
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

PATROL: Provable Defense against
Adversarial Policy in Two-player Games

Wenbo Guo, UC Berkeley; Xian Wu, Northwestern University; Lun Wang,
UC Berkeley; Xinyu Xing, Northwestern University; Dawn Song, UC Berkeley

https://www.usenix.org/conference/usenixsecurity23/presentation/guo-wenbo

PATROL: Provable Defense against Adversarial Policy in Two-player Games

Wenbo Guo1∗, Xian Wu2∗, Lun Wang1, Xinyu Xing2, Dawn Song1

1 UC Berkeley, 2 Northwestern University
{henrygwb, wanglun, dawnsong}@berkeley.edu, {xianwu2024, xinyu.xing}@northwestern.edu

Abstract
Recent advances in deep reinforcement learning (DRL) takes
artificial intelligence to the next level, from making individual
decisions to accomplishing sophisticated tasks via sequential
decision makings, such as defeating world-class human play-
ers in various games and making real-time trading decisions
in stock markets. Following these achievements, we have
recently witnessed a new attack specifically designed against
DRL. Recent research shows by learning and controlling an
adversarial agent/policy, an attacker could quickly discover a
victim agent’s weaknesses and thus force it to fail its task.

Due to differences in the threat model, most existing de-
fenses proposed for deep neural networks (DNN) cannot be
migrated to train robust policies against adversarial policy
attacks. In this work, we draw insights from classical game
theory and propose the first provable defense against such
attacks in two-player competitive games. Technically, we first
model the robust policy training problem as finding the nash
equilibrium (NE) point in the entire policy space. Then, we
design a novel policy training method to search for the NE
point in complicated DRL tasks. Finally, we theoretically
prove that our proposed method could guarantee the lower-
bound performance of the trained agents against arbitrary
adversarial policy attacks. Through extensive evaluations,
we demonstrate that our method significantly outperforms
existing policy training methods in adversarial robustness and
performance in non-adversarial settings.

1 Introduction

Deep reinforcement learning is one of the heated topics in
both academia and industry. Its goal is to learn a policy that
controls an agent to take a sequence of actions and fulfill a task
in an environment. Guided by the policy, the agent interacts
with the environment and receives rewards, indicating how
well the agent performs. The policy learning objective is
to maximize the cumulative reward of the agent. Based on

∗Equal Contribution.

this objective, existing research proposes the Proximal Policy
Optimization (PPO) algorithm [64], which has demonstrated
great success in training powerful agents for single-player
reinforcement learning tasks (e.g., Atari games [2]).

Going beyond the single-player setup, a more challenging
task is the two-player competitive setup, where the goal of
both players is to receive more rewards than their opponents.
Recent research [5] proposes a self-play mechanism that lever-
ages PPO to train a policy against itself in the two-player
game. This framework has dominated the policy training in
various RL environments, ranging from simulation games
(e.g., MuJoCo [5], Roboschool [55]) to Real-Time Strategy
(RTS) games (e.g., Dota 2 [54] and StarCraft II [69]).

Inspired by the great success of RL in two-player games,
researchers recently started to exploit its security risk and pro-
pose a new adversarial policy attack [25]. Different from other
attacks that make an unrealistic assumption (i.e., allowing per-
turbations to the policy input/output), this attack [25] trains
an adversarial policy to interact with the victim player, mis-
leading the victim to take non-optimal actions and forcing the
victim to fail its task. Following [25], a recent research [84]
proposes another method to train adversarial policies with
stronger adversarial exploitability. Due to the differences in
problem assumptions, most defenses against attacks in DNNs
or other attacks in DRL can not be migrated to defend against
adversarial policy/agent attacks [25, 84]. As discussed later
in Section 4.1, the only applicable defense (i.e., adversarial
retraining) can be easily bypassed by adaptive attacks.

In this work, we take an entirely different design path from
existing techniques and propose a novel and provable defense
against adversarial policy attacks. Technically, we first trans-
form the robust policy training problem into searching for the
optimal policy for both players at the Nash equilibrium point.
We analytically show that a policy at the NE point is also
a robust policy with a guarantee of its lower-bound perfor-
mance against arbitrary adversarial policies. Then, leveraging
the perturbation-based optimization framework, we design a
novel policy training method that optimizes toward the NE
point. Finally, we theoretically prove that our method guar-

USENIX Association 32nd USENIX Security Symposium 3943

antees the asymptotic convergence to the NE point and thus
guarantees the robustness of the trained policy. Leveraging
a distributed learning framework Ray [39], we prototype our
proposed policy training method and name it as ”ProvAble
defense againsT AdversaRial pOLicy" (for short PATROL).

We extensively evaluate PATROL on multiple two-
player competitive games, ranging from simple matrix-
form and Euclidean games to complicated robot simu-
lators (e.g., MuJoCo [72]) and real-time strategy games
(e.g., StarCraft II [69]). We demonstrate that PATROL is supe-
rior to state-of-the-art policy training methods (i.e., fictitious
play [11] and self-play [5]) in the following aspects. First,
PATROL is more effective in searching for the NE points in
different types of games (e.g., games with discrete or continu-
ous action space, games with convex-concave or non-convex
non-concave value function). Second, the policies trained by
PATROL demonstrate stronger capability in non-adversarial
settings. Finally, PATROL significantly outperforms existing
methods in defending against existing adversarial policy at-
tacks. To the best of our knowledge, this is the first work that
learns robust policies for different two-player competitive
games and the first work that provides a certified robustness
guarantee against adversarial policy attacks.

In summary, the paper makes the following contributions.

• We show the policy at the NE point is the robust policy.
Guided by this discovery, we propose PATROL,1 a novel
robust policy training method.

• We theoretically prove that PATROL is guaranteed to con-
verge to the NE point and thus provides certified robust
policies against arbitrary adversarial policies, even in
games with non-convex non-concave value functions.

• We demonstrate, analytically and empirically, that com-
monly used defenses are insufficient in providing cer-
tified robustness guarantees and thus can be easily by-
passed by adaptive attacks.

• We compare PATROL with state-of-the-art policy training
methods in various environments and demonstrate its
superiority in adversarial robustness and performance in
non-adversarial settings.

2 Background

As is depicted in Figure 1a, the players in a two-player com-
petitive RL environment observe the current environment
state and take action simultaneously. The environment then
transits to the next state and rewards each player based on
their performance at that step. The goal of both players is to
learn an optimal policy that maximizes its long-term reward.
Deep reinforcement learning models the player’s policy as a

1https://github.com/Henrygwb/rl_robust_minimax

DNN, which outputs its next action, given its observation of
the current environment. In the following, we will formally
model a two-player competitive RL task, followed by the
state-of-art method for training DRL policies in such tasks.

2.1 Two-player Zero-sum Markov Game

A two-player competitive RL environment is typically
modeled as a two-player zero-sum Markov game [91].
Formally, a two-player Markov game is defined as
(N ,S ,{A}i

i∈N ,P ,{Ri}i∈N , γ), where N = 1,2 denotes the
players. S denotes the state space observed by both players,
A i represents the action space of player i. Let the joint action
A = A1×A2, P : S ×A → ∆(S) denotes the state transition
of the environment. Ri: S × A → R is the reward function
for player i. The game is a zero-sum game if ∑i Ri(s,a) = 0
for any state-action pairs, indicating the gain of one player is
exactly the loss of the other. γ ∈ [0,1) is the discount factor.

At each time step t, each player takes an action ai
t based

on the current state st . Driven by both players’ actions, the
system then transits to a new state st+1 and rewards each
player with an instant reward ri

t . As mentioned above, the
player’s goal is to maximize its long-term reward, by learning
an optimal policy πi

∗. The long-term reward of the i-th player
when the player plays the policy πi and its opponent plays the
policy π−i is defined as the state-value function.

V i
πi,π−i(s) = Eai

t∼πi,a−i
t ∼π−i [∑

t≥0
γ

tRi(st ,at ,st+1)|s0 = s] , (1)

where at = ai
t × a−i

t represents the joint action. Accord-
ingly, the action-value function of player i is defined as
Qi

πi,π−i(s,a) = Ri(s,a) + γEs′∼P [V i
πi,π−i(s′)]. Note that a

player’s state-value and action-value functions depend on
not only its own policy but also the other player’s policy. This
indicates that to obtain optimal performance in a two-player
game, a player should choose their policy by considering the
choices of their opponent. A common solution for two-player
games, Nash equilibrium, is defined as [6]

Definition 1 A Nash equilibrium of a two-player competitive
Markov game is a joint policy π∗ = {πi

∗,π
−i
∗ }, such that for

any s ∈ S and i ∈N , V i
πi∗,π

−i
∗
(s)≥V i

πi,π−i
∗
(s) for any πi.

NE states that, for each player i, πi
∗ is its optimal policy when

its opponent plays the policy π−i
∗ . This also can be expressed

as πi
∗ is the i-player’s best response to its opponent’s policy

π−i
∗ because V i

πi∗,π
−i
∗
(s)≥V i

πi,π−i
∗
(s). At a NE point, both play-

ers are playing their optimal policy and have no incentive to
update their policy further. As such, a NE point is a stable and
optimal point for both players. For finite games, NE always
exists but may not be unique [6]. Note that we typically take
the absolute value of the reward when computing the value
for the player with a negative reward.

3944 32nd USENIX Security Symposium USENIX Association

https://github.com/Henrygwb/rl_robust_minimax

Environment

Action

Re
w

ar
d

Action

Re
w

ar
d

Player 1 Player 2

O
bs

.

O
bs

.

(a) Two-player game.

Environment

Policy
under

training

Action Action

Copy player
1’s policy to

player 2

(b) Self-play mechanism.

Figure 1: Illustrations of with the Roboschool Pong environ-
ments [55]. “Obs." stands for observation.

2.2 Self-play with PPO
Researchers in the game theory and RL community have de-
signed various techniques to find NEs in two-player zero-sum
Markov games. Most are designed for simple environments
with a discrete action space [1, 3, 95] or require accessing
the state-transition function [4, 10, 24, 38, 49]. The state-
of-art technique for sophisticated environments with contin-
uous action spaces is self-play with policy gradient meth-
ods [5, 44, 60].
Self-play. Motivated by the fictitious play method, recent
research [66] proposes to train policies in multi-player RL by
playing the player against themselves. As demonstrated in
Figure 1b, in a two-player environment, the self-play learning
process starts by randomly initializing the same policy for
both players and selecting a player to train the policy. In each
training iteration, it updates the policy of the selected player
and then copies the updated (latest) policy to the other player.
The training process ends when the winning rates of both play-
ers converge to around 50%. Silver et al. [66] shows that this
training strategy could even defeat professional human play-
ers in the GO game. Follow-up research [5, 94] discovers that
other than the latest policy, training against randomly selected
older versions of the trained policy could further improve
the performance. Self-play offers an effective framework for
policy training. Under this framework, it is also necessary
to decide which algorithm to use for updating the policy in
each training iteration. Recent works [5, 12] show that for
sophisticated environments, Proximal Policy Optimization
(PPO) [21, 64], the state-of-art technique for policy training
in single-player RL, provides the highest efficacy.
PPO models a player’s policy as a DNN πθ(a|s), parame-
terized by θ. To resolve the parameter, PPO proposes the
following objective function

argmaxθ E(at ,st)∼πold
[min(clip(ρt ,1− ε,1+ ε)At ,ρt At)] ,

ρt =
πθ(at |st)

πold(at |st)
, At = Aπold (at ,st) .

(2)

Here, πold is the old policy, and Aπ(a,s) = Qπ(s,a)−Vπ(s)
is the advantage function [63]. This objective maximizes the
advantage function, which encourages searching for a better

policy than πold . To stabilize the training, it also constrains
the policy update ratio ρt within a certain trust range. By
solving Equation (2), a new policy πθ with less performance
variance can be obtained. As mentioned above, integrating
PPO into the self-play framework enables decent performance
for sophisticated two-player environments (e.g., MuJoCo [5,
21], Roboschool [55], and hide-and-seek [56]).

