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Abstract
Split learning (SL) is a popular framework to protect a client’s
training data by splitting up a model among the client and the
server. Previous efforts have shown that a semi-honest server
can conduct a model inversion attack to recover the client’s in-
puts and model parameters to some extent, as well as to infer
the labels. However, those attacks require the knowledge of
the client network structure and the performance deteriorates
dramatically as the client network gets deeper (≥ 2 layers).
In this work, we explore the attack on SL in a more general
and challenging situation where the client model is unknown
to the server and gets more complex and deeper. Different
from the conventional model inversion, we investigate the
inherent privacy leakage through the server model in SL and
reveal that clients’ functionality and private data can be easily
stolen by the server model, and a series of intermediate server
models during SL can even cause more leakage. Based on
the insights, we propose a new attack on SL: Pseudo-Client
ATtack (PCAT). To the best of our knowledge, this is the first
attack for a semi-honest server to steal clients’ functionality,
reconstruct private inputs and infer private labels without any
knowledge about the clients’ model. The only requirement
for the server is a tiny dataset (about 0.1% - 5% of the private
training set) for the same learning task. What’s more, the
attack is transparent to clients, so a server can obtain clients’
privacy without taking any risk of being detected by the client.
We implement PCAT on various benchmark datasets and mod-
els. Extensive experiments testify that our attack significantly
outperforms the state-of-the-art attack in various conditions,
including more complex models and learning tasks, even in
non-i.i.d. conditions. Moreover, our functionality stealing at-
tack is resilient to the existing defensive mechanism.

1 Introduction

The last decade has seen the flourishing and widespread
adoption of deep neural networks (DNNs), which achieve
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remarkable performance on rich tasks. Split learning (SL) is
an emerging learning paradigm proposed to enable a data
owner with constrained computing resources or sensitive
data to train a large model with a powerful server cooper-
atively [3, 16, 25, 29, 34, 36, 39, 44, 45]. It splits a DNN into
a client model and a server model, and the client only needs
to perform lightweight computations and output intermediate
layer activations (smashed data) instead of raw data. Since the
server doesn’t have access to the client-side model and inputs,
SL is considered to be capable of protecting the functionality
of the client model and the privacy of inputs from stealing.

In many application areas, like healthcare and finance, the
data and labels from clients can be valuable and sensitive, and
AI services built on these data are often very lucrative. There-
fore, attackers and even the server have a strong incentive to
steal the sensitive data and functionality of the client model.
In scenarios where a compute provider (the server) and a data
provider (the client) collaborate to train a SL model for profit,
stealing the functionality of the client model allows the server
to get rid of the client and perform the inference on its own
without sharing the revenue earned by the SL model. Some
recent works [9, 19, 33] have presented a series of attacks on
SL. Feature-space hijacking attack (FSHA) [13, 33] points
out that the server can hijack clients to leak important features
about the private dataset for the server to uncover private in-
puts. But the FSHA server is malicious since it completely
disrupts the process of SL, making this attack detectable by
clients [8]. Besides, the server can’t steal the functionality of
the client model due to the damaged SL model. UnSplit [9] is
the state-of-the-art attack designed for a semi-honest server,
which requires the server to know the client model structure
and the smashed data, and conducts a model inversion attack
to reconstruct the client model and raw inputs. It searches over
the space consisting of all possible input values and client net-
work’s parameters by a coordinate gradient descent approach.
However, since both the model parameters and the inputs are
unknown, the search space could be too large to converge.
Once the learning task and the client model become slightly
complex, its performance deteriorates dramatically and the
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attack fails. For example, when training VGG16, the test accu-
racy of the stolen functionality by UnSplit drops to 22.1% on
CIFAR-10 when the client model has two layers (see Tab. 5).
As for label inference attack, the norm-based label uncovering
method [28] uses the norm of gradients to infer labels, but it
only suits the imbalanced binary classification. UnSplit [9]
is also based on the gradients’ information, but it only works
under the strong assumption that the client top model has
only a depth of one (see Tab.9). In short, for a semi-honest
server, existing attacks on SL mainly based on the idea of
model inversion, which requires the knowledge of the client
model structure and could fail due to the large search space
as the client model gets deeper and more complex. Therefore,
how to effectively steal the functionality, inputs and labels of
the client in an undetectable way, even if the client model’s
structure is unknown and complex, is still an open question.

To explore the answer to this question, in this work, we pro-
pose a novel and widely effective attack paradigm — Pseudo-
Client ATtack (PCAT), to steal the functionality and data from
the client. As aforementioned, conventional attacks first obtain
smashed data and client model structure, and then invert the
client model. Differently, the effectiveness of PCAT is based
on our insights that a well-trained server model itself can pro-
vide sufficient information to construct a pseudo-client model
to steal client’s functionality by using very limited training
samples, even without using the smashed data. Moreover, we
discover that a series of intermediate server models during
normal SL can provide extra knowledge to the pseudo-client
model to gain closer functionality. With these insights, our
main idea is that the server can take full use of the knowledge
learned by evolving server models to train a pseudo-client
model to gain a functionality as close to that of the real client
as possible, whose structure can be completely different from
that of the real client model. Hence, PCAT doesn’t require any
knowledge about the real client model. The only assumption
is that the server can obtain a small dataset of few samples for
the same learning task from any public sources, whose size
is orders of magnitude smaller than the private training set.
Once the pseudo-client model learns a mapping from inputs
to the feature space of smashed data, the server can transform
the given smashed data back to raw inputs by learning a re-
verse mapping. It is also able to replace the top model by a
pseudo-top model to infer private labels.

The main contributions of this paper are summarized as
follows:

•New attack: We propose a novel pseudo-client attack
on SL, which, to the best of our knowledge, is the first at-
tack enabling a semi-honest server to achieve three goals —
functionality stealing, input data reconstruction and labels
inference, without any preknowledge about the client model.
Compared with previous attacks on SL, our attack has the
following advantages: 1) It is widely effective since it suits all
variants of SL and doesn’t require any knowledge of the client
model; 2) It is effective in cases with more complex tasks and

client models; 3) It is hard to detect since it’s transparent to
clients; 4) Our functionality stealing attack doesn’t require
smashed data, thus it is robust even if clients use defensive
mechanisms like nopeek [45].

•New insights: We provide the insights that a server model
in SL contains rich private information, though it doesn’t
have access to any private data directly. A trained server
model can be utilized to construct a pseudo-client model to
gain the functionality of the real client, even without using
any smashed data. Moreover, a series of intermediate server
models can "guide" the pseudo-client model to reach a better
performance. Thus, on the basis of the insights, we design
PCAT that significantly outperforms state-of-the-art attacks
in three attack goals. Our successful attacks also reveal the
high risk of leaking privacy through the server model in SL,
even when the client model structure and smashed data are
protected.

•New results: We implement PCAT on various benchmark
datasets and models to verify its effectiveness. The results
show that the server can use a very small dataset to gain a
pseudo-client model whose functionality very close to the real
client. When the dataset size is only 0.1% - 1% of the private
dataset and the client model has one layer, the accuracy gap
between the PCAT pseudo-client model and victim model is
only 0.20%, 2.10%, and 1.33% on MNIST, CIFAR-10, and
Tiny ImageNet respectively; while UnSplit produces the client
model with 4.25% and 26.31% accuracy gap on MNIST and
CIFAR-10. When dataset size is only 1% - 5% of the private
dataset and the client model has two layers, the accuracy gap
of PCAT is only 1.09%, 4.78%, and 3.49% on three datasets
respectively; while the accuracy gap of UnSplit significantly
deteriorates to 34.70% and 48.88% on MNIST and CIFAR-10.
For MobileNet on Tiny ImageNet, when the client model has
four layers, the accuracy gap achieves 10%, indicating the at-
tack still works with acceptable accuracy. Even the client uses
a defence technique like Nopeek [45], it has little influence
on the effectiveness of PCAT. The server can use this pseudo-
client model to reconstruct raw inputs more precisely than
any other previous attack for a semi-honest server. For the
U-shape SL, the label inference accuracy of PCAT achieves
96.58% on MNIST with LeNet-5 layer2, while UnSplit has
only 9.1% accuracy. Extensive evaluations show that our at-
tack is also robust to non-i.i.d. situations when the server lacks
training samples of some classes. The server can reconstruct
the raw inputs of the missing classes though it doesn’t have
any preknowledge about these classes.

