
This paper is included in the Proceedings of the 
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the 
32nd USENIX Security Symposium 

is sponsored by USENIX.

Temporal CDN-Convex Lens: 
A CDN-Assisted Practical Pulsing DDoS Attack

Run Guo, Tsinghua University; Jianjun Chen, Tsinghua University and 
Zhongguancun Laboratory; Yihang Wang and Keran Mu, Tsinghua University; 

Baojun Liu, Tsinghua University and Zhongguancun Laboratory; Xiang Li, 
Tsinghua University; Chao Zhang, Tsinghua University and Zhongguancun 

Laboratory; Haixin Duan, Tsinghua University and Zhongguancun Laboratory 
and QI-ANXIN Technology Research Institute; Jianping Wu, Tsinghua University 

and Zhongguancun Laboratory
https://www.usenix.org/conference/usenixsecurity23/presentation/guo-run



Temporal CDN-Convex Lens: A CDN-Assisted Practical Pulsing DDoS Attack

Run Guo1, Jianjun Chen1,2*, Yihang Wang 1, Keran Mu1,
Baojun Liu1,2, Xiang Li1, Chao Zhang1,2, Haixin Duan1,2,3, Jianping Wu1,2

1Tsinghua University 2Zhongguancun Laboratory 3QI-ANXIN Technology Research Institute

Abstract
As one cornerstone of Internet infrastructure, Content De-

livery Networks (CDNs) work as a globally distributed proxy
platform between clients and websites, providing the function-
alities of speeding up content delivery, offloading web traffic,
and DDoS protection. In this paper, however, we reveal that
inherent nature of CDN forwarding network can be exploited
to compromise service availability.

We present a new class of pulsing denial of service attack,
named CDN-Convex attack. We explore the possibility of
exploiting the CDN infrastructure as a converging lens, and
concentrating low-rate attacking requests into short, high-
bandwidth pulse waves, resulting in a pulsing DDoS attack
to saturate the targeted TCP services periodically. Through
real-world experiments on five leading CDN vendors, we
demonstrate that the CDN-Convex attack is practical and
flexible. We show that attackers can use it to achieve peak
bandwidths over 1000 times greater than their upload band-
width, seriously degrading the performance and availability
of target services. Following the responsible disclosure policy,
we report our attack details to all affected CDN vendors and
propose possible mitigation solutions.

1 Introduction
Denial of Service (DoS) attack is considered one of the most
popular security threats in cyberspace [32]. Adversaries per-
form DoS attacks to consume critical resources of a network
or a web server, and prevent or severely degrade online ser-
vices to serve legitimate Internet users. Despite significant
efforts have been devoted to research prevention techniques to
mitigate flooding traffic, detecting and blocking DoS attacks
is an ever-changing cat-and-mouse game between service
providers and attackers. As a result of the constant confronta-
tion and evolution, more sophisticated DoS strategies are
proposed.

Among these strategies, the Pulsing DoS attack, consisting
of a series of short-lived bursts that occur in clockwork-like
succession, serves as a new type of low-rate DDoS attack, but
it is more powerful and could cause more damages [36, 40].
Actually, the pulsing DoS attack has been studied for years
and presented impressive impacts [33,36,40,41,49,51]. First,

*Corresponding author: jianjun@tsinghua.edu.cn

the pulsing DoS attack can severely degrade TCP throughput
and lead to a repeated TCP re-transmission timeout [36, 40].
Second, due to the fundamental susceptibility of bottleneck
resources within the service or protocol, the security commu-
nity believes that any application with limited resources is
vulnerable to pulsing DoS attack [53]. Last, compared with a
conventional volume-based DoS attack that floods the victim
with a huge number of connections, a pulsing DoS attack only
generates a suite of low-volume sequential requests, conse-
quently which is more efficient and stealthier.
Research Gap. However, traditional pulsing DoS attack gen-
erally relies on large-scale botnets, which requires attackers
to compromise a number of devices (e.g., IoT devices) [5,58].
Moreover, these compromised bot nodes can be of varying
bandwidth and synchronization. As a result, previous stud-
ies demonstrated that it is difficult to coordinate attacking
requests from different bots to synchronize as a bursting pulse
at the victim server [33, 40, 41]. One notable study proposed
the temporal lensing attack and employed Open DNS servers
to reflect and generate pulsing DoS traffic [49]. However, the
work focuses on UDP amplification and can only achieve
a lensing bandwidth gain of about 10, thus the real-world
impact of the attack is strictly limited. In addition, CDN in-
frastructure can also absorb attacking requests and disrupt
intermittent pulses, invalidating the above attacks.
Key Observations. In this study, we observe that CDN infras-
tructure works as a large-scale proxy network, which employs
extremely massive edge servers around the world. Besides,
almost all mainstream CDN vendors lack sufficient validation
of customer-supplied origin [21]. Thus, a malicious CDN cus-
tomer can drive millions of globally distributed edge servers
launching TCP requests to an arbitrary domain name or IP ad-
dress. And more importantly, those edge servers are generally
located at network backbones [1, 10], which could provide
various and stable network latency. Therefore, we believe that
the prevalence of CDN edge servers provides an excellent
opportunity to be exploited as a “botnet” by an attacker to
perform pulsing wave DoS attacks.
Our Study. Inspired by the above key observations, we pro-
pose a CDN-assisted pulsing DDoS attack, which is entitled
the CDN-Convex attack. Empowered by CDN-Convex, an
adversary can periodically saturate target TCP services with
concentrated attacking requests that burst in a short period.

USENIX Association 32nd USENIX Security Symposium    6185



The core concept of our attack is to exploit existing CDN
infrastructure (stable proxy network) to concentrate attacking
requests in time. Global distributed CDN edge servers pro-
vide a wide range of attacker-CDN-victim network paths with
stable network latency. It allows an adversary to schedule the
arrival of attack requests. By first sending requests to paths
with longer delays, and then sending requests to those with
shorter delays, an adversary can manipulate different requests
arriving at the victim server simultaneously within a small
time window. In this way, CDN infrastructure works like a
convex lens to converge the low-rate attacking requests into
short, high-rate pulse waves, resulting in bandwidth concen-
tration effects at the victim.

Despite the above idea being straightforward, in the real
world, it is a non-trivial task to achieve a high bandwidth
concentration ratio. In this study, we further proposed three
advanced techniques to improve the temporal convergence of
the basic attack.

The first technique (CDN-Cascading Convex) chains mul-
tiple CDN vendors together, the second technique (DNS-
holdon Convex) manipulates DNS resolution, and the third
technique (Request-pending Convex) leverages incomplete
HTTP requests, all aiming to obtain a wider range of time
range to fire more attacking requests in one pulsing period.
We also discuss the applicability of leveraging the IP frag-
mentation mechanism to further let the CDN withhold more
attacking requests.
Evaluation Results. To evaluate the practical feasibility of
our proposed attacks, we select five leading CDN vendors
(Akamai, Azure, CloudFront, Cloudflare, and Fastly) and
deploy our web server to set up a controlled environment.
Throughout this study, we take the utmost care of potential
ethical issues. First, the victim’s website is registered by our-
self. Second, to avoid collateral damage on CDN platforms,
we only utilized dozens of CDN nodes to demonstrate the
effectiveness of CDN-Convex attack. Actually, we collect
millions of available CDN nodes (Table 2 in Section 4.1),
and all these nodes can be theoretically employed to conduct
CDN-Convex attack.

Our experiments show that it is practical and flexible to
exploit CDN infrastructure as a convex lens to temporally
converging attacking requests. Moreover, the effectiveness
of CDN-Convex attack is also impressive. Using the most
serious attacking technique of the proposed three, we ob-
tain a real-world bandwidth concentration ratio of 1526.9,
a 72.82KBps attacker-side bandwidth can achieve a total of
108.58MBps victim-side bandwidth, resulting in a pulsing
DDoS attack. Although we only take advantage of 64 CDN
nodes in our controlled experiments, we present that CDN-
Convex attack can severely saturate the target TCP service and
damage the targeted website’s availability and performance
(Section 5).
Contributions. We make the following contributions in this
paper.

• A Novel Attack. We propose a new class of pulsing DDoS
attacks. It exploits global distributed edge servers provided
by CDN platforms and converges low-rate attacking re-
quests as a series of high-bandwidth pulses at the victim.

• Real-world Evaluations. By performing real-world con-
trolled experiments on five leading CDN vendors, we
demonstrate that CDN-Convex attack can reach a peak
bandwidth concentration ratio of over 1000, and undermine
the performance and availability of target services.

• Mitigation and Responsible Disclosure. We present ap-
proaches to mitigate the proposed attack and responsibly
report vulnerabilities to CDN vendors.

2 Background
2.1 CDN Overview
CDN infrastructure is designed to improve the end-to-end
network performance and reduce its origin website servers’
workload burden. To enable a CDN service, a website owner
needs to delegate its domain name to a CDN vendor. And
then, leveraging the flexibility of domain resolution, the CDN
vendor adopts the request-routing mechanism and redirects
web requests from global Internet end-users to different CDN
nodes. Such nodes are located in globally distributed counties.
As a result, CDN significantly improves online services’ avail-
ability by caching and serving customer sites’ web resources
at a vast number of CDN nodes.

Figure 1 illustrates how a CDN works. To access a CDN-
hosting website (origin server), the client needs to resolve
the website’s domain name to IP addresses first. With the
mechanism of domain delegation, the IP addresses (red ones)
are actually provided by CDN’s authoritative name servers.
These IP addresses are generally referred to as front-end ad-
dresses [30]. The client then establishes a connection with one
of the provided front-end addresses to obtain web resources.
As for the CDN infrastructure, a CDN node would process
the connection and check whether the requested resource is
cached. If the web resource is not cached, the CDN node
fetches the requested content from the origin server. The IP
addresses used to establish with origin server are referred to
as back-end addresses. Finally, once the CDN node receives
the web resource, it transfers the content to the client.

In conclusion, the CDN distributes a massive number of
nodes globally, to efficiently redirect the web requests of a
CDN-powered website to the closest CDN node instead of
directly visiting the origin website server. Moreover, the CDN
nodes are generally deployed in the Internet backbones, to
provide fast and stable access.

Besides improving the network latency, CDN vendors also
provide security-related services for the website servers, such
as DDoS protection services. As the widespread DDoS flood-
ing attack is becoming more and more powerful, it is insuffi-
cient to merely rely on on-site DoS protection mechanisms.
CDN infrastructure becomes an ideal place to absorb DDoS

6186    32nd USENIX Security Symposium USENIX Association



attacks by distributing malicious traffic across many nodes
located in different data centers. According to public reports,
Akamai has 275,000 servers located in 136 countries [1],
and the nodes of Cloudflare are distributed in more than 100
countries [10].

