
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Exploring the Unknown DTLS Universe:
Analysis of the DTLS Server Ecosystem on the Internet
Nurullah Erinola and Marcel Maehren, Ruhr University Bochum; Robert Merget,

Technology Innovation Institute; Juraj Somorovsky, Paderborn University;
Jörg Schwenk, Ruhr University Bochum

https://www.usenix.org/conference/usenixsecurity23/presentation/erinola

Exploring the Unknown DTLS Universe:
Analysis of the DTLS Server Ecosystem on the Internet

Nurullah Erinola1, Marcel Maehren1, Robert Merget2, Juraj Somorovsky3, and Jörg Schwenk1

1Ruhr University Bochum
2Technology Innovation Institute

3Paderborn University

Abstract
DTLS aims to bring the same security guarantees as TLS to
UDP. It is used for latency-sensitive applications such as VPN,
VoIP, video conferencing, and online gaming that can suffer
from the overhead of a reliable transport protocol like TCP.
While researchers and developers invested significant effort in
improving the security of TLS, DTLS implementations have
not received the same scrutiny despite their importance and
similarity. It is thus an open question whether vulnerabilities
discovered in TLS have been fixed in DTLS and whether
DTLS-specific features open possibilities for new attacks.

To fill this gap, we extended the open-source tool TLS-
Scanner with support for DTLS and implemented additional
tests for DTLS-exclusive features. We evaluated twelve open-
source DTLS server implementations and uncovered eleven
security vulnerabilities, including a padding oracle vulnera-
bility in PionDTLS and DoS amplification vulnerabilities in
wolfSSL, Scandium, and JSSE. We then proceeded to scan
publicly available servers. We discovered and analyzed more
than 500,000 DTLS servers across eight ports providing de-
tailed insights into the publicly accessible DTLS server land-
scape. Beyond cryptographic vulnerabilities and compatibility
issues, our analysis showed that 4.4% of the evaluated servers
could be used for DoS amplification attacks due to insufficient
care when handling anti-DoS cookies.

1 Introduction
Transport Layer Security (TLS) [43] cannot be used to secure
UDP connections since TLS requires reliable data transport.
This led to the development of the Datagram Transport Layer
Security (DTLS) [47, 39] protocol, which is based on TLS.

The security of TLS implementations has become a major
concern for researchers, leading to critical attacks [38, 14, 9,
4, 10] and changes in the protocol to mitigate them. Since
DTLS is based on TLS, problems that affect TLS typically
also affect DTLS. On the other hand, it is unclear to what
extent DTLS implementations have vulnerabilities that are
unique to DTLS, as DTLS supports unique features like mes-
sage retransmissions and message fragmentation. An example

of such an issue was discovered by AlFardan and Paterson,
who presented a padding oracle attack using DTLS-specific
features [41]. This motivates our first research question:

RQ1: What is the current state of DTLS server
implementations? Are they vulnerable to known
attacks? Which features do they implement?

To answer this question, we considered known attacks on
TLS and analyzed DTLS RFCs to identify DTLS-specific
features and possible vulnerabilities. We then practically eval-
uated these properties by adapting the open-source tools TLS-
Attacker [1, 54] and TLS-Scanner [2] to analyze DTLS im-
plementations. We extended the basic DTLS functionality in
TLS-Attacker [24] and added the ability to modify fragments
of handshake messages, proper handling of received retrans-
missions, and the dynamic sending of retransmissions. We
then adapted the rich feature set of TLS-Scanner for DTLS
and added additional tests for the identified DTLS-specific
features.

Lab Evaluation. Our evaluation of twelve open-source li-
braries identified differences in the DTLS server implementa-
tions regarding our DTLS-specific tests, especially with anti-
DoS cookies (Table 1). Additionally, we were able to identify
security vulnerabilities, functional bugs, non-conformance
issues, and unsupported mandatory DTLS-specific features:

• Cryptographic Vulnerabilities. We discovered a
padding oracle vulnerability in PionDTLS that allows
an attacker to decrypt DTLS traffic (Section 5.5) and
a plaintext injection vulnerability in TinyDTLSC that
allows an attacker to circumvent DTLS integrity protec-
tion (Section 5.4).

• DoS Amplification. We identified that Scandium (CVE-
2022-2576), JSSE (CVE-2023-21835), and wolfSSL
(CVE-2022-34293) can be tricked into executing a
DTLS handshake without a cookie exchange by abusing
the session resumption feature. It is possible to force
the servers to fall back to a full DTLS handshake with-
out cookie exchange, enabling DoS amplification at-
tacks (Section 5.1).

