple
elements in the plaintext space, Z𝑝 , and store these elements
stacked vertically in the same column. By making a single
online query and reconstructing the corresponding column of
elements, the client recovers any record of its choosing.
On a database of 𝑁 records, each in Z𝑑

𝑝 (where 𝑑 ≤ 𝑁),
with LWE secret dimension 𝑛 and modulus 𝑞, SimplePIR has:
• one-time (hint) download 𝑛 ·

√
𝑑𝑁 elements in Z𝑞 ,

• per-query upload and download
√
𝑑𝑁 elements in Z𝑞 , and

• per-query server computation 2𝑑𝑁 operations in Z𝑞 .

Fetching many database records at once (“Batch PIR”). In
many applications [7,8], a client wants to fetch 𝑘 records from
the PIR server at once. If the client runs our PIR protocol 𝑘
times on a database of 𝑁 records, the total server time would
be roughly 𝑘𝑁 . We can apply the “batch PIR” techniques of

Ishai et al. [43] to allow a client to fetch 𝑘 records at server-side
cost≪ 𝑘𝑁 , without increasing the hint size.
The idea is to randomly partition the database of 𝑁 records

into 𝑘 chunks, each represented as a matrix of dimension
(
√
𝑁/𝑘)-by-

√
𝑁 . If the 𝑘 records that the client wants to fetch

fall into distinct chunks, the client can recover these records by
running SimplePIR once on each database chunk. In this case,
the hint size remains 𝑛

√
𝑁—as in one-query SimplePIR. The

communication cost for the client is 𝑘
√
𝑁—𝑘 times larger than

in one-query SimplePIR (and identical to the communication
if the client fetched all 𝑘 records sequentially). The server
performs 𝑁 operations in Z𝑞—as in one-query SimplePIR.
However, more than one of the client’s desired records may

fall into the same chunk. There are two ways to handle this:
• If the client must recover all 𝑘 records with overwhelming
probability, the client can make _ PIR queries to each of
the 𝑘 chunks to achieve failure probability 2−Ω(_) [7, 43].
This optimization saves on server work as long as _ < 𝑘 .

• If the client only needs to recover a constant fraction of the 𝑘
database records, then the client and the server can run this
batch-PIR protocol only once. The server-side computation
cost is as in one-query SimplePIR.

Additional improvements.We discuss how to further improve
the asymptotic efficiency of SimplePIR in the full version [42].

4.4 Fast linearly homomorphic encryption
In the full version of this paper [42], we introduce the notion of
linearly homomorphic encryption with preprocessing. This new
primitive abstracts out the key properties of Regev encryption
that we use in SimplePIR. We expect this new form of linearly
homomorphic encryption to have further practical applications.

5 DoublePIR
While SimplePIR has high server-side throughput, it requires
the client to download and store a relatively large preprocessed
hint, of size roughly 𝑛

√
𝑁 on lattice dimension 𝑛 ≈ 210 and

database size 𝑁 . In this section, we present DoublePIR, a new
PIR scheme that recursively applies SimplePIR to reduce the
hint size to roughly 𝑛2 on lattice dimension 𝑛—independent of
the database size—while maintaining a server-side throughput
upwards of 7.4 GB/s. (In practice, this hint size is 16 MB
for one-byte records.) For databases of very many records
(𝑁 ≫ 𝑛2 ≈ 220), DoublePIR has a much smaller hint size than
SimplePIR. As in SimplePIR, the per-query communication
cost for DoublePIR is 𝑂 (

√
𝑁) on database size 𝑁 .

5.1 Construction
We present a formal description of DoublePIR, along with
correctness and security proofs, in the full version of this
paper [42]. In this section, we describe the key design ideas.

USENIX Association 32nd USENIX Security Symposium 3895

We first give the concrete costs of DoublePIR on database
size 𝑁 , lattice dimension 𝑛, LWEmodulus 𝑞, plaintext modulus
𝑝, and ^ = ⌈log(𝑞)/log(𝑝)⌉ ≈ 4 (given in the full version [42]).
In a one-time public preprocessing phase, DoublePIR requires
1. the server to perform 2𝑛𝑁 + 2^𝑛2

√
𝑁 operations in Z𝑞 , and

2. the client to download ^𝑛2 elements in Z𝑞 .
On each query, DoublePIR requires
1. the client to upload 2

√
𝑁 elements in Z𝑞 ,

2. the server to do 2𝑁 + 2(2𝑛 + 1) ·
√
𝑁 · ^ Z𝑞 operations, and

3. the client to download (2𝑛 + 1) · ^ elements in Z𝑞 .
At a high level, DoublePIR first executes exactly as Sim-

plePIR: from the database, the server computes a hint matrix
and, in response to each client’s query, produces an answer
vector. At this point, we observe that a client querying for ele-
ment (𝑖row, 𝑖col) in SimplePIR needs two pieces of information
to recover its desired database element:
• row 𝑖row of the hint matrix D · A ∈ Z

√
𝑁×𝑛

𝑞 , and

• element 𝑖row of the answer vector a ∈ Z
√
𝑁

𝑞 .
Thus, in DoublePIR, we have the client execute a second level
of SimplePIR over the hint matrix and the answer vector to
retrieve these (𝑛 + 1) values. As such, the client in DoublePIR
recovers the database entry at (𝑖row, 𝑖col) without downloading
the large first-level hint.
Kushilevitz and Ostrovsky [48] first proposed using re-

cursion to reduce communication costs in PIR in this way.
However, applied naïvely, this strategy requires (𝑛 + 1) ≈ 210

instances of PIR to recover the (𝑛 + 1) desired values. We
avoid this bottleneck with the insight that SimplePIR lets the
client retrieve a column of the database at a time (as discussed
in Section 4.3). Therefore, in DoublePIR, we run the second
level of PIR over the database corresponding to the transpose
of the hint matrix concatenated with the answer vector (i.e.,[
D · A | | a

]𝑇). Using a single invocation of SimplePIR, the
client in DoublePIR can retrieve column 𝑖row of this database—
which holds exactly row 𝑖row of the hint matrix and element
𝑖row of the answer vector—and finally recover the database
entry at (𝑖row, 𝑖col). As SimplePIR executes over a database of
elements in Z𝑝, while the hint matrix and the answer vector
consist of elements in Z𝑞 , the server in DoublePIR computes
the base-𝑝 decomposition of the entries in the hint matrix and
the answer vector before performing the second level of PIR.
Since this second level of PIR operates on a much smaller

database, its cost is dwarfed by that of the first level of PIR:
in DoublePIR, both the online communication and the server
throughput remain roughly the same as in SimplePIR. More-
over, as the client in DoublePIR forgoes downloading the large
first-level hint, it now only downloads a much smaller hint,
whose size is independent of the database length, produced by
the second level of PIR. Concretely, our PIR client downloads
a 16 MB hint in the offline phase.
Remark 5.1 (Why not recurse more?). DoublePIR performs
two levels of PIR to reduce the total communication. A natural

question is whether additional levels of recursion can help,
as in standard single-server PIR schemes [48]. After 𝑟 levels
of recursion, the cost of the recursive PIR scheme, on lattice
dimension 𝑛 and database size 𝑁 , would be (hiding constants):

• one-time download 𝑛𝑟 in the preprocessing step, as well as
• per-query upload 𝑟 · 𝑁1/𝑟 and download 𝑛𝑟−1.

