
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Downgrading DNSSEC: How to Exploit Crypto
Agility for Hijacking Signed Zones

Elias Heftrig, ATHENE and Fraunhofer SIT; Haya Shulman, ATHENE, Fraunhofer SIT,
and Goethe-Universität Frankfurt; Michael Waidner, ATHENE, Fraunhofer SIT,

and Technische Universität Darmstadt
https://www.usenix.org/conference/usenixsecurity23/presentation/heftrig

Downgrading DNSSEC:
How to Exploit Crypto Agility for Hijacking Signed Zones

Elias Heftrig
ATHENE

Fraunhofer SIT

Haya Shulman
ATHENE

Fraunhofer SIT
Goethe-Universität Frankfurt

Michael Waidner
ATHENE

Fraunhofer SIT
Technische Universität Darmstadt

Abstract
Cryptographic algorithm agility is an important property

for DNSSEC: it allows easy deployment of new algorithms
if the existing ones are no longer secure. Significant opera-
tional and research efforts are dedicated to pushing the deploy-
ment of new algorithms in DNSSEC forward. Recent research
shows that DNSSEC is gradually achieving algorithm agility:
most DNSSEC supporting resolvers can validate a number
of different algorithms and domains are increasingly signed
with cryptographically strong ciphers.

In this work we show for the first time that the crypto-
graphic agility in DNSSEC, although critical for making DNS
secure with strong cryptography, also introduces a severe vul-
nerability. We find that under certain conditions, when new,
unsupported algorithms are listed in signed DNS responses,
the resolvers do not validate DNSSEC. As a result, domains
that deploy new ciphers, risk exposing the validating resolvers
to cache poisoning attacks. We use this to develop DNSSEC-
downgrade attacks and experimentally and ethically evaluate
our attacks against popular DNS resolver implementations,
public DNS providers, and DNS resolvers used by web clients.

We validate the success of DNSSEC-downgrade attacks
by poisoning the resolvers: we inject fake records, in signed
domains, into the caches of validating resolvers. Our evalu-
ations showed that during 2021 major DNS providers, such
as Google Public DNS and Cloudflare, as well as 35% of
DNS resolvers used by the web clients were vulnerable to
our attacks. After coordinated disclosure with the affected
operators, that number reduced to 5.03% in 2022.

We trace the factors that led to this situation and provide
recommendations.

1 Introduction

DNSSEC [RFC4033-RFC4035] was designed to prevent DNS
cache poisoning attacks. Proposed and standardized in the 90s,
DNSSEC is slowly gaining traction and increasingly more
networks are now supporting DNSSEC. Our measurements

from November 2022 indicate that 5.26% of the domains on
1M-Tranco list are signed and 31.02% of the Internet clients
use DNSSEC-validating DNS resolvers. These measurements
show that the deployment of DNSSEC has not substantially
changed after our initial measurements in 2021. Our findings
are also inline with the measurements of signed zones by Sec-
Spider1 and measurements of validating resolvers by APNIC2,
whose longitudinal data collection, except occasional spikes,
exhibit a slight decline in DNSSEC support between 2021 and
2022. Although the number of DNSSEC-validating resolvers
tripled since 2014, most resolvers still support a limited set
of algorithms and many domains are signed with algorithms
that are no longer considered secure. Unfortunately, replacing
existing or adding new ciphers to DNSSEC is challenging.

Cryptographic algorithms agility. The research and oper-
ational communities invest significant efforts to measure the
currently supported ciphers, as well as to explore obstacles
towards deployment of new ciphers in DNSSEC. Initially, the
DNSSEC standard allowed domains to use either DSA/SHA1
or RSA/SHA1 for signing their zones [RFC4034] - these are
no longer deemed secure. Since then, additional algorithms
were included in DNSSEC [RFC5155,5702,5933,6605,8080].
The domain owners can now use any subset of 13 algorithms
for signing their zones [1]. Although it still takes long to
standardize new algorithms and remove deprecated ones, it is
generally believed that DNSSEC has partially achieved algo-
rithm agility [29]. However, no work has been carried out to
understand the implications of deployment of new algorithms
on the security of DNS.

We show that the current state of algorithm agility in
DNSSEC introduces a vulnerability, we demonstrate how to
exploit it to downgrade DNSSEC. Our analysis of DNSSEC
RFCs and DNS resolvers’ behaviour indicates that lack of
clear recommendations for handling new ciphers is the main
factor leading to the vulnerabilities.

Unclear specifications for handling unknown ciphers.
According to DNSSEC standard, when returning a lookup

1https://secspider.net/stats.html
2https://stats.labs.apnic.net/dnssec/

USENIX Association 32nd USENIX Security Symposium 7429

https://secspider.net/stats.html
https://stats.labs.apnic.net/dnssec/

result in a signed zone a DNSSEC supporting resolver should
either return correctly validated records signalling authenti-
cated data, or should return SERVFAIL when the data cannot
be authenticated. However, the DNSSEC standard does not
clearly specify the recommended behaviour for DNS resolvers
when faced with new ciphers. Should the resolvers accept
records that are signed with unknown algorithms or reject
them? How should the validation proceed when a domain sup-
ports multiple algorithms, only some of which are unknown?
How should the resolvers react in case of inconsistencies in
keys between the parent and the child zones? We experimen-
tally show that this lack of clear specification in the DNSSEC
standard leads to different vulnerable behaviour implemen-
tations at the resolvers: in presence of unknown algorithms
in DNSSEC records the resolvers accept the records in the
responses without validating them. Even if the signatures are
invalid or if a chain of trust cannot be established to the root,
some resolvers do not return SERVFAIL, but instead accept
the DNS records without validation.

Adding new ciphers can disable DNSSEC validation. In
this work we find that domains that adopt new ciphers, e.g.,
ED448 [RFC8080], under some conditions risk disabling the
DNSSEC validation of DNS resolvers that do not support the
new ciphers. The cause is a lack of clarity and rigor in defining
and implementing DNSSEC for new ciphers. While some
public DNS providers, such as Cisco Umbrella OpenDNS,
already support ED448, most DNS implementations and DNS
operators still do not. In our measurements of resolvers we
discover that even large public DNS providers in such cases
may not validate DNSSEC.

DNSSEC downgrade attacks. More significantly, we
show that resolvers may be vulnerable to downgrade attacks
even for zones that are signed with widely known algorithms,
such as RSASHA1. The idea behind our attacks is to manipu-
late the algorithm numbers in DNSSEC records or to remove
DNSSEC records, e.g., DNSKEY, DS, RRSIG records. This
causes DNSSEC-supporting resolvers not to apply DNSSEC
validation over DNS records, and exposes them to cache poi-
soning attacks.

Factors exposing to vulnerabilities. The gaps in the stan-
dard DNSSEC specifications that expose to vulnerabilities
that we exploit in this work can be summarized as follows:

Attack surface: The DNSSEC RFCs leave an attack surface
which allows stripping off RRSIGs, without being detected
by the validating resolvers, as in [RFC6840].

Definition of security states: The definition of the secu-
rity states from the DNSSEC validation is ambiguous across
the different RFCs. For instance, the way "indeterminate"
and "bogus" validation states are defined in [RFC4033] and
[RFC4035]. The DNSSEC term "bogus" describes records
that are invalid. On the other hand, ’indeterminate’ is defined
as the security state of data that could not be authenticated,
because no trust anchor has been configured for the subtree
of DNS, which the records to be authenticated are located in.

This requires the resolver to have a trust anchor at some node
other than the root – but not at the root itself – which is not
common. The definitions result in different interpretations by
the developers leading to discrepancies in behaviour between
the different resolver implementations. Re-definition of states
causes follow-up specifications to try and reconcile differing
interpretations. One example is [RFC7672] which defines
a security scheme, that applies DNSSEC to improve e-mail
security ("Note that the "indeterminate" security status has a
conflicting definition in Section 5 of [RFC4033]. [...] In this
document, the term "indeterminate" will be used exclusively
in the [RFC4035] sense.").

Definition of validity: There are repeated statements and
updates to those across different RFCs. This considerably
increases opportunity for interpretation errors (and also in-
creases opportunity for errors in specification updates). In
some cases updated definitions expose to vulnerabilities, such
as [RFC6840] watering down resolver expectations from
[RFC4035].

The role of standards. The standards typically aim and
need to offer some flexibility of implementation in order to
allow for competition among products meeting the standard.
On the other hand, it is important to avoid standards that wind
up allowing implementations that defeat the purpose of the
standard. In this context an interesting question is what kind
of analysis of new standards should be undertaken before they
are adopted and how implementations should be evaluated
against the standard. These are fundamental issues raised
by the vulnerabilities found in our, as well as prior, works,
e.g., [12, 25]. Therefore, our work raises the question of how
we solve not only this particular problem with this particular
standard, but also the more general problem for existing and
future standards.

Ethics and disclosure. We took preliminary steps to ad-
dress the vulnerabilities found in this work by contacting
the DNS software vendors and public DNS providers. We
contacted the following DNS vendors and operators: Nic.fr,
Verisign, NLnetlabs, Cloudflare and Google were notified
on September 2021. Microsoft and OpenDNS in July 2022.
Details of the notifications are in Appendix, Section A.

We experimentally evaluated the attacks reported in this
work against servers that we set up as well as against open
DNS resolvers and public DNS resolvers, and against re-
solvers of web clients in the Internet. In our evaluations we
used domains that we control. This allowed us to validate
the downgrade attacks without downgrading the DNSSEC-
security of real domains. To collect information about vulner-
abilities in client side DNS equipment, we use an ad network.
Previous measurements of DNSSEC used ad network to in-
fer information about the client side DNS resolvers [22, 23].
Such studies however involve ethical concerns: they may in-
troduce load, expose privacy of a user or its behaviour, may
expose users to objectionable content or may load resources
from domains that may be legally risky. In our study and data

7430 32nd USENIX Security Symposium USENIX Association

collection we follow the ethical guidelines for network mea-
surements defined in [34], which were also approved by the
ethical committee of our scientific organization. By following
these ethical guidelines we ensure that the clients equipment
is not overloaded, the privacy of the clients is preserved, the
clients are not exposed to security risks, are not redirected to
any other domain or host, and no client is presented insecure
or objectable content.