3 Existing Attacks and Problem Scope

3.1 Existing Attacks in Two-player Games
Threat model. An attacker treats one player as the vic-
tim player, fixes its policy, and trains the other player
(i.e., adversarial policy/agent) to win the game. This setup
simulates a real-world scenario where a game vendor releases
default RL agents to play with human professionals or other
game bots (e.g., [52, 66]). An attacker trains an adversarial
policy to exploit the weakness of the default AI bot and thus
decisively win the game. Note that, different from other at-
tacks [29,62] against DRL, this threat model does not assume
attackers have the privilege of manipulating either the envi-
ronment or the victim agent’s policy network. As is discussed
in [25, 84], this makes the attack more practical in that an at-
tacker no longer needs to put tremendous effort into hacking
the RL engine or varying the physical world. In addition, we
follow [25, 84] and set up a black-box attack scenario, where
an attacker can only access the public-observable information
about a victim (i.e., observation, action, and instant reward)
but not its policy network internals. Under this setup, the
attacker’s goal is to train an adversarial policy to beat the
victim in the corresponding game.
PPO-based attack. Gleave et al. [25] propose the first at-
tack under this threat model. This attack first fixes the victim
policy and treats it as part of the environment for the adversar-
ial player. Then, it uses the aforementioned PPO algorithm
to train an adversarial policy. By using this simple method
to train adversarial policies, Gleave et al. show the obtained
policy could defeat the victim player in MuJoCo games [72].
Although an adversarial policy trained by this method some-
times defeats the victim, its overall winning rate is low. As
demonstrated in [84], PPO algorithm is originally designed
to train a normal policy and has less guidance for one player
to identify the weakness of its opponent’s policy. As such, di-
rectly applying PPO gives a policy with limited exploitability
and thus results in a low winning rate.
Action deviation attack. To tackle the limitations above, Wu
et al. [84] design a novel objective function to train the adver-
sarial policy. This objective function combines the PPO loss
(Eqn. (2)) with an action deviation term to explicitly disturb
the victim player. This term maximizes the action difference
of the victim player with and without facing the adversarial
player. The insight is that an adversarial player could influ-
ence its opponent’s future actions via its own actions. By

USENIX Association 32nd USENIX Security Symposium 3945

imposing maximum influence upon the victim’s actions, the
adversarial player could force the victim to take a series of
non-optimal actions and thus reduce its collected reward. As
is shown in [84], adversarial policies trained by this attack
achieve a much higher attack success rate than those trained
by the PPO algorithm [25] in both the MuJoCo You-Shall-
Not-Pass game and the Roboschool Pong game [55].

3.2 Our Problem Setup
Assumptions for defenders. First, similar to the attacker,
we do not assume the defender (or game developer) could
manipulate the environment. As discussed above, this is
important for the proposed defense to be physically realistic
and generalizable to real-world RL environments. Second,
we also do not assume the defender has prior knowledge
about the attack it will face. As such, the defender cannot
pretrain a defense policy based on a known attack. Third,
we do not assume the defender could access or disturb the
training process of the adversarial policy. Instead, we allow
the defender to update the victim policy periodically after
observing a large number of losses. To update the policy, the
defender could collect game episodes of the victim player
playing against the current or previous opponent and then use
the collected episodes to retrain the victim policy network.

With the above assumptions, our goal is to train a defense
policy for each player in the two-player game, which guar-
antees a lower-bound performance against any unseen ad-
versarial policies. We also want this policy to preserve its
generalizability in non-adversarial settings. This is equivalent
to finding a policy with an optimal worst-case performance.
Using this policy as the default policy, game developers could
guarantee their worst-case reward is bounded when facing
arbitrary attacks. Note that we consider the real-world RL en-
vironments where the state and action spaces can be discrete
or continuous and the state-transition function is unknown.

4 Key Technique

To achieve the goal specified above, we design and develop
PATROL . At a high level, we first model robust policy training
as finding a Nash equilibrium in a two-player zero-sum game.
Then, based on classical game theory, we design a novel
policy training algorithm. Finally, we theoretically prove that
policies trained by our algorithm are robust against arbitrary
adversarial policy attacks. In the following, we start with
some naive solutions and discuss their limitations. Then, we
introduce our proposed method, followed by the theoretical
analysis of the robustness guarantee.

4.1 Possible Solutions and Limitations
Existing research has proposed a large number of adversar-
ial defenses for DNN classifiers. Among these techniques,

adversarial retraining [26] and randomized smoothing [18]
are the most widely used method for empirical and certifiable
defense. Randomized smoothing is not applicable to our prob-
lem because our threat model does not allow perturbing the
environment. As such, existing defenses [27, 84] under our
threat model follow the idea of adversarial retraining. Specifi-
cally, suppose the defender (game vendor) releases a policy
πv for the player v in a two-player zero-sum game. An attack
then launches an adversarial policy πα for the opponent player
α, which successfully defeats the victim policy πv. Follow-
ing adversarial retraining, this defense first plays πv against
πα and collects a set of episodes. Then, it retrains πv with
the collected episodes. As is shown in [27, 84], the resulted
policy π̃v could outperform πα. However, this defense could
be easily bypassed by training a new adversarial policy π̃α

against π̃v, such that π̃α achieves more reward than πα when
playing against π̃v. Actually, as demonstrated in [27], existing
defenses are only effective against the target attack πα but not
an arbitrary one (e.g., π̃α).

Motivated by this limitation, we propose another possible
solution – iteratively adversarial retraining, i.e., iteratively
training the victim and adversarial policies against the cur-
rent adversary and victim. Intuitively, this iterative process
may keep searching for better policies for both attacker and
victim and thus give a robust policy that could defend against
the strongest attacks. After rigorous analysis, we found that
this is not a feasible solution. In Appendix A.1, we analyti-
cally show that the iteratively adversarial retraining can not
guarantee convergence even for simple two-player zero-sum
environments. In Appendix B, we further demonstrate that
iteratively adversarial retraining is hard to converge, and its
policies are still vulnerable to adversarial policy attacks.

4.2 Overview of the Proposed Technique

So far, we have shown that the naive solutions derived from
adversarial defenses for DNNs cannot train robust policies.
Motivated by these failures, we design a novel defense mecha-
nism. Instead of relying on adversarial retraining, which only
finds a local optimal around the currently explored policy
space, we draw insight from classical game theory and design
a training algorithm to directly find a robust joint policy in the
global space. As we will show later in Section 4.4, the joint
policy is guaranteed to be robust against arbitrary attacks on
both players in two-player zero-sum games. In this section,
we provide an overview of our proposed technique.
Insights behind our design. As specified in Section 3, our
goal is, for each player, to find a policy with an optimal worst-
case (lower-bound) performance against arbitrary adversarial
policies trained by existing attacks [25,84]. This is equivalent
to searching for a point in the joint policy space such that one
player’ policy is the best response (i.e., strongest opponent) to
its opponent player’s policy. At such a point, for each player,
its opponent player’s policy is the best response to the player’s

3946 32nd USENIX Security Symposium USENIX Association

current policy, meaning the player is playing in the worst-case
scenario. At the same time, the player’s policy is also the
best response to its opponent player’s policy, indicating it has
already achieved the optimal performance in the worst-case
scenario. As such, each player achieves its optimal worst-case
performance at this point. Recall that, as stated in Definition 1,
at a Nash equilibrium point, the policy of each player is the
best response to the other player. As such, training robust
policies with optimal worst-case performance is equivalent
to finding a Nash equilibrium point in the corresponding
two-player zero-sum game.

Formally, at a NE point (π1
∗,π

2
∗), we have V 1(π1

∗,π
2
∗) ≥

V 1(π1,π2
∗) and V 2(π1

∗,π
2
∗) ≥ V 2(π1

∗,π
2).2 Given that V 1 =

−V 2 (since the game is zero-sum), we have

V 1(π1,π2
∗)≤V 1(π1

∗,π
2
∗)≤V 1(π1

∗,π
2) . (3)

The right half of this inequality states that π2
∗ is the policy

that forces π1
∗ to receive the lowest long-term reward, indi-

cating π1
∗ is playing against its strongest opponent and thus

is in its worst-case scenario. The left half of Eqn. (3) then
shows that π1

∗ is the policy that receives the highest long-term
reward against π2

∗, meaning π1
∗ achieves the optimal perfor-

mance in the worst-case scenario. As such, by playing π1
∗

for the 1st player, we could guarantee the player’s optimal
worst-case performance as V 1(π1

∗,π
2
∗). For the 2nd player, we

could derive a similar inequality: V 2(π1
∗,π

2)≤V 2(π1
∗,π

2
∗)≤

V 2(π1,π2
∗), showing that π2

∗ is the robust policy for the 2nd
player with the optimal worst-case performance of V 2(π1

∗,π
2
∗).

To further explain why policies at the NE point are ro-
bust policies, we again take for example the real-world game
scenario mentioned in Section 3. Suppose the game vendor
releases π1

∗ as the default policy for the 1st player. In our
threat model, an attacker will then try to train a policy π2 to
defeat π1

∗. According to Eqn. (3), the best policy the attacker
can search for is π2

∗. In other words, the attacker cannot find
a stronger opponent for π1

∗ other than π2
∗, showing that π1

∗’s
worst performance is bounded and thus is robust against ad-
versarial attacks. Similarly, π2

∗ is the robust policy for the 2nd
player. As such, by finding a NE point with a joint policy
(π1
∗,π

2
∗), we could achieve a robust policy for both players

in the game. Based on the analysis above, we can define a
pair of policies (πi,π−i) as robust policies if they satisfy the
condition in Eqn. (3), and the corresponding lower bound
performance for each player is V i(πi,π−i).
Theoretical foundation for training robust policies.
Through the analysis above, we transform the problem of
training a robust policy into searching for a NE point in a
two-player zero-sum game. To learn a NE point, we seek the
theoretical foundation from classical game theory and find
the following theorem to guide our training algorithm design.

2we denote two players in the game as the 1st player and the 2nd player.
V 1(π1,π2) =V 1

(π1 ,π2)
(s) is the value function of the 1st player under the joint

policy (π1,π2).

Theorem 1 (Minimax Theorem [20]) In any finite, two-
player, zero-sum game, at any Nash equilibrium, each player
receives a payoff that is equal to both its maximin value and
its minimax value.

Here, the maximin value of the i-th player is
maxπiminπ−i V i(πi,π−i), where π−i is the policy of
the opponent player. Maximin value is the highest long-term
reward the i-th player could receive without knowing the
other player’s policy. The minimax value is defined as
minπ−imaxπi V i(πi,π−i). It is the lowest long-term reward the
opponent player could force the i-th player to receive without
knowing the i-th player’s policy. Based on Theorem 1, we
can obtain the following corollary.

Corollary 1 Given a joint policy (π1
∗,π

2
∗) of a two-player

zero-sum game, as long as the following conditions are satis-
fied

(π1
∗,π

2
∗) = argmaxπ1argminπ2V 1(π1,π2) , (4)

and
(π1
∗,π

2
∗) = argminπ2argmaxπ1V 1(π1,π2) . (5)

(π1
∗,π

2
∗) is the joint policy at a NE point.

The proof of this corollary is straightforward. If the conditions
are satisfied, playing the joint policy (π1

∗,π
2
∗) could achieve

the minimax value and the maximin value of the 1st player.
Given that V 2 =−V 1, we have maxπ1minπ2V 1(π1,π2) equals
to minπ1maxπ2V 2(π1,π2), showing the maximin value of the
1st player is the minimax value of the 2nd player. Similarly,
the minimax value of the 1st player is the maximin value
of the 2nd player. As such, (π1

∗,π
2
∗) achieves the minimax

value and the maximin value for both players. According to
Theorem 1, the payoff of each player at any Nash equilibrium
point is equal to its minimax value and the maximin value.
(π1
∗,π

2
∗) corresponds to a joint policy at a NE point.