For 𝑟 > 2, the communication is likely too large for databases
of interest. An intriguing open question is to construct recursive
LWE-based PIR schemes with total communication 𝑛 · 𝑁1/𝑟 .

5.2 Extensions

We extend DoublePIR to handle diverse deployment scenarios.

Handling large database records. To handle databases with
large records, we represent each record as a series of elements
in Z𝑝 , where 𝑝 is the plaintext modulus, using base-𝑝 decom-
position. Let 𝑑 denote the number of Z𝑝 elements that each
record maps to. Then, on each execution of DoublePIR, we run
the PIR scheme 𝑑 times in parallel, over 𝑑 databases, where
the 𝑖-th database holds the 𝑖-th Z𝑝 element of each record.
With this approach, DoublePIR’s throughput is identical on
databases with long records and with short records. On a
database of 𝑁 records, each in Z𝑑

𝑝, with lattice dimension 𝑛,
LWE modulus 𝑞, and ^ = ⌈log(𝑞)/log(𝑝)⌉, DoublePIR has:

• hint size 𝑑^𝑛2 elements in Z𝑞 ,
• online upload 2

√
𝑁 elements in Z𝑞 ,

• online server work 2𝑑
(
𝑁 + ^(2𝑛 + 1)

√
𝑁

)
ops. in Z𝑞 , and

• online download 𝑑^ · (2𝑛 + 1) elements in Z𝑞 .

Batching client queries. To implement query batching in
DoublePIR, we batch queries exactly as in SimplePIR when
performing the first level of PIR. As DoublePIR makes non-
black-box use of SimplePIR in performing the second level of
PIR, we are not able to derive any computation savings from
batching in this second, recursive step. (In particular, in the
second level of PIR, the client must read an entire column
consisting of (𝑛+1) elements at once for each query; this breaks
SimplePIR’s batching trick.) However, as the first level of
PIR dominates the computation in DoublePIR, batching many
queries nevertheless greatly improves DoublePIR’s throughput.
Concretely, to fetch a constant fraction among a set of 𝑘

records from a database of 𝑁 values inZ𝑝 , on lattice dimension
𝑛, LWE modulus 𝑞, and ^ = ⌈log(𝑞)/log(𝑝)⌉, DoublePIR has:

• hint size ^𝑛2 elements in Z𝑞 ,
• online upload

√
𝑁 (𝑘 +

√
𝑘) elements in Z𝑞 ,

• online server work 2𝑁 + 2𝑘 (2𝑛 + 1)^
√
𝑁 ops. in Z𝑞 , and

• online download 𝑘^(2𝑛 + 1) elements in Z𝑞 .

3896 32nd USENIX Security Symposium USENIX Association

6 Data structure for private
approximate set membership

In this section, we introduce a new data structure for the private
approximate set membership problem. In this problem, a client
holds a private string 𝜎, a server holds a set of strings 𝑆, and
the client wants to test whether 𝜎 ∈ 𝑆 without revealing 𝜎 to
the server. Unlike in private set intersection [32], the server’s
set 𝑆 is public. To rule out the trivial solution where the server
sends 𝑆 to the client, we insist on communication sublinear in
|𝑆 |. Our approach is approximate: there is some chance that
the client outputs “𝜎 ∈ 𝑆” when in fact this is not the case.
However, this false-positive rate is bounded even when the set
𝑆 and the string 𝜎 are chosen adversarially. Looking ahead,
our data structure will be at the core of our new scheme for
auditing in Certificate Transparency (Section 7).
At a high level, we have the server preprocess its set 𝑆 into

a data structure. Then, the client, holding a string 𝜎, can test
whether 𝜎 ∈ 𝑆 by privately reading a few bits of the server’s
data structure using PIR. The relevant cost metrics are:
• Number of probes. How many bits of the server’s data
structure must the client read?

• PIR database size. Over how many bits of the server’s data
structure does the client perform its private PIR read?

• Adversarial false-positive rate. Given an honest server but
an an adversarially chosen set 𝑆 and string 𝜎, what is the
probability, only over the client’s secret randomness, that
the client outputs “𝜎 ∈ 𝑆” when in fact 𝜎 ∉ 𝑆?

Background: Bloom filters. A Bloom filter [11] is a standard
data structure for approximate set membership. A one-hash-
function Bloom filter consists of a fixed-length bitstring 𝐷 and
uses a hash function𝐻 : {0, 1}∗ → {1, . . . , |𝐷 |}. Given a set of
strings 𝑆 ⊂ {0, 1}∗, the setup routine hashes each string 𝜎 ∈ 𝑆
into an index 𝑖 ∈ {1, . . . , |𝐷 |} and sets the corresponding bit
of the data array: 𝐷𝐻 (𝜎) ← 1. Then, to test whether a string
𝜎 is in the set represented by the data structure 𝐷, the query
algorithm outputs “𝜎 ∈ 𝑆” if and only if the bit 𝐷𝐻 (𝜎) = 1.
As long as the query string is chosen independently of the

hash function 𝐻, the probability of a false-positive is at most
1/2 when |𝐷 | ≥ 2 |𝑆 |. However, when the query string is
chosen adversarially—as can be the case in our application—
an adversary can easily find strings 𝜎 ∈ 𝑆 and �̂� ∉ 𝑆 such that
𝐻 (𝜎) = 𝐻 (�̂�). In this case, the one-hash-function Bloom filter
will always incorrectly output “�̂� ∈ 𝑆.” We present a new data
structure—which is a twist on Bloom filters—to address this
false-positive issue, without increasing the number of probes
or the size of the PIR read required by the query algorithm.

Remark 6.1 (False positives). Some, but not all, applications
can tolerate a non-negligible false-positive rate. For example,
credential-breach lookups [51, 64, 72] and contact discov-
ery [46] may tolerate false-positive rates as large as 2−30; in
contrast, Safe Browsing blocklist checks [37,47] demand a cryp-

𝑖

0 1 0 1 1 0
1 0 1 0 0 1
0 1 1 1 0 0
0 0 1 0 1 1
1 0 0 1 0 1

𝑆 = {𝜎1, 𝜎2, 𝜎3} ...

hash
function 1

hash
function 𝑎

�̂� ∈ 𝑆?