2 Preliminaries and Related Work
2.1 Split Learning
As a rising paradigm of distributed machine learning, split
learning (SL) [16,34,44] is proposed for resource-constrained
data owners by letting the powerful server undertake the ma-
jority of computation. In SL, the ML model (usually a neural
network) is split into several parts. Without loss of gener-
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Figure 1: Three typical variants of SL [29, 44], as presented
in Fig.1. Our attack mechanism is effective against all three
variants.

ality, the model is partitioned to a server model ( fs) and a
client model ( fc), and the function of the whole model is
f = fs( fc(·)). The client model is allocated to the data own-
ers, and the server model is at the place concentrating suffi-
cient computing power. During the overall training phase, the
server should be oblivious to any private information of the
client.

There are three typical settings for SL [29, 34, 44], as pre-
sented in Fig.1. In the single-client setting, the client trans-
mits smashed data ( fc(X)) and labels to the server, and the
server computes loss and gradients. Then the server performs
backward propagation and sends gradients back to the client.
Receiving the gradients, the client performs backward propa-
gation, and both the server and client update their weights. It
iterates in this way until the model converges. For the multi-
client setting, the clients take part in training in a round-robin
sequence. Each client updates its local model from the last
client before training. As for the U-shape setting, a top model
is split out and assigned to clients to protect private labels and
clients need to calculate the loss.

To improve its practicality, a variety of extensions have
been carried out. A combination of federated learning and
SL called SplitFed [41] can combine these two frameworks’
strengths and complement their weaknesses. SL is also ap-
plied to other kinds of neural networks such as GNN [17],
RNN [2] and Transformers [32]. Due to its small computa-
tion resource consumption, SL is widely used in IoT scenar-
ios [4, 12, 31, 42, 47].

2.2 Attacks on Split Learning

With many systems increasingly relying on machine learning,
a variety of attacks on machine learning models are emerging
rapidly [5,35,37]. Most attacks aim at stealing the functional-
ity of the model and the privacy of the training data. When
machine learning as a server (MLaaS) engines provide APIs
for clients to query, based on the input-output pairs by query-
ing the black-box model, the attacker can train a knockoff
net with the functionality close to the victim model even if
the attacker doesn’t know the victim model’s structure and

hyperparameters [43, 46]. Orekondy et al. [30] propose to
use a modification of knowledge distillation, by which the
victim model acts as a "teacher" and provides hard labels to
the knockoff net to perform a functionality stealing attack.
Model inversion attacks [10, 11] and attribute inference at-
tacks [14,15,23] reconstruct inputs or sensitive features given
the outputs of the target model. Those attacks are designed to
steal the functionality or privacy of a complete model, thus
can not be directly adopted to attack the client model in SL.

In SL, recently, several attacks [9, 19, 28, 33] are designed
for the server to reconstruct the clients’ raw inputs, model
parameters and labels. In FSHA [33], a malicious server can
hijack clients to leak essential features about their raw data.
However, due to that the server changes the learning task and
disrupts the learning process, the malicious behaviors can be
detected by clients [8] and the attacker can not steal clients’
functionality. Thus, FSHA achieves fewer attack goals than
PCAT. UnSplit [9] provides the state-of-the-art attack on SL
based on the assumption that the server has the client’s model
structure, and a semi-honest server can reconstruct the raw
inputs and parameters of the clients’ model by utilizing the
smashed data. Such a reconstructed model can work like a
clone model of the real client model. Since both the model
parameters and the inputs are unknown, the solution space
could be too large to converge once the client’s model or the
learning task becomes more complex. Therefore, in practice
this attack can easily fail when any of the following situa-
tions occur: 1) the structure of the client model is unknown;
2) the client model has more than one layer; 3) the learning
task is complex; 4) the smashed data is protected by defense
mechanism like nopeek [45]. When attacking the U-shape
SL, both norm-based label-uncovering method [28] and Un-
Split [9] use gradients information to reconstruct private la-
bels. However, these two attacks are only effective for the
imbalanced binary classification setting or the setting where
the top model contains only one layer. Deep Leakage from
Gradients (DLG) [50] is another attack for centralized learn-
ing, which requires the model structure and calculates loss
of gradients to recover the inputs. Differently, PCAT doesn’t
need the client model structure and generates a similar client
model to steal the client’s functionality and further reconstruct
its inputs and labels.

As a summary, existing attacks on SL mainly based on
the idea of model inversion, which inherently suffer from the
large search space of both possible inputs and client model
parameters. Therefore, those attacks are only effective on
simple tasks and client models. In this work we consider
a more general and challenging problem: how to steal the
functionality and data of the client model in an oblivious way
when the structure of the client model is unknown, tasks and
client models are more complex, and the client may even use
some defensive methods to protect the smashed data.
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3 Goal and Main Idea

3.1 Goals and Settings

In this work, we aim to design an attack mechanism on SL,
which supports a semi-honest server to perform all three at-
tacks: 1) steal functionality of the client model; 2) reconstruct
the client’s raw inputs; 3) infer labels of the client’s inputs.
To make the attack mechanism widely effective, we design
our mechanism to meet the following requirements.

(1) Minimal knowledge about the client model: the server
knows the learning task but it doesn’t need to know the
structure or hyper parameters of the client model. For the
functionality stealing, the sever doesn’t even need to use the
smashed data, since there exist methods to protect the smashed
data [45].

(2) Support more complex client models and tasks: exist-
ing methods [9,28] support only simple tasks, like imbalanced
binary classification and handwritten digits classification, and
simple client models with only one layer. Differently, our
mechanism should support more complex tasks, as well as
deeper and wider client models.

(3) Effective against three variants of SL: as shown in
Fig.1, there are three typical variants of SL. Our attack mech-
anism should be effective against all of them.

(4) Transparent to the client: the server is semi-honest,
and in the client’s view, the training process with an attack is
indistinguishable from a normal training without an attack.

The assumptions for PCAT are that: 1) Both server and
client are semi-honest, which follow the SL protocol, but the
server is curious about the client’s model, inputs and labels.
2) The server doesn’t known anything bout the client model
structure. 3) The server can collect a limited number of train-
ing samples (Xserver) for the same learning task from public
sources. As the default setting in SL protocols, the server and
the client use the same optimizer.

3.2 Insights and Main Ideas

To achieve aforementioned ambitious goals, the major chal-
lenge stems from the fact that the server does not know any-
thing about the client model when conducting functionality
stealing. This challenge makes all previous query based and
model inversion based attacks inapplicable. Therefore, we
turn to explore what the server model learns and whether it
can be utilized to construct a pseudo-client model, whose
functionality is very similar to the real client model. To find
the answer, we start by investigating how to steal the function-
ality of a complete model, followed by the idea to steal the
client model in SL.