To better explain the insights behind Corollary 1, we derive
Eqn. (3) from the conditions in Corollary 1. Specifically, sup-
pose solving the inner optimization minπ2V 1(π1,π2) of the
Eqn. (4) gives a class of policy π2 = g(π1), which is repre-
sented as a function of π1. Since g(π1) = argminπ2V 1(π1,π2),
we have V 1(π1

′ ,g(π1
′))≤V 1(π1

′ ,π2) for any π1
′ . That is, g(π1)

is the class of policies for the 2nd player that forces the 1st
player to receive the lowest long-term reward. Then, sup-
pose further solving the outer optimization maxπ1V 1(π1,π2)
gives π1

∗, Plugging π1
∗ into the inequality above, we have

V 1(π1
∗,g(π

1
∗)) ≤ V 1(π1

∗,π
2). Similarly, solving the inner

optimization maxπ1V 1(π1,π2) of the Eqn. (5) gives h(π2),
which satisfies V 1(h(π2

′),π2
′)≥V 1(π1,π2

′) for any π2
′ . Then,

suppose π2
∗ = argminπ2V 1(h(π2),π2) is the solution of the

outer optimization of the Eqn. (5), we have V 1(h(π2
∗),π

2
∗)≥

V 1(π1,π2
∗). So far, we have the following inequalities

V 1(π1
∗,g(π

1
∗))≤V 1(π1

∗,π
2) ,

V 1(h(π2
∗),π

2
∗)≥V 1(π1,π2

∗) ,
(6)

USENIX Association 32nd USENIX Security Symposium 3947

where the joint policy (π1
∗,g(π

1
∗)) gives the maximin value of

the long-term reward and the joint policy (h(π2
∗),π

2
∗) gives

the minimax value. If we could achieve that π1
∗ = h(π2

∗) and
π2
∗ = g(π1

∗), the joint policy (π1
∗,π

2
∗) gives the maximin and

minimax value at the same time, i.e., satisfying the conditions
in Corollary 1. Besides, when π1

∗ = h(π2
∗) and π2

∗ = g(π1
∗),

Eqn. (6) is equivalent to Eqn. (3), indicating (π1
∗,π

2
∗) is the

policy of a NE point. As such, if a joint policy satisfies the
conditions in Eqn. (5) and Eqn. (4), it reaches a NE point and
thus is a set of robust policies for both players.

4.3 Proposed Policy Training Algorithm
Corollary 1 provides high-level guidance for learning a NE
point in a two-player zero-sum game, i.e., solving a joint pol-
icy that gives the minimax and maximin long-term reward at
the same time. As mentioned in Section 2, existing research
has proposed a large body of policy searching and learning
methods to find the NE policies in RL environments with a
discrete action space and a known state-transition function.
However, for sophisticated RL environments with continuous
action and state space and an unknown state-transition func-
tion, it is still challenging to learn the NE policies. Specifi-
cally, there are two challenges: (1) without the state-transition
function, we need to find a way to estimate the long-term re-
ward; (2) we need to design a novel optimization framework
that resolves the maximin objective function in Eqn. (4) and
the minimax objective function in Eqn. (5) at the same time.
In this section, we discuss how to tackle these limitations and
introduce our proposed policy training algorithm.
Long-term reward estimation. As mentioned in Section 2,
the long-term reward of a player is represented as the state-
value function defined in Eqn. (1). It is clear that without
knowing the state-transition function P , we can compute the
exact value of the long-term reward from Eqn. (1). Inspired by
the reward approximation methods in existing policy learning
methods [73], we propose to approximate the value function
with a deep neural network. Specifically, given a joint policy
π, we define a DNN Vη(s) to approximate the long-term
reward of the 1st player in the game. This network takes as
input the player’s observation of the current state s and outputs
the prediction of the player’s long-term reward V 1

π (s). To train
this approximated value function Vη(s), we first run the policy
in the corresponding environment and collect the ground truth
training episodes T = {oi

mt ,a
i
mt ,r

i
mt}m=1:M,t=1:T , where mt

represents the t-th time step in the m-th episodes, T is the total
number of time steps in one episode, and M is the total number
of episodes. Then, based on the Monte Carlo method [50],
we approximate the ground-truth long-term reward for the
1st player at the state st as Ṽπ(st) =

1
M ∑m ∑

T
k=t γkr1

mk. Using
Ṽπ(st) as the label for Vη(st), we can learn the parameter of
Vη(s) by minimizing the following objective function

minη

1
M ∑

m

1
T ∑

t
|Vη(st)−Ṽπ(st)|2 . (7)

By solving the Eqn. (7) with a gradient-based optimization
method, such as ADAM [32], we could obtain an approximated
value function for the 1st player under the joint policy π. Since
the game is zero-sum, the value function of the other player
can be simply approximated by −Vη(s).
Proposed robust training algorithm. With the approxi-
mated value function, we then use it to learn the joint policy
at a NE point. Recall that Corollary 1 gives two conditions
for achieving a NE point, where each condition is an op-
timization function. Recent research [13] proves that if a
function f (x,y) is convex-concave (convex in x and concave
in y) and− f (x,y) is concave-convex (concave in x and convex
in y), argmaxxargminy− f (x,y) = argminyargmaxx− f (x,y).
In our problem, if the value function V 2(π1,π2) (i.e., V 2(s))
is convex-concave and V 1(π1,π2) is concave-convex, we
can solve only one optimization function (i.e., Eqn. (4) or
Eqn. (5)). The resulted policy is the also the solution of the
other optimization function and thus is the joint policy at a
NE point. However, in sophisticated games with continuous
action and state space, the true value function is neither con-
cave nor convex, letting along the function approximated by
a DNN. Recent research [31, 94] demonstrates that without
the convex-concave property, solving only one optimization
function in Corollary 1 cannot guarantee to find a NE point.
To reach a NE point from a non-convex non-concave value
function, we still need to find a joint policy which satisfies
both conditions in Corollary 1.

To achieve this, we borrow the idea from the perturbation-
based optimization framework [34, 53]. This framework is
original proposed to find a saddle point (x∗,y∗) for an arbi-
trary function f (x,y), such that f (x,y∗)≤ f (x∗,y∗)≤ f (x∗,y).
In our problem, this is exact the condition at a NE point
(Eqn. (3)). At a high level, to find a saddle point, this frame-
work simultaneously solves the minimax and the maximin
optimization and reduces the difference between the minimax
and maximin value, leading the solutions of both optimiza-
tions to converge to the same point. More specifically, it
iteratively finds perturbed points u of the current x and v of
the current y, such that u is the locally strongest opponent of
y and v is the locally strongest opponent of x, and updates x
and y against v and u. As we will discuss later, this process
minimizes the gap between the minimax and maximin value,
approximated by f (u,y)− f (x,v), guiding the optimization
process to converge to the saddle point.

Motivated by this framework, we propose a novel policy
training algorithm to find a Nash equilibrium in our problem.
As specified in Algorithm 1, we first initialize a population
of policies for both player (Line 2). In each iteration, for
each pair of policies (π1

ki,π
2
ki), we first find their strongest

opponents from the policy population, i.e., π2
vi and π1

ui (Line
5&6). Since V 1(π1

ki,π
2
vi) ≤ V 1(π1

ki,π
2
ki) and V 1(π1

ki,π
2
ki) ≤

V 1(π1
ui,π

2
ki), we have V 1(π1

ki,π
2
vi) ≤ V 1(π1

ui,π
2
ki). Then, we

fix the 2nd player’s policy as π2
vi and update π1

k . After fixing
the policy of one player, the Markov game downgrades to a

3948 32nd USENIX Security Symposium USENIX Association

Algorithm 1: Robust policy training algorithm.
1: Input: Number of iterations I, number of inner loop l

number of candidate policies K, episode size M,
2: Initialize K pairs of policies (π1

k ,π
2
k)k=1:K .

3: for i = 1 to I do
4: for k = 1 to K do
5: Find the strongest opponent for π1

ki from {π2
k̃i}k̃=1:K ,

i.e., π2
vi = argminπ2V 1

k̃i(π
1
ki,π

2
k̃i)

6: Find the strongest opponent for π2
ki from {π1

k̃i}k̃=1:K ,
i.e., π1

ui = argmaxπ1V 1
k̃i(π

1
k̃i,π

2
ki)

7: Update π1
ki against π2

vi using the PPO algorithm
with l iterations, i.e., π1

k(i+1)← argmaxV 1
ki(·,π2

vi)

8: Update π2
ki against π1

ui using the PPO algorithm
with l iterations, i.e., π2

k(i+1)← argminV 1
ki(π

1
ui, ·)

9: Update the value function V 1
ki by solving Eqn.(7).

10: end for
11: end for
12: Play each policy in {π1

kI}k=1:K against each policy in
{π1

kI}k=1:K and select the strongest policy for each party
π1

uI and π2
vI .

13: Output: the final policy: π1
uI and π2

vI .

single-player MDP, and the policy π1
k can be updated by using

the state-of-the-art PPO algorithm (Line 7). With the resulted
π1

k(i+1), we have V 1(π1
ki,π

2
vi) ≤ V 1(π1

k(i+1),π
2
vi). Similarly,

we also update π2
ki against π1

ui and obtain π2
k(i+1), such that

V 1(π1
ui,π

2
k(i+1)) ≤ V 1(π1

ui,π
2
ki) (Line 8). After running this

update process, we could obtain the following inequality from
the inequalities above

V 1(π1
ui,π

2
k(i+1))−V 1(π1

k(i+1),π
2
vi)≤V 1(π1

ui,π
2
ki)−V 1(π1

ki,π
2
vi) . (8)

This inequality shows that the gap between V 1(π1
u,π

2
k)−

V 1(π1
k ,π

2
v) keeps reducing as the iteration proceeds. Since

V 1(π1
u,π

2
k) approximates the minimax value in Eqn. (5) and

V 1(π1
k ,π

2
v) approximates the maximin value in Eqn. (4), this

optimization process could reduce the difference between
these two values and thus push the solution towards a NE
point. After solving the new polices, we also update the value
function using the estimation method introduced above (Line
9). Finally, we find the strongest policy for each player and
output them as the final policies for both players (Line 12).

Note that although both methods leverage the PPO algo-
rithm, our method is fundamentally different from the self-
play mechanism in the following aspects. First, rather than
training only the policy of one player and copying its policy
to the other player, our method updates both players’ policies.
More importantly, our method updates a current policy against
its strongest opponent and pushes the joint solution towards a
NE point. As we will discuss in Section 4.4, our method is
guaranteed to converge to a NE point, while self-play cannot
provide such a robust guarantee. Our empirical evaluation in

Section 5 further shows that policies trained by our method
are more robust than those obtained by self-play.

It should also be noted that the perturbation-based optimiza-
tion method mentioned above [34,53] are about general ideas
of perturbation-based optimization. We instantiate this idea
with our customized designs and enable a novel robust policy
learning algorithm, especially for sophisticated two-player
RL with unknown state transition, continuous state/action
spaces, and non-convex non-concave value functions.

4.4 Theoretical guarantee
In the final part of this section, we provide the theoretical
analysis to prove that our proposed training algorithm guar-
antees to converge to a NE point. In other words, poli-
cies trained by our method are provably robust against ad-
versarial policy attacks. Formally, given a pair of polices
(π1
∗,π

2
∗) obtained by our proposed method, we prove that

(π1
∗,π

2
∗) asymptotically converges to a NE point, such that

V 1(π1,π2
∗)− ε≤V 1(π1

∗,π
2
∗)≤V 1(π1

∗,π
2)+ ε with ε→ 0.

Recall that the true value function is approximated with
a neural network, we first present the following lemma to
guarantee that the approximation error is bounded.

Lemma 1 Given an approximation V 1
η of V 1 obtained from

M ≥ C
ε2 log 2

p episodes, we have Pr(|V 1−V 1
η | ≤ ε)≥ 1− p.

The proof of this lemma is show in Appendix A.2. It states
that with a large number of episodes, the true value function
could be accurately approximated by a parametric function
with a high probability. With Lemma 1, we then present the
convergence guarantee in the following theorem.

Theorem 2 Under a bounded learning rate, a joint pol-
icy (π1

∗,π
2
∗) learned from V 1

η by using Algorithm 1 satis-
fies the following inequality V 1(π1,π2

∗)− ε ≤ V 1(π1
∗,π

2
∗) ≤

V 1(π1
∗,π

2)+ ε, for all π1 and π2. V 1
η is a smooth and differ-

entiable function.

The proof of this theorem is specified in Appendix A.3. Theo-
rem 2 shows that the solution given by our method guarantees
to converge to a ε-approximate Nash equilibrium point, where
ε is the value function approximation error in Lemma 1. As
analyzed in Appendix A.2, ε keeps decreasing as the number
of training episodes increases. Combining this theorem with
the analysis in Section 4.2, we theoretically prove that our
method learns a joint policy at an approximated Nash equilib-
rium point and thus provides a robust policy with a guarantee
of worst-case performance for each player, even when the
value function is non-convex and non-concave.