PIR read

Figure 4: Our data structure for private, approximate set membership
with adversarial soundness, when instantiated with a set 𝑆 consisting
of three strings and with 𝑎 = 5 hash functions. We highlight in blue
the bits of the data structure that are set, in red the bits that the query
string �̂� maps to, and in yellow the area covered by the client’s PIR
read, when the client probes the 𝑖-th one-hash-function Bloom filter.

tographically negligible false-positive rate, as false positives
would cause a legitimate website to be flagged as malicious. In
the latter case, other data structures may be more appropriate.

6.1 Our approximate membership test
Our data structure for approximate set-membership, illustrated
in Figure 4, is parameterized by integers 𝑎, 𝑘 ∈ N, a universe
of strings U , and a set size 𝑁 . The data structure consists of 𝑎
independent one-hash-function Bloom filters [11], each of size
𝑘𝑁 bits. Crucially, these Bloom filters each use independent
hash functions, which are chosen after the set 𝑆 is fixed. In the
remainder of this section, we give an informal description of
our construction; a formal treatment appears in the full version
of this paper [42].
Data-structure setup. The setup algorithm takes as input a set
of strings 𝑆 ⊆ U of size at most 𝑁 . The algorithm then chooses
a set of 𝑎 hash functions—one per Bloom filter—and inserts
each string in 𝑆 into each of the 𝑎 one-hash-function Bloom
filters defined by these hash functions. (In practice, we would
use a salted hash function with a different salt per filter.)
Query algorithm. Given a query string 𝜎, the query algorithm
chooses an index 𝑖 ←R [𝑎] at random, and outputs the result of
querying the 𝑖-th one-hash-function Bloom filter on string 𝜎.

Our data structure has the following properties:
Correctness. For any set 𝑆 ⊆ U and any query string 𝜎 ∈ 𝑆,
the query algorithm always returns “𝜎 ∈ 𝑆.”
Adversarial false-positive rate 1/2. For any set 𝑆 ⊆ U of size
at most 𝑁 , for a random choice of the hash functions used in
the data structure, and for any query string �̂� ∉ 𝑆—which can
depend on the hash functions—the data structure incorrectly
returns “�̂� ∈ 𝑆” with probability at most 1/2 (taken over the
query algorithm’s randomness), for an appropriate choice of
the parameters 𝑎 and 𝑘 . In the full version [42], we prove:
Proposition 6.2: For all _ ∈ N, on parameters 𝑘 ≥ 8 and
𝑎 ≥ 2 (log(|U |) + _), our approximate set-membership data
structure has adversarial false-positive rate at most 1/2. The
construction fails with probability 2−_, over the choice of the
Bloom filters’ hash functions, modeled as independent random

USENIX Association 32nd USENIX Security Symposium 3897

oracles. Concretely, on |U | = 2256, taking 𝑎 = 768 and 𝑘 = 8
gives false-positive rate 1/2 and failure probability 2−128.

PIR compatibility. To privately test whether a string is in the
set, the client can perform a PIR read over only a small fraction
of the data structure. More specifically, the query algorithm
probes a single bit in one of the Bloom filters. The client can
reveal which Bloom filter it wants to probe to the server, as
this does not depend on the query string. So, while the entire
data structure consists of 𝑎𝑘𝑁 bits, the client can execute a
private set-membership test with a PIR read over only 𝑘𝑁 bits.

6.2 Related approaches and comparison
We now compare our solution to other data structures for
private approximate set-membership, given in Table 5. One
natural alternative would be to use a single one-hash-function
Bloom filter. (In contrast, our construction uses 𝑎 ≈ 768 one-
hash-function Bloom filters.) However, this approach is not
sound in our adversarial setting: as the data structure (including
its hash function) is public, an adversary can trivially find a
string that causes the query algorithm to always return a false-
positive result. We can address this issue by using a Bloom
filter with 𝑂 (_) hash functions, which gives security against
2𝑂 (_) -time attacks (where _ ≈ 128 is a security parameter).
Unfortunately, the query algorithm of such a data structure is
roughly _× more expensive than ours in terms of both (1) the
number of probes and (2) the size of the PIR read required for
a private query.
Adversarial Bloom filters [20, 31, 61] provide the false-

positive guarantees we require, but do not naturally support
private reads via PIR. In particular, they have the client send its
string 𝜎 to the server; the server then applies a pseudorandom
function to 𝜎 to determine which bits to probe. It is not clear
how to use such a data structure in our setting without relatively
expensive general-purpose multi-party computation schemes.
Another approach to private set membership has the client

and the server execute a PIR by keywords protocol [18]. On
security parameter _, the server stores a _-bit hash of each
string in its set in a hash table. Thereafter, the client can
perform PIR over this hash table to check if a string is present.
While the client probes only few locations of the hash table,
its PIR read must cover the entire table, or roughly 3_𝑁 bits.
Finally, prior work constructs other data structures for ap-

proximate set membership [27,38], offering different perfor-
mance trade-offs. Combining our ideas for efficiently tolerating
false positives in an adversarial setting with such data structures
is an intriguing direction for future work.

7 Application: Auditing in
Certificate Transparency

We now apply our new PIR schemes (Sections 4 and 5), along
with our set-membership data structure (Section 6), to solve

PIR Adv. false-
Probes size positive rate

PIR by keywords [18] 2 3_𝑁 0
Standard Bloom filter [11] 𝑂 (_) 𝑂 (_𝑁) 0
1-hash-fn Bloom filter [11] 1 2𝑁 1 (insecure)

This work 1 8𝑁 1/2

Table 5: Private set-membership data structures, for sets of 𝑁 elements
from universe U , on security parameter _. The data structures may fail
with probability |U | 2−_, over their random choice of hash functions,
modeled as random oracles.

the problem of privately auditing signed certificate timestamps
in deployments of Certificate Transparency [49, 50, 57].