Currently, CDN infrastructure has become one of the cor-
nerstones of the Internet, as more than 38.98% of Alexa Top
100K websites are hosting on the CDN platforms now [29].
In this paper, we also demonstrate that the inherent nature of
CDN architecture may be exploited by an attacker to launch
a powerful pulsing DoS attack against its hosting customers.

Figure 1: CDN’s global distribution and Geo-location based
request routing.

2.2 Pulsing DDoS Attacks

Typically, in the starting stage, a common brute-force flooding
DDoS attack looks like a steadily growing stream of malicious
traffic. Nevertheless, such attacks have been demonstrated to
be feasibly detected and mitigated [2, 4, 32]. Continuously
evolving, several sophisticated DDoS strategies were pro-
posed. Among these strategies, the Pulsing DDoS attack, con-
sisting of a series of short-lived bursts that occur in clockwork-
like succession, serves as a new type of low-rate DoS attack,
but it enables the attacker to efficiently utilize his attacking
bandwidth [33, 49, 51].

Figure 2 illustrates the concept of the pulsing DDoS at-
tack. Unlike traditional traffic flooding attacks, an attacker
controlling a botnet can strategically generate a small number
of well-crafted requests (or packets) to the victim. And later,
these attacking requests result in intermittent pulses at the
victim server with certain periodicity.

Some previous works discussed how to use pulsing requests
to trigger the bottleneck of resources within the victim server,
which presents impressive experimental applicability [33, 41,
49, 51, 52]. In a word, compared with the flooding DDoS
attacks, the Pulsing DDoS attacks are considered to be more
efficient.

Pulse
Magnitude Pulse Period

Server

Pulse Window

P

W

M

Path 1

Path n

...

Req 1

Req n
Attacker

...

Figure 2: Concept of a pulsing DDoS attack.

However, the pulsing DDoS attack is generally launched
from botnets [27, 60]. Unfortunately, the infected devices
among a botnet can be of varying network bandwidth and
time synchronization, invalidating the efficiency of a pulsing
DDoS attack [45]. In addition, for websites hosted and pro-
tected by a CDN vendor, the CDN infrastructure is able to
absorb attacking requests and disrupt intermittent pulses from
the botnet without affecting the availability of online service.
Actually, previous research work has demonstrated the diffi-
culty of finding an ideal attacking platform to coordinate the
malicious requests as a pulse wave [46].

3 CDN-Convex Attack Overview
As an Internet infrastructure, on the one hand, the CDN pro-
vides geo-distributed nodes, facilitating the availability of
online services for widespread users and mitigating the tradi-
tional DDoS flooding attack to the origin server. However, on
the other hand, we find that the CDN could be exploited as a
converging lens to launch a novel and powerful pulsing DoS
attack against target services.

In this section, we first introduce the threat model of the
CDN-Convex attack, then we present the concept and the
strategy of the attack.

3.1 Threat Model

In this paper, we assume that an adversary has two limited
capabilities. First, the attacker can craft legitimate requests
like a benign end-user to geographically distributed front-
end addresses at a slow rate. Instead of employing a botnet
with the capable bandwidth to saturate the victim, the CDN-
Convex attack can be initiated from a vantage point, like an
IoT device with a slow bandwidth; Second, the attacker can
register accounts on CDN providers. The current majority
of CDN vendors, presumably for competitive reasons, offer
free or free-trial services to potential customers (and thus for
attackers) without strong identity verification [9], thus the
attack can be launched anonymously with little cost.

For the victims, any website or TCP service could be af-
fected. Today’s CDN operation is overly loose in customer-
controlled forwarding policy and lacks origin validation [20] .
A malicious CDN customer can configure CDN edge servers
to forward traffic to an arbitrary domain name or IP address
even if he/she does not own it.

Based on the above threat model, we propose a novel and
practical CDN-Convex attack by exploiting the CDN plat-
form as a convex lens to converge attacking requests into
short, burst pulse waves (could be within tens of millisec-
onds). Those pulse waves could be exploited to attack either
network infrastructure (e.g., temporally saturate the band-
width of victims or network paths), TCP implementations at
end-host, or web applications with bottleneck resources.

USENIX Association 32nd USENIX Security Symposium    6187



3.2 Concept of the CDN-Convex Attack

z

Attacker Victim. .
 .

. .
 .

Temporal CDN Convex Lens

CDN-Convex Attack

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP HTTP

Attacker-side
slow rate traffic

HTTP

Victim-side
Pulsing DDoSCDN_A

CDN_B

CDN_C

CDN_D

CDN_E

Artillery

MRSI Attack

Simultaneous Impact

Figure 3: Concept of the CDN-Convex attack.

The core concept of CDN-Convex attack is analogous to
the military tactic “Multiple Round Simultaneous Impact
(MRSI)” [57]. Single artillery fires multiple shells by varying
the angle and propellant charges, so all shells arrive at the
same target simultaneously. This is possible because different
shells travel different trajectories to fly to a given target. By
leveraging this technique, artillery can fire more shells to
arrive at the victim in one period of time than it can send in
that period.

In this study, we observe that the global accessing mech-
anism of the CDN platform makes up a request-forwarding
platform with various latencies in a wide range. Specifically,
the CDN-Convex attack takes advantage of two CDN features.
First, the globally distributed CDN nodes can be accessed di-
rectly and lack sufficient origin validation. Typically, when a
CDN node receives an HTTP request, it inspects the “Host”
header to verify whether the requested website is a registered
CDN customer website and then forwards the request to the
customer-supplied origin. Therefore, this provides an oppor-
tunity for an attacker to drive millions of CDN edge services
to any TCP services by sending HTTP requests directly to
a node’s IP address with a CDN-hosting website’s domain
name in the “Host” header field.

Second, the globally distributed CDN nodes provide a wide
range of stable accessing latency. When we send requests
from one vantage point (like one laptop) to access the website,
the global CDN nodes provide us with many different network
paths to the origin server, consequently with a wide range of
different network latencies.

Based on the two above characteristics, we present the
CDN-Convex attack, as in Figure 3. An attacker can schedule
sending in such a way that the attacker first sends requests
to the path with the longer latency and then sends requests

to those with shorter latency. In this way, an attacker utilizes
the various network delays provided by the distributed CDN
nodes to facilitate the requests to converge as a series of
intermittent pulses at the victim, periodically saturating the
victim-side bandwidth as a pulsing DDoS attack.

Compared with previous CDN-related flooding DoS at-
tack [21, 37], we take a new angle on CDN proxy networks,
and use them to temporally concentrate the arrival of requests
at the victim, much like a lens focuses light. Our attack inher-
its the advantages of traditional pulse DDoS attacks, which
are stealthy, efficient, and can cause severe damage at a low
cost.

3.3 Strategy of the CDN-Convex Attack
Nevertheless, it is not straightforward to perform a CDN-
Convex attack described above. There are myriad crucial
technical challenges to conquer. Significantly, given the at-
tacker’s bandwidth is limited, it’s a non-trivial task to craft
and synchronize a maximum number of requests and make
them arrive at the origin server simultaneously, to achieve a
high bandwidth concentration at the victim.

We identified four attacking techniques to achieve the CDN-
Convex, including one basic attack and three enhanced tech-
niques, as follows:

(1) Basic CDN-Convex Attack, which constitutes the basic
form of CDN-Convex. We measure CDN edge servers
and analyze their latency to determine the attack path
through CDN to the victim. Then we schedule sending
to create maximal lensing from these paths.

(2) CDN-Cascading Convex Attack. We cascade multiple
CDN vendors together to extend the network transmit-
ting path, thus allowing a wider range of time to fire
more attacking requests in one pulsing period.

(3) DNS-holdon Convex Attack. We improve the attack by
leveraging DNS resolution in edge servers to converge
more attacking requests at the victim.

(4) Request-pending Convex Attack. We enhance the at-
tack further by carefully crafting and scheduling incom-
plete HTTP requests to make edge servers hold as many
attacking requests as possible before bursting out, which
can significantly increase damage.

We evaluate our techniques on five leading CDN ven-
dors (Akamai, Azure, CloudFront, Cloudflare and Fastly) and
demonstrate the feasibility of the CDN convex lens. These
five CDN vendors are often studied in previous works as
well [9, 22, 29, 30, 38]. According to the statistics of CDN
market sharing [15, 24], these five CDN vendors are the top
players in the market [24]. Besides, we also find that more
than 43.4% of Alexa Top 10,000 websites host on these five
CDN vendors with our experiments. Table 1 summarizes the
CDN vendors vulnerable to the four attack techniques.

6188    32nd USENIX Security Symposium USENIX Association



Table 1: CDN vendors vulnerable to the CDN-Convex attacks.

Akamai † Azure CloudFront Cloudflare Fastly

Basic CDN-Convex Attack " " " " "

CDN-Cascading Convex " " " " "

DNS-holdon Convex " "

Request-pending Convex " " " " "

† Akamai only provides service to enterprise customers, experiments are implemented
through Microsoft provided Akamai service subscription.

4 CDN-Convex Attack Techniques
In this section, we will present the four attacking techniques
in detail, along with measurements and experiments to assess
them.

4.1 Basic CDN-Convex Attack

The Basic CDN-Convex attack can be decomposed into the
following steps, which we will develop in detail:

(i) collecting as many CDN edge servers as possible, to
launch plenty of requests from different front-end addresses
with various network delays.

(ii) measuring the latencies of the CDN network to deter-
mine the attacking path through CDN to the victim.

(iii) bypassing the unfriendly CDN cache mechanism, to
force the CDN node to request the origin server rather than
handling the request by itself.

(iv) conducting the attack by sending requests in line with
latencies to different attacking paths, these requests are tempo-
rally converged by the CDN convex lens, leading to a pulsing
DDoS attack.

4.1.1 Collecting CDN edge servers

With as many available CDN edge servers as possible, the at-
tacker can send requests to different geo-located IP addresses
with various latencies to exploit the CDN as a convex lens.

We use two methods to collect CDN edge servers on the
Internet: 1) resolving the CDN-hosting websites through open
DNS resolvers [35, 44]; 2) fingerprinting CDN servers by
inspecting HTTP headers [20, 28].

Table 2: Number of CDN edge servers being collected.

Vendor OpenDNS Resolving HTTP Fingerprinting
# IP # Cities # IP # Cities

Akamai 604,810 808 2,092,719 673
Azure 6,014 61 323,528 103

CloudFront 98,644 31 726,543 78
Cloudflare 19,693 154 717,256 292

Fastly 7,037 56 97,190 58

The result is shown in Table 2, we can see that these mil-
lions of CDN edge servers from different CDN vendors all
are the candidates which may be employed in a CDN-Convex
attack.