(1) Steal a Complete Model
Considering a model with a sufficiently large dataset as the

victim model, denoted by F , the functionality stealing attack
tries to construct a knockoff model using a small dataset,
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Figure 2: Two strategies to construct a pseudo model f̃ which
steals the functionality of the victim model F . F is trained
on a large dataset DataL and f̃ is trained on a small dataset
DataS with the help of F . N is the total number of itera-
tions during training and n ∈ [0,N]. That is, Fn denotes the
model after n iterations and FN denotes the final model af-
ter training. Before calculating LKLDiv, we need to perform
log(so f tmax(pred/τ)) and τ is temperature [20].
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Figure 3: Two strategies to steal the client model in SL.
(a) shows training two SL models on small(DataS) and
large(DataL) datasets independently. (b) and (c) illustrate
the strategies that train a pseudo-client model f̃c to steal the
functionality of the victim client model Fc after and while
training the server model, separately. n ∈ [0,N], FN

s denotes
the final server model after SL and Fn

s denotes the interme-
diate server model after n iterations during the SL. F is the
feature space of the smashed data. The red arrows indicate
that under the restriction of FN

s or Fn
s , the feature space of the

pseudo-client’s outputs is learning to get closed to the feature
space of the victim client’s outputs.

denoted by f̃ , which behaves very much like F . The most
critical challenge is how to let F effectively teach f̃ when the
attacker has very limited training data.

•Basic strategy: stealing after training. A basic solution
is to train the victim model first, then let the victim model
teach the knockoff model in the way of knowledge distillation
[20]. As presented in Fig.2(a) and (b), after training the victim
model for N iterations on a large dataset, we obtain a well-
trained model FN . Then the knockoff model f̃ can be trained
with the help of FN in the following way: in the n-th iteration,
the inputs (Xn

i ) from a small dataset are fed to both models,
and the learning targets of f̃ are the output soft labels of FN

rather than the hard labels. The loss function is

LKLDiv = KLDivergenceLoss(so f t(p̃red
n
i ),so f t(predN

i )),
(1)
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Algorithm 1: Stealing Client after Training Server
(Vanilla-PCAT)

Data: Server’s data: (Xserver,yserver), total epochs: N
/* Initialize models */
FN

s is a well-trained server model;
f̃c is randomly initialized;
while n < N do

Randomly select (Xi,yi) from (Xserver,yserver);˜smashed← f̃c(Xi);
z̃← Fs( ˜smashed);
L̃ ← L(z̃,yi);
∇̃smashed ← compute_gradient(smashed, L̃);
∇̃c← compute_gradient( f̃c, ∇̃smashed);
f̃
′
c← update_weight( f̃c, ∇̃c);
/* The weight of Fs isn’t updated. */

end

which is the KL divergence loss between the soft labels of
two models.

By learning from the victim model, the performance of the
knockoff model can often be obviously improved, e.g., from
73.52% to 82.06% in the handwritten digits classification task
in Fig.4(a), when the attacker has only 100 training samples
(10 samples per class). However, there is still a significant gap
from the performance of the victim model, which is 98.82%.

•Our improved strategy: stealing while training. To fur-
ther improve the performance of the knockoff model, we have
the observation that a series of intermediate victim models
during training can provide essential information, which can
teach the knockoff model better than the final well-trained
victim model does. Based on this observation, different from
traditional knowledge distillation, we propose to steal the vic-
tim model while it is being trained. As illustrated in Fig.2(c),
in the n-th iteration, taking the same inputs from the small
dataset, the optimization objective of f̃ n is to minimize the
KL divergence loss between the output soft labels of two cur-
rent models. Note that, Fn also takes inputs from the large
dataset, and its optimization objective remains the loss on
the hard labels. In this way, both Fn and f̃ n are trained syn-
chronously. Fn evolves by using the large dataset, while f̃ n

uses a sequence of evolving targets to train itself. Although at
the beginning, learning targets are not as accurate as the final
target, actually the evolving learning targets can "guide" f̃ n

to converge more precisely to the final target. As plotted in
Fig.4(a) and Fig.4(b), our stealing while training strategy in-
creases the accuracy of the knockoff model to 88.44%, which
is significantly higher than the stealing after training strategy.

(2) Steal a Client Model in Split Learning
The aforementioned strategies cannot be directly applied to

steal a client model in SL. Different from stealing a complete

Algorithm 2: Stealing Client while Training Server
(PCAT)

Data: Server’s data: (Xserver,yserver), Client’s data:
(Xpriv,ypriv), epochs: N

/* Initiate models */

Fs,Fc, f̃c are all randomly initialized and Fc ̸= f̃c;

For the client:
while n < N do

Randomly select (X j,y j) from (Xpriv,ypriv);
Smashed← Fc(X j);
send_to_server(Smashed,y j);
recv_from_server(∇Smashed);
∇c← compute_gradient(Fc,∇Smashed);
F
′
c ← update_weight(Fc,∇c);

end

For the server:
while n < N do

recv_from_client(Smashed,y j);
Select Xi from Xserver so that yi = y j // Align

labels˜Smashed← f̃c(Xi);
z̃← Fs( ˜Smashed);
z← Fs(Smashed);
L̃ ← L(z̃,yi);
L ← L(z,y j);
∇s← compute_gradient(Fs,L);
∇̃Smashed ← compute_gradient( ˜Smashed, L̃);
∇Smashed ← compute_gradient(Smashed,L);
∇̃c← compute_gradient( f̃c, ∇̃Smashed);
f̃
′
c← update_weight( f̃c, ∇̃c);

send_to_client(∇Smashed);
F
′
s ← update_weight(Fs,∇s);

// Fs updates weight using grad from
SL.

end

model, to construct a pseudo-client model, we still need to
address the following challenges: 1) the server cannot obtain
the intermediate client models during training, but only knows
all intermediate server models; 2) the server cannot obtain
the inputs nor the output soft labels, and even the smashed
data cannot be used as aforementioned in Section 3.1; 3) the
server cannot even feed samples from its small dataset to the
client model, otherwise the client will be aware of the attack.

Facing these challenges, w.l.o.g., we further analyze the
single-client SL. As illustrated in Fig.3(a), the client model
maps raw inputs X to a certain feature space F . Then the
server model maps intermediate activation from this feature
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Figure 4: Performance of victim models and pseudo models obtained by different strategies. It uses LeNet-5 on MNIST [49]
dataset. (a) and (b) show the performance when stealing a complete model after and while the training of the victim model. (c)
and (d) show the performance when stealing a client model after and while the training of the server model in SL. The split
layer is 2. MSELoss is calculated between the smashed data output by the client model and the pseudo-client model, which
characterizes the difference between F̃ N and F N . 60000, 100 are the amounts of training samples.

space to logits. The SL model trained on a large dataset, de-
noted by F = Fs(Fc(·)), usually performs much better than the
SL model trained on a small dataset, denoted by f = fs( fc(·)).
As shown in Fig.4(c), with 60,000 training samples, the SL
model achieves 99.18%, while the accuracy is only 51.33%
with 10 training samples (1 sample per class). Since the server
aims to construct a pseudo model with good performance, it
must make full use of the knowledge in the client’s large
dataset. Therefore, we propose to steal the functionality of
the client model by using only the server model(s) trained on
the client’s dataset and a small dataset from the server itself.
As we will present below, such strategies work surprisingly
well, even though the server does not know the structure or
input of the client model and does not query the client or use
the smashed data at all.

•Our basic strategy for SL: stealing client after train-
ing server. As illustrated in Fig.3(b), the server conducts the
normal SL first. After N iterations, the input X is mapped
to the feature space F N by the victim client model FN

c . The
server model FN

s is well-trained and capable to convert the
smashed data in F N to logits. Now the server can connect
a pseudo-client model ( f̃c) to the trained server model FN

s ,
and use its small dataset to train ( f̃c) while fixing the param-
eters of FN

s . The pseudo-client model actually maps inputs
to another feature space F̃ N . To steal the functionality of the
victim client model FN

c , the training algorithm for the pseudo-
client model should optimize its output smashed data as close
to F N as possible, so that the smashed data can be classified
by the server model correctly. The detailed training algorithm
is presented in Algorithm 1. Note that, it is not necessary for
f̃c to have the same structure as the victim client model (Fc),
as long as it can learn the mapping from raw inputs the to fea-
ture space. Results in Fig.4(c) and (d) show that, this strategy
can increase the accuracy of the server’s pseudo model from
51.33% to 83.05% when the server has only 10 samples.