5 Evaluation

Throughout the evaluation, we seek to answer the following
questions: ❶ Can PATROL and the existing policy training

USENIX Association 32nd USENIX Security Symposium 3949

methods (fictitious play and self-play) find the ground truth
NE point in different two-player zero-sum games? ❷ Does
PATROL better converge to the unknown NE point than self-
play in sophisticated games? ❸ Is PATROL more robust than
self-play under the PPO-based attack [25]? ❹ Is PATROL more
robust than self-play under the action deviation attack [84]?

5.1 Experiment Setup

Environment selection. To answer question ❶, we select
seven toy games: ➀ a matrix form game with a discrete
state/action space, ➁ two Euclidean games with a continuous
state/action space and a convex-concave value function, ➂
two Euclidean game with asymmetric action space, ➃ two Eu-
clidean game with a continuous state/action space and a non-
concave and non-convex value function. All of these games
have a unique ground truth Nash equilibrium point. Using
these games, we evaluate whether PATROL and selected base-
line methods could converge to the NE point in games with dif-
ferent properties: discrete and continuous state/action space
(➀&➁); symmetric and asymmetric action space (➁&➂);
convex-concave and non-convex non-concave value function
(➁&➃). To answer question ❷-❹, we select three types of
games – four MuJoCo games [72]: You-Shall-Not-Pass and
Kick-And-Defend (with asymmetric action space) and Sumo-
Humans and Sumo-Ants (with symmetric action space); One
Roboschool Pong game [55] (with symmetric action space);
the StarCraft II game [69] (with symmetric action space). All
these games are sophisticated RL environments with a con-
tinuous state/action space and an unknown non-convex non-
concave value function. They are commonly used in academia
for evaluating RL algorithms, and self-play with PPO is the
state-of-art policy training algorithm in these games. In what
follows, we introduce the toy games. Fig. 5 demonstrates
the sophisticated games. The action spaces of all selected
environments are continuous.
Matrix-form game. We consider the classical matching pen-
nies game [78], where each of the two players has one
penny in hand. As the game starts, each player chooses to
turn its penny to head or tail. After making their choices,
the players reveal their pennies simultaneously. If the pen-
nies match (both heads or tails), the 1st player wins; oth-
erwise, the 2nd player wins. The reward is as follows:
r1(H,H) = r1(T,T) = 1, r1(H,T) = r1(T,H) = −1. Here,
r1(H,T) is the reward of the 1st player when it plays head
(H), and the 2nd player plays tail (T). r2 =−r1. This game
has a global NE point – (Pr1(H),Pr1(T)) = (0.5,0.5) and
(Pr2(H),Pr2(T)) = (0.5,0.5).
Euclidean games. The payoff of a Euclidean game is a smooth
and differentiable function f (x,y). The 1st player controls
x and tries to minimize f (x,y), while the 2nd player aims
for maximizing f (x,y) by controlling y. V 1 =− f (x,y) and
V 2 = f (x,y). The action space for each player is the domain
of the corresponding variable. We consider three types of

Game Type ID Value function Domains NE point
convex-concave

symmetric action space
➁-S f (x,y) = x2− y2−2x x,y ∈ [−2,2] (1,0)
➁-C f (x,y) = x2 +2xy−4y2 +10x−6 x,y ∈ [−50,50] (−4,−1)

convex-concave
asymmetric action space

➂-S f (x,y) = x2−2y2−2xy−6x x ∈ [−5,5], y ∈ [−4,4] (2, -1)
➂-C f (x,y) = x2 +4xy−2y2 +24x x ∈ [0,50], y ∈ [−50,0] (-4, -4)

non-convex non-concave
symmetric action space

➃-S f (x,y) = x2y2− xy x,y ∈ [−2,2] (0, 0)
➃-C f (x,y) = x3−9x2−2y2x3 x,y ∈ [−50,50] (6, 0)

Table 1: The Euclidean games used in our evaluation. “S”
and “C” stands for the simple and complicated game.

Euclidean games. For each type, we construct a simple and
complicated game following the method in [76]. The simple
game has a limited domain and a NE point near (0, 0). The
complicated game has a larger domain and a NE point that is
relatively far from (0, 0), indicating they are not that easy to
be found. Table 1 shows the selected games.
Baseline. As mentioned above, we select the state-of-art
policy training method – self-play with PPO as the baseline
method. Besides the standard version (denoted as self-play),
we also consider two variations: 1) instead of randomly select-
ing a previous policy as the opponent, we choose the strongest
policy as the opponent [74] (denoted as self-play-VA); 2) we
replace the PPO with a older but also widely used policy up-
dating method A3C [51] (denoted as self-play-VB). Besides
self-play and its variations, we also consider a classical policy
learning method – fictitious-play [11]. Because of limited
scalability, fictitious-play is not applicable to sophisticated
environments. We will compare it with PATROL on toy games.
Evaluation metric. For the toy games, which do not have
a winning or losing criterion, we measure the reward of the
players. For MuJoCo, Roboschool Pong, and StarCraft II,
we measure the winning rate of the players. In addition, we
run each policy training process 4 times with different initial
states and record the mean results. This process helps remove
randomness and access the stability of the training algorithms.
When comparing the adversarial robustness, we conduct a
paired t-test to compare PATROL with the baseline with the
best performance. We report the p-value, where a lower p-
value indicates a better statistical significance.
Implementation. Recall that PATROL requires training mul-
tiple policies per player, which is computationally more ex-
pensive than the self-play mechanism. To make the algorithm
implementation more efficient, we leverage a distributed rein-
forcement learning framework – Ray [39] to implement our
proposed algorithm. As is shown in Appendix B.2, with Ray,
our training can be completed in a reasonable time. Recall that
self-player copies the policy of one player to the other player.
It cannot give a policy for each player in one training round.
For the games with symmetric action space, we run self-play
twice to get a policy for each player. For the games with
asymmetric action space, we follow the self-play paper [5]
and initialize one policy per player and iteratively update each
policy without copying policies. Similar to our method, this
modified self-play gives a policy for each player at the same
time. As specified in Appendix B.1, we implement our com-
parison baselines and the two attacks [25, 84] based on their

3950 32nd USENIX Security Symposium USENIX Association

official implementations. For the hyper-parameters shared by
PATROL and the baseline methods (e.g., policy model archi-
tectures, training iteration, learning rate), we select the widely
adopted choices without tailoring for PATROL. We keep them
the same for all methods to enable a fair comparison (See
Appendix B.1 for more details). The hyper-parameter spe-
cific to PATROL is the number of policies per player K. In
this evaluation, we fix K = 2. Later in Appendix B.2, we
perform a sensitivity test on K (which shows PATROL is not
that sensitive to the subtle variations in K).

5.2 Experiment Design

Experiment I. To answer question ❶, we use PATROL
and four baseline methods (three variations of self-play and
fictitious-play) to train a policy for both players in the seven
toy games. We compare each method’s final policies with the
ground truth NE point to verify whether PATROL outperforms
these baseline methods in converging to the NE point.
Experiment II. We compare PATROL with three self-play
methods in six sophisticated games where the NE point is
unknown (Question ❷). First, we train a set of policies in
selected sophisticated games using these methods. Next, we
play the policy learned by PATROL against the policies learned
by the baseline methods for each player in these games, and
record the winning rate. Since each player’s policy is the
strongest response/opponent to the other player’s policy at a
NE point, the method that converges closer to the NE point
should be more difficult to defeat using other policy train-
ing methods. As such, we compare the performance of the
cross competitions between our policies and those obtained
by the baselines to identify the stronger responses and assess
the convergence of each method to the NE point. We will
also play the policies learned by selected methods against
the zoo agents in the MuJoCo and Roboschool Pong games.
The policies with higher winning rates demonstrate better
convergence to the NE point and greater generalizability.
Experiment III. In this experiment, we compare the adver-
sarial robustness of PATROL and the three self-play methods
against the PPO-based attack [25] (Question ❸) in the six
sophisticated games. Specifically, for each player in the Mu-
JoCo games, we use the PPO-based attack [25] with the same
hyper-parameters to train an adversarial policy against the
policy learned by PATROL and baseline methods. Then, we
compare the winning rate of the attack policies to investigate
which method is more robust against this attack. Finally, for
all the policies, we play its policy for one player πi against
its policy of the other player π−i and the corresponding ad-
versarial policy πα and compare the winning rate of π−i with
that of πα. If π−i has a higher winning rate, verifying the
corresponding method provides a robustness guarantee with a
lower-bound performance. As mentioned above, we also con-
duct a paired t-test to demonstrate the statistical significance
of our comparison result.

Experiment IV. To answer question ❹, we design the fol-
lowing experiment. For each player in the six sophisticated
games, we use the action deviation attack to train an adver-
sarial policy against the policy learned by PATROL and the
self-play methods. Then, we follow the comparisons in exper-
iment III to compare the robustness and verify whether the
considered methods could provide a robustness guarantee.
Additional experiments. In addition to the four experiments
designed above, we also evaluate the iteratively adversarial
retraining defense mentioned in Section 4. We present the ex-
periment results in Appendix B.3, demonstrating this defense
cannot even converge to a fixed point on both toy games and
sophisticated games. We further demonstrate the robustness
of PATROL against a new adversarial policy attack [27] specif-
ically designed for two-player competitive games with non-
zero-sum payoffs. Due to the page limit, we also detail this
experiment and the corresponding results in Appendix B.4.
Finally, as mentioned in Section 5.1, we also conduct an effi-
ciency evaluation and a hyper-parameter sensitivity test and
present the results in Appendix B.2.

5.3 Experiment Result

PATROL vs. baseline approaches in toy games. Fig. 2
shows the final policy of the selected methods in seven toy
games. As we can see from the figure, none of the baseline
approaches could converge to a fixed point in all the settings,
where convergence means that the bars of the same method
have the same or very similar heights. As mentioned above,
the policy in the matching pennies game refers to the prob-
abilities of each player playing head and tail; the policy in
the Euclidean games is the value choices of x and y in the
value function. For instance, in game ➀, none of the baseline
methods could converge to a fixed point for the 1st player.
Overall, the baseline methods converge in at most 5 out of 14
settings. Even in the cases where self-play converges, it may
not converge to the NE point. For example, both self-play
and self-play-VA converge to the NE point only in two set-
tings. These results indicate that even in simple non-repeated
matrix-form and Euclidean games, the classical fictitious play
and self-play-based methods cannot guarantee convergence,
let alone converge to the NE point.

In comparison, as is also shown in Fig. 2, PATROL is able
to converge to the joint policy at the NE point in all selected
games. This result shows that PATROL could consistently
search for the NE point when the game properties change
and thus verifies the effectiveness of our algorithm design in
different setups (discrete/continuous action space, symmet-
ric/asymmetric action space, and convex-concave/non-convex
non-concave value function). In addition, it also validates
our theoretical analysis in Section 4.4 that PATROL is guaran-
teed to converge to the NE point even when the value func-
tion is non-convex and non-concave. In summary, Fig. 2
demonstrates the superiority of PATROL over the self-play

USENIX Association 32nd USENIX Security Symposium 3951

 SP SP_VA SP_VB Fic.P PATROL

-Match Pennies -S (1, 0) -C (-4, -1)

-S (2, -1) -C (-4, -4) -S (0, 0) -C (6, 0)

Figure 2: The final policy of PATROL and the comparison baselines in toy games. The left graph in each game is the 1st player.
We run each method four times in each setup and draw the converged result of each run as one bar in the figure.