4.1.2 Configuring CDN origin

To verify whether a 3-rd party TCP service can be targeted
in the CDN-Convex attack, we examined the CDN validation
policy on customer-supplied origin, as shown in Figure 3. All
CDNs allow the attacker to configure the origin to be any 3rd-
party TCP service or website by setting their domain name
or IP. Although 4 out of 5 CDN vendors put a limit on the
“origin TCP port”, we can cascade multiple CDN together to
remove the TCP port number limit, as in the form of “attacker
→ CloudFront → Fastly→ origin” (Section 4.2).

Table 3: The CDN “origin” option can be configured as the
domain or IP address of any 3rd party TCP service.

Akamai Azure CloudFront Cloudflare Fastly

Configure Domain " " " " "

Configure IP " " " " "
TCP Port Range Subset † Subset † Subset ‡ Subset || Unspecified §

† https://learn.microsoft.com/en-us/previous-versions/azure/mt757337(v=azure.100)
‡ https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
distribution-web-values-specify.html
|| https://developers.cloudflare.com/fundamentals/get-started/reference/network-ports/
§ Unspecified: We haven’t find any limit on TCP port range.

4.1.3 Measuring CDN network latency

With sizable CDN nodes, we could request each of those
nodes to measure latencies.Theoretically, each node creates
an attacker→CDN→victim attacking path with one specific
transmission latency. Therefore, to conduct a CDN-Convex
attack and obtain stable pulsing traffic at the target website,
we should send the requests in precise sequence according to
the network latency.

In the following, we measure the latency of different CDN-
provided network paths in step 1 and choose stable attacking
paths in step 2 (with stable path latency).
Step 1: Estimating the request latency. We use two methods
to measure latencies depending on whether the victim is a
website or other TCP services.
Measurement method 1. If the victim is a website, we can use
HTTP requests to measure the latency. The advantage of this
method is that we do not have to know the victim’s IP. For
example, when the victim is a website hosted on the CDN
already, the CDN hides the IP address of the website server
that can not be attacked directly.

Firstly, we send a request to establish a TCP connection
with the CDN node, accordingly, the CDN node will establish
a connection to the victim. Then, we send a measurement
HTTP request to the node and the request would be trans-
mitted within the existing TCP connection, no more TCP
connection is initiated.

As shown in Figure 4, TForward is the CDN’s internal for-
warding latency, and Ts is the processing latency of origin
server. TT T FB (Time to First Byte) is the pure HTTP request-
reply time, and is composed as:

USENIX Association 32nd USENIX Security Symposium    6189



TFront

Client CDN Node Victim

3. HTTP Request
2. ACK

TBack

1. HTTP Request 
Tr

R
equest 

 D
elay

TForward

TCP connection  
established.

TTTFB

Tim
e To First Byte

Ts

Server 
 D

elay4.HTTP Data 
5.HTTP Data 

TCP connection  
established.

Figure 4: Time diagram of a CDN-forwarded request.

TTTFB = 2∗TFront +2∗TForward +2∗TBack +Ts (1)

The Request Latency Tr is calculated from the HTTP re-
quest packet sending time to the time when the HTTP request
packet arrives at the origin as the following:

Tr = TFront +TForward +TBack (2)

Compared equation 1 with equation 2, Tr can be calculated
as 1/2 of TT T FB, with the error:

TERR =(2∗TFront +2∗TForward +2∗TBack +Ts)∗
1
2
−

(TFront +TForward +TBack)

=
1
2

Ts

(3)

If TERR can be minimized, then a more accurate Request
Latency Tr can be obtained. Ts depends on the specific
victim-side processing time, which varies according to the
type of requested resource and the website’s loading. To min-
imize the origin-side processing time Ts, the attacker can
send requests of small resources or non-exist resources to re-
duce the origin-side processing time Ts. Moreover, the HTTP
“HEAD” requests can also be used to reduce origin-side pro-
cessing time.

Thus, we can conclude the equation 4, and use this it to
calculate Request Latency Tr for further attacks:

Tr ≈
1
2
∗TT T FB (4)

Measurement method 2. If the victim is a TCP service, we
should know the victim’s IP address. Measuring latencies
between two Internet end hosts is a well-studied problem [17,
19,43]. We can use “Ping” method to measure the “Attacker→
CDN” latency TTT Front , and use the “DNS King” method [19]
to estimate the “CDN→Victim” latency TTT Back. TForward is the
CDN internal forwarding latency which the CDN endeavors
to minimize, and it’s normally stable within milliseconds
through measurements.

The network instability could also have a negative impact
on the attack, such as anycast routing [7]. However, previous
research [56] shows that for 99% of measured Internet any-
cast routes are stable for hours, days, or longer. To minimize
those negative effects, an attacker can measure the latencies

of different paths for multiple rounds before the actual attack
to choose the stable ones, as follow.
Step 2: Choosing stable attacking paths. To choose usable
attacking paths, we measure the Tr of the five CDN vendors.
Abundant stable attacking paths. To characterize each Client-
CDN-Origin path’s delay stability, we calculate the STD (stan-
dard deviation) value of 30 measured delays in each path.

Results are shown in Figure 5. CDN vendors provide a
wide range of latencies from tens of milliseconds to more
than 1 second. However, the path stability of CDN vendors
differs. First, from the axis Y of Figure 5a, latencies of most
Akamai-provided paths have a standard deviation within 0.1
seconds, which shows that Akamai provides the most stable
path latency. Although Fastly provides a wide range of laten-
cies to almost 3 seconds in Figure 5e, the standard deviation
of latencies shows that Fastly-provided paths are unstable
compared with other CDN vendors.

However, by multiplying the STD ratio with the millions of
CDN IP addresses we found in Table 2, we can see that more
than hundreds of thousands of stable paths can be chosen to
send attacking requests.

4.1.4 Bypassing CDN Cache

To make successive pulse waves at the victim, the existence of
the CDN cache may stop attacking requests being forwarded
to the victim. When targeting a non-website TCP service, the
victim will not return a cache-able HTTP response, so the
CDN cache mechanism has no impact on the attack. When
targeting a website, the victim may return cache-able HTTP
responses. To ensure the attacking requests arrive at the victim
rather than hitting the CDN cache, we need to detour the CDN
cache mechanism.

After exploring the CDN forwarding strategies and work-
ing mechanism exhaustively, we conclude several delicate
approaches to bypass the CDN cache mechanism and confirm
them in the five CDN vendors as listed in Table 4.

CDN vendors normally cache resources based on HTTP-
related parameters, like file extensions [12] or URL path [42],
thus, an attacker can exploit these specific rules to by-
pass the CDN cache. Besides, we also find the five
CDN vendors just forward any requests with a WebSocket
handshake header (“Upgrade: websocket/n Connection:
Upgrade”) to the victim without a further inspection.

Table 4: Techniques to bypass CDN cache mechanism.

Akamai Azure CloudFront Cloudflare Fastly

Dynamic Resouces " " " " "

Random URL " " " " "

Query Parameters " " " " "

HTTP POST/PUT " " " " "

WebSocket handshake " " " " "

Besides, CloudFront and Fastly even provide “CachingDis-
abled” configuration to disable its CDN caching mecha-

6190    32nd USENIX Security Symposium USENIX Association



(a) Akamai (b) Azure (c) CloudFront (d) Cloudflare (e) Fastly

Figure 5: Latency Distribution of CDN-provided Paths.

nism [13,16], possibly for the reason to help websites to locate
caching faults in the early CDN deployment phase. Hence, an
attacker can also use these configurations to directly bypass
the CDN cache mechanism.

4.1.5 Attack experiments

We conducted experiments through real-world CDN platforms
to evaluate how CDNs converge web requests into the actual
pulsing traffic. To avoid raising ethical problems, we per-
formed our experiments through a limited number of CDN IP
addresses and just sent hundreds of attacking requests to our
own origin server. Consequently, we believe our experiments
will not cause any collateral damage on the CDN platform
and other CDN-hosting websites.

Experiments Setup. We registered the service of five CDN
vendors and set up a TCP service as the victim on a cloud
VPS (2.5GHz/512MB/100Mbps) located in Germany. Then,
from a vantage point(as the attacker) located on a cloud VPS
(2.5GHz/512MB/100Mbps) in Singapore.

We sent an 8KB HTTP/1.1 request to 64 global CDN IP
addresses according to the measured latencies, aiming to
make a pulse of 64 requests at our origin server. We cap-
tured requests at our origin server and analyze the Bandwidth
Concentration Ratio of all these requests. The metric pro-
vides a basis for determining how much extra bandwidth can
be gained from the attack, the ratio is defined as follows, and
we sample the bandwidth of attacker and victim both in the
unit of 10ms in this study.

Bandwidth Concentration Ratio =
Victim maximum bandwidth

Attacker bandwidth
(5)

Results. Figure 6 illustrates the bandwidth concentration
of the Basic CDN-Convex attack on Akamai. By sending a
total of 512KB (an 8KB request to each of 64 paths) slow rate
traffic, we obtained a victim-side pulse, with a high victim-
side peak bandwidth (about 5.46 times of attacker-side peak
bandwidth).

Above all, in the Basic CDN-Convex attack across five
CDN vendors, we achieve the peak bandwidth concentration
ratio as in Table 5. We observe that, for CDNs that provide
stable network latency in a wide range, like Akamai, we can
achieve better peak bandwidth concentration. For CDNs that

(a) Akamai (Attacker-side bandwidth) (b) Akamai (Victim-side bandwidth)

Figure 6: Basic CDN-Convex attack on Akamai. The attack-
ing requests converged as a pulse at the victim, with a 5.46
times bandwidth concentration.

provide relatively unstable paths during our experiments, like
Fastly, the attacking requests are not well converged at the
victim.

We further analyzed the experiment results to understand
the reasons causing the low concentration ratio, and identified
two affecting factors: 1) the distribution of the latencies of the
selected path is uneven. We only randomly selected 64 paths
with stable network latencies, but the distribution of those
latencies is not even. Some selected paths have roughly the
same latencies, thus some requests are sent out at nearly the
same time, which makes a large attacker-side peak bandwidth
and thus a lower concentration factor according to Equation
5; 2) the negative impact from network instability is not fully
reduced. For each randomly chosen CDN node, we measure
its path latency several times to filter the stable one, thus it
cannot fully reduce the impact of the network jitter. As the
second factor is hard to eliminate, a real attacker can improve
the attack by gathering more stable paths with even latencies.
The attacker can measure and filter tens of thousands of CDN
nodes to obtain a list of stable CDN paths with a larger time
difference and even distribution, then the attacker can send
out requests sequentially instead of bursting out requests to
different paths nearly at the same time. In this way, this will
make a smaller attacker-side peak bandwidth and thus a big-
ger concentration factor. Besides, these impacts can also be
reduced with advanced techniques revealed later, which can
obtain a wider time range to send attacking requests and result
in a higher concentration ratio.