• Minimal load: to minimise load on clients we reduce
significantly the number of queries we trigger from the stub
resolvers to the recursive resolvers . During the ad-net evalu-
ations the pop-under carrying our investigation script takes
only 150KB on wire. The loaded web resources (images; up
to 180 per client) each have a negligible size of mere 84B
on wire. Afterwards the communication is performed against
the recursive resolvers with the average of 3 queries per re-
solver. The volume of the packets we exchange with the
recursive resolvers do not exceed those in other studies of
DNS, e.g., [25]. Our tests are designed to use a single referral
response from our nameserver and we also introduce up to
50ms randomized delay between the queries to the recursive
resolvers. Benchmark studies3 show that modern Knot DNS
server is able to serve 500K DNS packets per second. Even
older benchmark studies [41] in 2009 on performance of vali-
dating resolvers with commodity hardware found that Bind
and Unbound could handle more than 1K queries per second
with signed zones. Hence, the additional DNS requests vol-
ume of 3 queries per second triggered by our experiments do
not load the recursive resolvers.

• User consent: from the users’ perspective, our measure-
ments over an ad-network are simply advertisements and third
party content that are loaded when visiting web sites. How-
ever, we do not experiment on the users themselves, since our
experiment is on the network equipment between the users,
their resolvers and our nameservers, which is independent of
the users and their behaviour.

• Privacy: the data we collect is processed and analyzed
during the communication with the recursive resolvers. We
do not collect and do not store on our server any user sensitive
or personal data, but only the statistics of the analysis. The
stored data contains a timestamp of the request, a randomly
generated token associated with the resolver, and query URL.
We do not study user behaviour and do not collect any data
related to user behaviour. Our online service provides a pri-
vacy policy and displays only information about the computed
statistics, ensuring data and source privacy.

• User security: our measurements infrastructure triggers
requests only to the nameservers that we set up and control.
Hence, no client was redirected by our measurements to any
other domain or host, and no user was presented insecure or
objectable content.

Contributions. We make the following contributions:

3https://www.knot-dns.cz/benchmark/

• We systematically analyze the different conditions under
which DNS resolvers can be forced to skip DNSSEC valida-
tion and develop methodologies for evaluating the DNSSEC
validation in DNS resolvers. We find that the validation logic
in popular DNS implementations and in public DNS resolvers
is often flawed. We develop attacks, including for injecting
adversary’s keys into the victim resolver’s cache for a secure
zone and for disabling a validation for a secure zone.

• In our study during 2021 we found that some major DNS
providers, such as Google Public DNS and Cloudflare, were
vulnerable to our downgrade attacks. Over the course of our
research, we also found that 65% of open resolvers and almost
35% of the resolvers used by web clients were vulnerable to
downgrade attacks. After going through responsible disclo-
sure process with the affected operators, our measurements in
November 2022 show these numbers reduced down to 7.50%
of open resolvers and 5% of resolvers used by web clients.

• We explore key factors causing the vulnerabilities and
provide recommendations for preventing our DNSSEC down-
grade attacks. We develop a tool for testing vulnerable
DNSSEC behaviour: https://www.dnssec-downgrade.net/

Organisation. We review related work and provide an
overview of DNS security in Section 2 and background on
DNSSEC in Section 3. In Section 4 we introduce the datasets
of resolvers and domains that we study in this work, and pro-
vide our measurements of the deployment of DNSSEC. In
Section 5 we describe our DNSSEC downgrade methodology
and evaluate the attacks in Section 6. We discuss counter-
measures in Section 7 and conclude this work in Section 8.

2 DNS Cache Poisoning and Defences

Domain Name System (DNS) [28] cache poisoning is an at-
tack in which an adversary injects malicious records into a
victim’s DNS cache, to hijack a victim domain. Such attacks
are especially effective against caching DNS resolvers. Once
the attack is successful, the fake records are cached, subse-
quent requests for the poisoned resource are responded to
with the malicious value from the cache, redirecting all the
clients of the compromised resolver to an adversarial host.
The attacker can intercept the traffic between the services
(such as web, email, FTP) in the victim domain and the hosts
that use the poisoned cache. SSL/TLS would prevent such
attacks, since the redirection would cause a certificate error.
Nevertheless, DNS cache poisoning can also be exploited to
issue fraudulent certificates, in which case no error messages
would be issued and even security savvy users may not detect
the attacks [4, 5, 8]. To make cache poisoning attacks difficult
to launch, defences and best practices were developed.

DNS cache poisoning chronicle. DNS experts have been
warning for over two decades that source ports and Trans-
action Identifiers (TXID) have to be sufficiently random to
make DNS cache poisoning attacks impractical. Vixie recom-

USENIX Association 32nd USENIX Security Symposium 7431

https://www.knot-dns.cz/benchmark/

mended to randomise the source ports already in 1995 [39]
and Bernstein in 2002 [3]. In 2007 Klein identified vulnerabil-
ity in Bind9 [17] and in Windows DNS [18] resolvers allow-
ing to reduce the entropy in the TXID. In 2008 Kaminsky [16]
presented a practical cache poisoning attack even against truly
randomised TXID, by generating multiple DNS responses,
each with a different TXID value. Following the Kaminsky
attack, DNS resolvers were patched against cache poison-
ing [14], and most resolvers randomised the UDP source ports
in queries. Despite multiple efforts to randomise the ports,
every improvement was often met with a new derandomisa-
tion technique. In 2012 [10] developed side channels to infer
the source ports in DNS requests. The attacks targeted DNS
resolvers located behind NAT devices. [11, 20, 35, 43] exploit
fragmentation to inject spoofed records into DNS responses
in different setups against caching resolvers and forwarders. A
followup work demonstrated effectiveness of such cache poi-
soning attacks also against stub resolvers [2]. Side channels
were also used to predict the ports due to vulnerable PRNG
in Linux kernel [19], these are however difficult to apply in
practice. [25] developed a method to leverage ICMP errors to
infer the UDP source ports selected by DNS resolvers. The
attacker exploits a global ICMP rate limit, which leaks in-
formation about the selected UDP port. A recent work [26]
improved an ICMP based side channel, developing an attack
that uses ICMP probes to infer a source UDP port.

Defences against on-path poisoning. Cryptographic sig-
natures with DNSSEC [RFC6840] [40] aim to prevent on-
path attacks: the domain signs the records, and provides to
the resolvers all the required cryptographic material (keys,
signatures, etc...) to validate that the records were not modi-
fied. The deployment of DNSSEC is progressing slowly, e.g.,
in 2017 [6] found that only 12% of the resolvers validate
DNSSEC. Our measurements showed a slight increase in
DNSSEC adoption; we provide the results in Section 4. In
addition, deploying DNSSEC was shown to be cumbersome
and error-prone [7, 36].

An important research direction in DNSSEC is crypto-
graphic algorithm agility, which was initiated by [42] who
explored the changes needed to deploy new algorithms. Re-
cently [29] studied the lifetime of algorithms for DNSSEC
using data from 6.7M signed domains. They found that cre-
ating standards for new algorithms or deprecating insecure
algorithms takes years. Existing work on algorithm agility
focuses mostly on measuring support of algorithms on DNS,
or explores addition of new algorithms or removal of inse-
cure ones. In this work we perform the first research on the
security considerations of algorithm agility and the possible
implications of new algorithms on the security of DNS.

To avoid failures at the resolvers when errors occur during
DNSSEC validation Negative Trust Anchors (NTAs) were
introduced [27, 33]. NTAs define domains where DNSSEC
validation should be turned off. NTAs are not effective against
our attacks and typically can be used to support private DNS

subtrees that are not referenced from the Internet.
In this work we focus on attack vectors that allow to down-

grade DNSSEC: disable DNSSEC validation at the resolvers.
DNSSEC-downgrade possibility is considered in [RFC6840]
which says that bogus records can be treated as unsigned, lead-
ing to downgrade, hence defeating the purpose of DNSSEC.
A preliminary poster report of this research raised the question
of risks introduced by new algorithms [9]. After we initiated
work on our project, a blog post reported a related issue in
Google DNS4 in March 2022.

3 DNSSEC Overview

DNS Security Extensions (DNSSEC) [RFC4033-4035] pro-
tects DNS resource records (RRs) against unauthorized ma-
nipulations. To enjoy the security guarantees domain owners
need to sign the records in their zonefiles with digital signa-
tures and resolvers need to validate the DNS records against
the signatures, and discard records with invalid signatures.

DNSSEC records. The cryptographic keys are stored in
DNSKEY RRs in a zonefile. These keys are used to validate
all the record sets in the zone file. The corresponding signa-
tures are stored in RRSIG records. The keys in the DNSKEY
records can be authenticated with the DS delegation records
in the zonefile of the parent domain. Each DS RR contains
a hash of the corresponding DNSKEY RR of the child do-
main along with the algorithms in that DNSKEY. For each
algorithm supported by the child zone, there should be a corre-
sponding signature in the RRSIG record. When a child is not
signed the resolver should check for presence of the proof of
negative existence for DS records of the child (typically with a
NSEC3 RR). When a child and its parent domains are signed,
the parent domain should contain one or multiple DS RRs for
the child zone. This enables resolvers to establish a chain of
trust to the trust anchor - the key of the root. We illustrate the
chain of trust between the root zone "." and the example.org.
domain in Appendix, Figure 8. Zones are depicted as large
cornered boxes. Rounded boxes represent RRsets, while the
individual records in a set are given as small cornered boxes
and RRSIG records are symbolized by ovals. Signature al-
gorithms are represented by their numbers with a subscript
a. Conversely, DS digest types are listed as numbers with a
subscript dt. E.g., 2dt → 13a specifies a DS record with digest
type 2 (SHA256) linking to a DNSKEY record for signature
algorithm 13 (ECDSAP256SHA256). DS digest types num-
bers are specified by [RFC8624]. The DNSKEY of "." signs
the DS of org., which contains a hash of the DNSKEY of
org., which in turn signs the DS of example.org.. That DS
record points to the DNSKEY of example.org. which signs
the RRsets, e.g., www.example.org., in example.org..