7.1 Problem statement

Background: Certificate Transparency. The goal of Certifi-
cate Transparency is to store every public-key certificate that
every certificate authority issues in a set of publicly accessible
logs. To this end, certificate authorities submit the certificates
they issue to log operators, who respond with a signed certifi-
cate timestamp (SCT). The SCT is a promise to include the
new certificate in the log maintained by this operator within
some bounded period of time.
Later on, when a TLS server sends a public-key certificate

to a client, the server attaches a number of SCTs according to
the client’s policy (e.g., Chrome and Safari both require SCTs
from three distinct log operators). By verifying the SCTs, the
client can be sure that each of the log operators has seen the
new certificate and—if the operator is honest—will eventually
log it. Domain operators can then use the logs to detect whether
a certificate authority has mistakenly or maliciously issued a
certificate for their domain. In this setting, the log contents are
public; related work investigates scenarios where this is not
the case, as in end-user key distribution [58].
SCT auditing. To keep the logs honest, some party in the
system must verify that the log operators are fulfilling the
promise implicit in the SCTs that they issue. In particular, if a
client receives an SCT for some certificate 𝐶 signed by a log
operator, the client would like to verify that 𝐶 appears in that
operator’s public log. This process is SCT auditing.
Clients must be involved in SCT auditing, as they are the

only participants who see SCTs “in the wild.” However, the set
of SCTs that a client sees reveals information about the client’s
browsing history: the fact that a client has seen an SCT for
example.com reveals that the client has visited example.com.
Thus, to protect its privacy, the client should not reveal which
SCTs it has seen to the log operators or to any other entity.
Google’s recent solutions for SCT auditing [26, 71] involve

an SCT auditor (run by Google) that is separate from the client.
In their model, the auditor maintains the entire set of SCTs
for non-expired certificates from all Certificate Transparency
logs. Every SCT that a client sees for a live website should
appear in the auditor’s set. To determine whether an SCT is

3898 32nd USENIX Security Symposium USENIX Association

valid, a client can check whether it (or really, its SHA256 hash)
appears in the set of valid SCTs maintained by the auditor:
• If the client’s SCT appears in the auditor’s set, then the log
server that issued the SCT correctly fulfilled its promise.

• If not, the client can report the problematic SCT to the
auditor to investigate further. Prior work shows how this
can be done while keeping the SCT in question hidden [30].
A privacy-protecting solution for SCT auditing must allow

the client to test whether its SCT appears in the auditor’s set,
without revealing its SCT to the auditor. This is a private set-
membership problem [72]. While on its surface this problem
resembles other applications of PIR in the literature [45,54],
the fact that many clients engage in the protocol with the same
auditor means that we can tolerate false positives. That is, it is
acceptable for a client to incorrectly believe that an SCT is in the
auditor’s set, since over many clients we can expect that missing
SCTs are eventually identified. To summarize, we require the
following properties, which we state only informally:
• Correctness with false positives.When an honest client
holding string 𝜎, chosen independently of the client’s secret
randomness, interacts with an honest auditor holding set 𝑆:
– if 𝜎 ∈ 𝑆, then the client always outputs “valid,” and
– if 𝜎 ∉ 𝑆, then the client outputs “valid” with probability
at most 1/2, over the choice of the client’s randomness.

• Privacy for the client.When an honest client interacts with
a malicious auditor, the auditor learns nothing about the
client’s private input string 𝜎.
We do not require correctness to hold against a malicious

auditor; such an auditor could trivially lie about its set of SCTs.
System parameters. There are roughly five billion active SCTs
in the web today [26]. Roughly six million of these are added or
removed each day as certificate authorities issue certificates and
as certificates expire [1]. Google Chrome’s current proposal
for SCT auditing has a false-positive rate of essentially zero:
when a client audits an SCT, it correctly learns whether the
SCT is valid. However, Chrome’s proposal has a detection rate
of 1/1000: the Chrome client randomly samples 0.1% of the
SCTs associated with its TLS connections, and audits only this
small fraction of all SCTs [26]. This random sampling reduces
the amortized cost of auditing by 1000×, but also reduces
the chance that any single auditing client catches a cheating
log. Still, across many auditing clients, this randomized SCT
auditing catches—with high probability—widely distributed
invalid SCTs. After 1000 clients observe an invalid SCT, in
expectation one will audit it and implicate the cheating log.
Existing approaches. Two notable proposals for SCT
auditing—which do not provide cryptographic privacy—are:
Opt-out SCT auditing. Chrome’s current approach [26] has
the client reveal the first 20 bits of the hash of its SCT to the
auditor. The auditor replies with all ≈ 1000 SCTs in its set that
match the 20-bit prefix. This method achieves 𝑘-anonymity for
𝑘 = 1000, i.e., it leaks that the client visited one of 1000 sites.

Anonymizing proxy. The client could use proxy servers, such
as in Tor [28], to send its SCT to the auditor anonymously [23].
This mechanism is susceptible to timing attacks, which could
allow the auditor to deanonymize particular clients.

7.2 Our approach
We propose a new scheme for SCT auditing that achieves
cryptographic privacy. The deployment is as follows:
1. Auditor: Data-set construction. The auditor prepares an ap-
proximate set-membership data structure holding all SHA256
hashes of all 𝑁 active SCTs. This data structure consists of
𝑎 = 768 arrays, each 8𝑁 bits in length, and has false-positive
rate 𝜖 = 1/2 (Proposition 6.2). Then, the auditor runs the PIR
Setup routine on each of these 𝑎 arrays, producing 𝑎 PIR hints.
2. Client: Hint download. The client chooses a secret, random
index 𝑖∗ ←R [𝑎] and downloads the 𝑖∗-th hint from the auditor,
revealing 𝑖∗ to the auditor in the process. Whenever the client
wants to test whether some SCT appears in the auditor’s set,
the client can now read a single bit from the auditor’s 𝑖∗-th
array. The probability that a cheating log can trick the client
into accepting an invalid SCT is at most 𝜖 , the false-positive
rate of the underlying set-membership data structure.
If the client audits an 𝑓 -fraction of all of its TLS connections,

the detection rate is 𝑓 · (1− 𝜖). In our deployment, we take 𝑓 =
1/500 and 𝜖 = 1/2. This choice gives an overall detection rate
of 1/1000, matching that of Chrome’s current approach [26].
3.Client and auditor: SCT lookup via PIR. Each time the client
decides to audit an SCT, the client computes the bit of the
auditor’s 𝑖∗-th array that it needs to check to verify the SCT’s
validity. The client reads this bit privately by running the PIR
protocol’s online phase with the auditor, over the 𝑖∗-th array.
In this approach, the client reuses the same secret index 𝑖∗ for

multiple SCT lookups.As a result, the events that a client fails to
detect invalid SCT 𝐴 and invalid SCT 𝐵 are correlated, whereas
in Chrome today these events are independent. However, in our
approach, the probability that a client catches the first invalid
SCT that it looks up remains 1 − 𝜖 = 1/2. As such, the client
will catch at least one invalid SCT with probability 1/1000 and
will thus implicate a cheating log with these odds. Any log that
cheats more than 1000 clients will be caught in expectation.
Database updates. In our proposal, the client holds a PIR hint
that depends on the auditor’s set of active SCTs. Whenever this
set changes, which happens continuously as certificates are
issued and expire, the auditor must update its set-membership
data structure. Without extra engineering, the client would
have to download a fresh PIR hint from the auditor each time.
Our approach has the client download a fresh hint only

periodically—once per week, for example. The auditor speci-
fies the range of certificate issue dates that each hint covers.
When the client decides to audit an SCT, it checks whether its
current hint covers the issue date of the SCT in question. If so,
the client tests the SCT’s validity; if not, the client caches the
SCT so as to test its validity the next time it downloads a hint.