USENIX Association 32nd USENIX Security Symposium 4859

• DoS Vulnerabilities. We found that MatrixSSL retrans-
mits HelloVerifyRequest messages and keeps per-client
state, making it susceptible to memory exhaustion at-
tacks (Section 5.1). In addition, we found memory ex-
haustion attacks against Botan, JSSE, MatrixSSL, and
PionDTLS with fragmented ClientHello messages (Sec-
tion 5.3).

• Buffer Over-Read. We observed that MatrixSSL
crashes after receiving an unencrypted Finished mes-
sage or the ChangeCipherSpec and Finished message in
the wrong order (Section 5.4).

• Interoperability. We discovered that TinyDTLSC nei-
ther supports retransmissions nor fragmentation . In ad-
dition, Botan also does not support retransmissions. The
lacking support influences their stability and interop-
erability with other implementations (Section 5.2 and
Section 5.3).

Internet Scan. Typically, implementations on the Internet
differ from those of standard libraries [14], as also private and
proprietary implementations are used. A technique to analyze
their server implementations is to perform large-scale Inter-
net scans. For TLS, researchers were able to map the TLS
ecosystem [33], quantify the impact of security vulnerabili-
ties [38, 14, 9, 4, 10, 21, 11, 58, 57, 19, 30, 36], or even find
new ones. Similar studies in the area of DTLS are missing,
which leads to our second research question:

RQ2: Where is DTLS deployed on the publicly
accessible Internet and what is the current state of
the DTLS server ecosystem? What vulnerabilities
do servers suffer from?

For DTLS, it is unknown on which ports it is mostly de-
ployed. Different application layer protocols specify ports but
it is unclear to which extent they are really used in practice.
To answer this question without significant impact caused by
full IPv4 scans, we used ZMap [22] in a three-step approach.
In the first step, we did a pre-scan of 217 randomly sampled
IPv4 addresses for each port. In the second step, we increased
our sample size to 220 for each port where we discovered at
least one host. In step three, we chose the eight ports with the
highest number of responses (Table 2) to scan the whole IPv4
range.

The results of our Internet evaluation is summarized in Ta-
ble 4. Additionally, we collected supported cipher suites (Ta-
ble 3), (D)TLS extensions (Table 8), and elliptic curves (Ta-
ble 7). We also analyzed deployment-specific issues, like
certificate handling (Table 6) and resistance to known TLS
attacks [42, 11, 61, 13, 32, 10, 4, 15, 48, 37] (Table 5). We
discovered 22,797 servers from Zscaler that can be used as
amplifiers for DoS attacks (Section 6.5), self-signed certifi-
cates on nearly all 44,189 DTLS servers on port 1106 (Sec-
tion 6.4), 472 servers with a directly observable padding ora-
cle vulnerability and 28 servers vulnerable to Bleichenbacher
attacks (Section 6.6).

Contributions. Our main contributions are as follows:
• We analyzed DTLS-specific features and created a cata-

log of threats and security pitfalls for DTLS implemen-
tations (Section 3).

• We conducted lab-based security evaluations on twelve
open-source server implementations and tested for pro-
tocol features, known attacks, and our DTLS catalog.
We identified eleven security vulnerabilities: a padding
oracle, a plaintext insertion vulnerability, five memory
exhaustion DoS attacks, three DoS amplification attacks,
and a buffer over-read (Section 5).

• We conducted an Internet scan with an adapted scan-
ning methodology and published the first comprehensive
dataset based on 520,849 hosts which account for an
estimated of 0.66% of all publicly available DTLS IPv4
hosts across all ports. Analysis of this dataset yields
detailed and valuable insights into the current deploy-
ment of DTLS. Beyond cryptographic vulnerabilities
and compatibility issues, we discovered that 4.4% of the
evaluated servers could be used for DoS amplification at-
tacks with an amplification factor of up to 33 (Section 6).

Ethical Considerations. Our scans respected the rules for
Internet-wide scanning proposed by Durumeric et al. [22].
We shuffled the connections made to the servers during our
scans to spread the computational load for each individual
server. Finally, we established rDNS entries and a website
that indicated the benign nature of our scans and offered the
possibility of opting out of our study.

Responsible Disclosure. We have reported our findings
from the local security evaluations to the respective projects
in compliance with their security procedures. In addition,
we have informed the vendors of the identified devices
(AnchorFree and Zscaler) about our observed issues.