USENIX Association 32nd USENIX Security Symposium    6191



Table 5: Bandwidth concentration ratio in basic CDN-Convex
attack

Akamai Azure CloudFront Cloudflare Fastly

Bandwidth Concentration 5.46 4.66 6.42 3.73 1.49

Attacker Victim

. .
 . . .
 .

. .
 .. .
 .

CDN A CDN B 

CDN A CDN B CDN C 

. . .

CDN A CDN N 

HTTP

HTTP

HTTP

Victim-side Pulsing DDoS Attacker-side  
slow rate traffic

CDN A 

HTTP

Figure 7: CDN-Cascading Convex attack: One or more CDN
platforms are cascaded, which enlarges the time range to send
more requests.

4.2 CDN-Cascading Convex Attack
As previously analyzed, when the attacker has a wider range
of time to send requests, a higher request pulsing wave can
be converged at the victim, like a larger ordinary convex lens
can focus more rays of light. However, from previous mea-
surements, CDN-provided paths are generally within a time
range of hundreds of milliseconds.

In order to achieve better traffic concentration, we present
the CDN-Cascading Convex attack. The concept of CDN-
Cascading Convex attack is shown in Figure 7. We can cas-
cade two or more CDN platforms in a chain to extend the
attacking path, path latencies are also extended, as shown in 8.
This will allow the attacker to have a wider and more even dis-
tribution of time range to send more attacking requests in one
pulsing period, resulting in higher bandwidth pulsing wave at
the victim. Theoretically, the maximum request accumulation
time can be extended as:

RequestAccumulationTime = Latency(CDN_A+CDN_B+ ...+CDN_N) (6)

4.2.1 Factors Affecting the Attack

However, there are two technical factors that affect the at-
tack: 1) whether different CDN platforms are cascadable; 2)
whether attacking paths are stable.

Cascadable CDN Platforms. A necessary condition for
cascading two or more CDN platforms in a chain is that all
involved CDN platforms must forward the request in such a
way that the next-level CDN treats it as a benign request and
continues the forwarding.

Whether the next-level CDN accepts the forwarded re-
quests depends on the “Host:” header. If the front-level CDN
platform support modifying the “Host:” header field of the
forwarded requests as the domain name we registered the

service on the next-level CDN platform, then the requests can
be accepted and forwarded by the next-level CDN platform.

Our measurements show that four out of five CDN vendors
can be cascaded in any level of the CDN chain, as Cloudflare
does not support modifying the “Host:” header field as the
“origin” domain name, we can only cascade Cloudflare as the
last-level in a CDN-chain.

Table 6: Modifiable of “Host:” header field on CDNs

Akamai Azure CloudFront Cloudflare Fastly

Origin Domain " " " N/A "

Any Domain N/A " N/A N/A "

Stability of the Attacking Paths. When more CDN plat-
forms are cascaded in a chain, we can obtain a wider latency
range of attacking paths, but it may bring in instability of the
path.

To understand this, we cascade these five CDN vendors in
the four combinations, including “CloudFront → Akamai”,
“CloudFront → Fastly → Azure”, “CloudFront → Fastly →
Cloudflare”, “CloudFront → Fastly → CloudFront”. The re-
sults are shown in Figure 8. Compared with Basic CDN-
Convex attack with one CDN platform (Figure 5), three com-
binations have a wider range of latency, as shown in Figure 8a,
8c, 8d. However, in one combination (Figure 8b), more insta-
bility of path latency is introduced.

(a) CloudFront→Akamai (b) CloudFront→Fastly→Azure

(c)
CloudFront→Fastly→Cloudflare

(d)
CloudFront→Fastly→CloudFront

Figure 8: Latency Distribution of CDN-cascaded Paths.

4.2.2 Experiments

As in Figure 8, the cascaded-CDN in the form of
CloudFront→Akamai and CloudFront→Fastly→CloudFront
are more stable, so we evaluate the CDN-Cascading Convex

6192    32nd USENIX Security Symposium USENIX Association



attack in these two combinations. The attacker and the victim
are the same ones in Section 4.1.5.

First, with 64 CDN nodes from Akamai and
CloudFront→Akamai, we sent each node an HTTP/1.1
request of 8KB and achieved a maximum bandwidth con-
centration ratio of 8.52 (Table 7), and a pulsing time mostly
within 90ms (Figure 9a). In the cascaded CloudFront→Fastly
→CloudFront, we obtained a concentration ratio of 7.19,
and a pulsing time mostly within 200ms (Figure 9b), which
exhibited the negative impact of the unstable Fastly nodes.

Table 7: Bandwidth concentration ratio in CDN-Cascading
Convex attack

CloudFront→Akamai CloudFront→Fastly→CloudFront

Bandwidth Concentration 8.52 7.19

(a) CloudFront→ Akamai (b) CloudFront → Fastly → Cloud-
Front

Figure 9: Victim-side bandwidth in CDN-Cascading Convex
attack.

4.3 DNS-holdon Convex Attack
DNS-holdon Convex attack can further leverage DNS resolu-
tion to make CDN converge more requests at victim, as shown
in Figure 8. DNS-holdon Convex attack exploits the CDN
feature that when CDNs forward a request to the customer-
configured domain name, CDNs need to resolve the IP address
first upon receiving the request. Our measurement shows that
all five CDN vendors support configuring a domain name as
the forwarding destination (the victim).

To launch DNS-holdon Convex attack, an attacker can first
configure the CDN’s “origin” option to be a domain name
under his control. Then, he sends requests to different CDN
nodes, these nodes will resolve the configured domain name
first by sending DNS queries to the attacker’s DNS authorita-
tive server. Therefore, the attacker can hold these DNS queries
for a while and then schedule the time to send DNS replies
according to the latencies of attack paths. Therefore, DNS
resolution provides the attacker another opportunity to extend
the time range further and send more attacking requests in
one pulsing period.

After sending the DNS resolving queries, CDN waits for
a reply until the DNS resolving timeout occurs. Thus the at-
tacker has to reply to each DNS query before the CDN node’s

CDN
Attacker's

Authoritative DNS

Victim

CDN

. .
 .

. .
 .

. .
 .

. .
 .

DNS

DNS holdon requests

2

3

1

HTTP

HTTP

HTTP

Attacker-side  
slow rate traffic

Attacker

HTTP

HTTP

HTTP

1

DNS

DNS

Victim-side Pulsing DDoS 

2

2

1

3

3

Figure 10: Concept of DNS-holdon Convex attack. Step 1:
The attacker sends requests to CDN nodes. Step 2: CDN
resolves the origin domain while requests being heldon. Step
3: The attacker replies to the DNS queries, on which the CDN
starts up the temporal convergence of requests at the victim.

resolving timeout. Instinctively, before the DNS resolving
timeout, the attacker can reply with a DNS A record. There-
fore, all previous HTTP requests are being held on in this
DNS resolving process.

We also try to leverage the DNS CNAME-chain method
to extend the above DNS resolving timeout. Specifically, the
attacker first returns a DNS CNAME record before the CDN
resolving timeout; then the CDN node will ask to resolve the
returned CNAME. In this way, by successively returning DNS
CNAME records before DNS resolving timeout. In this way,
theoretically, the attacker can extend the request accumulation
time to a fair wider range as follows.

RequestAccumulationTime = Depth(CNAME_Chain)×DNS_Timeout (7)

4.3.1 Factors Affecting the Attack

The applicability and efficiency of DNS-holdon Convex at-
tack depend on the CDN’s specific DNS resolving behaviors.
Therefore, we identified the following affecting factors.

Table 8: DNS resolving behaviors on CDNs.

Akamai Azure CloudFront Cloudflare Fastly

Resolver per-node per-node per-center per-center per-center
RR Timeout †

≈ 5s ≈ 4.3s ≈ 5s ≈ 10s ≈ 4.2s
RR Chain Depth ‡ >16 > 16 12 > 16 > 16
T_Resolve Limit <5s <5s < 8s * < 10s * <5s $

† The timeout when the CDN resolves a DNS resource record.
‡ The depth of allowed CNAME chain when the CDN resolves a DNS resolver record.
$ Fastly always pre-resolves the origin, which invalidates the attack.
* Per-center DNS resolving invalidates the attack.

DNS Resolving Behaviors. We found two DNS resolv-
ing behaviors that may affect DNS-holdon Convex attack: 1)
resolver sharing; 2) resolving timeout.

First, an attacker would expect that CDN nodes on the dif-
ferent attacking paths will not interfere with each other on
DNS resolution. Ideally, CDNs should have an independent

USENIX Association 32nd USENIX Security Symposium    6193



DNS resolver on each node. Our measurements show that
two CDN vendors do not share DNS resolution results (via
common DNS caches or DNS resolvers), and meet the re-
quirement of per-node form, as shown in Table 8. However,
CloudFront and Cloudflare have DNS resolvers shared on per-
center form, Fastly always pre-resolves the victim. Therefore,
we can not preciously hold on each request through a different
DNS reply, which makes the attack invalidated.

Second, DNS timeout can also affect the efficacy of DNS-
holdon Convex attack. Our measurements show that all CDN
vendors have a DNS RR(Resource Record) timeout of over 4
seconds, and they support the DNS CNAME chain in a depth
of more than 12. However, we find that all CDN vendors also
apply a limit on the DNS resolving timeout, with a maximum
value of about 5 seconds. So, the request accumulation time
can be extended within about 5 seconds in total.

DNS TTL=0 Obedience Behaviors. The DNS resolver
caching behavior can also affect DNS-holdon Convex attack.
To make periodic pulse waves at the victim, the attack requires
each CDN node to issue a DNS query upon each attacking
request. To address this requirement, the attacker can set
the authoritative DNS server to return DNS responses with
“TTL=0”. TTL (Time To Live) of a DNS Resource Record
(RR) is defined to represent the maximum number of seconds
that a record can be used before it must be discarded.

However, we found the “TTL=0” DNS RR is not always
strictly obeyed. Our measurements show that Akamai has a
minimum DNS cache time (TTL=60) even if we set TTL to
0 in DNS records, while the other four CDN vendors nor-
mally respect the “TTL=0” value in DNS replies. We note
that Akamai TTL behavior wouldn’t prevent the DNS-holdon
Convex attack, because the attacker can simply wait for the
DNS cache expiration (e.g., 60s) before making the next pulse
wave.

Table 9: DNS TTL=0 obedience on CDNs.