Cryptographic algorithms. DNSSEC implementations
support a number of cryptographic signing algorithms

4https://www.sidnlabs.nl/en/news-and-blogs/a-lock-with-many-keys-
spoofing-dnssec-signed-domains-in-8-8-8-8

7432 32nd USENIX Security Symposium USENIX Association

example.org.
org.
org.
example.org.
example.org.
www.example.org.
example.org.

[RFC8624], and each zone can be signed with one or multiple
algorithms. Currently (December 2022) most zones are signed
with a single algorithm. In our dataset 99.14% of the domain
are signed with one algorithm. Signing the zones with multi-
ple algorithms increases the sizes of DNS responses leading
to interoperability problems with intermediate network de-
vices and even exposing to Denial of Service (DoS) attacks.
Validation of records signed with multiple ciphers also intro-
duces load on DNS resolvers. Therefore, multiple algorithms
are not used to enhance security but are typically used when
domains transition to new cryptographic ciphers.

Nameservers. In addition to DNS records, the name-
servers must also serve the corresponding DNSSEC records
(DNSKEY, RRSIG and DS records) for all the algorithms that
they support. This is needed to validate the signatures, as well
as to establish a chain of trust to the trust anchor.

Resolvers. In order to establish integrity and authenticity
of the DNS records in responses, the resolvers need to vali-
date the RRSIG records over the DS records provided by the
parent domain and to use the DS records to establish a chain
of trust to the DNSKEY records in the target domain. The
keys in the DNSKEY records are used to validate the RRSIG
records over the DNS records in the zonefile in the target
domain. If the validation of the DS records or the DNSKEY
records or the signed DNS records fails, resolvers need to
return SERVFAIL error message.

Validation of unsupported cryptographic algorithms.
When handling zones signed with unknown algorithms sig-
nalled in DS RRs, [RFC4035] recommends that the resolvers
treat such zones as insecure, i.e., disregard any authenticated
DS RRs with unknown or unsupported DNSKEY algorithms.
[RFC6840] recommends that DS records with unknown hash
digest algorithms should be handled similarly.

When a zone is signed with multiple algorithms, the re-
solvers needs to validate all the signatures, each time using
the corresponding algorithm. When a resolver does not sup-
port any of the algorithms it should treat the zone as insecure.
Unsupported algorithms are ignored and are not used for val-
idation. An interesting question is how the resolvers should
behave when only some of the algorithms are unsupported.
Another problem is that the DNSSEC standard does not pro-
vide details for handling bogus RRsets. In case of validation
state bogus the specific behaviour of resolvers depends on
the choices made by the developers. Some implementations
return the unauthenticated records to the calling applications
while others return a SERVFAIL response code instead. The
variations in the interpretation of the standard and choices
made by developers and operators indicate the lack of under-
standing and the lack of consensus on best practices.

4 Dataset

In this section we collect our datasets of DNS resolvers and
domains that support DNSSEC. For our research we also

Signature Algorithm
RSA ECDSA EdDSA

5 7 8 10 13 14 15 16

Top-Level Domains 2.12% 1.98% 89.67% 2.34% 4.62% 0.07% 0.00%† 0.00%†

Tranco Top 1M 1.84% 3.19% 33.18% 1.74% 60.07% 0.86% 0.06% 0.02%
BIND 9.11.3 # #
Knot Resolver 5.3.2 # #
PowerDNS 4.6.0
Unbound 1.6.7 #
Windows Server 2012 # #
Windows Server 2012 R2 # #
Windows Server 2016 # #
Windows Server 2019 # #
Windows Server 2022 # #
CZ.NIC ODVR (Knot)
Cisco (OpenDNS)
Cloudflare 1.1.1.1 #
Google Public DNS #
Neustar FreeRecursive
Norton ConnectSafe
Oracle Dyn # #
Verisign
Adnet Resolvers 99.64% 99.57% 99.71% 99.71% 97.49% 97.42% 70.83% 33.93%
Open Resolvers 99.92% 99.96% 99.96% 100.00% 98.38% 98.38% 85.09% 21.78%

Table 1: Signature Algorithms: Presence in Signed Domains and
Support in Resolvers. marks support. †exactly zero

collect the algorithms that are used in the signed domains.
Throughout our work we run experiments and attacks using
these datasets of DNSSEC validating resolvers and DNSSEC
signed domains. We refer to the algorithms throughout this
work by the encoding according to IANA5. For convenience
we provide the list in Table 2.

Number Description Reference
5 RSASHA1 [RFC3110]
7 RSASHA1-NSEC3-SHA1 [RFC5155]
8 RSASHA256 [RFC5702]
10 RSASHA512 [RFC5702]
13 ECDSAP256SHA256 [RFC6605]
14 ECDSAP384SHA384 [RFC6605]
15 ED25519 [RFC8080]
16 ED448 [RFC8080]

Table 2: DNSSEC algorithm numbers we use in our work.

4.1 DNSSEC-validating resolvers
We collect the following datasets of resolvers: (1) popular
DNS resolver implementations, (2) popular DNS resolver op-
erators, (3) DNS resolvers used by the web browsers which
we collected with an ad network (ad-net), (4) open DNS re-
solvers, (5) resolvers used by the routing infrastructure for
collecting the RPKI objects from the RPKI publication points.
A summary of our resolvers’ datasets and their support of
DNSSEC algorithms is listed in Table 1. Most of the public
DNS resolvers and DNS software implementations do not
support algorithm 16 (ED448) with a gradually increasing
support of algorithm 15 (ED25519).

Popular resolver software. We use nine instances of re-
solver software in popular versions. These instances cover
the market of publicly available resolver software solutions
(excluding commercial software) that validate DNSSEC and
offer maintenance6.

DNS resolver services. We use the list of open DNS
resolver services at https://www.publicdns.xyz. Public

5https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-
numbers.xhtml

6https://en.wikipedia.org/wiki/Comparison_of_DNS_server_
software

USENIX Association 32nd USENIX Security Symposium 7433

DNS services are used by many different applications and
systems, ranging from web clients, email servers to resolvers
of Internet Service Providers (ISPs). In fact, we found that the
components in RPKI, the routing security infrastructure, in
large part also use public DNS providers. Our measurements
in 2021 reveal that 53% of the relying parties7 (the client
side of the RPKI) use public DNS resolvers: 46% use google
public DNS and 7% use Cloudflare, both validate DNSSEC.

Open DNS resolvers. This dataset contains publicly ac-
cessible resolvers collected via an Internet-wide IPv4 scan
for port 53. We obtain a list of 1.8M hosts8. We select those
hosts that resolve a name in our domain and support DNSSEC,
validating a minimum subset of ciphers that correspond to
any of the tested algorithms. Our dataset does not contain any
hosts that do not respond to our queries or do not resolve a
test name in our domain. In effect, the dataset contains 8,829
resolvers, of which 2401 (27.19%) validate DNSSEC.

Resolvers used by web clients. For collecting resolvers of
web clients we deployed an advertisement network (ad-net).
We distributed our test web page as a pop-under to 35,050
users around the globe, from which 8,977 had the ad page
open long enough to have their resolvers fully investigated and
2,785 (31.02%) used validating resolvers. When the investi-
gation web page is loaded in the pop-under, the web browser
executes our test script, which instructs it to include a number
of images in the document, via URLs containing our test do-
mains. We associate the web clients with the DNS resolvers
that they use via a client-specific random token transmitted as
a query parameter in each request for an image. We analyze
the individual tests by presence of the corresponding web
requests. Using the ad-net we identify resolver queries, which
originate from 1308 unique, globally distributed IP prefixes.
The setup and the study steps are illustrated in Figure 2.

The distribution of the algorithms supported by the DNS re-
solvers we study using an ad-net and open DNS resolvers are
plotted in Figure 1. Most of the validating resolvers, 37.06%,
support seven DNSSEC algorithms; 33.68% support eight
algorithms, and 26.68% support six algorithms.

7Relying party software retrieve the RPKI objects from the public RPKI
repositories.

8https://opendata.rapid7.com/sonar.udp/

1 2 3 4 5 6 7 8
Number of Algorithms

0%

25%

50%

75%

100%

Pr
op

or
tio

n

Open
Adnet

Figure 1: Algorithms supported by open and web-client resolvers.

Ad Provider Web Client Web + DNS Servers

Resolver
A

B C

D

Figure 2: Setup with web clients: (A) The ad is delivered to the
browser by the ad provider and (B) causes the client to send queries
to the local DNS resolver. (C) The local resolver issues queries to
our nameservers and returns the requested records to the client. (D)
The client downloads the resource from the web server.

4.2 DNSSEC-signed domains

Our dataset of domains contains 1M-top Tranco domains and
Top Level Domains (TLDs). DNSSEC is currently deployed
on the DNS root zone using algorithm 8 (RSASHA256). We
measure DNSSEC support and algorithms on the list of TLDs
from IANA9 and on 1M-Tranco list10 of popular domain
names. During the measurements we send queries from our
client for DS, DNSKEY, and SOA records and obtain the
corresponding RRSIG records.