 SP SP_VA SP_VB PATROL

 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7)

100

 50

 0
You-Shall-Not-Passp < 0.001 p < 0.001 p < 0.01 p < 0.01

 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7)
Kick-And-Defend

 0 3.5 7.0 (1e6) 0 3.5 7.0 (1e6) 0 5.0 10.5 (1e5) 0 5.0 10.5 (1e5)

p =

StarCraft II
p =

Sumo-Ant
s

p = 0.95 p = 0.53 p = 0.04 p < 0.01 Sumo-Humans
 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7)

Pongp < 0.01 p < 0.01 p < 0.01 p < 0.01 StarCraft II

100

 50

 0

100

 50

 0

Figure 3: The robustness comparison between PATROL and three baselines against the PPO-based attack. x-axis is the training
time step, y-axis is the winning rate. The darker solid lines represent the average winning rates of adversarial policies during the
training process, and the lighter bands indicate the variations between the maximal and minimal winning rates. The dotted line is
the winning rate of the victim’s original opponent trained against the current victim policy. The p-value is the paired t-test result
between PATROL and the baseline with the lowest attack winning rate.

mechanism in converging to the NE point. In the following
experiments, we will further demonstrate the utilities brought
by this superiority in different aspects (i.e., generalizability
and adversarial robustness).
PATROL vs. baseline methods in sophisticated games. Ta-
ble 2 shows the results of our policies against those trained by
the original version of self-play. As we can first observe from
the upper half table, PATROL_1 has a lower winning rate when

playing against PATROL_2 than playing against Self-play_2
(Column 2 vs. 3), indicating PATROL_2 is a stronger response
to PATROL_1. Similarly, when playing against PATROL_1,
PATROL_2 is a stronger opponent than Self-play_1 (Column
4 vs. 5). This result shows that, for every policy trained by
our method, its own opponent policy is a stronger response
than the self-play policy. On the contrary, the lower half ta-
ble shows that when playing against the self-play policies,

3952 32nd USENIX Security Symposium USENIX Association

Games PATROL_1 vs. PATROL_2 vs.
PATROL_2 Self-play_2 PATROL_1 Self-play_1

You-Shall-Not-Pass 24.0% 42.0% 76.0% 86.0%
Kick-And-Defend 56.0% 85.0% 41.0% 51.0%

Sumo-Humans 49.0% 55.0% 72.0% 80.0%
Sumo-Ants 50.0% 54.0% 30.0% 40.0%

Pong 51.0% 52.0% 49.0% 53.0%
StarCraft II 52.0% 76.0% 48.0% 74.0%

Games Self-play_1 vs. Self-play_2 vs.
PATROL_2 Self-play_2 PATROL_1 Self-play_1

You-Shall-Not-Pass 14.0% 18.0% 58.0% 82.0%
Kick-And-Defend 44.0% 45.0% 14.0% 54.0%

Sumo-Humans 22.0% 44.0% 77.0% 79.0%
Sumo-Ants 41.0% 42.0% 28.0% 28.0%

Pong 47.0% 50.0% 48.0% 50.0%
StarCraft II 26.0% 50.0% 24.0% 50.0%

Table 2: The winning rates of policies trained by PATROL vs.
self-play policies in six sophisticated games. PATROL_i stands
for the i-player’s policy obtained by our method. Self-play_i
is the i-th player’s policy trained by self-play. Note that we
run each setup four times and report the mean result.

Games PATROL_1 vs. PATROL_2 vs.
PATROL_2 self-play-VA_2 PATROL_1 self-play-VA_1

You-Shall-Not-Pass 24.0% 40.0% 76.0% 80.0%
Kick-And-Defend 56.0% 89.0% 41.0% 76.0%

Sumo-Humans 49.0% 57.0% 72.0% 73.0%
Sumo-Ants 50.0% 51.0% 30.0% 46.0%

Pong 51.0% 81.0% 49.0% 82.0%
StarCraft II 52.0% 98.0% 48.0% 100.0%

Games self-play-VA_1 vs. self-play-VA_2 vs.
PATROL_2 self-play-VA_2 PATROL_1 self-play-VA_1

You-Shall-Not-Pass 20.0% 31.0% 60.0% 69.0%
Kick-And-Defend 2.0% 1.0% 11.0% 99.0%

Sumo-Humans 42.0% 48.0% 60.0% 67.0%
Sumo-Ants 41.0% 47.0% 35.0% 36.0%

Pong 18.0% 49.0% 19.0% 51.0%
StarCraft II 0.0% 56.0% 2.0% 40.0%

Table 3: The winning rates of policies trained by PATROL vs.
those trained by self-play-VA in six sophisticated games.

PATROL always achieves better performance, indicating the
strong responses of self-play policies are policies trained by
PATROL rather than their own opponent policies.

Table 3 and 4 further show the performance of our agents
playing against those trained by two variations of the self-
play, respectively. The results are consistent with those in
Table 2. Tables 2-4 reveal that PATROL excels in identifying
strong responses for both its own policies and policies trained
by three self-play-based baseline methods, indicating that
PATROL is superior to these techniques in searching for NE
points in sophisticated simulation games.

In Table 5, we show that our policy has a higher winning
rate than the baselines when playing against the same zoo
agent in the selected games except StarCraft II (because we do
not find a zoo agent for StarCraft II). Together with the results
in Table 2-4, we can also conclude that policies obtained by
PATROL have stronger generalizability than the policies of
baseline methods when playing against normal policies.
Defending against the PPO-based attack. Fig. 3 shows the
winning rate of adversarial policies trained against PATROL

Games PATROL_1 vs. PATROL_2 vs.
PATROL_2 Self-play-VB_2 PATROL_1 Self-play-VB_1

You-Shall-Not-Pass 24.0% 79.0% 76.0% 90.0%
Kick-And-Defend 56.0% 94.0% 41.0% 73.0%

Sumo-Humans 49.0% 68.0% 72.0% 86.0%
Sumo-Ants 50.0% 58.0% 30.0% 46.0%

Pong 51.0% 96.0% 49.0% 96.0%
StarCraft II 52.0% 94.0% 48.0% 98.0%

Games Self-play-VB_1 vs. Self-play-VB_2 vs.
PATROL_2 Self-play-VB_2 PATROL_1 Self-play-VB_1

You-Shall-Not-Pass 10.0% 56.0% 21.0% 44.0%
Kick-And-Defend 6.0% 3.0% 5.0% 95.0%

Sumo-Humans 17.0% 50.0% 55.0% 69.0%
Sumo-Ants 36.0% 37.0% 27.0% 41.0%

Pong 4.0% 50.0% 4.0% 50.0%
StarCraft II 2.0% 60.0% 6.0% 40.0%

Table 4: The winning rates of polices trained by PATROL vs.
those trained by Self-play-VB in six sophisticated games.

Games Zoo_1 vs. Zoo_2 vs.
PATROL_2 Self-play_2 self-play-VA_2 Self-play-VB_2 PATROL_1 Self-play_1 self-play-VA_1 Self-play-VB_1

You-Shall-Not-Pass 13.0% 28.0% 18.0% 62.0% 32.0% 38.0% 46.0% 62.0%
Kick-And-Defend 12.0% 52.0% 84.0% 62.0% 30.0% 50.0% 98.0% 84.0%

Sumo-Humans 14.0% 26.0% 55.0% 68.0% 21.0% 52.0% 65.0% 81.0%
Sumo-Ants 24.0% 25.0% 26.0% 40.0% 21.0% 22.0% 28.0% 28.0%

Pong 48.0% 54.0% 92.0% 98.0% 47.0% 52.0% 88.0% 93.0%

Table 5: The winning rates of a zoo agent against polices
trained by the selected methods in five sophisticated games.

and three self-play variations on six sophisticated games. The
results show that the adversarial policy trained against our
policy has a lower winning rate than those trained against the
baseline methods. These results confirm that PATROL is more
robust than the baselines against the PPO-based attack. The
results in Sumo-Ants are less distinguishable. As discussed
in [25], due to limited attack space, adversarial policy attack
in this game is naturally hard to succeed. Note that when
training an adversarial policy PATROL and baselines in the
same setup, we only change the victim policy and keep all the
hyper-parameters the same. This ensures that the observed
differences in attack performance are because of the choice
of victim policy rather than the attack hyperparameters.

Fig. 3 also shows, for victim policies given by PATROL,
the mean attack winning rate is consistently lower than the
winning rate of the victim’s original opponent in all setups.
This result shows the PPO-based attack cannot find a stronger
response for our policy than its original opponent policy, in-
dicating PATROL provides a lower-bound performance for its
trained policy against the PPO-based attack. In contrast, the
blue lines in Fig. 3 show that the mean attack winning rate
is higher than the winning rate of the original opponent for
self-play victim policies, indicating self-play cannot provide a
robustness guarantee. Similarly, we also observe that the two
variations of self-play fail to provide a robustness guarantee.
Defending against the action deviation attack. Fig. 4 de-
picts the attack success rate of the action deviation attack
against policies trained by PATROL and the baseline methods.
Similar to Fig. 3, our method forces lower attack winning
rates on all games, verifying PATROL’s superiority in robust-
ness against the action deviation attack. Additionally, as
shown in Figure 4, despite having a stronger exploitability
than the PPO-based attack, the action deviation attack still

USENIX Association 32nd USENIX Security Symposium 3953

 SP SP_VA SP_VB PATROL

 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7)

100

 50

 0
You-Shall-Not-Passp = 0.02 p < 0.01 p < 0.01 p < 0.01

 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7)
Kick-And-Defend

 0 3.5 7.0 (1e6) 0 3.5 7.0 (1e6) 0 5.0 10.5 (1e5) 0 5.0 10.5 (1e5)

p =

StarCraft II
p =

Sumo-Ant
s

p = 0.83 p = 0.98 p < 0.01 p < 0.01 Sumo-Humans

Pongp < 0.01 p < 0.01 p < 0.01 p < 0.01 StarCraft II

100

 50

 0

100

 50

 0

 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7) 0 1.5 3.0 (1e7)

Figure 4: The robustness comparison of PATROL and baselines against the action deviation attack in sophisticated games.

cannot train a stronger response to our policy. This result
further confirms our theoretical analysis in Section 4.4 that
our method is guaranteed to search for a robust policy at the
NE point with a certified lower-bound performance. Together
with the result in Fig. 3, we can safely conclude that PATROL
is more resilient to existing adversarial policy attacks than the
self-play mechanism and its variations.
Robustness vs. generalizability. Our experiments indicate
that PATROL exhibits better convergence to a NE point than
the baseline methods, which enhances both robustness and
generalizability. It is commonly believed that robustness and
generalizability are typically a trade-off. However, some
counterexamples exist, such as adversarial retraining, which
is a widely-used defense mechanism in supervised learning
that acts as regularization and can improve the generalizability
of the classifier [26]. Similarly, defense distillation [58] has
been shown to improve the generalizability of models on
certain datasets. We have made a similar observation for
PATROL. Nevertheless, as with adversarial retraining, this
benefit comes at the cost of computational efficiency.
Qualitative studies. We show the videos of the agent
trained by PATROL against its adversarial agents and the
agent trained by PATROL against the adversarial agents trained
against the self-play in the selected MuJoCo games in https:
//tinyurl.com/y4c9hdm9. In general, the adversarial agent
trained against PATROL’s agent no longer establishes weird
behaviors, indicating PATROL’s agent does not contain obvi-
ous defeats that can be exploited by the adversarial attack.
In contrast, the adversarial agent against self-play still takes

weird actions, but PATROL’s agent ignores these actions.