2 Background
The Datagram Transport Layer Security (DTLS) protocol
is a variant of the TLS protocol for UDP. Version 1.0 was
introduced in 2006 [44, 39] and is based on TLS 1.1 [17].
DTLS 1.1 was skipped to align TLS and DTLS versions. In
2012, DTLS 1.2 [45] was published based on TLS 1.2 [18].
The most recent version (from April 2022) is DTLS 1.3 [47],
based on TLS 1.3 [43]; since many libraries do not support it
yet, our work focuses on DTLS 1.0 and 1.2.

As with TLS, the main components of DTLS are the DTLS
handshake and the DTLS record layer. The handshake negoti-
ates cryptographic algorithms and keys while the record layer
wraps the data from the upper layers into encrypted records
sent over UDP.

Handshake. As shown in Figure 1, the client starts the
DTLS handshake by sending a ClientHello message to the
server that contains the highest supported protocol version and
a list of supported cipher suites. A cipher suite defines a set
of cryptographic parameters used to achieve confidentiality,

4860 32nd USENIX Security Symposium USENIX Association

Client Server
ClientHello

HelloVerifyRequest

ClientHello

ServerHello
Certificate
ServerKeyExchange

ServerHelloDone

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 1: DTLS handshake with cookie exchange and Diffie-
Hellman key exchange.

integrity, and authenticity for the DTLS channel. To miti-
gate DoS attacks, the server replies to the ClientHello with
a HelloVerifyRequest that contains an anti-DoS cookie. The
client then retransmits its ClientHello but includes the cookie
value. Upon receiving the updated ClientHello, the server
selects a cipher suite and announces it in the ServerHello
message. The server proceeds by sending a Certificate mes-
sage that contains the server’s X.509 certificate. The server
then sends a signed ServerKeyExchange message containing
a Diffie-Hellman key share followed by a ServerHelloDone
message to indicate the end of the flight. The client com-
pletes the key exchange with the ClientKeyExchange mes-
sage which contains the client’s Diffie-Hellman share. Both
parties may now compute the Premaster Secret, then de-
rive the Master Secret, and finally the symmetric keys. The
client informs the server that subsequent messages will be
encrypted by sending a ChangeCipherSpec message followed
by a Finished message, which is a cryptographic checksum
across all exchanged messages. The server likewise responds
with a ChangeCipherSpec and Finished, which concludes the
handshake.

Session Resumption. With session resumption, a Master
Secret negotiated in a previous handshake can be used to omit
public key operations. In essence, both client and server must
agree on the Master Secret by referencing it via a session
ID in the ClientHello and ServerHello messages, or by using
session tickets [51].

Renegotiation. With the renegotiation feature, it is possible
to negotiate fresh keys and new parameters for an existing
connection by performing an additional handshake. Either
party can request the renegotiation handshake once the initial
handshake is completed. Up to the new ChangeCipherSpec
message, all handshake messages must be encrypted using
the previously established keys.

Extensions. Extensions can be used to negotiate addi-
tional (D)TLS features. Typically, a client proposes a set
of extensions in the ClientHello and the server can confirm
them by including selected extensions in the ServerHello.
The Application-Layer Protocol Negotiation (ALPN) exten-
sion [26] is an example of such an extension. It contains a
list of application protocols that the client is willing to use
once the (D)TLS channel is established. The server chooses a
supported protocol from the client’s list and includes it in the
ALPN extension in the ServerHello message.

Denial-of-Service. The use of an unreliable transport pro-
tocol makes DTLS susceptible to DoS attacks based on IP
spoofing. Before the server should create a local per-client
state or answer with big messages, it should first validate that
the client can actually receive messages from the server. This
validation is done with stateless anti-DoS cookies, which are
transmitted in the ClientHello. RFC 6347 [45] gives vague
recommendations on how the server should compute the
cookie:

Cookie = HMAC(Secret,Client-IP,Client-Parameters)

where Secret is a key only known to the server and the
Client-Parameters are composed of the version, random,
session ID, cipher suites, and compression methods of the
ClientHello. This construction allows servers to validate cook-
ies without retaining any per-client state. By replaying the
cookie issued by the server, the client shows that it can receive
messages under its IP address.

Packet Reordering. UDP datagrams can get delivered out
of order, so DTLS uses explicit sequence numbers (SQN) in
the record header. An epoch number in the record header is
used to keep track of which set of cryptographic parameters
must be used to decrypt a given record. The epoch value starts
at 0 and is incremented after each ChangeCipherSpec. The
SQN is reset with each ChangeCipherSpec and gets incre-
mented by one with each record sent.