Top level domains. Out of 1,487 TLDs, 1,365 (91.80%)
have a DS record at the root zone. Out of the DNSSEC-
signed domains, 171 (12.53%) are signed with one cipher
(configuration of algorithm and key size), 1,194 (87.47%)
are signed with multiple ciphers (3 ciphers max). Measure-
ments of DNSSEC on root and TLDs were done in previous
works, e.g., [36], where they also showed that many of the
deployments are vulnerable due to reuse of keys.

Second level domains. As a list of second level domains
we use the 1M-Tranco list of domains, out of which 5.25%
are DNSSEC signed and 35,576 (3.56%) are signed and also
have a DS record at the parent. Of those, 24,366 (68.49%)
are signed with one cipher, 11,210 (31.51%) with multiple
ciphers (with max 7 ciphers).

The distribution of the algorithms (5, 7, 8, 10, 13, 14, 15,
16) are plotted in Figure 4: most domains are signed with
a subset of algorithms 7, 8 and 13. The number of different
ciphers that the domains are signed with are plotted in Figure
5, with the maximal number of different ciphers being 7.

9https://data.iana.org/TLD/tlds-alpha-by-domain.txt
10https://tranco-list.eu/

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

RSA Key Lengths

0%

25%

50%

75%

100%

Pr
op

or
tio

n

TLDs
Top1M

Figure 3: Key lengths in DNSKEYs of 1M-Tranco and TLDs.

7434 32nd USENIX Security Symposium USENIX Association

5 7 8 10 13 14 15 16
Distribution of Algorithms

0%

25%

50%

75%

100%

Pr
op

or
tio

n

TLDs
Top1M

Figure 4: Algorithms in DNSKEY in 1M-Tranco and TLDs.

5 DNSSEC-Downgrade Attacks

In this section we develop methodologies for downgrad-
ing validation DNSSEC-supporting resolvers for records in
signed domains. We first develop the attack vectors for manip-
ulating the responses from signed domains, then describe the
zone file configurations we used in our tests, and finally de-
scribe the steps of the complete attack. Our attacks cause the
resolvers to accept fake DNS records with invalid signatures,
without validating the signatures.

5.1 DNSSEC manipulation methodologies
We define the configurations of the victim zone and the
methodologies for manipulating the DNSSEC records. We
then analyze the DNSSEC standards to understand the factors
that allow manipulation of the zone files, leading to disabled
DNSSEC validation on the resolvers.

Attack vectors. The attack proceeds by stripping off the
RRSIG or DNSKEY records or manipulating the algorithm
number in the signature records. The setup is related to the set
of algorithms with which the victim zone is signed and to the
set of algorithms on the target resolver. We consider the cases
when either all or some of the algorithms are supported by
the resolver. Our measurements indicate that about 99.25%
of the signed zones in our dataset use exactly one signature
algorithm and less than 1% use two signature algorithms.
We evaluate methods for disabling DNSSEC on single- and
dual-signature-algorithm zones via following attack vectors:

(a) Strip the RRSIG over the target DNS RRset
(b) Strip the RRSIG over the DNSKEY RRset
(c) Strip the DNSKEY RRset
(d) Rewrite the AlgorithmNumber in the RRSIG

The goal of the attack vectors (a), (b) and (c) is to prema-
turely terminate the chain of trust at the different levels in
the validation path. On dual-algorithm zones, attack vectors
(a)-(c) will force the resolver along a validation path, which
features unsupported cryptographic algorithms. The purpose
of attack vector (d) is to interrupt the validation path between
the RRSIG and the DNSKEY it belongs to.

Single-signature-algorithm. To carry out tests in this con-
figuration, we set up zones with algorithm 8 (RSASHA256)
signatures, as well as DS digest type 2 (SHA256), chosen for

1 2 3 4 5 6 7
Key Configs per Domain

0%

25%

50%

75%

100%

Pr
op

or
tio

n

TLDs
Top1M

Figure 5: Number of ciphers in DNSKEY Records.

widest resolver support. We created illustrations of the attack
vectors for each of our zone file configurations using DNSViz,
allowing interested readers to access them online: (a)11, (b)12,
(c)13 and (d)14.

Dual-signature-algorithm. In our setup with a dual-
signature-algorithm we set up a number of zone files, each
signed with two signature algorithms: one supported and one
unsupported. Such a configuration includes zones which de-
cide to improve security and adopt a cutting-edge algorithm,
or zones that are in the process of rolling over to a new algo-
rithm, that is not supported by a vulnerable resolver. Based on
our measurements we consider the signature algorithms {5, 7,
8, 10, 13, 14} as ’supported’ and {15, 16} as ’unsupported’.
We use algorithms 5 (RSASHA1) and 8 (RSASHA256) as
’supported’ to sign our zone files and algorithms 16 (ED448)
as well as 18 (unallocated) as ’unsupported’ algorithms to
sign our dual-signature-algorithm zone file. We created il-
lustrations of the DNSSEC algorithms for each of our dual-
signature-algorithm zone file configuration with the corre-
sponding attack vector online: (a)15, (b)16, (c)17 and (d)18.

Our experimental evaluations show that attack (a) applies to
Cloudflare and Google public DNS; 7.41% of open resolvers
and 4.96% of ad-net resolvers (cf. 61.06% of open resolvers
and 32.35% of ad-net resolvers in 2021). We find that (b)
applies to Windows Server DNS and <1% of ad-net and open
resolvers (for both 2022 and 2021). Attack vector (c) applies
to Windows Server DNS, OpenDNS/Cisco Umbrella DNS, as
well as less than 1% of open resolvers and of ad-net resolvers
(cf. 4.04% of open resolvers and 1.87% ad-net in 2021).

Factors allowing the attack vectors. We first explain the
inherent issues in DNSSEC specification that allow our at-
tacks and then list the main issues in the standard recommen-
dations of DNSSEC validation that expose to vulnerabilities.

First, manipulation of the RRSIG records is possible since
the RRSIG records themselves are not protected. If the at-
tacker manipulates the RRSIG record in specific ways, e.g.,

11https://www.dnssec-downgrade.net/v/i_sigt_strp_solo
12https://www.dnssec-downgrade.net/v/i_sigk_strp_solo
13https://www.dnssec-downgrade.net/v/i_key_strp_solo
14https://www.dnssec-downgrade.net/v/i_sig_rw_solo
15https://www.dnssec-downgrade.net/v/i_sigt_strp_dual
16https://www.dnssec-downgrade.net/v/i_sigk_strp_dual
17https://www.dnssec-downgrade.net/v/i_key_strp_dual
18https://www.dnssec-downgrade.net/v/i_sig_rw_dual

USENIX Association 32nd USENIX Security Symposium 7435

https://www.dnssec-downgrade.net/v/i_sigt_strp_solo
https://www.dnssec-downgrade.net/v/i_sigk_strp_solo
https://www.dnssec-downgrade.net/v/i_key_strp_solo
https://www.dnssec-downgrade.net/v/i_sig_rw_solo
https://www.dnssec-downgrade.net/v/i_sigt_strp_dual
https://www.dnssec-downgrade.net/v/i_sigk_strp_dual
https://www.dnssec-downgrade.net/v/i_key_strp_dual
https://www.dnssec-downgrade.net/v/i_sig_rw_dual

rewrites the ’Algorithm’ field from an 8 (RSASHA256) to
a 13 (ECDSAP256SHA256), the validator takes the result
of that manipulation for granted. In the given example, the
validator might look for a DNSKEY of algorithm 13 (and
matching KeyTag), would not find any such key, and - abid-
ing by [RFC6840] (Section 5.12) - would then ignore that
RRSIG and might raise a validation failure if the RRset in
question cannot be authenticated by other means. In contrast,
say, Google DNS skipped validation instead, as shown by
one of its vulnerabilities. It is also not possible to protect the
RRSIG records using other RRSIG records since this is (rea-
sonably) prohibited by [RFC4035], Section 2.2 ("An RRSIG
RR itself MUST NOT be signed, as signing an RRSIG RR
would add no value and would create an infinite loop in the
signing process.").

Second, stripping records is possible because the proofs
of non-existence of DNS records do not cover some proper-
ties that we exploit in our attacks. The authenticated denial
of existence scheme built by means of NSEC-type records
(e.g., NSEC3) is sufficient to prove existence and absence
of record types at given DNS names. It does not, however,
cover presence/absence of records with the requirement of
specific other record properties; e.g., it does not cover the
signature algorithm types of corresponding DNSSEC records:
NSEC can be used to prove that there is a DNSKEY record
at the name "example.org.", but it cannot be used to prove
that there is a DNSKEY record specifically for signature al-
gorithm 13 at "example.org". Conversely, if there exists at
least one DNSKEY record (of any algorithm) at that name,
NSEC cannot prove or disprove non-existence of a DNSKEY
for any specific algorithm.

To prevent stripping attacks, the presence of DNSSEC
records of specific signature algorithm is protected in
[RFC4035] (Section-2.2), by setting expectations for resolvers
through defining zone requirements. The standard [RFC4035]
says: "There MUST be an RRSIG for each RRset using
at least one DNSKEY of each algorithm in the zone apex
DNSKEY RRset. The apex DNSKEY RRset itself MUST be
signed by each algorithm appearing in the DS RRset located
at the delegating parent (if any)." This translates into the fol-
lowing rules: (1) if there exists a DS record for a DNSKEY
with signature algorithm ’a’ at ’example.org’, then there must
be at least one such DNSKEY record for signature algorithm
’a’ at ’example.org’. (2) if there exists a DNSKEY record
with signature algorithm ’a’ at ’example.org’, then, for each
RRset in the in the zone ’example.org’, there must be at least
one RRSIG of signature algorithm ’a’.