Akamai Azure CloudFront Cloudflare Fastly

Obedient % " " " "
Minimum TTL 60 0 0 0 0

4.3.2 Experiments

Table 10: Bandwidth concentration ratio in DNS-holdon Con-
vex attack

Akamai Azure CloudFront Cloudflare Fastly

Bandwidth Concentration 17.40 4.14 N/A N/A N/A
† N/A: Not applicable.

Due to the sharing issue of DNS resolvers, the DNS-holdon
Convex is applicable on Akamai and Azure. Thus, with the
same attacker and victim in Section 4.1.5, we experiment on
Akamai and Azure.

First, we send 8KB requests to 64 CDN nodes of Akamai
and Azure. In the authoritative DNS server, upon receiving
the first DNS query, we withhold the first and following DNS
replies for two seconds. Finally, we sent out the holdon DNS
responses in line with the different path latencies, and we
obtain the results as in Table 10. Results show that the DNS-
holdon Convex can converge web requests into short pulse on
both CDNs, achieving a better bandwidth concentration ratio
for Akamai (17.4 times) and a lower concentration for Azure,
because Akamai DNS is more stable.

(a) Akamai(Attacker-side bandwidth) (b) Akamai (Victim-side bandwidth)

Figure 11: DNS-holdon Convex Experiment on Akamai.

4.4 Request-pending Convex Attack
In the Request-pending Convex, we use segmented HTTP
requests to make CDN edge servers hold as many requests as
possible before bursting out, as shown in Figure 12.

Attacker Victim

Incomplete Request

last segment

CDN

. .
 .

. .
 .

. .
 .

. .
 .

\r\n

Seg. Seg.

Seg.

Seg.

1 Previously sent and pended segments.

1

1

\r\n
2

\r\n
2

\r\n
2

Last segments start CDN convergence.
2

Attacker-side  
slow rate traffic

Victim-side Pulsing DDoS 

Figure 12: Concept of Request-pending Convex. Step 1, the
attacker sends segmented requests to CDN nodes, and CDN
will pend these incomplete HTTP requests. Step 2, the attacker
schedules to send the last segment of previous requests, on
which the CDN starts up the temporal convergence of requests
at the victim.

Request-pending Convex attack exploits the fact that, upon
receiving incomplete HTTP requests, some CDNs will hold
them and do not forward them to the origin immediately
until the requests are completely received. Thus, an attacker
can use incomplete requests to make CDNs hold as much
attacking traffic as possible before busting out, which allows
the attacker to have a wider time to send more attacking
requests in a pulsing period.

6194    32nd USENIX Security Symposium USENIX Association



The attacker can send just 1 byte in each segmented re-
quest, and deliberately hold on for some time. Then before
the HTTP session timeout, the attacker sends the following
one byte. Finally, the attacker sends the last part (like “/r/n”)
of previous incomplete HTTP requests. By controlling the
sending time of the last segments, the attacker can let the
CDN converge much more requests to the victim. In this way,
the number of segmented requests equals the number of bytes
allowed in each CDN platform. Considering the timeout of
an HTTP session, the attacker obtains a much wider range to
time window to send requests:

RequestAccumulationTime =Max_Size(Request)×HT T P_Timeout (8)

Whether the CDN pends the following segments or im-
mediately forwards incomplete requests back to the victim
depends on the CDN’s specific behaviors. Hence, we measure
and evaluate these factors as follows.

4.4.1 Factors Affecting the Attack

We found that there are two categories of CDNs forwarding
behaviors that can be exploited for Request-pending Convex:
1) header pending, which CDNs forward requests upon HTTP
headers are completely received; 2) body pending, which
CDNs forward requests upon HTTP body are completely
received. Hence, we measure and evaluate these factors as
follows.

Header-only Request Pending. The attacker serially sends
segmented head-only HTTP requests to a CDN node, if the
CDN node pends these incomplete segments until the last seg-
ment, then the Request-pending Convex attack is applicable.

As in Table 11, experiments show that five CDN vendors
all pend the segmented header-only requests. For Fastly, an
attacker can send a maximum of 64KB header-only request,
with a timeout of 600 seconds. In other words, the attacker
has 600 seconds to send more attacking requests.

Table 11: Header-only Request-pending behaviors on CDNs.

Akamai Azure CloudFront Cloudflare Fastly

GET Header Pending " " " " "

POST Header Pending " " " " "
Header Timeout ≈ 24s ≈ 124s ≈ 30s ≈ 15s ≈ 600s
Header Size Limit 32KB 28KB 24KB 32KB 64KB

BODY Request Pending. The attacker serially sends the
HTTP requests with the segmented body to a CDN node, if
the CDN node pends all incomplete segments until the last
segment, then the Request-pending Convex attack is applica-
ble.

As in Table 12, experiments show that three CDN ven-
dors pend the segmented requests of POST Body. In HTTP
protocol, the body of a request can be sent in the way of
“Content-Length” or “Transfer-Encoding”, and we explore

both across CDN platforms. Experiments show that an at-
tacker can use the CDN to withhold an 80KB or even 400MB
POST message. Further, we found that all CDNs support a
timeout of over ten seconds, especially Azure even supports
1600 seconds, and Cloudflare supports >5400 seconds. Those
CDN behaviors allow attackers to have a much wider time
to withhold a huge amount of attacking traffic in CDN edge
servers before bursting out, resulting in a high traffic concen-
tration pulsing wave at the victim, as demonstrated below.

Table 12: POST BODY pending behaviors on CDNs.

Akamai Azure CloudFront Cloudflare Fastly

CL Pending † N/A* " N/A " N/A
TE Pending ‡ N/A " N/A " N/A
CL Timeout ≈ 120s ≈ 65s ≈ 36s ≈ 15s ≈ 52s
TE Timeout ≈ 16s ≈ 1600s ≈ 12s > 3600s ≈ 16s
CL Forwarding Threshold N/A 80KB N/A 100MB N/A
TE Forwarding Threshold N/A 80KB N/A > 400MB N/A
† CL (Content-Length), we use “Content-Length” to send segmented requests.
‡ TE (Transfer-Encoding), we use “Transfer-Encoding” to send segmented requests.
* Not applicable. Akamai, CloudFront, and Fastly would forward every byte of the
POST body request immediately to the origin server.

4.4.2 Experiments

With the same attacker and victim configuration in Sec-
tion 4.1.5, we experiment with five CDN vendors.

(a) Azure (Attacker-side ) (b) Azure (Victim-side )

(c) CloudFront (Attacker-side ) (d) CloudFront (Victim-side )

Figure 13: Request-pending Convex Experiments on Azure
and CloudFront.

To compare the effectiveness of the attack across CDN
vendors, we send requests to 64 CDN nodes to evaluate the
effectiveness of the attack. For the GET header pending tech-
nique, the size of requests is 8KB, and the accumulation time

USENIX Association 32nd USENIX Security Symposium    6195



(how long the attacker is allowed to send requests) is set ac-
cording to the header timeout in Table 11. For the POST body
pending technique, we slowly send requests of 80KB size to
64 Azure nodes in 1500 seconds, and we also send requests of
80KB size to 64 Cloudflare nodes in 5400 seconds, according
to Table 12.

Table 13: Bandwidth concentration ratio in Request-pending
Convex attack

Akamai Azure CloudFront Cloudflare Fastly

Accumulation Time 24s 1500s 20s 5400s 512s
Technique GET-Header POST-BODY-TE GET-Header POST-BODY-TE GET-Header
Request Size 8KB 80KB 8KB 80KB 8KB
Bandwidth
Amplification Ratio 146.38 4842.69 31.30 1786.37 988.48

The results are shown in Table 13, we sample the band-
width of both attacker and victim in the unit of 10ms, and
compare the bandwidth concentration ratio. With the GET
header pending technique, we obtain a concentration ratio of
31.30 on CloudFront (Figure 13a and Figure 13d). With the
POST BODY pending technique, we obtain a ratio of 4842.69
on Azure (ref Figure 13a and Figure 13b). Cloudflare has a
much longer time of 5400s to converge requests, however,
the latency instability introduced by its anycast-based request
routing applies a negative impact on its effectiveness.

4.5 Other CDN-Convex Techniques
We also found other forwarding mechanisms like IP-layer
fragmentation could also be utilized to improve the CDN-
Convex attack. An attacker actively splits an attacking request
into IP fragments and sends them to CDN nodes while reserv-
ing one of them as the final signal to let the CDN start the
temporal convergence of requests.

This IP fragmentation technique can bring in two benefits:
1) kernel-level reassembling of IP fragments further enlarges
the time window which allows the CDN to withhold more
attacking traffic; 2) IP fragments can be sent out disordered,
that the last sent IP fragment can be any part of the request,
for example, the attacker can send the first start line of an
HTTP request as the last IP segment to schedule the final
temporal convergence of requests at the victim. Therefore,
even if the CDN does not withhold incomplete requests in the
application layer, like CloudFront and Fastly do not withhold
the POST Body in Table 12, IP fragmentation can help to
bypass this CDN-side constraint.

We also explore the maximum allowable time that the ker-
nel of different CDN servers will withhold IP fragments in
the memory before dropping. In a Linux system, the IPv4
fragmentation timeout is specified in ipfrag_timeout, which
defaults to 30 seconds, while the IPv6 fragmentation time-
out is configured in ip6frag_timeout, which defaults to 60
seconds [34]. Table 14 shows the five CDNs’ reassembling
timeout of IP fragments.

In addition to the above techniques, an attacker may also
use TCP-layer segmentation techniques to delay the requests.

Table 14: Maximum time of IP fragments kept on CDNs

Akamai Azure CloudFront Cloudflare Fastly

IPv4 Fragmentation Timeout ≈30 ≈30 ≈30 ≈15 ≈10
IPv6 Fragmentation Timeout ≈60 ≈60 ≈30 ≈15 ≈6

!h

Figure 14: Victim-side Bandwidth Concentration through
Request-pending Convex

Future work can explore those techniques and extend our
study to other Internet middle-boxes that can cache and for-
ward.

5 Real-world Evaluation
In order to evaluate how the CDN-Convex attack degrades
the availability and network latency of online services, we
conduct two classes of controlled experiments.

Exp1. Attack a TCP Service. In the first experiment,
we take the DNS zone transfer service as an example
to demonstrate the effectiveness of CDN-Convex attack
against TCP services. We first set up a DNS master server
(2.5GHz/512MB/1000Mbps/BIND 9.18.1) as the victim (to
target TCP DNS zone transfer), meanwhile, there is a DNS
slave server which periodically queries the DNS master server
for zone transfer in TCP protocol.

Accordingly, we use Cloudflare to launch a Request-
pending Convex against the victim at an 1800 seconds period.
During the attack, requests of 2MB are sent in 1800 seconds
to 64 Cloudflare nodes, we observe an average 72.82KBps
attacker-side traffic results to a 108.58MBps (Figure 14) on
the website (1526.9 times).