6 Other Related Work

Adversarial perturbation-based attacks. As mentioned
in Section 1, prior to adversarial policy attacks, researchers
borrow the idea from the adversarial attacks against DNNs
(e.g., [16, 19, 43]) and perturb the environment to trigger
the failure of a victim agent. Specifically, some pioneer
works [7, 29] leverage attacks against DNN [16, 47] to add
an adversarial perturbation to the environment at each time
step and force the victim player to fail in a single-player en-
vironment. Follow-up works explore improving the attack
efficiency [35, 41, 62, 68] or practicability [85, 93]. More re-
cent works [42, 70, 88] design techniques to enable optimal
attacks under this threat model. Going beyond single-player
games, Lin et al. [40] further extend the above adversarial
environment attacks to multi-player collaborative games. In
this work, we remove the attacker’s privilege of manipulating
the environment, which is more realistic and cost-effective.
Data poisoning attacks. Another line of research general-
izes data poisoning attacks [14, 15, 65] to DRL. Specifically,
pioneer works [45, 46, 92] poison a player’s training episodes
by manipulating its reward and thus training non-optimal poli-
cies. Yang et al. [86] and Kiourti et al. [33] further leverage
environment and reward manipulation to implant a backdoor
into a policy network. During the testing phase, when a trigger
is presented in the environment, the victim policy establishes

3954 32nd USENIX Security Symposium USENIX Association

https://tinyurl.com/y4c9hdm9
https://tinyurl.com/y4c9hdm9

ill-defined behaviors. Most recent work [75] design a trojan
attack against two-player games. Rather than perturbing the
environment or reward, this attack designs the trigger as an
adversarial player’s action. The victim player behaves ab-
normally whenever the adversarial player takes the trigger
actions. Since we do not assume access to a victim policy’s
training process, we do not consider trojan attacks.
Existing defenses. Pioneer defense works [8,9,48,59] adopt
adversarial retraining [26] to defend against adversarial en-
vironment attacks. By retraining the victim policy in the
perturbed environment, this defense improves the policy’s
resilience against environmental manipulations. More recent
works [27, 84] extend this defense to our threat model and
propose to robustify a victim policy by retraining it against
the corresponding adversarial policy. As discussed in Sec-
tion 4, this defense can be easily bypassed by training a new
adversarial policy against the robustified victim. Besides ad-
versarial retraining, some other recent research [36,81–83,89]
extends existing certification techniques to provide certified
robustness against adversarial environment or data poison-
ing attacks. Due to different threat models and defense goals,
these techniques cannot provide certified defenses in our prob-
lem. A final line of works [22, 61, 87] leverage game theory
and maximin optimization to defend against adversarial per-
turbation attacks in single-player RL tasks. They introduce
an attack player to control the environment perturbations and
transform the original environment into a two-player com-
petitive game between the original RL player and the attack
player. They train a robust policy for the RL player by solving
a maximin optimization: maxπvminπα V v(s), where v and α

is the RL and the attack player. As discussed in Section 4.2,
solving only the maximin or minimax optimization cannot
guarantee the convergence to a NE point and thus cannot
provide a robustness guarantee in our problem.

7 Discussion

Other defeats of Self-play. In addition to lacking robustness,
existing works also discuss other deficiencies of self-play. For
example, Balduzzi et al. [4] mentioned that self-play cannot
establish transitivity. Jaderberg et al. [30] pointed out that
self-play is limited in emerging human-like behaviors. While
our focus differs from these works, it is important to note
these additional limitations of self-play.
About Our Robustness Guarantee. As discussed in Sec-
tion 4, PATROL guarantees its obtained agent has a lower
bound against arbitrary adversarial agents (i.e., V i(π1

∗,π
2
∗) in

Eqn. (3)), which varies game by game. We cannot guarantee
it is larger than a specific winning rate. This is similar to
certain certified defenses for supervised learning [18, 80, 90],
which certify their model has a lower-bound accuracy but
cannot guarantee it is higher than a specific value.
Extension to extensive-form games. Another two-player
competitive game widely existing in the real world is the

extensive-form game (e.g., Go [66]), Poker [37]). Different
from the Markov game, where two players take action simul-
taneously, in an extensive-form game, each player takes turns
observing the state and taking action. Although no work has
done this, as discussed in [27], it is not that hard to extend
the existing adversarial policy attacks to this game. Similarly,
extending PATROL to extensive-form games and providing
an empirical defense is also straightforward. We can just
replace the PPO algorithm in Algorithm 1 with a state-of-
the-art policy training method in the extensive-form game
(e.g., counterfactual regret minimization [23]). However, due
to differences in game setup, the robustness guarantee of our
method no longer holds for the extensive-form game. Our
future work will investigate redesigning PATROL to provide
such a guarantee for extensive-form games.
Generalization to multi-player environments. Going be-
yond two-player games, some DRL tasks involve multiple
players, such as Dota [54] and StarCraft [69]. In such games,
the players are assigned to two teams. Players of the same
team cooperate to compete against the other team. General-
izing PATROL to a multi-player environment is challenging
because the dependencies between players are much more
complicated than in a two-player game. In the future, we will
again draw insights from the game theoretical theorems [57]
about finding NE in a multi-player game and extend PATROL
to train robust policies in this setup.
Limitation and future work. Our work has a few limita-
tions. First, our method introduces additional computational
cost compared to the state-of-art approach. In this work, we
improve the efficiency by optimizing our implementation.
Our future work will explore further accelerating the training
process by selecting better initial states (e.g., using policies
pretrained by self-play as the initial policies). Second, we
assume the value function is smooth and differentiable. In
some special cases, the value functions are non-smooth [67].
Our future work will also investigate adapting our method
to these games. Finally, besides the Markov game, some
recent works [17, 28] also model a two-player competitive en-
vironment as a Stackelberg Game and develop policy training
methods with better stability than self-play with PPO. In our
future work, we will also explore whether generalizing our
method to this model could provide a more stable algorithm.

8 Conclusion

We present PATROL, the first provable defense against adver-
sarial policy attacks in two-player competitive games. Tech-
nically, we propose a novel policy training algorithm to find
the NE point, which provides a robust policy for each player.
We theoretically prove that PATROL is guaranteed to find the
NE point in complicated RL environments. Empirical evalua-
tion shows that PATROL outperforms existing policy training
methods in finding the NE point, policy generalizability, and
defending against existing attacks. With the theoretical analy-

USENIX Association 32nd USENIX Security Symposium 3955

sis and empirical results, we conclude that a policy training
method converging to the NE point provides policies with a
robustness guarantee against adversarial policy attacks.

Acknowledgments

We would like to thank our anonymous shepherd and review-
ers for their helpful feedback. This work was supported in
part by the National Science Foundation and the Berkeley
Center for Responsible, Decentralized Intelligence.

References
[1] Asma Al-Tamimi, Frank L Lewis, and Murad Abu-Khalaf. Model-

free q-learning designs for linear discrete-time zero-sum games with
application to h-infinity control. Automatica, 2007.

[2] ATARI. Atari games. https://www.atari.com/, 2006.

[3] Yu Bai and Chi Jin. Provable self-play algorithms for competitive
reinforcement learning. In ICML, 2020.

[4] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki,
Julien Perolat, Max Jaderberg, and Thore Graepel. Open-ended learn-
ing in symmetric zero-sum games. In ICML, 2019.

[5] Trapit Bansal, Jakub Pachocki, Szymon Sidor, et al. Emergent com-
plexity via multi-agent competition. In ICLR, 2018.

[6] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game
theory. SIAM, 1998.

[7] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement
learning to policy induction attacks. In MLDM, 2017.

[8] Vahid Behzadan and Arslan Munir. Whatever does not kill
deep reinforcement learning, makes it stronger. arXiv preprint
arXiv:1712.09344, 2017.

[9] Vahid Behzadan and Arslan Munir. Mitigation of policy manipu-
lation attacks on deep q-networks with parameter-space noise. In
SAFECOMP, 2018.

[10] Michel Benaïm, Josef Hofbauer, and Sylvain Sorin. Stochastic approx-
imations and differential inclusions. SIAM Journal on Control and
Optimization, 2005.

[11] Ulrich Berger. Brown’s original fictitious play. Journal of Economic
Theory, 2007.

[12] Shalabh Bhatnagar, Mohammad Ghavamzadeh, Mark Lee, and
Richard S Sutton. Incremental natural actor-critic algorithms. In
NeurIPS, 2008.

[13] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex
optimization. Cambridge university press, 2004.

[14] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poisoning
attacks to local differential privacy protocols. In USENIX Security,
2021.

[15] Nicholas Carlini. Poisoning the unlabeled dataset of semi-supervised
learning. In USENIX Security, 2021.

[16] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In S&P, 2017.

[17] Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Ad-
versarially trained actor critic for offline reinforcement learning. In
ICML, 2022.

[18] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial
robustness via randomized smoothing. In ICML, 2019.

[19] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Bat-
tista Biggio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. Why
do adversarial attacks transfer? explaining transferability of evasion
and poisoning attacks. In Prof. of USENIX Security Symposium, 2019.

[20] Ding-Zhu Du and Panos M Pardalos. Minimax and applications.
Springer Science & Business Media, 1995.

[21] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras,
et al. Implementation matters in deep rl: A case study on ppo and trpo.
In ICLR, 2020.

[22] Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (prov-
ably) solves some robust rl problems. In ICLR, 2022.

[23] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Stochastic
regret minimization in extensive-form games. In ICML, 2020.

[24] Drew Fudenberg and David K Levine. Consistency and cautious
fictitious play. Journal of Economic Dynamics and Control, 1995.

[25] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine,
and Stuart Russell. Adversarial policies: Attacking deep reinforcement
learning. In ICLR, 2020.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. In ICLR, 2015.

[27] Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. Adversarial policy
learning in two-player competitive games. In ICML, 2021.

[28] Peide Huang, Mengdi Xu, Fei Fang, and Ding Zhao. Robust rein-
forcement learning as a stackelberg game via adaptively-regularized
adversarial training. arXiv preprint arXiv:2202.09514, 2022.

[29] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. Adversarial attacks on neural network policies. In ICLR
workshop, 2017.

[30] M Jaderberg, WM Czarnecki, I Dunning, L Marris, G Lever, AG Cas-
taneda, et al. Human-level performance in first-person multiplayer
games with population-based deep reinforcement learning. arxiv. arXiv
preprint arXiv:1807.01281, 2018.

[31] Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul
Rolland, Cheng Shi, and Volkan Cevher. Robust reinforcement learning
via adversarial training with langevin dynamics. In NeurIPS, 2020.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[33] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li.
Trojdrl: Trojan attacks on deep reinforcement learning agents. arXiv
preprint arXiv:1903.06638, 2019.

[34] Galina M Korpelevich. The extragradient method for finding saddle
points and other problems. Matecon, 1976.

[35] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep
policies. In ICLR Workshop, 2017.

[36] Aounon Kumar, Alexander Levine, and Soheil Feizi. Policy smoothing
for provably robust reinforcement learning. In ICLR, 2022.

[37] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zam-
baldi, Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr
Timbers, Karl Tuyls, Shayegan Omidshafiei, et al. Openspiel: A
framework for reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

[38] Zifan Li and Ambuj Tewari. Sampled fictitious play is hannan consis-
tent. Games and Economic Behavior, 2018.

[39] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. Rllib:
Abstractions for distributed reinforcement learning. In ICML, 2018.

[40] Jieyu Lin, Kristina Dzeparoska, Sai Qian Zhang, Alberto Leon-Garcia,
and Nicolas Papernot. On the robustness of cooperative multi-agent
reinforcement learning. In DLS Workshop, 2020.

[41] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih,
Ming-Yu Liu, and Min Sun. Tactics of adversarial attack on deep
reinforcement learning agents. In IJCAI, 2017.

[42] Guanlin Liu and Lifeng Lai. Provably efficient black-box action
poisoning attacks against reinforcement learning. In NeurIPS, 2021.

3956 32nd USENIX Security Symposium USENIX Association

https://www.atari.com/

[43] Giulio Lovisotto, Henry Turner, Ivo Sluganovic, Martin Strohmeier,
and Ivan Martinovic. {SLAP}: Improving physical adversarial exam-
ples with {Short-Lived} adversarial perturbations. In Prof. of USENIX
Security Symposium, 2021.

[44] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,
and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-
competitive environments. In NeurIPS, 2017.

[45] Thodoris Lykouris, Max Simchowitz, Aleksandrs Slivkins, and Wen
Sun. Corruption robust exploration in episodic reinforcement learning.
arXiv preprint arXiv:1911.08689, 2019.

[46] Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. Policy poisoning
in batch reinforcement learning and control. In NeurIPS, 2019.

[47] Aleksander Madry, Aleksandar Makelov, et al. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018.

[48] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio
Savarese. Adversarially robust policy learning: Active construction of
physically-plausible perturbations. In IROS, 2017.

[49] Stephen McAleer, John B Lanier, Roy Fox, and Pierre Baldi. Pipeline
psro: A scalable approach for finding approximate nash equilibria in
large games. In NeurIPS, 2020.

[50] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method.
Journal of the American statistical association, 1949.

[51] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In ICML, 2016.

[52] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin
Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson,
and Michael Bowling. Deepstack: Expert-level artificial intelligence
in heads-up no-limit poker. Science, 2017.

[53] Angelia Nedić and Asuman Ozdaglar. Subgradient methods for saddle-
point problems. Journal of optimization theory and applications, 2009.