USENIX Association 32nd USENIX Security Symposium 3899

100 KB1 MB10 MB
Communication

(amortized over 100 queries)

125
250
500

1000
2000
4000
8000

Th
ro
ug

hp
ut

(M
B/
s)

SimplePIR
DoublePIR

SealPIR
FastPIR

OnionPIR

Spiral
SpiralPack

SpiralStream

SpiralStreamPack

Bet
ter

Figure 6: Throughput vs. per-query communication, on a 1 GB
database. For each PIR scheme, we display the communication and
the corresponding throughput for two choices of entry size: one that
maximizes throughput, and another that minimizes communication.
(For schemes displayed only once, both entry sizes are the same.) The
communication cost is the total (i.e., offline and online) communica-
tion, amortized over 100 queries. We highlight prior work in yellow .

In this way, the client eventually audits its full random sample
of SCTs, but reuses each hint for multiple SCT lookups. The
server must now store multiple versions of the database, which
is relatively inexpensive; in a large-scale deployment, one or
more physical servers could hold each version in memory.

8 Evaluation
Implementation. We implement SimplePIR in fewer than
1,200 lines of Go code, along with 200 lines of C, and Dou-
blePIR in 210 additional lines of Go code. Our code does not
rely on any external libraries and is published under the MIT
open-source license at github.com/ahenzinger/simplepir.
We use the appropriate data types to natively support op-

erations over Z𝑞 (e.g., uint32 for 𝑞 = 232). We store the
database in memory in packed form and decompress it into
Z𝑝 elements on-the-fly, as otherwise the Answer routine is
memory-bandwidth-bound. In DoublePIR, we represent the
database as a rectangular (rather than square) matrix, so that
the first level of PIR dominates the computation.
We run all experiments using a single thread of execution,

on an AWS c5n.metal instance running Ubuntu 22.04. To
collect the throughput numbers for tables, we run each scheme
five times and report the average. All standard deviations in
throughput are smaller than 10% of the throughput measured.

8.1 Microbenchmarks

Throughput. We first measure the maximal throughput of
each PIR scheme, on the database dimensions that suit it best.
In Table 1, we report the throughput measured for each scheme,

Communication
Offline (MB) Online (KB) Throughput

Up.♣Down.♠ Up. Down. (MB/s)

SealPIR 5 0 91 181 97
FastPIR 0.06 0 33 000 64 217
OnionPIR 5 0 256 128 60
Spiral 15 0 14 20 259
SpiralPack 19 0 14 20 260
SpiralStream 0.34 0 15 000 20 485
SpiralStreamPack 15 0 29 000 99 1,370★

SimplePIR (§4) 0 121 121 121 10,138
DoublePIR (§5) 0 16 313 32 7,622

Table 8: PIR scheme performance on a database of 233× 1-bit entries.
We highlight in green cells that are within 5× of the best, and in red
cells that are within 5× of the worst, in their respective columns. (We
leave uncolored cells that are within 5× of the best and worst.) We
automatically “re-balance” schemes without an automatic parameter
selection tool (SealPIR, FastPIR, and OnionPIR), by executing them
on a database of 233/𝑑 entries, each of size 𝑑, where 𝑑 is the closest
valid power-of-2 to the scheme’s “optimal” entry size (see Table 10).
♣The offline upload is equal to the per-client server storage. ♠The
offline download is equal to the client storage. ★The throughput here
is slightly higher than in Table 1 due to variance in the measurements.

on a database roughly 1 GB in size, where we take the entry
size to be that for which the highest throughput was reported in
the corresponding paper (or in a related paper, if it is not made
explicit). These entry sizes appear in Table 10. We confirm that
these throughputs are indeed the best achievable by measuring
each scheme’s throughput on each entry size in Figure 7.
SimplePIR andDoublePIR achieve throughputs of 10.0GB/s

and 7.4 GB/s respectively, which is roughly 8× faster than the
best prior single-server PIR scheme designed for the streaming
setting (SpiralStreamPack) and 30× faster than the best prior
single-server PIR scheme designed for databases with short
entries (Spiral). SimplePIR and DoublePIR exceed the per-
server throughput1 of some prior two-server PIR schemes: two-
server PIR from DPFs [45] has a throughput of 5.3 GB/s/core.
Finally, we benchmark the throughput of performing only
XORs over a database to provide a hard upper bound on the
speed of linear-work, two-server PIR [10,19].When each server
performs a linear scan of XORs over the database, two-server
PIR’s throughput is 5.9 GB/s/core. When each server performs
a linear scan of XORs over a random half of the database, two-
server PIR’s throughput is 11.5 GB/s/core—but this requires a
non-constant-time implementation (see discussion in Table 1).
Communication. In Figure 7, we give each scheme’s total
communication, amortized over 100 queries, for increasing
entry sizes. On databases with short entries, DoublePIR’s
amortized communication is comparable to that of the most
communication-efficient schemes (Spiral, SpiralPack, SealPIR,
and OnionPIR). With larger entries, DoublePIR’s ammortized

1In computing the per-server throughput of two-server PIR (from DPFs
and from XOR), we divide the measured throughput by two.

3900 32nd USENIX Security Symposium USENIX Association

github.com/ahenzinger/simplepir

1 10 100 100010000
Entry size (in bits)

100 KB

1 MB

10 MB

100 MB

1 GB

10 GB

Co
m
m
un

ic
at
io
n

(a
m
or
tiz

ed
ov

er
10

0
qu

er
ie
s)

SimplePIR

DoublePIR

SealPIR

FastPIR

OnionPIR
SpiralSpiralPack

SpiralStream

SpiralStreamPack

1 10 100 1000 10000
Entry size (in bits)

10

100

1000

10000

Th
ro
ug

hp
ut

(M
B/
s)

SimplePIR
DoublePIR

SealPIR
FastPIR

OnionPIR

Spiral
SpiralPack
SpiralStream

SpiralStreamPack

Figure 7: Throughput
and per-query commu-
nication for each PIR
scheme, on a 1 GB
database with entries
of increasing size. The
per-query communica-
tion cost is the total
(i.e., offline and online)
per-query communica-
tion, amortized over
100 queries.