Consequently, when the bandwidth of the DNS master
server is periodically saturated just in time when the DNS
slave server sends the DNS query, the DNS slave server is also
starved, demonstrating the effectiveness of a CDN-Convex
attack against a TCP service.

Instinctively, the CDN-Convex attack can also be launched
against other well-known TCP services, such as SSH, and
SMTP, although these TCP services will drop requests af-
ter receiving and inspecting, the bandwidth is still exhausted.
Considering the massive resources empowered by the CDN
platform, we think the CDN-Convex attack can severely de-
grade or even damage the availability of the targeted TCP
service.

Exp2. Attack a Website. Besides the peak bandwidth ex-
haustion against the TCP service, moreover, the CDN-Convex
attack is especially harmful to websites. When the pulsing

6196    32nd USENIX Security Symposium USENIX Association



requests arrive at the website concurrently requesting for an
internal bottleneck resource (CPU, Memory, Logic Queue,
etc.), the pulse waves can periodically saturate the bottleneck
resources, resulting in much more severe DDoS damage.

We launch a Request-pending Convex against a website
(2.5GHz/512MB/1000Mbps/Apache 2.4.52) hosted on Cloud-
flare. In the attack, we sent 64 POST pending requests (2MB
of each) as slow rate traffic in 1800 seconds, resulting in a
peak 103.55MBbps victim-side traffic on the website. Under
attack, the targeted website server is directly out of service, as
the “apache” process is killed by the operating system (“Out
of memory: Killed process apache2”).

The above experiments show that the CDN-Convex attack
is ideally matching the “moments to go down, hours to re-
cover” attacking philosophy [60]. Worse, the stealthy pulsing
nature of a CDN-Convex attack can also help it to escape
DDoS detection.

6 Mitigation
The root cause of CDN-Convex attack is the inherent nature
of CDN-introduced global latency distribution. Combined
with the weakness to direct the CDN traffic to a 3rd-party
service, CDN can be abused as a pulsing DDoS platform. To
defend the attack, we propose the following mitigations from
the view of the CDN.
• Enforcing the origin validation. Currently all five CDNs we

tested do not validate the ownership of customer-supplied
origin. We recommend CDNs enforce this validation to
avoid abuse. For example, CDNs can require their cus-
tomers to upload a special file to the origin website and
continuously probe this special file’s existence. Any abnor-
mality will make CDNs terminate the service and relaunch
a new validation process, we call this process the Origin
Pinning.

• Monitoring traffic globally. A CDN provider may perform
more fine-grained traffic monitoring and filter suspicious
high-bandwidth pulses at edge servers. However, an at-
tacker can bypass this defense by sending attacking requests
to globally distributed nodes of different CDN platforms.
Thus, to prevent CDN-Convex, a CDN vendor not only has
to apply the defense within itself, but it also needs coop-
eration between CDN platforms, which may require data
synchronization and statistical analysis of all related CDN
platforms.

• Standardizing a unified header field to expose client IP
address. The CDN-Convex attack originated from one van-
tage point, theoretically, the CDN and the victim can detect
the attack from the CDN-forwarded client (attacker) IP ad-
dress. However, we note that currently CDN vendors use
different header fields to expose the client IP, as shown
in Table 15, and other cascaded CDN can filter or reset
these header fields. We suggest CDN vendors standardize
a unified header that can not be reset or filtered even in
CDN-cascaded techniques.

Table 15: CDN-forwarded client IP header field

Akamai Azure CloudFront Cloudflare Fastly

Header True-Client-IP X-Azure-ClientIP X-Forwarded-For CF-Connecting-IP Fastly-Client-IP

• Avoid pending HTTP requests and reduce timeout. Among
our four attacking techniques, Request-pending Convex
causes the most severe damage. CDN could prevent this
attack by avoiding pending HTTP requests. For example,
CDN servers can start relaying a request or response to its
next hop immediately after receiving its initial chunk, rather
than waiting for the complete content. We also recommend
CDNs reduce request pending timeout to minimize the im-
pact of Request-pending Convex. As IP fragmentation is
hard to avoid, CDNs can reduce the fragmentation timeout
to minimize the impact. However, this cannot stop attackers
from exploiting the other three techniques.

We also discuss the following countermeasures from the
view of network and victim.
• In-network detection for bandwidth-targeted pulse-wave

attack. Generally, the CDN-Convex techniques can be ex-
ploited for two kinds of DDoS attack: 1) pulsing DDoS
attack against network infrastructure. This attack aims to
temporally saturate the bandwidth of victims or network
paths, which could be detected by network devices. For
example, recent researches use a network-wide view of
the whole attacking traffic to mitigate flooding DDoS in
seconds-level [39, 59, 61]. And the ACC-Turbo research
uses programmable switches to detect the sub-second short-
lived traffic burst [3], thus can detect the bandwidth-targeted
pulse-wave attack; 2) pulsing DDoS attack against server-
side implementations. This attack aims to exploit the weak-
ness of server-side implementations rather than the network,
for example, web applications with bottleneck resources,
or TCP implementations. Thus it would be more challeng-
ing for network devices to detect such attacks because it
requires additional knowledge of various server implemen-
tations for detection.

• IP-based filtering to protect non-CDN customers. When
the victim is not any CDN customer, he can apply IP-based
filtering to drop the traffic from all CDN egress IPs to
mitigate the attack. He can construct and maintain those IP
lists by using some CDNs’ publicly available IP ranges [11],
monitoring BGP updates of a CDN’s ASes, or observing
when being under attack.

Ethical Consideration. We take the utmost care of potential
ethical issues. First, we performed controlled attacks against
our website server, with a limited number of requests and
bandwidth consumption. Thus, we believe our experiments
have limited impacts on the regular operations of CDN and
network path. Second, CDNs encourage security tests through
bug bounty programs, and our experiments strictly adhere to
their program rules.

USENIX Association 32nd USENIX Security Symposium    6197



Responsible Disclosure. We contacted all tested CDNs to
responsibly disclose our findings, unveiling experiment details
and reproducing procedures. Cloudflare thanked us for our
report and provided a reward of $500. Akamai and CloudFront
thanked our report and stated that they appreciated this type
of collaboration and responsible disclosure. Azure and Fastly
thanked our reports but have no further comments to date.

7 Related Work
CDN Security. CDN infrastructure serves as a cornerstone
of the Internet. Therefore, finding the vulnerabilities of CDN
architecture and attacking CDN hosting origin servers are
always hot research topics in the field of network security.

Previous studies found various vulnerable implementations
of configuration and validation existing in CDN vendors. For
example, Chen et al. identified the inconsistency of HTTP
request processing strategies between CDN providers and
proposed a CDN forwarding-loop attack [9] that may lead to
CDN services being unavailable. Due to the conflicts between
man-in-the-middle architecture and end-to-end encryption,
CDN exposed serious security risks in certificate management,
such as sharing private key [38]. Some CDN providers even
did not examine DNS resolutions’ correctness, resulting in
exploiting by crafted malicious DNS responses [20, 22].

Some research works also find the technique to reveal the
origin servers’ IP addresses and bypass the CDN security pro-
tection mechanisms. For instance, if the origin server termi-
nates the CDN services or switches to another CDN provider,
DNS resolution flaws of the nameserver could leak the IP ad-
dresses of origin [29]. Further, [55] discussed several origin-
exposing attack vectors that could be used to uncover the less
protected origin server behind the CDN platform.

Recently, through exploiting the good reputation of CDN
providers and their IP addresses, some attacks are designed to
circumvent Internet censorship [23, 62], launch cache poison-
ing [8] or cache deception attacks [42]. In other words, the
CDN infrastructure is at risk of progressive abuse.

In summary, compared with previous CDN security work,
we discover a new architectural weakness in CDN infrastruc-
ture to launch DDoS attacks, given that CDNs are widely
employed to prevent DDoS attacks. And previous CDN re-
searches [18, 25, 37] focus on amplifying requests in size to
launch flooding DDoS attacks, while we are the first to use
CDN to launch pulse-wave DDoS attacks by concentrating
requests in time.
Pulsing DDoS Attack. The pulsing DDoS attack has been
studied for years. As a low-rate DDoS attack, it can bypass
traditional sampling-counter-based DoS protection mecha-
nisms [26, 41].

Most previous studies focus on the eventual effects of puls-
ing attacks to degrade the TCP connection in 2003, [36]
introduced the concept of shrew DoS attack. The attack ex-
ploits the weakness of TCP re-transmissions or congestion

control when the timeout occurred, and results in periodi-
cal congestion at the victim side [36, 40]. Following, [41]
also demonstrated that pulsing waves could trigger web ap-
plications’ bottleneck. Due to the complex dependencies of
Internet web resources, the pulsing attack could easily create
resource saturation and starve legitimate requests [51].

However, launching a pulsing DDoS attack is a non-trivial
task, the attacker is usually required to employ a consider-
able number of compromised or exploitable devices. Due
to the inherent weakness of complex coordination and syn-
chronization, the pulsing attacks generated from botnets are
more likely to be detected, filtered, or degraded to less effec-
tive [31, 46, 48]. In 2015, Rasti et.al. proposed a DNS reflec-
tion pulsing DDoS attack by utilizing open DNS resolvers
existing in the wild [49]. However, they focus on studying
UDP-based amplification which requires source IP address
spoofing and the maximal bandwidth concentration factor is
only 10, significantly limiting the real-world impact of the at-
tack. Inspired by [49], this paper demonstrates that an attacker
could exploit the CDN infrastructure to launch pulsing DDoS
attacks against its hosting websites. Interestingly, the CDN
security protection mechanisms are broken by their inherent
nature, known as the geographically distributed edge servers.

Previous work discovered various amplification DoS attack-
ing vectors like NTP server [14, 50], memcached server [54],
DNS server [47], and TCP middleboxes [6] to amplify the
attacker’s traffic to launch DDoS attacks. Instead, our work
focuses on concentrating on the arrival of attacking traffic at
the victim. This approach is orthogonal to traditional amplifi-
cation attacks.

In summary, in terms of pulse-wave DDoS research, we
propose new techniques to launch TCP-based pulsing attacks
by exploiting CDNs, while most previous pulse-wave DDoS
studies focus on the stealthy and efficiency of pulse-wave
attacks to degrade the target service except Rasti’s work [49].
Our work is inspired by the research of Rasti et.al. [49] but
differs from them in two aspects. First, they study UDP-based
amplification and requires source IP address spoofing, while
our work focus on TCP-based pulsing attack and do not have
this requirement; Second, our work can achieve much higher
concentration factors than theirs ( 1500x vs 10x), by propos-
ing multiple advanced concentration techniques.