This algorithm presence requirement from [RFC4035] is
however then relaxed by [RFC6840]. This is one of the key
DNSSEC specification issues which expose to our attack vec-
tors, leading to DNSSEC validation vulnerabilities. ("This
requirement applies to servers, not validators.") to support
algorithm roll-overs over large zones, i.e., to be robust against
zones which do not at any point in time feature RRSIGs of

both algorithms during an algorithm roll-over. Some very
large zones appear to do this, and in doing so, they delib-
erately hurt the specification. [RFC6840] says "Validators
SHOULD accept any single valid path. They SHOULD NOT
insist that all algorithms signaled in the DS RRset work, and
they MUST NOT insist that all algorithms signaled in the
DNSKEY RRset work." 19 This statement from the RFC is
arguably geared towards completeness checks, as shown by
the next sentence: "A validator MAY have a configuration
option to perform a signature completeness test to support
troubleshooting.". That purpose does not appear to be obvi-
ous and the "MUST NOT insist that all algorithms signaled
in the DNSKEY RRset work" should have been explicitly
augmented with a ", provided at least one supported working
algorithm exists."

5.2 Cache poisoning methodologies

Merely downgrading DNSSEC validation does not constitute
a meaningful attack. We therefore describe combinations of
DNSSEC downgrade attack vectors (a)-(d) with cache poi-
soning attacks for injecting fake DNS records. Which fake
records are accepted by a given resolver and under what con-
ditions, depends on the specific caching policies implemented
by the resolvers. These caching policies include the rank
that caching implementations assign to different responses
types, e.g., referral or Answer type responses, as well as the
considerations of resolvers for using the stored records, e.g.,
stored keys with or without re-evaluating the whole chain of
trust. Caching policies for injections of spoofed records were
explored in [21, 37].

Hijack secure DNSSEC delegation. The goal of the ad-
versary is to inject a malicious DNSKEY which it can use
to sign fake records in a victim domain. In this example we
assume that the victim resolver does not support algorithm
16 and supports algorithm 8. To carry out the attack the ad-
versary needs to manipulate a referral type response sent by
the nameserver to the DNS resolver. The relevant part of the
referral response contains a DS record that corresponds to the
genuine DNSKEY of the victim domain, which the adversary
does not control (for instance f3...cc) and two RRSIG records:

IN DS 29449 13 2 f34135...eecc
IN DS 29449 13 4 8e1ec0.....180f
IN RRSIG DS 8
IN RRSIG DS 16

To do that, the adversary strips off (using attack vector (a)
from Section 5.1) the RRSIG with the supported algorithm 8
and replaces the digest of the DS record with:

IN DS 5342 13 2 bd638a.....4303
IN RRSIG DS 16 // invalid

19One of the DNS vendors used this sentence to argue for the RFC-
compliance of their product when we did the disclosure with them.

7436 32nd USENIX Security Symposium USENIX Association

Now the response contains only the unsupported RRSIG
16 for validation. The signature in the RRSIG 16 is invalid
since it does not fit to the modified DS record. However,
since algorithm 16 is not supported, the resolver does not per-
form DNSSEC validation. In this case the vulnerable resolver
should return SERVFAIL. If the resolver instead accepts and
caches the new DS record that corresponds to the key of the
adversary, the adversary would be able to inject any record
of its choice. Since the manipulated DS corresponds to adver-
saries own key-pair the adversary can manipulate any records
for that domain and sign them with a private key that corre-
sponds to the value in DNSKEY. The DNSSEC validation of
the resolver would be successful. As a result, the adversary
could not only hijack the entire DNSSEC-secure DNS tree but
would also be able to forge records in that tree with correct
DNSSEC signatures. Responses from the real domain would
in that case fail validation since they use a different DNSKEY
record that not present in resolver’s cache.

Disable secure DNSSEC delegation. To disable DNSSEC
validation in a DNS sub-tree, in addition to manipulating
the algorithm number in an RRSIG to an unsupported algo-
rithm in referral responses, the adversary also changes the
DS to contain an unsupported algorithm number. Assume the
nameserver returns a referral with the following records:

IN DS 5342 8 2 f34135.....eecc
IN DS 5342 8 4 8e1ec0.....180f
IN RRSIG DS 13
IN RRSIG DS 16

The adversary strips off the supported RRSIG 13 (attack
vector (a), Section 5.1) and changes the supported algorithm
number 8 in DS to an unsupported algorithm 16.

IN DS 5342 16 2 f34135.....eecc
IN DS 5342 16 4 8e1ec0.....180f
IN RRSIG DS 16 // invalid

If the resolver accepts and caches the records, the validation
in that subdomain is not performed. Consequently, the entire
subtree under the corresponding DS records is treated by
the vulnerable resolver as insecure. This would allow the
adversary to replace any record in any subdomain, without
adjusting the signatures. The victim resolver also accepts
responses from genuine nameservers without validating them.

Hijack secure domain. The adversary hijacks a domain by
injecting a malicious nameserver. The adversary can manipu-
late the IP addresses in a referral DNS response. In referrals
the glue records are not signed, hence this step does not re-
quire a manipulation of the RRSIG to an unknown algorithm.
A subsequent authoritative response from the domain con-
tains signed NS records, which have higher caching rank than
the unsigned NS records in the referral. Therefore, the adver-
sary would also need to perform another step to downgrade
the DNSSEC validation protecting the NS RRset or/and A
RRset and inject malicious NS/A records. In all subsequent
responses from the adversarial nameservers, the adversary has

AttackerClient Resolver Authoritative NS

A
vict.im A?

B
vict.im A?

vict.im A 1.2.3.4;
vict.im RRSIG A

RSASHA256 eff1…
C

D

vict.im A 6.6.6.6;
vict.im RRSIG A ED448

eff1…

E
vict.im A 6.6.6.6

Figure 6: DNSSEC downgrade and injection of fake A record.

to apply one of the attack vectors (a)-(d) to continue disabling
DNSSEC validation.

Manipulate records in Answer responses. To manipulate
genuine records in a DNS response or to inject a fake record
to the response the adversary has to employ one of the attack
vectors (a)-(d). Depending on the attack vector, the adversary
can create a new DNSKEY record for a domain or hijacking
a resource by manipulating the algorithm and changing the
hostname or an IP address.

5.3 Complete attack
We combine the attack vectors for manipulating the DNSSEC
records into a full fledged attack for downgrading DNSSEC
validation in a victim resolver. The attack is illustrated in
Figure 6, which demonstrates attack vector (d). Adversary
causes a recursive resolver to issue a query. There are differ-
ent ways to do that, in an example in Figure 6 we illustrate
query triggering using web clients that download our object
via an ad-network that we deployed. The client sends a query
to the recursive resolver (step A), which in turn sends it to
the authoritative DNS server of the victim domain (step B).
The response of the nameserver is in step D changed by an
on-path attacker, according to one of the attack vectors (a)-(d)
defined in Section 5.1. In addition, the adversary injects a ma-
licious DNS record. The new record would not pass DNSSEC
validation, since the modified record does not match to the di-
gest in the signature. However, the DNSSEC validation at the
resolver was disabled for that answer. Therefore, the resolver
caches the malicious records that poison its cache, despite the
fact that the signature is invalid.

6 Evaluations

In this section we describe evaluations of the downgrade at-
tacks. We first provide details of the infrastructure that we
set up for running the evaluations and Internet wide measure-
ments. Then we describe the evaluations that we run on our
datasets of resolvers.

6.1 Setup
The setup contains the test domains that we control, authori-
tative nameservers (based on Knot implementation [30]) in

USENIX Association 32nd USENIX Security Symposium 7437

0 10 20 30 40 50
Queries per Second

0%

25%

50%

75%

100%

Pr
op

or
tio

n

Adnet
Open

Figure 7: Query rate: 3.25 avg. open resolvers, and 3.00 ad-net.

our test domains, a Man-in-the-Middle (MitM) proxy and a
client component. The setup corresponds to the illustration in
Figure 6, with "attacker" being our MitM proxy.

Domains and nameservers. The nameservers of each do-
main are configured to use the zonefiles described in Section
5.1. The nameservers serve records in each of the zones,
signed with all the algorithms that can be found in the corre-
sponding DS records.

Reverse MitM proxy. The reverse MitM proxy is devel-
oped in python and acts as an on-path adversary. It manipu-
lates the records in the DNS responses according to the attack
vectors (a)-(d) defined in Section 5.1.The MitM proxy re-
places the algorithms’ numbers in the signatures or removes
the records from the responses.

Client. We use a client side component to cause the target
resolvers to issue queries to our domains. The setup and
functionality of the client side component can be direct and
indirect, depending on the access to DNS. The former is when
the queries to the resolver can be sent directly, while the latter
applies when the evaluation is performed indirectly via our
script in clients’ browsers.

Direct tests. A client side component is simple, it is located
on our measurement infrastructure and triggers queries to
the target DNS resolvers directly. We use this setup to test
the publicly available implementations of DNS, public DNS
providers and open DNS resolvers.

Indirect tests. A script running in client’s browser issues the
DNS queries, which are passed on by the stub resolver on its
device to its local recursive DNS resolver. We use this setup
in our ad-net study of web clients. The client component
tests the attack vectors (a)-(d) each time triggering requests to
our test domains. The requests encode different tests. Upon
each request, the nameserver decodes the test from the query
name sent by the DNS resolver, and sends a response. In our
evaluations we issue on average 3 queries per second in the
ad-net study and 3.25 in the study of open resolvers; the query
rate is plotted in Figure 7.