communication costs increase, as the client must download
many hints. The two schemes with the closest throughput to
ours (SpiralStream and SpiralStreamPack), as well as Fast-
PIR, have much larger amortized communication than both
DoublePIR and SimplePIR on entry sizes less than a kilobit.
Throughput vs. communication trade-off. We summa-
rize these findings in Figure 6, which displays the through-
put/communication trade-off achieved by each PIR scheme.
Concretely, we run each scheme on a database of 233 bits with
increasing entry sizes (as also done in Figure 7). Then, for each
scheme, we display the per-query communication (amortized
over 100 queries) and the corresponding throughput for two
choices of the entry size: one that maximizes the through-
put, and another that minimizes the communication. Figure 6
demonstrates that our new PIR schemes achieve a novel point in
the design space: SimplePIR and DoublePIR have substantially
higher throughput than all prior single-server PIR schemes;
DoublePIR further has a per-query communication cost that is
competitive with the most communication-efficient schemes.
Comparison on a database of 233 × 1-bit entries. In Table 8,
we give a fine-grained comparison of the performance of each
scheme on a database relevant to our application, consisting
of 233 1-bit entries. On this database, SimplePIR and Dou-
blePIR again achieve much higher throughput than all other
schemes (9.9 GB/s and 7.4 GB/s respectively). SimplePIR has
high offline download and thus also client-side storage costs.
However, DoublePIR’s offline download is comparable to the
offline communication of other PIR schemes, and its online
communication is on the order of kilobytes.
For each scheme, we additionally compute its cost per query,

when the client makes 100 queries, using the AWS costs
for compute ($1.5 · 10−5/core-second) and data transfer out
of Amazon EC2 ($0.09/GB). SimplePIR’s per-query cost is
$1 · 10−4, while DoublePIR and the cheapest scheme from
related work (SpiralStreamPack) each achieve a per-query cost
of $2 · 10−5. We note, however, that SpiralStreamPack requires
megabytes of online upload, which is not reflected in its per-
query cost, as AWS only charges for outgoing communication.
Batching queries. Finally, we evaluate how SimplePIR and
DoublePIR’s effective throughput scales when the client makes

1 4 16 64 2561024
Num. queries per batch

10

100

1000

Th
ro
ug

hp
ut

(G
B/
s)

Sim
ple

PIR
DoublePIR

Figure 9: Effective PIR
throughput (database size
× queries per second),
with increasing batch sizes
and a fixed-size hint, on
a database consisting of
233×1-bit entries. The
shading displays the stan-
dard deviation.

a batch of queries for 𝑘 records at once, assuming the client
only needs to recover a constant fraction of the 𝑘 records. For
increasing values of 𝑘 , we compute the expected number of
“successful” queries (i.e., the expected number of queries that
fall into a distinct database chunk, as discussed in Section 4.3)
and we derive the expected “successful” throughput—that is,
the throughput measured when the server answers that number
of queries at once, with a single pass over the database.
Figure 9 shows that SimplePIR and DoublePIR’s throughput

increases when the client makes a batch of queries at once.
SimplePIR’s throughput scales linearly, achieving a value of
over 100 GB/s on batch size 𝑘 ≥ 16 and 1000 GB/s on batch
size 𝑘 ≥ 256. DoublePIR achieves a throughput over 50 GB/s
for 𝑘 ≥ 32; when 𝑘 ≥ 256, the throughput plateaus at roughly
100 GB/s, as the second level of PIR becomes a bottleneck.
In the full version of this paper [42], we give additional

benchmarks that measure the server preprocessing time, the
client time, and the non-amortized communication of our new
PIR schemes, along with tables containing the data displayed
in Figures 6, 7 and 9.

8.2 Certificate Transparency benchmark
We propose using DoublePIR for the SCT auditing application.
With our new data structure for private set membership, the task
of SCT auditing requires a single round of PIR over a database
with 1-bit entries. For such a database, our microbenchmarks
in Section 8.1 show that DoublePIR achieves both high server
throughput and small client storage and communication. SCT
auditing occurs in the background, and is not on the critical
path to web browsing. Thus, while using PIR may increase the

USENIX Association 32nd USENIX Security Symposium 3901

latency of auditing, we believe this is a desirable trade-off in
exchange for cryptographic privacy, as long as the computation
remains modest and the communication remains comparable.
To benchmark DoublePIR in this application context, we

evaluate the scheme on a database consisting of 236 × 1-bit
entries, which is the size of a row in our approximate set
membership data structure when we instantiate it with all 5
billion active SCTs. (In our evaluation, each entry is a random
bit.) On this database size, we measure that DoublePIR has a
“hint” of size 16MB, an online upload of 724 KB, and an online
download of 32 KB. The server can answer each query in fewer
than 1.3 core-seconds (and this work is fully parallelizable).
As our client must audit one in every 500 TLS connections, our
proposal for SCT auditing then requires: (1) 16 MB of client
storage and download every week (to keep the client hint),
and (2) per TLS connection, an amortized overhead of 0.003
core-seconds of server compute and 1.5 KB of communication.
Using the AWS costs for compute ($1.5 · 10−5 per core second)
and data transfer ($0.09 per outgoing GB), for each client,
this amounts to a fixed cost of $0.001 per week, along with
$4 · 10−8 per TLS connection. For a typical client making
104 TLS connections per week [2], we expect this cost to
be roughly $0.1 per year. Since a typical client makes only
about 20 queries to the audit server using each week’s hint, we
can reduce the client’s storage to less than 400 KB using the
optimization from the full version of this paper [42].
By comparison, Chrome’s SCT auditing scheme [26] pro-

vides only 𝑘-anonymity for 𝑘 = 1000: the server learns that a
client visited one of a set of 1000 domains. Auditing incurs
an amortized overhead of 240 B of communication per con-
nection, negligible server computation, and no client storage
(unless the client caches popular SCTs). Again assuming a
client making 104 TLS connections per week [2], we expect
this scheme to cost roughly $0.01/client/year. Our approach
using DoublePIR incurs only 13× more communication and
achieves the goal of cryptographic privacy.

9 Conclusion
We show that the per-core throughput of single-server PIR
can approach the memory bandwidth of the machine and the
performance of two-server PIR. Two exciting directions remain
open: one is to reduce our schemes’ communication; another is
to combine our ideas with those of sublinear-time PIR [21,22]
to reduce the computation beyond the linear-server-time barrier.

Acknowledgements.We thank Martin Albrecht for answering
questions about LWE hardness estimates, Vadim Lyubashevsky
for advice on discrete gaussian sampling, and Adam Belay and
Zhenyuan Ruan for discussions about AVX performance. We
are grateful to Anish Athalye and Derek Leung for reviewing
a draft of this work, and to Dima Kogan, David Wu, Jean-
Philippe Bossuat, and Samir Menon for helpful conversations
and feedback. We thank Sebastian Angel for constructive

comments on the discussion of malicious security in an earlier
version of this work, and for suggestions on how to improve
the presentation. We thank Yuval Ishai and Matan Hamilis
for discussing how best to compare against two-server PIR
schemes. Yuval also helpfully suggested the “XOR PIR fast”
construction discussed in Table 1. This work was supported
in part by the National Science Foundation (Award CNS-
2054869), a gift from Google, a Facebook Research Award,
and MIT’s Fintech@CSAIL Initiative. Alexandra Henzinger
was supported by the National Science Foundation Graduate
Research Fellowship under Grant No. 2141064 and an EECS
Great Educators Fellowship. Matthew M. Hong was funded by
NIH R01 HG010959. Vinod Vaikuntanathan was supported by
DARPA under Agreement No. HR00112020023, NSF CNS-
2154149, MIT-IBM Watson AI, Analog Devices, a Microsoft
Trustworthy AI grant and a Thornton Family Faculty Research
Innovation Fellowship. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United
States Government or DARPA.