8 Conclusion
We present the CDN-Convex attack in this work, which uses
the CDN-introduced delay distribution to launch a pulsing
DDoS attack against a 3-rd party TCP service. With real-
world experiments to present the applicability and the severity
of this CDN-assisted pulsing DDoS attack, our work unveils a
practical CDN-based pulsing DDoS attacking platform, which
completes the previous theoretical studies. The fundamental
cause of the attack arises from the global geographical dis-
tribution of the CDN and the fact that CDN vendors are still
striving to deploy more edge servers globally to speed up web-

6198    32nd USENIX Security Symposium USENIX Association



site access. These can also make the attack more severe and
efficient. We hope our study can help CDN vendors bolster
their DDoS defense with proposed mitigation.

Acknowledgement

We sincerely thank all anonymous reviewers and our shep-
herd for their valuable comments to improve the paper, espe-
cially the suggestion of the IP fragmentation attacking tech-
nique. We also thank Jia Zhang, Yi Guo, Shuang Hao, Kaiwen
Shen, Yao Wang, and Xiarun Chen for their help on the paper.
This work is in part supported by the National Key Research
and Development Program of China (2021YFB2701000), Na-
tional Natural Science Foundation of China (grant #62272265,
#61972224), and Beijing National Research Center for In-
formation Science and Technology (BNRist) under Grant
BNR2022RC01006.

References

[1] Akamai. Facts & figures. https://www.akamai.com
/us/en/about/facts-figures.jsp.

[2] Akamai. State of the internet / security: Ddos and appli-
cation attacks. https://www.akamai.com/us/en/m
ultimedia/documents/state-of-the-internet/
2018-state-of-the-internet-security-a-yea
r-in-review.pdf.

[3] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders,
and Laurent Vanbever. Aggregate-based congestion con-
trol for pulse-wave ddos defense. In Fernando Kuipers
and Ariel Orda, editors, SIGCOMM ’22: ACM SIG-
COMM 2022 Conference, Amsterdam, The Netherlands,
August 22 - 26, 2022, pages 693–706. ACM, 2022.

[4] Esraa Alomari, Selvakumar Manickam, B. B. Gupta,
Shankar Karuppayah, and Rafeef Alfaris. Botnet-based
distributed denial of service (ddos) attacks on web
servers: Classification and art. CoRR, abs/1208.0403,
2012.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. Understanding the mirai
botnet. In Engin Kirda and Thomas Ristenpart, edi-
tors, 26th USENIX Security Symposium, USENIX Secu-
rity 2017, Vancouver, BC, Canada, August 16-18, 2017,
pages 1093–1110. USENIX Association, 2017.

[6] Kevin Bock, Abdulrahman Alaraj, Yair Fax, Kyle Hur-
ley, Eric Wustrow, and Dave Levin. Weaponizing mid-
dleboxes for {TCP} reflected amplification. In 30th

USENIX Security Symposium (USENIX Security 21),
pages 3345–3361, 2021.

[7] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul
Mahajan, and Jitendra Padhye. Analyzing the perfor-
mance of an anycast CDN. In Kenjiro Cho, Kensuke
Fukuda, Vivek S. Pai, and Neil Spring, editors, Proceed-
ings of the 2015 ACM Internet Measurement Conference,
IMC 2015, Tokyo, Japan, October 28-30, 2015, pages
531–537. ACM, 2015.

[8] Jianjun Chen, Jian Jiang, Hai-Xin Duan, Nicholas
Weaver, Tao Wan, and Vern Paxson. Host of troubles:
Multiple host ambiguities in HTTP implementations.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 1516–1527. ACM,
2016.

[9] Jianjun Chen, Xiaofeng Zheng, Hai-Xin Duan, Jinjin
Liang, Jian Jiang, Kang Li, Tao Wan, and Vern Paxson.
Forwarding-loop attacks in content delivery networks.
In 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society, 2016.

[10] Cloudflare. The cloudflare global anycast network. ht
tps://www.cloudflare.com/network/.

[11] Cloudflare. Ip ranges. https://www.cloudflare.c
om/ips/.

[12] Cloudflare. Understanding cloudflare’s cdn. https:
//support.cloudflare.com/hc/en-us/articl
es/200172516-Which-file-extensions-does-C
loudFlare-cache-for-static-content-#h_
51422705-42d0-450d-8eb1-5321dcadb5bc.

[13] CloudFront. Understanding the managed cache policies.
https://docs.aws.amazon.com/AmazonCloudFro
nt/latest/DeveloperGuide/using-managed-cac
he-policies.html.

[14] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Chris-
tos Papadopoulos, Michael Bailey, and Manish Karir.
Taming the 800 pound gorilla: The rise and decline of
ntp ddos attacks. In Proceedings of the 2014 Conference
on Internet Measurement Conference, pages 435–448,
2014.

[15] datanyze.com. Cdn market share. https://www.data
nyze.com/market-share/cdn.

[16] Fastly. Controlling caching. https://docs.fastly.
com/en/guides/controlling-caching.

[17] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny
Raz, Yuval Shavitt, and Lixia Zhang. Idmaps: A global

USENIX Association 32nd USENIX Security Symposium    6199

https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-state-of-the-internet-security-a-year-in-review.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-state-of-the-internet-security-a-year-in-review.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-state-of-the-internet-security-a-year-in-review.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-state-of-the-internet-security-a-year-in-review.pdf
https://www.cloudflare.com/network/
https://www.cloudflare.com/network/
https://www.cloudflare.com/ips/
https://www.cloudflare.com/ips/
https://support.cloudflare.com/hc/en-us/articles/200172516-Which-file-extensions-does-CloudFlare-cache-for-static-content-#h_51422705-42d0-450d-8eb1-5321dcadb5bc
https://support.cloudflare.com/hc/en-us/articles/200172516-Which-file-extensions-does-CloudFlare-cache-for-static-content-#h_51422705-42d0-450d-8eb1-5321dcadb5bc
https://support.cloudflare.com/hc/en-us/articles/200172516-Which-file-extensions-does-CloudFlare-cache-for-static-content-#h_51422705-42d0-450d-8eb1-5321dcadb5bc
https://support.cloudflare.com/hc/en-us/articles/200172516-Which-file-extensions-does-CloudFlare-cache-for-static-content-#h_51422705-42d0-450d-8eb1-5321dcadb5bc
https://support.cloudflare.com/hc/en-us/articles/200172516-Which-file-extensions-does-CloudFlare-cache-for-static-content-#h_51422705-42d0-450d-8eb1-5321dcadb5bc
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-managed-cache-policies.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-managed-cache-policies.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-managed-cache-policies.html
https://www.datanyze.com/market-share/cdn
https://www.datanyze.com/market-share/cdn
https://docs.fastly.com/en/guides/controlling-caching
https://docs.fastly.com/en/guides/controlling-caching


internet host distance estimation service. IEEE/ACM
Transactions On Networking, 9(5):525–540, 2001.

[18] Milad Ghaznavi, Elaheh Jalalpour, Mohammad A.
Salahuddin, Raouf Boutaba, Daniel Migault, and Stere
Preda. Content delivery network security: A survey.
IEEE Commun. Surv. Tutorials, 23(4):2166–2190, 2021.

[19] P. Krishna Gummadi, Stefan Saroiu, and Steven D. Grib-
ble. King: estimating latency between arbitrary internet
end hosts. In Proceedings of the 2nd ACM SIGCOMM
Internet Measurement Workshop, IMW 2002, Marseille,
France, November 6-8, 2002, pages 5–18. ACM, 2002.

[20] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao
Zhang, Hai-Xin Duan, Tao Wan, Jian Jiang, Shuang Hao,
and Yaoqi Jia. Abusing cdns for fun and profit: Security
issues in cdns’ origin validation. In 37th IEEE Sym-
posium on Reliable Distributed Systems, SRDS 2018,
Salvador, Brazil, October 2-5, 2018, pages 1–10. IEEE
Computer Society, 2018.

[21] Run Guo, Weizhong Li, Baojun Liu, Shuang Hao, Jia
Zhang, Haixin Duan, Kaiwen Shen, Jianjun Chen, and
Ying Liu. Cdn judo: Breaking the cdn dos protection
with itself. In 27rd Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego,
California, USA, February 21-24, 2020. The Internet
Society, 2020.

[22] Shuai Hao, Yubao Zhang, Haining Wang, and Angelos
Stavrou. End-users get maneuvered: Empirical analysis
of redirection hijacking in content delivery networks. In
27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018, pages
1129–1145. USENIX Association, 2018.

[23] John Holowczak and Amir Houmansadr. Cachebrowser:
Bypassing chinese censorship without proxies using
cached content. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages
70–83. ACM, 2015.

[24] intricately.com. 2019 cdn market report. https://cd
n2.hubspot.net/hubfs/4238862/2019%20Intrica
tely%20CDN%20Market%20Report.pdf.

[25] Bahruz Jabiyev, Steven Sprecher, Anthony Gavazzi,
Tommaso Innocenti, Kaan Onarlioglu, and Engin Kirda.
FRAMESHIFTER: security implications of http/2-to-
http/1 conversion anomalies. In Kevin R. B. Butler and
Kurt Thomas, editors, 31st USENIX Security Sympo-
sium, USENIX Security 2022, Boston, MA, USA, August
10-12, 2022, pages 1061–1075. USENIX Association,
2022.

[26] Hossein Hadian Jazi, Hugo Gonzalez, Natalia
Stakhanova, and Ali A. Ghorbani. Detecting http-based
application layer dos attacks on web servers in the
presence of sampling. Comput. Networks, 121:25–36,
2017.

[27] Jie Ji. Reflective and short-burst ddos attacks harnessed
to knock down the targets in ukraine. https://nsfo
cusglobal.com/reflective-and-short-burst-d
dos-attacks-harnessed-to-knock-down-the-t
argets-in-ukraine/.

[28] Jian Jiang, Jia Zhang, Hai-xin Duan, Kang Li, and
Wu Liu. Analysis and measurement of zone dependency
in the domain name system. In 2018 IEEE International
Conference on Communications, ICC 2018, Kansas City,
MO, USA, May 20-24, 2018, pages 1–7. IEEE, 2018.

[29] Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton.
Your remnant tells secret: Residual resolution in ddos
protection services. In 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, DSN 2018, Luxembourg City, Luxembourg, June
25-28, 2018, pages 362–373. IEEE Computer Society,
2018.

[30] Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton.
Unveil the hidden presence: Characterizing the backend
interface of content delivery networks. In 27th IEEE
International Conference on Network Protocols, ICNP
2019, Chicago, IL, USA, October 8-10, 2019, pages 1–
11. IEEE, 2019.