6.2 Results

We list the results of our evaluations of the downgrade attacks
against the resolvers in our datasets in Table 3. The upper
part lists the domains (TLDs and 1M-top Tranco domains)

Any Domain Single Alg. Domains Multiple Alg. Domains
Top-Level Domains 100.00% 99.19% 0.00% 0.00% 0.00%
Tranco Top 1M 100.00% 99.14% 0.04% 0.04% 0.04%

attack vectors (§5.1) i_any: (a)-(d) i_sig_rw: (d) i_sigt_strp: (a) i_sigk_strp: (b) i_key_strp: (c)
2021 2022 2021 2022 2021 2022 2021 2022 2021 2022

BIND 9.11.3 # # # # # # # # # #
Knot Resolver 5.3.2 # # # # # # # # # #
PowerDNS 4.6.0 # # # # # # # # # #
Unbound 1.6.7 # # # # # # # # # #
Windows Server 2012 # # # #
Windows Server 2012 R2 # # # #
Windows Server 2016 # # # #
Windows Server 2019 # # # #
Windows Server 2022 # # # #
CZ.NIC ODVR (Knot) # # # # # # # # # #
Cisco (OpenDNS) # # # # # # # #
Cloudflare 1.1.1.1 # # # # # #
Google Public DNS # # # # # # #
Neustar FreeRecursive # # # # # # # # # #
Norton ConnectSafe # # # # # # # # # #
Oracle Dyn # # # # # # # # # #
Verisign # # # # # # # # # #
Adnet Resolvers 34.18% 5.03% 27.58% 0.18% 32.35% 4.96% 0.11% 0.11% 1.87% 0.11%
Open Resolvers 65.10% 7.50% 53.52% 0.04% 61.06% 7.41% 0.17% 0.17% 4.04% 0.08%

Table 3: Downgrade vulnerabilities in resolvers and victim
domains. marks vulnerability. Domain percentages are relative
to the number of signed domains with DS records at the parent.

that have DNSSEC configurations, which cause the resolvers
not to apply DNSSEC validation, exposing the vulnerable
resolvers to cache poisoning attacks.

The most recently standardized DNSSEC algorithms are
not yet widely supported by resolvers and are thus rarely used
to sign zones. Combinations of different algorithm numbers
are usually found in domains that are in transition from one al-
gorithm to a new one, which is not too common. The rounded
zero percentages in Table 3 conform to absolute values of zero,
except where noted otherwise. In addition to domains with
DNSSEC configurations that disable DNSSEC in vulnerable
resolvers, we use our downgrade methodologies (developed
in Section 5) to disable DNSSEC irrespective of DNSSEC
configurations in domains.

The next category in Table 3 is a list of DNS software
which we found to be vulnerable. The different Windows
server versions were installed in a lab setup, and evaluated
against the domains in our dataset. The four additional re-
solver implementations in Table 3 were tested in the same lab
environment and were not vulnerable. Then, the table lists a
category of public DNS operators. The last two categories
are measurements of the downgrade attacks in open DNS
resolvers and in DNS resolvers we measured using an ad-net.
Percentages are relative to the number of validating resolvers,
and to the number of clients that use validating resolvers.

Our evaluations show no difference in resolver behaviour
when testing an unsupported algorithm, does not matter if its
algorithm number is assigned or is unassigned. Therefore, in
the rest we focus on evaluations with unsupported assigned
algorithm numbers.

Public DNS operators. We evaluate our attacks against
the public DNS operators in our dataset and find Cloudflare,
Google Public DNS and OpenDNS to be vulnerable to our
attacks. In addition, we find that all the three exhibit non-RFC
compliant validation behaviour.

• Cloudflare resolver is vulnerable to downgrade attacks
with zones that are signed with any arbitrary unsupported
algorithm. When Cloudflare DNS resolvers encounter an un-
supported as well as one supported algorithm in the validation
path, beginning with one of the DS records or DNSKEY, and

7438 32nd USENIX Security Symposium USENIX Association

in RRSIG, an attacker can inject fake records and employ
attack vector (a) to coerce Cloudflare along the unsupported
validation path. Despite the fact that DNSSEC validation
is invalid, Cloudflare does not of return SERVFAIL. Instead,
unauthenticated records are returned. While acceptable when
the DS RRset does not contain any supported algorithms, this
behavior also occurs when there exists a validation path with
supported DS algorithms, DNSKEYs and RRSIGs. The stan-
dard recommends returning SERVFAIL in those cases, how-
ever, Cloudflare does not insist on any supported signatures
to exist when unsupported DS/DNSKEY records are present.

Since the beginning of our measurements in 2021, Cloud-
flare supports all tested algorithms except ED448 (16) (see
Table 1). In our proof of concept we use algorithm 16.

• OpenDNS is vulnerable to downgrade attacks with zones,
that have at least one DS record conforming to an unsup-
ported algorithm. The attacker proceeds by injecting fake
records and stripping off the supported DNSKEY as well as
all its signatures from responses to the victim resolver, thereby
leaving the supported DS record at the parent zone as only
indication, that RRSIGs conforming to supported signature
algorithms should exist in the victim zone. By doing so, the
attacker tricks OpenDNS into believing that no supported
signing information exists in the zone, forcing it along the
unsupported validation path. Being vulnerable, OpenDNS
downgrades security on the records from the target zone and
delivers fake records to the client for which the signatures
are invalid. This behavior is non-compliant with [RFC4035],
Section 5, which says "The absence of DNSSEC data in a
response MUST NOT by itself be taken as an indication that
no authentication information exists.". Instead, OpenDNS
should return SERVFAIL for any request to the victim zone
and all its descendants.

At the time of our evaluations in 2022 OpenDNS does
support all signature algorithms, which are allowed for sign-
ing zones [RFC8624]. For our proof of concept, we use
DNSKEYs and RRSIGs designated with the unassigned al-
gorithm number 18. We create valid records for algorithm
ED448 (16), re-label them and adjust DS hashes, key tags and
other record fields which depend on the algorithm number.
This allows us to evaluate resolver behavior on test zones
conforming to arbitrary algorithm numbers.

• Google Public DNS (8.8.8.8) was found vulnerable to
both attack vector (a) as well as attack vector (d). The attack
scenario employing (a) proceeds similarly to Cloudlfare. Ad-
ditionally to (a), Google has also been found vulnerable to
(d). This attack affects any domain on the Internet, including
TLDs. We next describe the procedure on a zone using a
single signature algorithm.

The attacker injects fake records into the response and
rewrites the algorithm numbers in the contained RRSIGs to
unsupported ones. In our measurements, Google Public DNS
(8.8.8.8) supported all algorithms except ED448 (16). In our
proof of concept evaluation we use signature algorithm 16,

that is not part of the test zone, as indicated by DNSKEY
or DS. By rewriting the RRSIG algorithm numbers, we dis-
sociate the authentic RRSIGs covering the modified records
from their authentic DNSKEY(s), and, therefore, from the rest
of the validation path. To the attacked resolver, the attacked
zone looks like there are no RRSIGs conforming to the au-
thenticated DNSKEYs, but only those RRSIGs, which do not
conform to any key at all. According to [RFC6840] Section
5.12, these should be ignored: "Validating resolvers MUST
disregard RRSIGs in a zone that do not (currently) have a
corresponding DNSKEY in the zone. Similarly, a validating
resolver MUST disregard RRSIGs with algorithm types that
do not exist in the DNSKEY RRset." After ignoring those
RRSIGs, in our PoC, there are no RRSIGs left to consider. Re-
solvers abiding by [RFC4035] would then raise a validation
failure, since "The absence of DNSSEC data in a response
MUST NOT by itself be taken as an indication that no authen-
tication information exists.". Google Public DNS, however,
behaved non-compliant in this case: It instead downgrades the
security of the covered records. We locate the non-compliance
in [RFC6840], since, as we measured, if no RRSIG exists on
the queried RRset at all, then SERVFAIL is returned.

The market shares of the Public DNS operators are reflected
by the vulnerability statistics of open resolvers as well as
resolvers used by web clients. We use the statistics on market
shares to calculate the 2021 vulnerability statistics for all
vulnerabilities, which we found and reported over the course
of our research. We next describe our findings.

Open DNS resolvers. Table 3 lists the fraction of resolvers
that were vulnerable to at least one attack method for the
investigated domain configurations. Most resolvers (61.06%)
were found vulnerable when using attack vector (a) in Section
5.1, followed by (d) with 53.52%, and (c) with 4.04%. The
smallest number of resolvers, 0.17%, were vulnerable to (b).

Resolvers used by web clients. The setup for ad-net study
is illustrated in Figure 2 and inspired by [15]. When our script
is downloaded by the client it iteratively includes resources
(img) from test domains, including a non-DNSSEC-signed
domain to signal session finish. The web server logs all the
requests and delivers the requested resources. A script then
analyzes the logs to check for vulnerabilities to our DNSSEC
downgrade attack. The steps of the evaluation are the follow-
ing: (A) the ad is delivered to the web client, causing it to
fetch and execute our test script. (B) The client queries its
resolver for names in our test domains. (C) The resolver looks
up those names querying our authoritative DNS server, we
test vulnerabilities to downgrade attacks. If vulnerable to one
of the tests, the resolver successfully answers the query and
(D) the client fetches the requested resource from our web
server. We derive resolver vulnerability from the existence of
the corresponding requests in the web log.

In our ad-net study we covered 1,232 Autonomous Sys-
tems (ASes) with publicly routable prefixes. From the covered
ASes, our server was accessed by 7.29 clients per AS on aver-

USENIX Association 32nd USENIX Security Symposium 7439

age. The ad-net study spanned 154 countries around the globe,
which homed 56.98 clients on average. We observed behavior
of resolvers used by 8,977 ad-net clients, out of which 2,785
used validating resolvers. We found 901 (32.35%) users to
use resolvers vulnerable to attack vector (a). Out of those,
286 were located in Asia, 157 in the EU and 116 in North
America. 1.87% were vulnerable to attack vector (c). 15 of
them sent requests from addresses geo-located in Asia, 20
in the EU and 3 in North America. 27.58% of adnet clients
used resolvers, which were vulnerable to attack vector (d).
The share was 0.11% for attack vector (b).