References
[1] Merkle town. https://merkle.town/.

[2] Mozilla Telemetry Portal, Measurement Dash-
board. https://telemetry.mozilla.org/new-

pipeline/dist.html#!cumulative=0&end_date=

2022-07-17&include_spill=0&keys=__none__!__

none__!__none__&max_channel_version=nightly%

252F104&measure=HTTP_TRANSACTION_IS_SSL&min_

channel_version=nightly%252F104&processType=

*&product=Firefox&sanitize=1&sort_by_value=

0&sort_keys=submissions&start_date=2022-06-

27&table=1&trim=1&use_submission_date=0. Ac-
cessed 19 July 2022.

[3] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR: Private information
retrieval for everyone. PoPETs, 2016.

[4] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted infras-
tructure. In OSDI, 2021.

[5] Martin Albrecht, Rachel Player, and Sam Scott. On the
concrete hardness of learning with errors. In Journal of
Mathematical Cryptology, 2015.

[6] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication–Computation trade-offs in PIR. In
USENIX Security, 2021.

3902 32nd USENIX Security Symposium USENIX Association

https://merkle.town/
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0

[7] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. PIR with compressed queries and amortized query
processing. In S&P, 2018.

[8] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In OSDI,
2016.

[9] Michael Backes, Aniket Kate, Matteo Maffei, and Kim
Pecina. ObliviAd: provably secure and practical online
behavioral advertising. In S&P, 2012.

[10] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers’ computation in private information retrieval:
PIR with preprocessing. J. Cryptol., 2004.

[11] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
1970.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing: Improvements and extensions. In CCS,
2016.

[13] Elette Boyle, Yuval Ishai, Rafael Pass, andMaryWootters.
Can we access a database both locally and privately? In
TCC, 2017.

[14] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with poly-
logarithmic communication. In EUROCRYPT, 1999.

[15] Ran Canetti, Justin Holmgren, and Silas Richelson. To-
wards doubly efficient private information retrieval. In
TCC, 2017.

[16] Yan-Cheng Chang. Single database private information
retrieval with logarithmic communication. In ACISP,
2004.

[17] Melissa Chase, Sanjam Garg, Mohammad Hajiabadi,
Jialin Li, and Peihan Miao. Amortizing rate-1 OT and
applications to PIR and PSI. In TCC, 2021.

[18] Benny Chor, Niv Gilboa, and Moni Naor. Private infor-
mation retrieval by keywords. Cryptology ePrint Archive,
Report 1998/003, 1998.

[19] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In FOCS,
1995.

[20] David Clayton, Christopher Patton, and Thomas Shrimp-
ton. Probabilistic data structures in adversarial environ-
ments. In CCS, 2019.

[21] HenryCorrigan-Gibbs, AlexandraHenzinger, andDmitry
Kogan. Single-server private information retrieval with
sublinear amortized time. In EUROCRYPT, 2022.

[22] Henry Corrigan-Gibbs and Dmitry Kogan. Private infor-
mation retrieval with sublinear online time. In EURO-
CRYPT, 2020.

[23] Rasmus Dahlberg, Tobias Pulls, Tom Ritter, and
Paul Syverson. Privacy-preserving and incrementally-
deployable support for Certificate Transparency in Tor.
PoPETS, 2021.

[24] Ivan Damgård andMads Jurik. A generalisation, a simpli-
fication and some applications of Paillier’s probabilistic
public-key system. In PKC, 2001.

[25] Alex Davidson, Gonçalo Pestana, and Sofía Celi.
Frodopir: Simple, scalable, single-server private informa-
tion retrieval. Cryptology ePrintArchive, Paper 2022/981,
2022.

[26] Joe DeBlasio. Opt-out SCT auditing in Chrome.
https://docs.google.com/document/d/16G-

Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit.

[27] Peter C. Dillinger and StefanWalzer. Ribbon filter: practi-
cally smaller than bloom and xor. CoRR, abs/2103.02515,
2021.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The Second-Generation onion router. In USENIX
Security, 2004.

[29] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Mala-
volta, Tamer Mour, and Rafail Ostrovsky. Trapdoor hash
functions and their applications. In CRYPTO, 2019.

[30] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and
Dan Boneh. Certificate Transparency with privacy. In
PETS, 2017.

[31] Mia Filić, Kenneth G. Paterson, Anupama Unnikrishnan,
and FernandoVirdia. Adversarial correctness and privacy
for probabilistic data structures. CCS, 2022.

[32] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In EURO-
CRYPT, 2004.

[33] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, 2009.

[34] Craig Gentry and Shai Halevi. Compressible FHE with
applications to PIR. In TCC, 2019.

[35] Craig Gentry and Zulfikar Ramzan. Single-database pri-
vate information retrieval with constant communication
rate. In ICALP, 2005.

[36] Niv Gilboa and Yuval Ishai. Distributed point functions
and their applications. In EUROCRYPT, 2014.

USENIX Association 32nd USENIX Security Symposium 3903

https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit

[37] Google. Safe BrowsingAPIs (v4). https://developers.
google.com/safe-browsing/v4.

[38] Thomas Mueller Graf and Daniel Lemire. Xor filters:
Faster and smaller than bloom and cuckoo filters. ACM
J. Exp. Algorithmics, 2020.

[39] Matthew Green, Watson Ladd, and Ian Miers. A protocol
for privately reporting ad impressions at scale. In CCS,
2016.

[40] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Sri-
nath Setty, Lorenzo Alvisi, andMichaelWalfish. Scalable
and private media consumption with Popcorn. In NSDI,
2016.

[41] Daniel Günther, Maurice Heymann, Benny Pinkas, and
Thomas Schneider. GPU-accelerated PIR with Client-
Independent preprocessing for Large-Scale applications.
In Usenix Security, 2022.

[42] Alexandra Henzinger, Matthew M. Hong, Henry
Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikun-
tanathan. One server for the price of two: Simple and fast
single-server private information retrieval. Cryptology
ePrint Archive, Paper 2022/949, 2022.

[43] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Batch codes and their applications. In STOC, 2004.

[44] Ari Juels. Targeted advertising ... and privacy too. In
CT-RSA, 2001.

[45] Daniel Kales, OlamideOmolola, and SebastianRamacher.
Revisiting user privacy for certificate transparency. In
EuroS&P, 2019.