•Our advanced strategy for SL: stealing client while
training server. Similar to the advanced strategy when steal-
ing a complete model, we find that using a sequence of in-

termediate server models Fn
s , n ∈ [0,N] during SL, the server

can train the pseudo-client model gradually to achieve better
performance. In another words, the pseudo-client model can
leverage a series of learning targets { F 0, ..., F N} to steal the
functionality more accurately. This strategy is feasible since
the server knows the intermediate server model for every it-
eration. Fig.4(c) testifies that using evolving server models
can greatly improve the pseudo-client model’s accuracy, from
83.05% to 90.7% in our experiments. Fig.4 (d) further illus-
trates that the adversarial feature space F̃ N is very close to
the victim feature space F N by this strategy. Note that, with-
out the constraints from the well-trained server models, the
feature space of smashed data in an independently trained
pseudo model is quite far away from the victim feature space.

Summaries: We have insights that a server model trained
by standard SL can provide sufficient knowledge to train a
well-performing pseudo-client model using very limited train-
ing samples; a series of intermediate server models during
SL can significantly improve its accuracy. These insights not
only inspire us to design an highly effective attack mecha-
nism against SL, but also reveal the privacy threats posed by
the server model in SL. Based on these insights, our main
idea to steal the functionality of the client model is to train a
pseudo-client model with any structure that can map inputs X
to the target feature space F N . Once the pseudo feature space
F̃ N is sufficiently close to F N , the pseudo-client model can
take place of the victim client model. Then, using the pseudo-
client model and smashed data of client’s inputs, the server
can reconstruct the private inputs of the client by learning a
reverse mapping, as well as infer their labels.

4 Pseudo-Client Attack

In this section, following our main idea, we present the de-
tailed design of our attack mechanism, the Pseudo-Client AT-
tack (PCAT), on different variants of SL. The whole attack
process is illustrated in Fig. 5. We also present some details
that makes PCAT more effective.
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Figure 6: Pseudo-client attack in U-Shape SL. The legends
are the same as that in Fig.5. Here, we omitted the methods
for the server to perform inference alone and reconstruct input
data, since which are the same as that in two-part SL.

4.1 Functionality Stealing

Algorithm 1 has already illustrated how to train a pseudo-
client model after the server model has been trained in a
normal SL. To further improve the performance of the pseudo-
client model, our insights guide us to take full use of a series of
intermediate server models. Specifically, the server initializes
the pseudo-client model before the SL starts and then trains
both pseudo and real client models simultaneously. For each
iteration, the victim client performs its forward propagation
and sends the smashed data and labels to the server. Then
the server selects training samples from its own dataset with
the same labels as those uploaded by the client, i.e., yserver =
ypriv, and feeds these samples into the pseudo-client model to
obtain the smashed data. For both pseudo and victim client
models, the server model takes their respective smashed data
as input, performs forward propagation and calculates the
loss, separately. For SL, the server computes the gradients of
smashed data and sends the gradients back to the victim client.
The victim client calculates the local gradients and updates
the client model. For pseudo-client training, based on the loss,
the server calculates the gradients of its own smashed data and
the pseudo-client model, with which the pseudo-client model
is updated. At the end of each iteration, the server model is
updated using only the gradients from normal SL with the

victim client. Algorithm 2 presents the details of the attack
process. Since both the victim client model and the server
model are updated based on only the gradients of normal SL,
the whole training process is the same as a normal SL in the
client’s view. Therefore, this attack is transparent to clients.

In multi-client SL, each client participates in a round-robin
mode to train the client model, so all clients obtain the same
client model after SL. From the server’s perspective, the evo-
lution of the server and client model is the same as that in
single-client SL. Therefore, the server can apply PCAT to
multi-client SL directly without any modification.

4.2 Inputs Reconstruction

After stealing the functionality, the server obtains a pseudo-
client model that maps inputs to a feature space of smashed
data, which is very close to the real feature space in SL. Given
smashed data from the victim client (Xsmashed), the server can
reconstruct the private raw inputs (Xpriv) by reversing the
mapping. As presented in Fig.5, we propose to reconstruct
the client’s inputs using the following steps:

(1) Train a reverse mapping f−1: since the server has a
few training samples, it can train a reverse mapping f−1 to
map smashed data from the feature space back to the input
space. Specifically, the server maps raw training samples to
smashed data by using the pseudo-client model, then trains
f−1 to map them back to raw inputs. The reverse mapping is
composed of transposed convolution and upsample layers to
transfer smashed data from low resolution to high resolution.
The specific reverse mapping we use for every model splitting
is shown in Table 14 in Appendix 7.

(2) Coarse-grained reconstruction and fine-tuning: the
server can feed Xsmashed into f−1 to obtain the reconstructed
inputs(Xrec). However, due to the insufficient training sam-
ples in server, Xrec is usually coarse-grained. To achieve more
precise reconstruction, we design a fine-tuning method which
takes the coarse-grained Xrec from f−1 as inputs and the real
smashed data Xsmashed as learning targets. Towards the targets,
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Figure 7: Functionality gap between the pseudo model and
the victim model, which is measured by the inference ac-
curacy decrease of Fs( f̃c(·)) compared with Fs( fc(·)). The
experiment is performed on MNIST [49] and CIFAR-10 [26]
dataset.The inference accuracy of the baseline Fs( fc(·)) is
99%/93.2% for MNIST/CIFAR-10.“Samples/Class" means
the number of samples per class in the server’s dataset.

the server optimizes and fine tunes Xrec with fixed pseudo-
client model f̃ N

c , until the output smashed data of f̃ N
c is close

enough to Xsmashed . In this way, we can obtain a more fine-
grained reconstruction.

Note that, we steal the functionality of the client model
in a totally different way from UnSplit, thus the input recon-
struction is also different from UnSplit. Specifically, UnSplit
adopts the client model structure and smashed data to search
the client model parameters and inputs simultaneously. While
PCAT first learns a pseudo-client model using only the server
model and a small training dataset of the server, and then
learns a reverse mapping with the server’s training data. The
smashed data are used for fine-tuning. Since PCAT recon-
structs the inputs after the pseudo-client model is well con-
structed, the search space is significantly smaller than that of
the UnSplit. Our experiments verify that PCAT reconstructs
raw inputs more precisely than UnSplit.

4.3 Attack on U-Shape Split Learning

In U-shape SL, as shown in Fig. 6, there are a bottom model
Fc and a top model Ft placed on the client side. The server
needs to train a pseudo-client model f̃c as well as a pseudo-
top model f̃t . By using the same strategy in two-part SL (i.e.,
Algorithm 2), the server can obtain f̃c

N
and f̃t

N
and perform

inference alone. With f̃c
N

, the private inputs of the client can
also be reconstructed by the methods in Section 4.2.

Unlike two-part SL where clients send data labels to the
server, in U-shape SL labels are considered as privacy and
protected from the server by the top model. Since PCAT can
construct a pseudo-top model to replace the real top model,
the server can feed smashed data of the victim client to the
pseudo-top model to infer their private labels.