Our measurement results indicate that a large portion of
Internet clients use resolvers that are vulnerable for at least
some DNSSEC configuration. While the adversary cannot
choose the DNSSEC configuration of the attack target, for a
successful attack it suffices that any of the DNSSEC config-
urations in the target zone’s ancestors have a configuration
vulnerable at the resolver.

7 Recommendations and Challenges

In this section we discuss the key issues that allow our attacks
and provide recommendations for updating the DNSSEC stan-
dard as well as concrete mitigations to prevent DNSSEC
downgrade attacks.

Ensuring standard compliance. DNS developers and pub-
lic DNS providers should support the validation behaviour
recommended in the standard. This would prevent the part of
our attacks that exploit non standard behaviour, such as those
of Google public DNS, OpenDNS and CloudFlare. Neverthe-
less, adhering to the standard does not solve all the vulnera-
bilities. Our analysis of the standard shows that lack of clear
behaviour specification for DNSSEC validation outcomes
in case of "indeterminate" and "bogus" states introduces a
vulnerability which we exploit in our attacks:

"Indeterminate" state: The "indeterminate" security state,
which is one of the aspects we exploit in our downgrade
attacks, is defined differently in both DNSSEC standards
[RFC4033] and [RFC4035]. This is not only confusing but
also opens up room for different interpretations by the devel-
opers of DNS resolvers. Clear and consistent definitions are
imperative for avoiding different interpretations.

"Bogus" state: Our study shows that when all the algo-
rithms are supported resolvers identify the "bogus" cases
correctly, e.g., when there is a clear validation failure or some
of the DNSSEC records are missing (e.g., no DNSKEY at all).
However, the situation changes as soon as multiple algorithms
are involved, some of which supported and some not, because
then, the "resolvers MUST NOT insist on all algorithms from
DNSKEY to work", which opens up room for confusion and
misinterpretations. In our evaluations we identify resolvers
that do not return SERVFAIL responses in cases when multiple
algorithms are present and not all of them are supported. For
instance, when the DS records contain supported and unsup-

ported algorithms, but the zone is signed only unsupported
DNSKEY and RRSIG. Behaviour of some resolvers exposes
them to attack vector (c) in §5.1 (i_key_strp in Table 3), since
they do not return SERVFAIL in those cases. This is possibly
caused by [RFC4033] Section 5, which says that bogus state
can be communicated to the clients via SERVFAIL. However,
this case should also be bogus since the DS RRset signals that
a supported DNSKEY and the corresponding RRSIG should
be present at the child.

Developing robust standards. Our research shows that
aiming to offer flexibility of implementations may lead to
confusion and discrepancy in different interpretations by the
developers. On the other hand, over specification is also risky.
A recent effort [24] for developing protocols robust to fail-
ures, bugs and attacks, discusses the risks of flexibility derived
from the architectural principle (Postel’s law) of the Internet
[RFC1958] “Be strict when sending and tolerant when receiv-
ing.” and refers to the possibility of differing interpretations
[RFC0760]. Namely, the downgrade behaviour is left to the
implementers to choose. As a consequence, the robustness
principle of DNSSEC implementations exposes to our attacks.
On the other hand, [24] considers the importance of deploy-
ment over a perfect specification since the protocols benefit
greatly from user experience when they are used.

Cryptographic standards often try to solve this problem by
clearly, often even formally specifying their assumptions re-
garding the security of external functions and operations they
build and rely on, and formally proving that these assumptions
are sufficient for providing their intended security functions
and properties. This approach works often well for "small"
cryptographic functions. However, proving the security of
larger specifications is still a challenge. Another approach
for assuring the security of standards is to provide incentives
for the security research community for carefully analyzing
draft standards, e.g., through competitions and corresponding
sessions at top scientific conferences.

Hardfail at "bogus". Trivial solutions, like checking that
the algorithm number is within the list of all the standardised
algorithm numbers, do not work. New unknown algorithm
types may be included in DNSSEC and the DNSSEC records
may be provisioned to be used in different ways than they
were originally planned. For instance, a recent draft proposes
to signal support of DoT using a new DNSKEY algorithm
type TBD20. As a systematic solution to prevent downgrade
attacks we propose to update the DNSSEC specification and
impose rigorous checks on algorithms presence and a more
rigorous requirement for SERVFAIL return codes when an
RRset qualifies as "bogus".

Algorithm presence: To prevent our DNSSEC downgrade
attacks we recommend that the resolvers insist on algo-
rithm presence - as mandated analogously by [RFC4035]
for the zone side. If there exists a supported DS record for

20https://datatracker.ietf.org/doc/html/draft-vandijk-
dprive-ds-dot-signal-and-pin-01

7440 32nd USENIX Security Symposium USENIX Association

a DNSKEY with supported signature algorithm ’a’ at ’ex-
ample.org’, then the resolver must insist on at least one such
DNSKEY record for signature algorithm ’a’ at ’example.org’.
If there exists a DNSKEY record with a supported signature
algorithm at ’example.org’, then the resolver must insist on
least one RRSIG of a supported signature algorithm for each
RRset in the in the zone ’example.org’. The rationale behind
this: When considering the signature algorithms and DS di-
gest types of a zone, a resolver may only skip validation if all
DS records conform to a digest type, which is not supported,
or signal a signature algorithm, which is not supported (either
one is sufficient for each individual DS digest). Namely, miss-
ing support for DS digest types or signature algorithms may
result in skipped validation, if and only if there exists no DS
record with both a supported DS digest type and supported
signaled signature algorithm.

Requirement for return codes during bogus: We recom-
mend to return SERVFAIL when validation status is "bogus".
This would prevent the attacks without imposing restrictions
on the usage of DNSSEC and without limiting the flexibility
of deployment of new algorithms. However, enforcing this
will face obstacles due to practical considerations which may
cause them to be seen as controversial by the community.
Insisting on returning SERVFAIL may cause failures during
key rollover, when a rollover is made to an unknown algo-
rithm and the key that corresponds to a known algorithm
is expired. Additionally, returning SERVFAIL prevents key
prepublication [RFC6781]. Key prepublication is one of the
ways for zone-signing key rollover: a new key is added into
the DNSKEY RRset and the RRset is re-signed. Signatures
created with the old key can be replaced with the new key.
Returning SERVFAIL causes validation failures in such cases.

Another issue is inconsistency in records between parent
and child domains [6, 31, 32, 38]. This can happen, e.g., when
the set of the keys in the DS records does not overlap with the
keys in the DNSKEY records in the child zone. As a result,
the resolver cannot establish a chain of trust to the trust anchor.
In our measurements of inconsistencies between the parent
and the child domains in October 2021 we find that about
0.27% of popular signed domains have misconfigurations for
which DNSSEC validation would fail. Insisting on DNSSEC
validation in those cases would break the access to the ser-
vices in those domains, hence the DNS operators decided to
preserve connectivity sacrificing security. Unfortunately, this
is exactly the vulnerability that we exploit in our DNSSEC
downgrade attacks.

Validate DNSSEC in resolvers. There are tools for vali-
dating deployment of DNSSEC on domains, such as DNSViz,
which check if the zone is correctly signed, i.e., if signatures
are present and chain of trust can be established from the root.
Those tools however do not detect the scenarios which make
resolvers vulnerable to our downgrade attacks. We develop
a tool for evaluating the DNSSEC validation in resolvers in
different situations which can be exploited for downgrade

attacks: https://www.dnssec-downgrade.net/. Vulnerabili-
ties are reported in an output with explanations of vulnerable
scenarios and recommendations for countermeasures.

8 Conclusions

Cryptographic algorithm agility in DNSSEC, i.e., the ability
to add and remove algorithms, is an important requirement
needed to maintain strong security guarantees. Algorithms
may be broken, being able to replace vulnerable algorithms
with secure ones efficiently and fast is critical [13].

We show that efficient and fast adoption of algorithms also
introduces a challenge: how should resolvers react when faced
with records signed using new algorithms? What is the cor-
rect behaviour with zones that are signed with a number of
algorithms, some of which are known? The standard does not
provide clear recommendations for resolvers how to handle
DNSSEC records with unknown algorithms and how to han-
dle bogus data, but leaves it open for every resolver to make
its own decision how to behave in such cases. Although flexi-
bility in standards is important, care should be taken to avoid
vulnerable implementations. We discover that this vague spec-
ification leads to different validation behaviour in popular
DNS resolver implementations, which indicates that there is
no consensus on what a correct behaviour should be. The
implementers and operators often prefer to ignore DNSSEC
all together instead of returning SERVFAIL when the records
cannot be validated. This decision is sometimes made to pre-
serve connectivity to domains, since there are also benign
situations that can lead to SERVFAIL, e.g., due misconfigura-
tions, deployment of new algorithms or key rollover. However,
we show that this tradeoff also leads to vulnerabilities. If an
adversary modifies a DNS response, e.g., by manipulating
an RRset signature’s algorithm number to an algorithm not
listed in the DS RRset, it can cause the RRset to qualify as
“bogus” leading to undefined behavior in the specification. In
this work we show that resolvers, that handle bogus cases as
if the domain were not signed with DNSSEC and the RRset
is “insecure”, are vulnerable.

Our work calls for a quick action to extend and clarify
the standard as well as patch the vulnerabilities to make the
cryptographic algorithm agility in DNSSEC secure.

Acknowledgements

This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

USENIX Association 32nd USENIX Security Symposium 7441

References

[1] Domain name system security (DNSSEC) al-
gorithm numbers. https://www.iana.org/
assignments/dns-sec-alg-numbers/dns-sec-
alg-numbers.xhtml.

[2] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and
N. Abu-Ghazaleh. Collaborative client-side dns cache
poisoning attack. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019.

[3] Dan J. Bernstein. DNS Forgery. http://cr.yp.to/
djbdns/forgery.html, November 2002.