[31] Anestis Karasaridis, Brian Rexroad, and David A. Hoe-
flin. Wide-scale botnet detection and characterization.
In Niels Provos, editor, First Workshop on Hot Topics
in Understanding Botnets, HotBots’07, Cambridge, MA,
USA, April 10, 2007. USENIX Association, 2007.

[32] Kasperksy. Ddos attacks in q1 2019. https://secure
list.com/ddos-report-q1-2019/90792/.

[33] Yu-Ming Ke, Chih-Wei Chen, Hsu-Chun Hsiao, Adrian
Perrig, and Vyas Sekar. CICADAS: congesting the inter-
net with coordinated and decentralized pulsating attacks.
In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016, pages 699–710.
ACM, 2016.

[34] Linux Kernel. Ip sysctl. https://docs.kernel.org/
networking/ip-sysctl.html.

[35] Marc Kührer, Thomas Hupperich, Jonas Bushart, Chris-
tian Rossow, and Thorsten Holz. Going wild: Large-
scale classification of open DNS resolvers. In Proceed-
ings of the 2015 ACM Internet Measurement Conference,

6200    32nd USENIX Security Symposium USENIX Association

https://cdn2.hubspot.net/hubfs/4238862/2019%20Intricately%20CDN%20Market%20Report.pdf
https://cdn2.hubspot.net/hubfs/4238862/2019%20Intricately%20CDN%20Market%20Report.pdf
https://cdn2.hubspot.net/hubfs/4238862/2019%20Intricately%20CDN%20Market%20Report.pdf
https://nsfocusglobal.com/reflective-and-short-burst-ddos-attacks-harnessed-to-knock-down-the-targets-in-ukraine/
https://nsfocusglobal.com/reflective-and-short-burst-ddos-attacks-harnessed-to-knock-down-the-targets-in-ukraine/
https://nsfocusglobal.com/reflective-and-short-burst-ddos-attacks-harnessed-to-knock-down-the-targets-in-ukraine/
https://nsfocusglobal.com/reflective-and-short-burst-ddos-attacks-harnessed-to-knock-down-the-targets-in-ukraine/
https://securelist.com/ddos-report-q1-2019/90792/
https://securelist.com/ddos-report-q1-2019/90792/
https://docs.kernel.org/networking/ip-sysctl.html
https://docs.kernel.org/networking/ip-sysctl.html


IMC 2015, Tokyo, Japan, October 28-30, 2015, pages
355–368. ACM, 2015.

[36] Aleksandar Kuzmanovic and Edward W. Knightly. Low-
rate tcp-targeted denial of service attacks: the shrew vs.
the mice and elephants. In Proceedings of the ACM SIG-
COMM 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tion, August 25-29, 2003, Karlsruhe, Germany, pages
75–86. ACM, 2003.

[37] Weizhong Li, Kaiwen Shen, Run Guo, Baojun Liu, Jia
Zhang, Haixin Duan, Shuang Hao, Xiarun Chen, and
Yao Wang. Cdn backfired: Amplification attacks based
on http range requests. In 50th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, DSN 2020, Luxembourg City, Luxembourg, June
25-28, 2020. IEEE Computer Society, 2020.

[38] Jinjin Liang, Jian Jiang, Hai-Xin Duan, Kang Li, Tao
Wan, and Jianping Wu. When HTTPS meets CDN: A
case of authentication in delegated service. In 2014
IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014, pages 67–82.
IEEE Computer Society, 2014.

[39] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A high-
performance switch-native approach for detecting and
mitigating volumetric ddos attacks with programmable
switches. In Michael Bailey and Rachel Greenstadt,
editors, 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, pages 3829–3846.
USENIX Association, 2021.

[40] Xiapu Luo and Rocky K. C. Chang. On a new class
of pulsing denial-of-service attacks and the defense. In
Proceedings of the Network and Distributed System Se-
curity Symposium, NDSS 2005, San Diego, California,
USA. The Internet Society, 2005.

[41] Gabriel Maciá-Fernández, Jesús E. Díaz-Verdejo, Pedro
Garcia-Teodoro, and Francisco de Toro-Negro. Lordas:
A low-rate dos attack against application servers. In
Critical Information Infrastructures Security, Second In-
ternational Workshop, CRITIS 2007, Málaga, Spain, Oc-
tober 3-5, 2007. Revised Papers, volume 5141 of Lecture
Notes in Computer Science, pages 197–209. Springer,
2007.

[42] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu,
Bruno Crispo, Engin Kirda, and William Robertson.
Cached and confused: Web cache deception in the wild.
In Srdjan Capkun and Franziska Roesner, editors, 29th
USENIX Security Symposium, USENIX Security 2020,

August 12-14, 2020, pages 665–682. USENIX Associa-
tion, 2020.

[43] TS Eugene Ng and Hui Zhang. Predicting internet net-
work distance with coordinates-based approaches. In
Proceedings. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies, vol-
ume 1, pages 170–179. IEEE, 2002.

[44] Jeman Park, Aminollah Khormali, Manar Mohaisen, and
Aziz Mohaisen. Where are you taking me? behav-
ioral analysis of open DNS resolvers. In 49th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2019, Portland, OR, USA,
June 24-27, 2019, pages 493–504. IEEE, 2019.

[45] Jeman Park, Manar Mohaisen, DaeHun Nyang, and Aziz
Mohaisen. Assessing the effectiveness of pulsing de-
nial of service attacks under realistic network synchro-
nization assumptions. Comput. Networks, 173:107146,
2020.

[46] Jeman Park, DaeHun Nyang, and Aziz Mohaisen. Tim-
ing is almost everything: Realistic evaluation of the very
short intermittent ddos attacks. In 16th Annual Confer-
ence on Privacy, Security and Trust, PST 2018, Belfast,
Northern Ireland, Uk, August 28-30, 2018, pages 1–10.
IEEE Computer Society, 2018.

[47] Vern Paxson. An analysis of using reflectors for dis-
tributed denial-of-service attacks. ACM SIGCOMM
Computer Communication Review, 31(3):38–47, 2001.

[48] Daniel Plohmann, Khaled Yakdan, Michael Klatt, Jo-
hannes Bader, and Elmar Gerhards-Padilla. A com-
prehensive measurement study of domain generating
malware. In Thorsten Holz and Stefan Savage, editors,
25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016, pages 263–278.
USENIX Association, 2016.

[49] Ryan Rasti, Mukul Murthy, Nicholas Weaver, and Vern
Paxson. Temporal lensing and its application in pulsing
denial-of-service attacks. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 187–198. IEEE Computer Society,
2015.

[50] Christian Rossow. Amplification hell: Revisiting net-
work protocols for ddos abuse. In 21st Annual Net-
work and Distributed System Security Symposium, NDSS
2014, San Diego, California, USA, February 23-26,
2014. The Internet Society, 2014.

[51] Huasong Shan, Qingyang Wang, and Calton Pu. Tail
attacks on web applications. In Proceedings of the 2017

USENIX Association 32nd USENIX Security Symposium    6201



ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1725–1739. ACM, 2017.

[52] Huasong Shan, Qingyang Wang, and Qiben Yan. Very
short intermittent ddos attacks in an unsaturated system.
In Security and Privacy in Communication Networks -
13th International Conference, SecureComm 2017, Nia-
gara Falls, ON, Canada, October 22-25, 2017, Proceed-
ings, volume 238 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommu-
nications Engineering, pages 45–66. Springer, 2017.

[53] Lumin Shi. Two decades of ddos attacks and defenses.
https://cs.uoregon.edu/area-exam/two-decad
es-ddos-attacks-and-defenses.

[54] Kulvinder Singh and Ajit Singh. Memcached ddos ex-
ploits: operations, vulnerabilities, preventions and mit-
igations. In 2018 IEEE 3rd International Conference
on Computing, Communication and Security (ICCCS),
pages 171–179. IEEE, 2018.

[55] Thomas Vissers, Tom van Goethem, Wouter Joosen, and
Nick Nikiforakis. Maneuvering around clouds: Bypass-
ing cloud-based security providers. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October
12-16, 2015, pages 1530–1541. ACM, 2015.

[56] Lan Wei and John S. Heidemann. Does anycast hang up
on you? In Network Traffic Measurement and Analysis
Conference, TMA 2017, Dublin, Ireland, June 21-23,
2017, pages 1–9. IEEE, 2017.

[57] Wikipedia. Multiple round simultaneous impact. https:
//en.wikipedia.org/wiki/Artillery#Multiple
_round_simultaneous_impact.

[58] Zhijun Wu, Wenjing Li, Liang Liu, and Meng Yue. Low-
rate dos attacks, detection, defense, and challenges: A
survey. IEEE Access, 8:43920–43943, 2020.

[59] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple:
A programmable, decentralized link-flooding defense
against adaptive adversaries. In Michael Bailey and
Rachel Greenstadt, editors, 30th USENIX Security Sym-
posium, USENIX Security 2021, August 11-13, 2021,
pages 3865–3881. USENIX Association, 2021.

[60] Igal Zeifman. Attackers use ddos pulses to pin down
multiple targets. https://www.imperva.com/blog
/pulse-wave-ddos-pins-down-multiple-targe
ts/.

[61] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang
Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qi Li, Ming-
wei Xu, and Jianping Wu. Poseidon: Mitigating volu-
metric ddos attacks with programmable switches. In

27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

[62] Hadi Zolfaghari and Amir Houmansadr. Practical cen-
sorship evasion leveraging content delivery networks.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 1715–1726. ACM,
2016.

6202    32nd USENIX Security Symposium USENIX Association

https://cs.uoregon.edu/area-exam/two-decades-ddos-attacks-and-defenses
https://cs.uoregon.edu/area-exam/two-decades-ddos-attacks-and-defenses
https://en.wikipedia.org/wiki/Artillery#Multiple_round_simultaneous_impact
https://en.wikipedia.org/wiki/Artillery#Multiple_round_simultaneous_impact
https://en.wikipedia.org/wiki/Artillery#Multiple_round_simultaneous_impact
https://www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-targets/
https://www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-targets/
https://www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-targets/

	Introduction
	Background
	CDN Overview
	Pulsing DDoS Attacks

	CDN-Convex Attack Overview
	Threat Model
	Concept of the CDN-Convex Attack
	Strategy of the CDN-Convex Attack

	CDN-Convex Attack Techniques
	Basic CDN-Convex Attack
	Collecting CDN edge servers
	Configuring CDN origin
	Measuring CDN network latency
	Bypassing CDN Cache
	Attack experiments

	CDN-Cascading Convex Attack
	Factors Affecting the Attack
	Experiments

	DNS-holdon Convex Attack
	Factors Affecting the Attack
	Experiments

	Request-pending Convex Attack
	Factors Affecting the Attack
	Experiments

	Other CDN-Convex Techniques

	Real-world Evaluation
	Mitigation
	Related Work
	Conclusion