4.4 Other Details to Improve PCAT

(1) Aligning labels. When attacking two-part SL by Algo-
rithm 2, the server aligns labels of the training samples for the

Figure 8: Inference accuracy of the pseudo model Fs( f̃c(·))
by skipping batches in the early training. The experiment is
performed on MNIST [49] dataset, where the server has one
sample per class. The pink and light blue lines denote the test
accuracy and loss of SL baseline in the first epoch . The black
dots mean the final test accuracy of Fs( f̃c(·)) if f̃c starts to
train from a certain batch idx.

pseudo and victim client models, i.e., to make yserver = ypriv.
For the attack on U-shape SL, due to the invisibility of
the client’s labels, the server randomly selects Xserver for
each iteration. We measure the functionality of the pseudo-
client model with and without label alignment. Fig.7 shows
that the inference accuracy gap between the pseudo model
Fs( f̃c(·)) and the victim model Fs( fc(·)) is only 1.09%/1.95%
with/without label alignment on MNIST and 6.01%/9.06%
on CIFAR-10, when there are 25/100 samples per class in
the server’s dataset. The results testify that PCAT can steal
the functionality of the victim model with high accuracy; and
label alignment can increase the pseudo-client model’s accu-
racy. We believe the reason is that the gradients of pseudo
and victim client models depend in their respective inputs and
labels. Aligned training samples can make the gradients of
two client models closer, thus the optimization directions of
Fs and f̃c are more consistent.

(2) Late start. In the early stages of SL, since the victim
model hasn’t started to converge, the unstable server model
could guide the pseudo-client model to a wrong direction.
Thus, the pseudo-client model can skip some batches in the
early stages to avoid being misled and gain a better perfor-
mance. The experiment results in Fig.8 show that a proper
late start can improve the performance of the pseudo model.
For example, when the pseudo model training starts from the
100-th batches, the inference accuracy can be raised from
89.57% to 91.05%. But the training should not start too late,
otherwise the victim model has already begun to converge and
the pseudo model will miss a portion of guidance information.
The server should starts to train the pseudo-client model at
the time when the test accuracy of the victim model starts to
rise and the loss starts to fall. Note that, even if the start time
is not optimal, the pseudo-client model still performs better
than that trained after the SL is over (i.e., the pseudo-client
model trained by using vanilla-PCAT).
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5 Implementations

To demonstrate the effectiveness and practicality of PCAT, we
implemented PCAT for a variety of learning tasks and models,
as well as different settings of split learning.

5.1 Datasets and Models

We implemented PCAT for the following cases with different
popular models and benchmark datasets, which cover situa-
tions where the models and tasks are simple or complex.

Dataset Model Param Complexity
1 MNIST LeNet-5 61.5K Low
2 CIFAR-10 VGG16 14.6M Medium
3 Tiny-Imagenet MobileNet 28.5M High

Table 1: The settings for all cases and their complexity com-
parison.

5.2 Data Processing

We assume that the server’s and the client’s datasets should
be prepared for the same learning task. We consider two typ-
ical cases: 1) the server’s dataset is a subset of the client’s
private dataset, i.e., Xserver ⊂ Xpriv; 2) the server’s dataset
has no intersection with the client’s private dataset, i.e.,
Xserver

⋂
Xpriv = /0.

For training, we randomly divide the training set of each
benchmark dataset into a public dataset Xpub and a private
dataset Xpriv, and Xpub : Xpriv = 1: 9. Xpriv is allocated to vic-
tim clients as the training set of the split learning. Xpub is a
public dataset that the server can retrieve some samples from
it to compose its training set Xserver. If not specified, we make
Xserver and Xpriv i.i.d. We will also analyze the effectiveness
of PCAT in non-i.i.d. cases. To evaluate the generalizabil-
ity of PCAT, we also let the server use datasets(Xdi f ) very
different from Xpriv. In our ablation study, Xdi f is a subset
of Imagenet [6] while Xpriv is from CIFAR-10. The samples
in Xdi f have the same labels as the labels in CIFAR-10. For
testing, we use the original testing sets to evaluate models.

5.3 Model Splitting

We adopt LeNet-5 [27], VGG16 [38], MobileNet [21] to val-
idate the effectiveness of our attack. We consider various
model splitting strategies, as shown in Figure 9. For two-part
split learning, each model split into 2 parts. We split Mo-
bileNet from 1 to 4 layers to show that PCAT is robust to the
cases that client’s model is extreme complex. For U-shape
split learning, the client has one or two bottom layers and one
or two top layers, while the intermediate layers are allocated
to the server.
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Figure 9: Model splitting strategies. We omit batchnorms and
ReLU in VGG16 and MobileNet.

6 Experimental Results

Based on the implementation in Section5, we conduct com-
prehensive experiments to demonstrate the effectiveness of
PCAT on three attack goals in Section3.1, including stealing
the functionality of the client model, reconstructing the pri-
vate inputs, and inferring the labels. The results of successful
attacks on different models and datasets testify that the broad
applicability of PCAT.

6.1 Functionality Stealing
(1) PCAT for Two-part SL

•In i.i.d. settings. We first launch our pseudo-client attack
in the case that Xserver and Xpriv are i.i.d. and Xserver ⊂ Xpriv.
We split each model from layer 2 to make the client model
more complex. For MNIST, CIFAR-10 and Tiny ImageNet,
the server has 5, 250, and 10 training samples per class. Fig.10
shows the performance of the pseudo model constructed by
PCAT and Vanilla-PCAT on three datasets. Both vanilla-
PCAT and PCAT effectively steal the functionality of the
client model. When the server trains a complete model in-
dependently using only its own data Xserver, its accuracy is
only 63.38%, 74.16%, and 13.62% on three datasets, respec-
tively. With the same dataset Xserver, Vanilla-PCAT achieves
91.67%, 85.62%, and 69.8% accuracy, respectively. PCAT
further increases the inference accuracy to 96.89%, 89.48%,
and 73.46%, which are very close to the performance of the
victim SL model. Vanilla-PCAT converges faster than PCAT,
because its training is directly guided by the well-trained
server model. Though converging slower, PCAT achieves
much better accuracy because of the guidance of evolving
server models, which drives the output feature space of the
pseudo-client model closer to that of the victim client model.
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Figure 10: Performance of the pseudo model constructed by PCAT on three datasets. For MNIST, CIFAR-10 and Tiny ImageNet,
the server has 5, 250 and 10 training samples per class, respectively. Xserver ⊂ Xpriv and all models split from layer2. Independent
training means the server training a complete model using only its own data Xserver. SL baseline is the victim model trained on
Xpriv. The MSELoss represents the distance between the real feature space and the pseudo feature space.

Figure 11: Performance of PCAT changes with the number of training samples owned by the server. All models split from layer2
and Xserver ⊂ Xpriv.

Intuitively, the more samples the server has, the better per-
formance PCAT can achieve. Fig.11 illustrates the intuition.
On MNIST, when the sample number for each class increases
from 1 to 25, the accuracy achieved by PCAT grows from
90.77% to 97.91%. On CIFAR-10, when the sample number
for each class increases from 10 to 250, the accuracy achieved
by PCAT grows from 49.03% to 89.42%. On Tiny ImageNet,
when the sample number for each class increases from 1 to
25, the accuracy achieved by PCAT grows from 45.40% to
77.11%. Compared with the size of the private dataset, which
are 54000, 45000, and 90000, (5400, 4500, 450 samples per
class) respectively, PCAT requires only a small number of
training samples to effectively steal the functionality. And sur-
prisingly, PCAT can achieve a fairly good attack on LeNet-5
even if there is only 1 sample per class.