[4] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer
Rexford, and Prateek Mittal. Bamboozling certificate
authorities with {BGP}. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 833–849,
2018.

[5] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shul-
man, and Michael Waidner. Domain Validation++ For
MitM-Resilient PKI. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2060–2076. ACM, 2018.

[6] Taejoong Chung, Roland van Rijswijk-Deij, Balakr-
ishnan Chandrasekaran, David Choffnes, Dave Levin,
Bruce M Maggs, Alan Mislove, and Christo Wilson.
A longitudinal, end-to-end view of the {DNSSEC}
ecosystem. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pages 1307–1322, 2017.

[7] Taejoong Chung, Roland van Rijswijk-Deij, David
Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove,
and Christo Wilson. Understanding the role of registrars
in dnssec deployment. In Proceedings of the 2017 Inter-
net Measurement Conference, pages 369–383, 2017.

[8] Tianxiang Dai, Haya Shulman, and Michael Waidner.
Let’s downgrade let’s encrypt. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1421–1440, 2021.

[9] Elias Heftrig, Haya Shulman, and Michael Waidner.
Poster: The unintended consequences of algorithm
agility in DNSSEC. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA,
USA, November 7-11, 2022, pages 3363–3365. ACM,
2022.

[10] Amir Herzberg and Haya Shulman. Security of Patched
DNS. In Computer Security - ESORICS 2012 - 17th
European Symposium on Research in Computer Security,

Pisa, Italy, September 10-12, 2012. Proceedings, pages
271–288, 2012.

[11] Amir Herzberg and Haya Shulman. Fragmentation Con-
sidered Poisonous: or one-domain-to-rule-them-all.org.
In IEEE CNS 2013. The Conference on Communications
and Network Security, Washington, D.C., U.S. IEEE, Oc-
tober 2013.

[12] Tomas Hlavacek, Philipp Jeitner, Donika Mirdita, Haya
Shulman, and Michael Waidner. Stalloris: RPKI Down-
grade Attack. In 31th USENIX Security Symposium
(USENIX Security 22). USENIX Association, August
2022.

[13] Russ Housley. Guidelines for cryptographic algo-
rithm agility and selecting mandatory-to-implement al-
gorithms. Technical report, BCP 201, RFC 7696, DOI
10.17487/RFC7696, November 2015,< https://www.
rfc . . . , 2015.

[14] A. Hubert and R. van Mook. Measures for making dns
more resilient against forged answers. RFC 5452, RFC
Editor, January 2009.

[15] Geoff Huston. Measuring the end user, 2015.

[16] Dan Kaminsky. It’s the End of the Cache As We Know
It. Presentation at Blackhat Briefings, 2008.

[17] Amit Klein. Bind 9 dns cache poisoning. Report,
Trusteer, Ltd, 3, 2007.

[18] Amit Klein. Windows dns server cache poisoning, 2007.

[19] Amit Klein. Cross layer attacks and how to use them
(for dns cache poisoning, device tracking and more).
arXiv:2012.07432, 2020.

[20] Amit Klein, Haya Shulman, and Michael Waidner.
Internet-wide study of dns cache injections. In IEEE
INFOCOM 2017-IEEE Conference on Computer Com-
munications, pages 1–9. IEEE, 2017.

[21] Amit Klein, Haya Shulman, and Michael Waidner.
Internet-Wide Study of DNS Cache Injections. In IN-
FOCOM, 2017.

[22] Wilson Lian, Eric Rescorla, Hovav Shacham, and Stefan
Savage. Measuring the Practical Impact of {DNSSEC}
Deployment. In 22nd {USENIX} Security Symposium
({USENIX} Security 13), pages 573–588, 2013.

[23] Baojun Liu, Zhou Li, Peiyuan Zong, Chaoyi Lu, Haixin
Duan, Ying Liu, Sumayah Alrwais, Xiaofeng Wang,
Shuang Hao, Yaoqi Jia, et al. Traffickstop: Detecting
and measuring illicit traffic monetization through large-
scale dns analysis. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 560–575.
IEEE Computer Society, 2019.

7442 32nd USENIX Security Symposium USENIX Association

https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
http://cr.yp.to/djbdns/forgery.html
http://cr.yp.to/djbdns/forgery.html

[24] Thomson M. and Schinazi D. Maintaining Robust Pro-
tocols, June 2023.

[25] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng
Zheng, Youjun Huang, and Haixin Duan. DNS Cache
Poisoning Attack Reloaded: Revolutions with Side
Channels. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
2020.

[26] Keyu Man, Xin’an Zhou, and Zhiyun Qian. Dns cache
poisoning attack: Resurrections with side channels. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 3400–
3414, 2021.

[27] Matthijs Mekking. A Story of Unsupported DNSSEC
Algorithms, June 2019.

[28] P. Mockapetris. Domain names - implementation and
specification. STD 13, RFC Editor, November 1987.
http://www.rfc-editor.org/rfc/rfc1035.txt.

[29] Moritz Müller, Willem Toorop, Taejoong Chung, Jelte
Jansen, and Roland van Rijswijk-Deij. The reality of
algorithm agility: Studying the dnssec algorithm life-
cycle. In Proceedings of the ACM Internet Measurement
Conference, pages 295–308, 2020.

[30] CZ NIC. It’s knot dns. 2011.

[31] Eric Osterweil, Michael Ryan, Dan Massey, and Lixia
Zhang. Quantifying the operational status of the dnssec
deployment. In Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement, pages 231–242,
2008.

[32] Eric Osterweil, Pouyan Fotouhi Tehrani, Thomas C.
Schmidt, and Matthias Wählisch. From the beginning:
Key transitions in the first 15 years of dnssec, 2021.

[33] Ebersman P., Kumari W., Griffiths C., Livingood J., and
Weber R. RFC7646: Definition and Use of DNSSEC
Negative Trust Anchors, September 2015.

[34] Craig Partridge and Mark Allman. Ethical considera-
tions in network measurement papers. Communications
of the ACM, 59(10):58–64, 2016.

[35] Haya Shulman and Michael Waidner. Towards security
of internet naming infrastructure. In European Sympo-
sium on Research in Computer Security, pages 3–22.
Springer, 2015.

[36] Haya Shulman and Michael Waidner. One key to
sign them all considered vulnerable: Evaluation of
{DNSSEC} in the internet. In 14th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 17), pages 131–144, 2017.

[37] Sooel Son and Vitaly Shmatikov. The hitchhiker’s guide
to dns cache poisoning. In Security and Privacy in Com-
munication Networks, pages 466–483. Springer, 2010.

[38] Roland van Rijswijk-Deij, Taejoong Chung, David
Choffnes, Alan Mislove, and Willem Toorop. The root
canary: Monitoring and measuring the dnssec root key
rollover. In Proceedings of the SIGCOMM Posters and
Demos, pages 63–64. 2017.

[39] Paul Vixie. DNS and BIND security issues. In Pro-
ceedings of the 5th Symposium on UNIX Security, pages
209–216, Berkeley, CA, USA, jun 1995. USENIX As-
sociation.

[40] S. Weiler and D. Blacka. Clarifications and implementa-
tion notes for dns security (dnssec). RFC 6840, RFC Ed-
itor, February 2013. http://www.rfc-editor.org/
rfc/rfc6840.txt.

[41] Wouter CA Wijngaards and Benno J Overeinder. Secur-
ing dns: Extending dns servers with a dnssec validator.
IEEE Security & Privacy, 7(5):36–43, 2009.

[42] Dan York, Ondřej Surỳ, Paul Wouters, and O Gudmunds-
son. Observations on deploying new dnssec crypto-
graphic algorithms. Technical report, Tech. Rep, 2016.

[43] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang,
Dongjie Zhou, Baojun Liu, Keyu Man, Shuang Hao,
Haixin Duan, and Zhiyun Qian. Poison over troubled
forwarders: A cache poisoning attack targeting DNS for-
warding devices. In 29th USENIX Security Symposium
(USENIX Security 20), pages 577–593, 2020.

A Disclosure and Notification

.

DS: org.

2dt → 13s

DNSKEY: .

8s 8s

example.org.

A: www.example.org.

1.2.3.4

DNSKEY: example.org.

8s

org.

DNSKEY: org.

13s 2dt → 8s4dt → 8s

8s

13s

8s

13s

13s

DS: example.org.

Figure 8: DNSSEC Chain of Trust Schematic.

In this section we provide further information about our
disclosure efforts and communication with the affected ven-
dors.

USENIX Association 32nd USENIX Security Symposium 7443

http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc6840.txt
http://www.rfc-editor.org/rfc/rfc6840.txt

We informed Cloudflare, Microsoft, Google, as well as
Cisco about the vulnerabilities in their DNS products. We
additionally contacted Nic.fr as well as Verisign and informed
them about the new attack vectors we found.

As of January 2023, Google an Cisco fixed the vulnera-
bilities. Our experimental evaluations in January 2023 show
that the issues persist in an up-to-date Windows Server 2019.

At the time of writing, Cloudflare’s public resolver service
remains vulnerable. More so, Cloudflare reportedly21 sets
negative trust anchors (NTAs) on domains "with detected
and vetted DNSSEC errors". This further illustrates the deli-
cate balance, which resolver operators strive to find between
reliability and security.

21https://blog.cloudflare.com/dns-resolver-1-1-1-1/

7444 32nd USENIX Security Symposium USENIX Association

https://blog.cloudflare.com/dns-resolver-1-1-1-1/

	Introduction
	DNS Cache Poisoning and Defences
	DNSSEC Overview
	Dataset
	DNSSEC-validating resolvers
	DNSSEC-signed domains

	DNSSEC-Downgrade Attacks
	DNSSEC manipulation methodologies
	Cache poisoning methodologies
	Complete attack

	Evaluations
	Setup
	Results

	Recommendations and Challenges
	Conclusions
	Disclosure and Notification