[54] OpenAI. Openai at the international 2017. https://openai.com/
the-international/, 2017.

[55] OpenAI. Roboschool: open-source software for robot simulation.
https://openai.com/blog/roboschool/, 2017.

[56] OpenAI. Emergent tool use from multi-agent interaction. https:
//openai.com/blog/emergent-tool-use/, 2019.

[57] Guillermo Owen. Game theory. Emerald Group Publishing, 2013.

[58] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Anan-
thram Swami. Distillation as a defense to adversarial perturbations
against deep neural networks. In S&P, 2016.

[59] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan,
and Girish Chowdhary. Robust deep reinforcement learning with
adversarial attacks. In AAMAS, 2018.

[60] Julien Perolat, Bilal Piot, and Olivier Pietquin. Actor-critic fictitious
play in simultaneous move multistage games. In AISTAT, 2018.

[61] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta.
Robust adversarial reinforcement learning. In ICML, 2017.

[62] Alessio Russo and Alexandre Proutiere. Optimal attacks on reinforce-
ment learning policies. arXiv preprint arXiv:1907.13548, 2019.

[63] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In ICML, 2015.

[64] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[65] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea.
{Explanation-Guided} backdoor poisoning attacks against malware
classifiers. In USENIX Security, 2021.

[66] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 2016.

[67] Leo K Simon. Games with discontinuous payoffs. The Review of
Economic Studies, 1987.

[68] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie
Chen, and Yang Liu. Stealthy and efficient adversarial attacks against
deep reinforcement learning. In AAAI, 2020.

[69] Peng Sun, Xinghai Sun, Lei Han, Jiechao Xiong, Qing Wang, Bo Li,
Yang Zheng, Ji Liu, Yongsheng Liu, Han Liu, et al. Tstarbots: Defeat-
ing the cheating level builtin ai in starcraft ii in the full game. arXiv
preprint arXiv:1809.07193, 2018.

[70] Yanchao Sun, Ruijie Zheng, Yongyuan Liang, and Furong Huang. Who
is the strongest enemy? towards optimal and efficient evasion attacks
in deep rl. In ICLR, 2022.

[71] Richard L Tenney and Caxton C Foster. Non-transitive dominance.
Mathematics Magazine, 1976.

[72] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In ICIRS, 2012.

[73] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In AAAI, 2016.

[74] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell,
Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 2019.

[75] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and
Dawn Song. Backdoorl: Backdoor attack against competitive rein-
forcement learning. In IJCAI, 2021.

[76] Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax
optimization locally: A follow-the-ridge approach. arXiv preprint
arXiv:1910.07512, 2019.

[77] Wikipedia. Hoeffding’s inequality. https://en.wikipedia.org/
wiki/Azuma%27s_inequality, 2022.

[78] Wikipedia. Match pennies game. https://en.wikipedia.org/
wiki/Matching_pennies, 2022.

[79] Wikipedia. Universal approximation theory. https://en.
wikipedia.org/wiki/Universal_approximation_theorem,
2022.

[80] Eric Wong and Zico Kolter. Provable defenses against adversarial
examples via the convex outer adversarial polytope. In ICML, 2018.

[81] Fan Wu, Linyi Li, Zijian Huang, Yevgeniy Vorobeychik, Ding Zhao,
and Bo Li. Crop: Certifying robust policies for reinforcement learning
through functional smoothing. In ICLR, 2022.

[82] Fan Wu, Linyi Li, Chejian Xu, Huan Zhang, Bhavya Kailkhura, Krish-
naram Kenthapadi, Ding Zhao, and Bo Li. Copa: Certifying robust
policies for offline reinforcement learning against poisoning attacks.
In ICML, 2022.

[83] Junlin Wu and Yevgeniy Vorobeychik. Robust deep reinforcement
learning through bootstrapped opportunistic curriculum. In ICML,
2022.

[84] Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. Adversarial policy
training against deep reinforcement learning. In Prof. of USENIX
Security Symposium, 2021.

[85] Chaowei Xiao, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jin-
feng Yi, Bo Li, and Dawn Song. Characterizing attacks on deep
reinforcement learning. arXiv preprint arXiv:1907.09470, 2019.

[86] Zhaoyuan Yang, Naresh Iyer, et al. Design of intentional backdoors in
sequential models. arXiv preprint arXiv:1902.09972, 2019.

USENIX Association 32nd USENIX Security Symposium 3957

https://openai.com/the-international/
https://openai.com/the-international/
https://openai.com/blog/roboschool/
https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/
https://en.wikipedia.org/wiki/Azuma%27s_inequality
https://en.wikipedia.org/wiki/Azuma%27s_inequality
https://en.wikipedia.org/wiki/Matching_pennies
https://en.wikipedia.org/wiki/Matching_pennies
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem

[87] Jing Yu, Clement Gehring, Florian Schäfer, and Animashree Anand-
kumar. Robust reinforcement learning: A constrained game-theoretic
approach. In ICML, 2021.

[88] Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Ro-
bust reinforcement learning on state observations with learned optimal
adversary. In ICLR, 2021.

[89] Huan Zhang, Hongge Chen, Chaowei Xiao, et al. Robust deep rein-
forcement learning against adversarial perturbations on state observa-
tions. In NeurIPS, 2020.

[90] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stan-
forth, Bo Li, Duane Boning, and Cho-Jui Hsieh. Towards stable and
efficient training of verifiably robust neural networks. arXiv preprint
arXiv:1906.06316, 2019.

[91] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent rein-
forcement learning: A selective overview of theories and algorithms.
arXiv preprint arXiv:1911.10635, 2019.

[92] Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive
reward-poisoning attacks against reinforcement learning. In ICML,
2020.

[93] Yiren Zhao, Ilia Shumailov, Han Cui, Xitong Gao, Robert Mullins,
and Ross Anderson. Blackbox attacks on reinforcement learning
agents using approximated temporal information. arXiv preprint
arXiv:1909.02918, 2019.

[94] Yuanyi Zhong, Yuan Zhou, and Jian Peng. Efficient competitive
self-play policy optimization. arXiv preprint arXiv:2009.06086, 2020.

[95] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo
Piccione. Regret minimization in games with incomplete information.
In NeurIPS, 2007.

A Additional Technical Analysis

A.1 Iterative Adversarial Retraining
Iterative adversarial retraining expresses the following pro-
cess. Given a pair of initial policies (πv

0, πα
0), iteratively re-

training πv
t against πα

t and retraining πα
t against πv

t+1. After T
rounds, we can obtain a series of polices for the victim player
{πv

0, ..,π
v
T} and the adversarial player {πα

0 , ..,π
α
T}.

First, we show that this method cannot converge to a fixed
point even in a simple matrix form game. Consider the Match-
ing pennies game in Section 5.1, without loss of generaliz-
ability, we treat the 1st player as the victim player with a
policy πv

0, where Prv(H) = pv
0 and Prv

0(T) = 1− pv
0. The at-

tacker trains an adversarial policy πα
0 for the 2nd player where

Prα(H) = pα
0 . According to [25, 84], the adversarial training

solves the following objective function: argmaxpα
0
[−pv

0 pα
0 +

(1− pα
0)pv

0 + pα
0 (1− pv

0)− (1− pv
0)(1− pα

0)] and the optimal
solution is pα

0 = 1 if pv
0 ≤ 0.5 and pα

0 = 0 if pv
0 > 0.5. Sup-

pose pv
0 ≤ 0.5 and pα

0 = 1, retraining the victim policy against
πα

0 solves the following optimization: argmaxpv
1
[pv

1 pα
0 − (1−

pα
0)pv

1 − pα
0 (1− pv

1) + (1− pv
1)(1− pα

0)], with the optimal
pv

1 = 1. Then, we can solve these optimizations to update
pα

1 = 0, pv
2 = 0, pα

2 = 1, etc. As we can observe from the
above analysis, pv

t and pα
t switch between 0 and 1 and thus

cannot converge to a fixed point. Worse still, even though
this solution converges in some cases, it cannot ensure that
the final policy is stronger than the initial policy because of

the non-transitivity [71]. Specifically, given πv
t beats πα

t−1,
πα

t beats πv
t and πv

t+1 beats πα
t , we cannot derive neither πv

t+1
could beat πα

t−1 nor πv
t+1 is stronger than πv

t . Similar, we also
cannot derive that πα

t is stronger than πα
t−1. As such, we can-

not conclude that iterative adversarial retraining could keep
searching for policies close to the NE point.

A.2 Proof of Lemma 1
Lemma 1. Given an approximation V 1

η of V 1 obtained from
M ≥ C

ε2 log 2
p episodes, we have Pr(|V 1−V 1

η | ≤ ε)≥ 1− p.
Proof of Lemma 1. As is mentioned in Section 4.3, because
the ground-truth V 1 is unknown, we first utilize the Monte
Carlo approximation to approximate V 1 and obtain Ṽ 1. Then,
we learn a DNN V 1

η to fit Ṽ 1 via Eqn. (7). By the bounded
reward assumption (i.e., the reward is within a range [r0,r1])
and Hoeffding’s inequality [77], we have

Pr(|V 1−Ṽ 1| ≤ ε)≥ 1−2e−ε2M/C, (9)

where C is a constant. As such, if M ≥ C
ε2 log 2

p , we have

Pr(|V 1−Ṽ 1| ≤ ε)≥ 1−2e−2ε2M/C ≥ 1− p . (10)

According to the universal approximation theorem of
DNN [79], when approximating a target function in any form,
by selecting the DNN with enough capacity, one could guar-
antee that the approximation error can be arbitrarily low. In
our case, we can find a proper DNN model to approximate
Ṽ 1 with an approximation error that is lower than ε. As such,
we have the following inequality max |Ṽ 1−V 1

η |< ε1, where
ε1 ≤ ε. By combining this inequality with Eqn. (10), we have
Pr(|V 1−V 1

η | ≤ ε)≥ 1− p. □

A.3 Proof of Theorem 2.
First, we prove that with a bounded learning rate, each pair
of policy (π1

k ,π
2
k) could guarantee converge to the NE point,

when using the true value function. For the notation simplicity,
we drop k and use one policy pair for the proof. Using the PPO
algorithm to update π1

i against π2
v (the strongest opponent in

the rest K−1 policy pair), we have the following inequality.

|V 1(π1
i+1,π

2
v)−L

π1
i
(π1

i+1,π
2
v)| ≤C1(maxsTV(π1

i (·|s)||π1
i+1(·|s)))2 , (11)

where L
π1

i
(π1

i+1,π
2
v) =V 1(π1

i ,π
2
v)+C2 and C1 = 4εγ

(1−γ)2 > 0,
where i represents the ith iteration. The proof of this in-
equality can be found in [63]. Substituting L

π1
i
(π1

i+1,π
2
v)

into the Eqn. (11) and apply the absolute value inequality
||a|− |b|| ≤ |a−b|, we get

−C1(maxsTV(π1
i (·|s)||π1

i+1(·|s)))2 + |C2| ≤ (V 1(π1
i+1,π

2
v)−V 1(π1

i ,π
2
v))

≤C1(maxsTV(π1
i (·|s)||π1

i+1(·|s)))2 + |C2| ,
(12)

from this inequality, we also have

−C1||π1
i −π

1
i+1||2 + |C2| ≤C1||π1

i −π
1
i+1||2 + |C2| . (13)

3958 32nd USENIX Security Symposium USENIX Association

(a) You-Shall-Not-Pass. (b) Kick-And-Defend. (c) Sumo-Humans. (d) Sumo-Ants. (e) Pong. (f) StarCraft II.

Figure 5: The screenshot of the selected environments. In each game the blue agent is the player_1 and the other is the player_2.

Similarly, updating π2
i against π1

u (the strongest opponent to
π2

i) with the PPO algorithm gives

−C3||π2
i −π

2
i+1||2 + |C4| ≤C3||π2

i −π
2
i+1||2 + |C4| . (14)

Denote g1
i and g2

i as the of V 1 w.r.t. π1
i and π2

2, we have
π1

i+1 − π1
i = ηig1

i and π2
i+1 − π2

i = −ηig2
i , where ηi is the

learning rate at iteration i. If ηi is bounded by

ηi||g1
i ||2 ≤−C1η

2
i ||g1

i ||2 + |C2| ,

ηi||g2
i ||2 ≥C3η

2
i ||g2

i ||2 + |C4| ,
(15)

we can obtain the following inequality

< g1
i ,π

1
i+1−π

1
i >≤V 1(π1

i+1,π
2
v)−V 1(π1

i ,π
2
v) ,

< g2
i ,π

2
i+1−π

2
i >≥V 1(πi

u,π
2
i+1)−V 1(πi

u,π
2
i) .