•In non-i.i.d. settings. Now we consider a more common
situation that the dataset of the server lacks samples of some
classes. In Fig.12, (a) and (b) illustrate the cases that the
server lacks one class of samples, e.g., the digit “3” in MNIST
and class “deer” (labeled “4”) in CIFAR-10. When the server
independently trains a complete model, the model cannot
recognize the missing class at all, and the accuracy of related
classes also drops significantly. Vanilla-PCAT can recognize

most samples in the missing class and achieve 78.91%/51.5%
accuracy on MNIST/CIFAR-10, but there is still an obvious
gap with the 99.11%/95.2% (on MNIST/CIFAR-10) baseline.
PCAT significantly mitigates the effect of the missing class
and achieves 94.95%/70.2% accuracy on MNIST/CIFAR-10.
Moreover, the overall performance of PCAT is very close to
the SL baseline.

(c) and (d) further analyze how the overall accuracy af-
fected by the number of missing classes in the server’s dataset.
Compared with independent training, PCAT is much more
robust to non-i.i.d. datasets. On MNIST, The accuracy of
PCAT is still over 90% even if there are 4 missing classes.
On CIFAR-10, PCAT can use only 3 classes to achieve the
same performance as Vanilla-PCAT with 9 classes. We think
that the reason behind the surprising result is that a subset of
classes can represent the mapping functionality of the client
model.

•Ablation study for the influence of Xserver. As we men-
tioned in Section 5.2, we analyze how the difference between
the distribution of Xpriv and Xserver affects the performance of
PCAT. As shown in Fig. 13, we consider four cases: Xserver
is randomly selected from Xpriv, Xpub, half from Xpub and
half from Xdi f and all from Xdi f . The correlations between
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Figure 12: Performance of PCAT in non-i.i.d. settings on MNIST/CIFAR-10. (a) and (b) show the accuracy gap when Xserver
lacks one class (“3”/“4” for MNIST/CIFAR-10). (c) and (d) present accuracy changing with the amounts of classes in Xserver.

Figure 13: Ablation study for the influence of Xserver on the
performance. Xpriv is the victim client’s private dataset. Both
Xpriv and Xpub are from CIFAR-10. Xdi f is from Imagenet.
“priv”, “pub”, “dif” means that Xserver is randomly selected
from Xpriv, Xpub, Xdi f . “pub & dif” means that half is from
Xpub and half is from Xdi f in Xserver.

Figure 14: Accuracy of the pseudo model when the model is
split from different layers. The model is MobileNet on Tiny
ImageNet and Xserver ⊂ Xpriv

Xserver and Xpriv decreases progressively. Fig. 13 illustrates
that higher correlation can lead to better performance of the
functionality stealing attack.

•Performance of different pseudo-client model struc-
tures. In PCAT, the server does not know the structure of
the victim client model, and only knows learning task and
its input and output formats. It can adopt any structure that
works for the task as the pseudo-client model. We evaluate
PCAT in cases that the structure of pseudo-client model is
simpler or more complex than the victim client model. Table 2
presents the performance with different variants of pseudo-
client model on MNIST. We also consider the situation that
convolution layers are replaced by ResBlock [18] on CIFAR-
10 [26] and present the results in Table 3. Both tables show
that when the pseudo-client model has the same structure as
the victim model, it achieves the best performance. A more
complex pseudo-client model can achieve almost the same

Pseudo client Victim
Simple Same Complex client

Model MaxPool

ReLU

Conv2d MaxPool

ReLU

Conv2d

MaxPool

ReLU

Conv2d

MaxPool

ReLU

Conv2d

MaxPool

ReLU

Conv2d

ReLU

Conv2d MaxPool

ReLU

Conv2d

MaxPool

ReLU

Conv2d

Acc(%) 73.60 97.17 97.13 99.06
MSE 0.387 0.133 0.141 0

Table 2: Performance of PCAT on MNIST, when the pseudo-
client model has simpler, the same, or more complex struc-
tures than the client. The server has 5 samples per class.

Pseudo client Victim
Simple Same Complex Other client

Model
MaxPool

Conv2d

MaxPool

Conv2d

MaxPool

Conv2d

Conv2d

MaxPool

Conv2d

Conv2d

MaxPool

Conv2d

Conv2d

Conv2d

MaxPool

Conv2d

Conv2d

Conv2d

ResBlock

ResBlock

MaxPool

Conv2d

Conv2d

MaxPool

Conv2d

Conv2d

Acc(%) 87.54 88.90 88.35 84.96 93.20
MSE 0.0279 0.0134 0.0166 0.0511 0

Table 3: Performance of PCAT on CIFAR-10, when the struc-
ture of the pseudo-client model is simpler, the same, more
complex than the victim client model, or even use other ele-
mentary structure. The server has 250 samples per class.

performance as the same structure does, while two simpler
structures suffer performance degradation to different degrees.
We think the reason is that the simpler the model, the less
qualified to learn the behaviors of the victim client model.
Therefore, a more complex pseudo model has a higher chance
to successfully steal the functionality of a SL model.

•Performance with different splitting depths. As pre-
sented in Section 5.3 and Fig.9, we implemented PCAT with
different model splitting strategies and evaluate how the com-
plexity/depth of the victim client model affects the attack.
Fig.14 shows the results of MobileNet on Tiny ImageNet.
When the client model is split from Layer1 to Layer4, the ac-
curacy of the pseudo model reaches 79.01%, 78.23%, 75.33%,
and 68.63%, respectively. Though the increasing complex-
ity of the client model affects the accuracy of functionality
stealing, the attack is still effective.

•Comparison with previous work. We compare PCAT
with the most related work UnSplit [9], which is the SOTA
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MNIST
Samples / Class 1 2 5 10 25

Acc(%) 72.30 84.27 91.83 93.27 96.98
CIFAR-10

Samples / Class 10 25 50 100 250
Acc(%) 36.31 65.42 76.16 82.56 93.28

Table 4: Functionality stealing results of U-Shape PCAT. It is
on MNIST/CIFAR-10 with bottom layer2, top layer2/layer1
and Xserver ⊂ Xpriv.

Datasets MNIST CIFAR-10
Methods UnSplit [9] PCAT UnSplit [9] PCAT

SL Baseline 98.00 99.00 71.00 93.20
split layer = 1 93.75 98.75 43.69 91.10
split layer = 2 63.3 96.79 22.12 78.57

Table 5: Comparison on functionality stealing performance
(Acc: %) with UnSplit [9]. In PCAT, the attacker has 5 sam-
ples per class from Xpriv in MNIST and 50 samples per class
from Xpriv in CIFAR-10

method for a semi-honest server to steal the functionality of
the client model and reconstruct the raw inputs and labels. The
main difference is that UnSplit requires the server to know
the structure of the victim client model while PCAT treats the
victim client as a black box. Table 5 compares their ability to
steal functionality. PCAT significantly outperforms UnSplit
in all cases with different models, datasets and splitting strate-
gies. For example, on MNIST, when the client has two layers,
the accuracy of UnSplit is only 63.3%, while PCAT achieves
96.79%. On CIFAR-10, where the model is more complex,
the accuracy of UnSplit is only 22.12%, while PCAT achieves
78.57%.

(2) PCAT for U-Shape SL As illustrated in Fig.9, we
also implement a U-Shape LeNet-5/VGG16 split learning on
MNIST/CIFAR-10, which has two bottom layers and two/one
top layers on the client side. We use PCAT to successfully
steal the functionality of the U-Shape split learning model.
Results in Table 4 show that PCAT achieves 96.98%/93.28%
accuracy when there are 25/250 samples per class in the
server’s dataset. Hence, PCAT can attack a wide range of
split learning, including two-part SL and U-shape SL.