[46] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private
contact discovery at scale. In USENIX Security, 2019.

[47] Dmitry Kogan and Henry Corrigan-Gibbs. Private block-
list lookups with Checklist. In USENIX Security, 2021.

[48] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In FOCS, 1997.

[49] Ben Laurie. Certificate transparency. Communications
of the ACM, 2014.

[50] Ben Laurie, Adam Langley, and Emilia Kasper. Certifi-
cate transparency. RFC 6962, 2013.

[51] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In CCS, 2019.

[52] Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu
Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan
Xie. INSPIRE: In-storage private information retrieval
via protocol and architecture co-design. In ISCA, 2022.

[53] Helger Lipmaa. An oblivious transfer protocol with log-
squared communication. In International Conference on
Information Security, 2005.

[54] Wouter Lueks and Ian Goldberg. Sublinear scaling for
multi-client private information retrieval. In Interna-
tional Conference on Financial Cryptography and Data
Security, 2015.

[55] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
ideal lattices and learning with errors over rings. Journal
of the ACM, 2013.

[56] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel.
Incremental offline/online PIR. In USENIX Security,
2022.

[57] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris
Thompson, Kevin Yeo, and Emily Stark. SoK: SCT
auditing in Certificate Transparency. In PETS, 2022.

[58] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,
Edward W. Felten, and Michael J. Freedman. CONIKS:
Bringing key transparency to end users. In USENIX
Security, 2015.

[59] Samir Jordan Menon and David J. Wu. Spiral: Fast,
high-rate single-server PIR via FHE composition. In
S&P, 2022.

[60] Muhammad Haris Mughees, Hao Chen, and Ling Ren.
OnionPIR: Response efficient single-server PIR. In CCS,
2021.

[61] Moni Naor and Eylon Yogev. Bloom filters in adversarial
environments. In CRYPTO, 2015.

[62] Rafail Ostrovsky and William E Skeith. A survey of
single-database private information retrieval: Techniques
and applications. In PKC, 2007.

[63] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In EUROCRYPT, 1999.

[64] Bijeeta Pal, Mazharul Islam, Thomas Ristenpart, and
Rahul Chatterjee. Might I Get Pwned: A second gen-
eration password breach alerting service. In USENIX
Security, 2022.

[65] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.
A framework for efficient and composable oblivious
transfer. In CRYPTO, 2008.

3904 32nd USENIX Security Symposium USENIX Association

https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4

[66] Giuseppe Persiano and Kevin Yeo. Limits of preprocess-
ing for single-server PIR. In SODA, 2022.

[67] Joel Reardon, Jeffrey Pound, and Ian Goldberg.
Relational-complete private information retrieval. Tech-
nical report, University of Waterloo, CACR, 2007.

[68] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. Journal of the ACM,
2009.

[69] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas De-
vadas. AdVeil: A private targeted-advertising ecosystem.
Cryptology ePrint Archive, Report 2021/1032, 2021.

[70] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran,
and Bruce Maggs. Puncturable pseudorandom sets and
private information retrieval with near-optimal online
bandwidth and time. In CRYPTO, 2021.

[71] Emily Stark and Chris Thompson. Opt-in SCT audit-
ing, 2020. https://docs.google.com/document/d/

1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/

edit.

[72] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from creden-
tial stuffing with password breach alerting. In USENIX
Security, 2019.

[73] Vish Viswanathan, Karthik Kumar, Thomas
Willhalm, Blazej Filipiak Patrick Lu, and Sri
Sakthivelu. Intel Memory Latency Checker.
https://www.intel.com/content/www/us/en/

developer/articles/tool/intelr-memory-latency-

checker.html.

[74] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
private queries on public data. In NSDI, 2017.

[75] Ke Coby Wang and Michael K Reiter. Detecting stuffing
of a user’s credentials at her own accounts. In USENIX
Security, 2020.

[76] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and
Elaine Shi. Optimal single-server private information
retrieval. Cryptology ePrint Archive, Paper 2022/609,
2022.

A Additional details on related work
For each PIR scheme from related work, we take its “optimal”
entry size to be that for which the highest throughput was
reported in the corresponding paper (or, if omitted, in a related

Database size Max. achievable
𝑁 × 𝑑 throughput/core

Prior two-server PIR
DPF PIR [45] 225 32 B 5,381 MB/s∗
XOR PIR 233 1 bit 6,067 MB/s∗
XOR PIR fast 233 1 bit 11,797 MB/s∗

Prior single-server PIR
SealPIR [7] 222 288 B 97MB/s
MulPIR [6] 105 40 KB 69MB/s†
FastPIR [4] 220 1024 B 215MB/s
OnionPIR [60] 215 30 KB 104MB/s
Spiral [59] 214 100 KB 353MB/s
SpiralPack [59] 215 30 KB 303MB/s
SpiralStream [59] 215 30 KB 518MB/s
SpiralStreamPack [59] 215 30 KB 1,314 MB/s
FrodoPIR [25] 220 1 KB 1,256 MB/s

This work (single-server PIR)
SimplePIR 220 1 KB 10,305 MB/s
DoublePIR 233 1 bit 7,622 MB/s

Table 10: Maximal throughput measured for each PIR scheme, on
databases of size roughly 1 GB, consisting of 𝑁 entries each of size
𝑑. The entry sizes, 𝑑, are those for which the highest throughput was
reported in the corresponding paper. ∗The throughput is normalized
by the number of servers, i.e., divided by two for 2-server PIR schemes.
†We estimate MulPIR’s throughput from the measurements given in
the paper, as no implementation is publicly available at this date.

paper). For each of our new PIR schemes (SimplePIR and
DoublePIR), we compute its “optimal” entry size by executing
the scheme on entries of increasing size, and selecting the entry
size that yields the highest throughput. In Table 10, we display
these entry sizes, along with each PIR scheme’s measured
throughput on a database roughly 1 GB in size, with entries of
the optimal size.

USENIX Association 32nd USENIX Security Symposium 3905

https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

	1 Introduction
	2 Related work and comparison
	3 Background and definitions
	3.1 Learning with errors (LWE)
	3.2 Private information retrieval with hints

	4 SimplePIR
	4.1 Technical ideas
	4.2 Parameter selection
	4.3 Extensions
	4.4 Fast linearly homomorphic encryption

	5 DoublePIR
	5.1 Construction
	5.2 Extensions

	6 Data structure for private approximate set membership
	6.1 Our approximate membership test
	6.2 Related approaches and comparison

	7 Application: Auditing in Certificate Transparency
	7.1 Problem statement
	7.2 Our approach

	8 Evaluation
	8.1 Microbenchmarks
	8.2 Certificate Transparency benchmark

	9 Conclusion
	References
	A Additional details on related work