(16)

With the inequality in Eqn. (16), we then prove the conver-
gence of (π1

i ,π
2
i) under the condition of Eqn. (15). Specifi-

cally, we first prove the distance between the current (π1
i ,π

2
i)

and the optimal (π1
∗,π

2
∗) keeps decreasing as training iteration

i increases. Expanding the squared distance gives
||π1

i+1−π
1
∗||2 == ||π1

i −π
1
∗||2 +2ηi < g1

i ,π
1
i −π

1
∗ >+η

2
i ||g1

i ||2 . (17)

According to the inequality about π1 in Eqn. (16), we have

< g1
i ,π

1
i −π

1
∗ >≤V 1(π1

i ,π
2
v)−V 1(π1

∗,π
2
v) . (18)

Plugging Eqn.(18) into Eqn.(17) gives

||π1
i+1−π

1
∗||2 ≤ ||π1

i −π
1
∗||2 +2ηi(V 1(π1

i ,π
2
v)−V 1(π1

∗,π
2
v))+η

2
i ||g1

i ||2 . (19)

Similarly for π2
i , we have

||π2
i+1−π

2
∗||2 = ||π2

i −π
2
∗||2−2ηi < g2

i ,π
2
i −π

2
∗ >+η

2
i ||g2

i ||2 . (20)

According to the inequality about π2 in Eqn. (16), we have

< g2
i ,π

2
i −π

2
∗ >≥V 1(π1

u,π
2
i)−V 1(π1

u,π
2
∗) . (21)

Then, we can also derive

||π2
i+1−π

2
∗||2 ≤ ||π2

i −π
2
∗||2−2ηi(V 1(π1

u,π
2
i)−V 1(π1

u,π
2
∗))+η

2
i ||g2

i ||2 . (22)

Adding Eqn. (19) with Eqn. (22) gives

||π1
i+1−π

1
∗||2 + ||π2

i+1−π
2
∗||2

≤||π1
i −π

1
∗||2 + ||π2

i −π
2
∗||2−2ηi(V 1(π1

∗,π
2
v)−V 1(π1

u,π
2
∗)+

V 1(π1
u,π

2
i)−V 1(π1

i ,π
2
v))+η

2
i (||g1

i ||2 + ||g2
i ||2) .

(23)

Recall the NE condition gives the following inequality

V 1(π1
u,π

2
∗)≤V 1(π1

∗,π
2
∗)≤V 1(π1

∗,π
2
v) . (24)

Plugging Eqn. 24 into Eqn. (23) gives

||π1
i+1−π

1
∗||2 + ||π2

i+1−π
2
∗||2

≤||π1
i −π

1
∗||2 + ||π2

i −π
2
∗||2−2ηi(V 1(π1

u,π
2
i)−V 1(π1

i ,π
2
v))+η

2
i (||g1

i ||2 + ||g2
i ||2) .

(25)

Let Ei =V 1(π1
u,π

2
i)−V 1(π1

i ,π
2
v). According to Line 5&6 in

Algorithm 1, we can also derive Ei ≥ 0. If the learning rate
satisfies ηi <

2Ei
|g1

i ||2+||g
2
i ||2

, we have

||π1
i+1−π

1
∗||2 + ||π2

i+1−π
2
∗||2 ≤ ||π1

i −π
1
∗||2 + ||π2

i −π
2
∗||2 . (26)

Combining the condition above with (15), we have if the
following condition holds√

|C4|
C3||g2

i ||2
≤ ηi min

(
2Ei

|g1
i ||2 + ||g2

i ||2
,

√
|C2|

C1||g1
i ||2
− 2Ei

C1(||g1
i ||2 + ||g2

i ||2)

)
, (27)

the difference between (π1
i ,π

2
i) and (π1

∗,π
2
∗) strictly decreases

during the training process.
With this property, we then prove that the difference de-

creases to zero with a reasonable large number of policy pairs
K. Suppose the training process converges to an accumu-
lation point (π1

T ,π
2
T), such that its difference with the NE

policy no longer decreases. At this point, we have ET = 0.
This is because, if ET > 0, one could always find a proper
learning rate ηT such that (π1

T+1,π
2
T+1) has a lower distance

to the NE policy than (π1
T ,π

2
T), indicating the training has not

converged yet. As such, when training converges, we have
ET =V 1(π1

u,π
2
T)−V 1(π1

T ,π
2
v) = 0. With a reasonable large

K, we have π2
v and π1

u equals to argminπ2(V 1(π1
T ,π

2)) and
argmaxπ1(V 1(π1,π2

T)). This gives the following equality
V 1(π1

T ,argmin
π2 (V 1(π1

T ,π
2))) =V 1(argmax

π1 (V 1(π1,π2
T)),π

2
T) . (28)

We also have the following inequality

V 1(π1
T ,argmin

π2 (V 1(π1
T ,π

2)))≤V 1(π1
T ,π

2
T)≤V 1(argmax

π1 (V 1(π1,π2
T)),π

2
T) .

(29)

Combine Eqn. (29) and Eqn. (28), we can derive

V 1(π1
T ,argmin

π2 (V 1(π1
T ,π

2))) =V 1(π1
T ,π

2
T) =V 1(argmax

π1 (V 1(π1,π2
T)),π

2
T) .

(30)

This equation shows the minimax value and maximin value
are the same at (π1

T ,π
2
T). It also gives V 1(π1,π2

T) ≤
V 1(π1

T ,π
2
T) ≤ V 1(π1

T ,π
2) for any π1 and π2. As a result,

(π1
T ,π

2
T) is the NE policy of V 1.

In real-world RL tasks, the ground-truth value function
is unknown. As specified in Section 4.3, we use a neural
network V 1

η to approximate the V 1. According to Lemma 1,
the approximation error is bounded by ε. Plugging Lemma 1,
we have V 1(π1,π2

T)− ε ≤ V 1(π1
T ,π

2
T) ≤ V 1(π1

T ,π
2)+ ε, for

all π1 and π2. With a bounded learning rate, our algorithm is
guaranteed to converge to a ε-approximate NE point. □

USENIX Association 32nd USENIX Security Symposium 3959

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7)
0 1 2 0 1 20 1 2 0 1 20 1 2

 0

-2

-2

 0

 2

 X

 Y

 2

 X

 Y

 Y

 X

 Y

 X

 Y

 X

Player 1 Player 2

(a) ➃-S: Euclidean game with non-convex non-concave value function.

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7)
0 1.5 3 0 1.5 30 1.5 30 1.5 30 1.5 3

0.5

 1

0

0

0.5

 1
 W

in
ni

ng
 ra

te
 (%

)

 W
in

ni
ng

 ra
te

 (%
)

Player 1 Player 2

(b) You-Shall-Not-Pass.

 Iteration (1e6) Iteration (1e6) Iteration (1e6) Iteration (1e6) Iteration (1e6)
0 3.5 7 0 3.5 70 3.5 70 3.5 70 3.5 7

0.5

 1

0

0

0.5

 1
 W

in
ni

ng
 ra

te
 (%

)

 W
in

ni
ng

 ra
te

 (%
)

Player 1 Player 2

(c) Pong.

 Iteration (1e5) Iteration (1e5) Iteration (1e5) Iteration (1e5) Iteration (1e5)
0 5.0 10.5

0.5

 1

0

0

0.5

 1
 W

in
ni

ng
 ra

te
 (%

)

 W
in

ni
ng

 ra
te

 (%
)

Player 1 Player 2

0 5.0 10.5 0 5.0 10.5 0 5.0 10.5 0 5.0 10.5

(d) StarCraft II.

Figure 6: Iteratively adversarial retraining results of 10 rounds.
In each game, we start with using player_1 as the adversarial
agent and player_2 as the victim agent.

B Additional Experiments

B.1 Additional Experiment Setup

Hyper-parameters. For the hyper-parameters shared by
PATROL and the baselines, we use the same set of choices.
We follow [25], [55], and [69] to set hyper-parameters. For
the You-Shall-Not-Pass game, we use a multi-layer percep-
tron with the architecture of MLP-380-64-64-17. It has four
layers and the numbers indicate the number of neurons in
each layer. The architecture of the other games are: MLP-
380-128-LSTM-128-MLP-128-17 for the Kick-And-Defend
game, MLP-395-128-LSTM-128-MLP-128-17 for the Sumo-
Humans game, MLP-137-128-LSTM-128-MLP-128-8 for the
Sumo-Ants game, MLP-13-64-64-2 for the Pong game, and
MLP-754-128-128-128-165 for the StarCraft II game. For

100

 50

0

Iteration (1e7)

 71

 0 1.5 3.0

Self-playPATROL

 77

W
in

ni
ng

 ra
te

 (%
)

(a) MuJoCo Player 1 as victim.

100

0
Iteration (1e7)

 50

 0 1.5 3.0

23

29

Self-playPATROL

W
in

ni
ng

 ra
te

 (%
)

(b) MuJoCo Player 2 as victim.

Figure 7: The robustness of PATROL and Self-play against the
attack in [27] in the You-Shall-Not-Pass game.

toy games, we directly learn the policy without using a neural
network. We use the ADAM optimizer with a learning rate of
0.00001 for the StarCraft II and 0.0001 for all the others.

B.2 Runtime & Hyper-parameter Sensitivity
Runtime. To compare the computational cost of PATROL and
Self-play, we record the training time of both methods on
the MuJoCo games using the same machine (a server with 2
AMD EPYC 7702 64-Core CPUs and 4 NVIDIA RTX A6000
GPUs). The average runtime to the convergence of PATROL
is about 1.8× over the self-play baseline (41.5h vs. 24h on
You-Shall-Not-Pass and 30h vs. 18h on Sumo-Humans).
Sensitivity. To test the sensitivity of PATROL to the number
of policy pairs K, we train three policies with K = 1/2/3
for each player in the You-Shall-Not-Pass game, play them
against the same self-play policy, and record the winning
rates: PATROL_1 vs. Self-play_2: 33.0% (K = 1), 42.0%
(K = 2), 44.0% (K = 3); PATROL_2 vs. Self-play_1: 81.0%
(K = 1), 86.0% (K = 2), 86.0% (K = 3). K = 2/3 gives
stronger policies than K = 1, verifying the efficacy of training
multiple policy pairs. Besides, K equals 2 and 3 give similar
results, confirming our statement in Section 5.1.

B.3 Iteratively Adversarial Retraining
We run the iteratively adversarial retraining on four games
and show the results in 6. For the toy game, we report the
trained policy (i.e., value of X and Y), and for other games,
we show the changes in the adversarial winning rate. As
shown in the figure, iteratively adversarial retraining fails to
converge to a fixed pair of policies on all games.

B.4 PATROL against a New Attack
Recently, [27] proposed a new adversarial attack for two-
player competitive games that are not exactly zero-sum. Here,
we turn the You-Shall-Not-Pass game into such a case by
adding intermediate rewards and train the normal policies
with PATROL and Self-play. Then, we use the method in [27]
to attack these policies and show the results in Fig. 7. The
result is aligned with those in Fig. 3&4, confirming the ro-
bustness of our method against this new attack and further
verifying our robustness guarantee.

3960 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Two-player Zero-sum Markov Game
	Self-play with PPO

	Existing Attacks and Problem Scope
	Existing Attacks in Two-player Games
	Our Problem Setup

	Key Technique
	Possible Solutions and Limitations
	Overview of the Proposed Technique
	Proposed Policy Training Algorithm
	Theoretical guarantee

	Evaluation
	Experiment Setup
	Experiment Design
	Experiment Result

	Other Related Work
	Discussion
	Conclusion
	Additional Technical Analysis
	Iterative Adversarial Retraining
	Proof of Lemma 1
	Proof of Theorem 2.

	Additional Experiments
	Additional Experiment Setup
	Runtime & Hyper-parameter Sensitivity
	Iteratively Adversarial Retraining
	PATROL against a New Attack