6.2 Input Data Reconstruction
After stealing the functionality of the victim client model, fol-
lowing the method in Section 4.2, the server can reconstruct
the private inputs of the client. We present our reconstruc-
tion results for two-part split learning on three datasets and
compare them with UnSplit in Table 6. More reconstruction
results are presented in Appendix Fig. 17, Fig.18, Fig.19.
Note that, UnSplit didn’t implement data reconstruction on
Tiny-ImageNet. Obviously, the images reconstructed by our
method are much more informative and clearer than those

UnSplit PCAT

truth

layer1

layer2

layer3

Table 6: Comparison of data reconstruction on Tiny-ImageNet
between UnSplit and PCAT.

Figure 15: The cdf curves of ssim [48] index between re-
construction results and ground truth on CIFAR-10 testsets,
which shows that PCAT can recover private inputs with much
more structural similarity.

reconstructed by UnSplit.
We also make quantitative analysis of reconstruction re-

sult of PCAT and UnSplit by calculating the SSIM [48] in-
dex between reconstructed images and the groundtruth. The
comparison is shown in Fig. 15. Obviously under the same
condition, PCAT can reconstruct raw inputs with much higher
similarity. Especially, when the client model and the learning
task are complex, e.g., the client model has two layers from
VGG16 on CIFAR-10, UnSplit almost fails to reconstruct the
input images, while our method can still reconstruct the input
images with fairly good clearness.

We also evaluate our input reconstruction method for U-
shape split learning and non-i.i.d. setting. The results are
shown in Fig.16. For U-shape learning, our method can also
clearly reconstruct the private inputs. More importantly, in
the non-i.i.d. setting, though the server lacks samples of some
classes, it can still reconstruct the inputs of the unknown
classes. This is a serious privacy breach since the server steals
the data it has never seen before from the client.

Input reconstruction requires a reverse mapping to map
smashed data back to the input space. If the client model is
more complex and harder to invert, it may impede the data re-
construction attack. Thus, we analyze how the client structure
can affect the attack performance from two aspects: 1) more
complex client; 2) adding noise to smashed data to reduce the
correlations between smashed data and raw inputs. In [22],
model structures (e.g. layer depth) and the amount of param-
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Figure 16: Data reconstruction results on MNIST and CIFAR-
10 in non-i.i.d. and U-shape cases. For U-Shape split learning,
the server has 5/20 (MNIST/CIFAR-10) samples per class
from Xpriv, with bottom layer = 1 and top layer = 2. For the
non-i.i.d. case, split layer = 1; the server lacks samples from
class “3”/ “deer” (MNIST/CIFAR-10) and has 5/20 samples
from Xpriv for each other class, but it can still reconstruct the
missing classes accurately.

Client Base Deeper More param Noise

Structure

Block(64)

Conv2d(32)

Block(128)

Block(128,2)

Block(256)

Block(256,2)

Block(64)

Conv2d(32)

Block(128)

Block(128,2)

Block(128)

Block(128)

Block(256)

Block(256,2)

Block(128)

Conv2d(32)

Block(256)

Block(256,2)

Block(256)

Block(256,2)

Block(64)

Conv2d(32)

Block(128)

Block(128,2)

Block(256)

Block(256,2)

Gaussian noise

(𝜎 = 0.3)

Acc(%) 74.52 74.75 73.70 79.00
MSE 0.0362 0.0339 0.0398 0.2108

Table 7: Data reconstruction results when the client structure
is harder to invert. It is performed on Tiny-Imagenet. In all
the cases, Xserver has 50 samples per class.

eters are two factors to influence model complexity. Thus,
we test data reconstruction in three cases: 1) the client model
has more layers; 2) the client model has more parameters; 3)
the client adds noise to the smashed data before sending it
to the server. The results are presented in Table 7. Through
the results can we conclude that model complexity will affect
data reconstruction to a certain extent, but it only triggers
very limited impacts on functionality stealing attacks. Sur-
prisingly, we find that adding Gaussian noise to the smashed
data can improve pseudo-client’s accuracy. The reason behind
this phenomenon is that noise will slow down the baseline’s
convergence, and the pseudo-client can better catch up with
the baseline. More experiments about this phenomenon is
presented in Table 12.

6.3 Label Inference
Based on the pseudo-client model, we conduct label infer-
ence attack on U-shape split learning on MNIST/CIFAR-10
Datasets. As shown in Table 8, PCAT achieves high accu-
racy in label inference, which is 98.23%/93.23% when the
server has 25/250 samples per class. Also, we compare PCAT
with UnSplit [9] in label inference in Table 9. When the
top model has one layer, the inference accuracy of PCAT is
98.82%/93.42%, which is slightly lower than Unsplit. But,

MNIST
Samples / Cls 1 2 5 10 25

Acc(%) 82.65 94.42 96.58 96.89 98.23
CIFAR-10

Samples / Cls 10 25 50 100 250
Acc(%) 19.29 89.10 92.83 93.08 93.23

Table 8: Label inference accuracy of PCAT on U-shape split
learning. It is implemented on MNIST/CIFAR-10 with bottom
layer2 and top layer2/layer1. Xserver ⊂ Xpriv.

Datasets MNIST CIFAR-10
Methods UnSplit PCAT UnSplit PCAT

top layer = 1 100.0 98.82 100.0 93.42
top layer = 2 9.1 96.58 8.1 92.57

Table 9: Comparison on label inference accuracy(%) with
UnSplit. In PCAT, the attacker has 5/100 samples per class
from Xpriv in MNIST/CIFAR-10.

when the top model becomes more complex, e.g. having
two layers, the inference accuracy of UnSplit severely drops
to 9.1%/8.1%, while PCAT still achieves a high accuracy
(96.58%/92.57%). Therefore, PCAT is more robust to various
split learning models.

6.4 Against defensive mechanisms
So far, there have been some defenses proposed for SL privacy
attacks: some of them are formal privacy protection mecha-
nisms (e.g. differential privacy [1]) and others are designed
for SL (e.g. Nopeek [45]). Our experiments shows that PCAT
can still work well against those defenses.

•Nopeek: Distance correlation minimization [40] is a
widely adopted defensive mechanism in split learning. It is
designed to let clients calculate the distance correlation loss
of each sample and its smashed data to reduce unnecessary
information leakage for attackers to reconstruct raw inputs.
The loss function is as the following:

L = α ·DCOR(x, fc(x))+(1−α) ·TASK(y, fs( fc(x))) (2)

Nopeek [45] is a modification of distance correlation mini-
mization to prevent leakage at the beginning of split learning.
Though it reduces the risk of data leakage, the server still
knows the output feature space of the client model. Thus, our
functionality stealing is still effective. We perform attacks
against distance correlation minimization with Nopeek. Table
10 shows that the defense technique like Nopeek has little
influence on the effectiveness of PCAT, and the pseudo-client
model still achieves a very small accuracy gap with the real
client model, which varies from 0.99% to 3.57%.

•Differential privacy: Differential privacy can provide
a rigorous mathematical privacy guarantee [7], which can
be applied to deep learning in [1]. We adopt this defense
mechanism for SL. To be more specific, when the victim client
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MNIST
α 0 0.2 0.4 0.6 0.8

Baseline Acc(%) 99.00 98.52 98.10 96.98 94.33
PCAT Acc(%) 98.01 97.27 96.89 93.41 92.55
Acc(%) Gap 0.99 1.25 1.21 3.57 1.78

CIFAR-10
α 0 0.1 0.2 0.4 0.6

Baseline Acc(%) 93.2 87.56 78.64 68.04 62.61
PCAT Acc(%) 82.77 75.29 64.42 60.05 55.13
Acc(%) Gap 10.43 12.27 14.22 7.99 7.47

Table 10: The functionality stealing performance of PCAT
against the SL with defense mechanism Nopeek [45]. It is
performed on MNIST/CIFAR-10, with split layer2/layer1.
The server obtains 10/20 samples per class and Xserver ⊂ Xpub
α is the parameter in the loss function of Nopeek.

MNIST
σ +∞ 70 60 50

Baseline Acc(%) 99.00 94.10 90.79 84.71
PCAT Acc(%) 97.31 91.12 88.66 80.84
Acc(%) Gap 1.69 2.98 2.13 3.87

CIFAR-10
σ +∞ 200 100 50

Baseline Acc(%) 93.20 85.18 80.17 73.17
PCAT Acc(%) 86.50 77.45 71.14 68.34
Acc(%) Gap 6.70 7.73 9.03 4.83

Table 11: The functionality performance of PCAT against
the SL with differential privacy [1] defense. It is performed
on MNIST/CIFAR-10, with split layer2/layer1. The server
obtains 5/100 samples per class and Xserver ⊂ Xpriv

receives gradients from the server, it will add Laplacian noise
under DP’s guarantee. Thus, the client can protect its model
and the next smashed data sent to the server. The results are
shown in Table. 11: though the accuracy of baseline decreases
as the noise becomes larger, the accuracy gap between the
baseline and pseudo-client is steady at a certain level.

•Add noise to smashed dataAnother intuitive defense is
adding Guassian noise to smashed data directly. The results
are presented in Table. 12. We are surprised to discover that
adding noise to smashed data can not impede PCAT’s attack
but improve pseudo-client to achieve better performance. We
think the reason behind this phenomenon is that noise will
impede the baseline’s convergence which helps the pseudo-
client catches up with the baseline.

6.5 Computation Cost

We compare computation cost of PCAT and UnSplit for
three attack goals: functionality stealing, data reconstruc-
tion, and label inference. UnSplit uses disjoint gradient de-
scent which means in every iteration it performs forward

σ 0 0.1 0.3 0.5
Baseline Acc(%) 80.28 79.80 79.90 80.07
PCAT Acc(%) 74.52 77.79 79.00 79.45

MSE 0.0362 0.0864 0.2108 0.3690

Table 12: Performance of functionality stealing and input
reconstruction when noises are added to smashed data. In all
cases we add Gaussian noises. We test them on Tiny-Imagenet
and the server has 50 samples per class.

and backward propagation twice: one for optimizing model
and the other for inputs. But UnSplit only needs to com-
pute the client model, while PCAT needs to compute the
complete model. For data reconstruction, PCAT only exe-
cutes once at the last epoch but UnSplit executes once for
every epoch. For label inference, UnSplit performs backward
propagation for every class while PCAT only needs to infer
labels once. We summarize the computation cost of PCAT
and UnSplit in Table 13. We also present the practical terms
for each factor in Table 13. Take PCAT on MNIST with
LeNet-5 as an example: If the server has 50 training samples,
then K = 54000,k = 50,N = 2000,n = 20 and Fc = F̃c =
376.51KFLOPs, Fs = 58.92KFLOPs, Ft = 11.26KFLOPs.
Therefore, PCAT consumes much less computation than Un-
Split.

Attacks UnSplit [9] PCAT
Functionality stealing nKFc Nk(F̃c +Fs)

Data reconstruction nKFc KF̃c
Labels inference NclsKFt KFt

Table 13: Computation cost of PCAT and UnSplit. n and N
are the total epochs for UnSplit and PCAT, respectively. K
and k denote the number of samples in Xpriv and Xserver. F̃c, Fs,
Fc, Ft corresponds to FLOPs of pseudo-client, server, victim
client, and top model. Ncls means the number of classes.

7 Conclusions
In this work, we propose a novel pseudo-client attack (PCAT)
mechanism on various SL models. PCAT enables an semi-
honest server to conduct functionality stealing, input data
reconstruction and label inference without knowing the struc-
ture of the victim client model. We implemented PCAT for
rich models, tasks and settings. Comprehensive experiments
demonstrate that PCAT works effectively for rich models,
tasks and settings. The whole attack process is transparent to
the client, which thus reveals a serious privacy risk of SL.

There remains some open problems for the future work.
For example, in this work the data reconstruction attack relies
on the assumption that the client model is invertible. We will
further explore which determines the invertibility of a model
and how to reconstruct the input if the model is not invertible.
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Appendix

Reverse mapping structure. In Table 14, we illustrate the
clients’ and pseudo-clients’ model structures we used when
we perform input reconstruction. The notation f̃c indicates
the pseudo-client’s structures while f−1 indicates the reverse
mapping’s structures.

Layer Model MNIST CIFAR-10 Tiny ImageNet

1 f̃c
MaxPool

ReLU

Conv2d

MaxPool

Conv2d

Conv2d

Block(64)

Conv2d(32)

1 f−1 Convt2d

Tanh

Upsample

Convt2d

Tanh

Upsample

Convt2d

Tanh

2 f̃c

MaxPool

ReLU

Conv2d

MaxPool

ReLU

Conv2d

MaxPool

Conv2d

Conv2d

MaxPool

Conv2d

Conv2d

Block(64)

Conv2d(32)

Block(128)

Block(128,2)

2 f−1
Upsample

Convt2d

Tanh

Upsample

Upsample

Convt2d

Tanh

Upsample

Convt2d

Tanh

Upsample

3 f̃c / /

Block(256)

Block(256,2)

Block(64)

Conv2d(32)

Block(128)

Block(128,2)

3 f−1 / /
Upsample

Convt2d

Tanh

Upsample

Table 14: Illustrations of reverse mapping for every case in
data reconstruction. Convt2d denotes transposed convolution
layer. Upsample denotes bilinear upsampling layer.
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Gradient of distance correlation. In the privacy defense
Nopeek [45], the distance correlation loss between smashed
data and raw inputs is calculated. In this section we present
the formulation of distance correlation loss as well as its gra-
dients calculation. As mentioned in [45], Distance correlation
between centered data:

(XTXZTZ)√
(XTX)2(ZTZ)2

(3)

Distance covariance in the numerator:

(XTZX) = ∑
i j
⟨zi,z j⟩(∥xi− x j∥)2 (4)

This can be written in matrix form using basis vectors ei,e j
as

∑
i j
[(ZTeieT

j Z)Tr(XT(ei− ej)(ei− ej)
TX)] (5)

Simplifying the notation with Mi j = eieT
j and Ai j = (ei −

e j)(ei− e j)
T we have

∂Tr(ZTLZZ)
∂Z

= ∑
i j
(2MijZ)Tr(XTAijX) (6)

On the lines of 5, we have

Tr(ZTLZZ) = ∑
i j
[Tr(ZTMijZ)Tr(ZTAijZ)] (7)

Therefore utilizing these identities, the derivative of
squared distance correlation w.r.t Z can be written as

cxTr(ZTLZZ) ∂Tr(XTLZX)
∂Z − [Tr(XTLZX)]2cx

∂Tr(ZTLZZ)
∂Z

[Tr(ZTLZZ)]2
(8)

Extra data reconstruction results. To show effectiveness
of PCAT to reconstruct input data, we perform extra exper-
iments and the reconstruction results are presented in Fig.
17-19, as well as the comparison with UnSplit [9] in the same
cases.

Figure 17: Input data reconstruction results of PCAT and
UnSplit [9] on MNIST. In PCAT, the server attacks using 5
samples per class from Xpriv for layer1 and 10 samples per
class for layer2.

Figure 18: Input data reconstruction results of PCAT and
UnSplit [9] on CIFAR-10. In PCAT, the server attacks using
50 samples per class from Xpriv for layer1 and 250 samples
per class for layer2.

Figure 19: Input data reconstruction results of PCAT on Tiny-
ImageNet [24]. In PCAT, the server attacks using 5, 10, 25
samples per class from Xpriv for layer1, 2, 3 individually.
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