Packet Loss. For handshake messages, a simple retrans-
mission mechanism solves the problem of lost or corrupted
UDP datagrams: After sending a handshake message, the
sender starts a timer and waits for the expected response from
the peer. If the timer reaches a predefined timeout value, the
sender retransmits the previous flight. When the peer sees an
already received handshake message, it ignores the message
and likewise retransmits its last messages.

Handshake Message Fragmentation. Handshake mes-
sages can be up to 224 − 1 bytes long. In TLS, TCP keeps
track of fragments and reassembles the fragmented handshake
messages. In DTLS, handshake messages that are longer than
the maximum transmission unit (MTU, typically 1500 bytes)
must be reassembled by DTLS itself. To identify (retransmit-
ted) fragments and their position with the handshake message,
each DTLS message contains a message sequence, fragment
offset, and fragment length field.

USENIX Association 32nd USENIX Security Symposium 4861

MAC Errors. In contrast to TLS, the DTLS specifications
allows for a more relaxed handling of MAC errors. In TLS,
any invalid MAC must result in a connection termination,
while in DTLS, peers may keep the connection open. This
behavior can enable more efficient oracle attacks than in TLS,
which was explored by AlFardan and Paterson [41].

2.1 TLS-Scanner
TLS-Scanner [2] is an open-source tool to assist pentesters
and security researchers in evaluating TLS server implementa-
tions. It builds upon TLS-Attacker [54, 1], a well-established
framework for a systematic analysis of TLS implementations.
TLS-Attacker allows its users to generate arbitrary protocol
flows and modify the structure of the included protocol mes-
sages. TLS-Scanner uses the flexibility of TLS-Attacker to
automatically scan a TLS server and provides a report of
supported features like protocol versions, cipher suites, exten-
sions, and potential security issues. To perform large-scale
scans with TLS-Scanner, TLS-Crawler [38] can be used. TLS-
Crawler is a framework that utilizes multiple TLS-Scanner
instances to scan a large number of servers in parallel and
write the results to a database. In addition, it allows for dis-
tributing the scan tasks across multiple machines.

3 Analysis of DTLS Implementation Pitfalls
DTLS introduces new features to support stateless and
unreliable transport. We carefully analyzed the specifica-
tions [44, 45] and previously known vulnerabilities to identify
implementation pitfalls specific to DTLS.

3.1 Stateless Cookie Exchange
The cookie exchange is optional. If it is missing, the DTLS
server can be abused for amplification attacks or can be tar-
geted by DoS attacks via memory exhaustion themselves. The
DTLS specification does not specify a fixed length for anti-
DoS cookies – their length may range from 0 to 128 bytes.
In addition, the RFCs only make a recommendation for the
generation of the cookie but do not mandate strict compliance.
If a server deviates from this recommendation, it may be pos-
sible for the attacker to predict a cookie and, therefore, skip
the cookie exchange.

Even if servers implement the cookie exchange, they may
be tempted to skip it when resuming an existing session. If
an implementation consciously decides to skip the cookie
exchange on session resumption, it has to be careful: An at-
tacker may send ClientHello messages that look like they are
resuming a session but intentionally violate RFC 5246 [18].
An implementation that simply checks if some session ID
is present to determine if a cookie exchange is necessary
may later find out that it can not resume the session. Thus by
sending an invalid session ID, a server may be tricked into
skipping the cookie exchange while falling back to a full hand-
shake. This may result in a DoS amplification vulnerability,
where an attacker sends a small ClientHello using a spoofed

IP address of a victim to provoke a flight of large messages
from the server returned to this address. However, this issue
could also be used in a DoS attack that aims to exhaust the
memory of the server itself, as it is forced to create a per-client
local state.

Issued cookies have to be stateless. If issued cookies are
stateful and have to be locally stored, the server again ex-
poses a potential DoS vulnerability as the server risks getting
flooded with requests from various spoofed IP addresses.

3.2 Renegotiation
Another interesting case in DTLS is renegotiation. Neither
DTLS RFC ever mentions the renegotiation feature by name,
but it is still implied that the feature is supposed to be present
for DTLS via the epoch concept. This leaves it ambiguous
whether peers should perform a cookie exchange when rene-
gotiating. Interestingly, the renegotiation feature is mentioned
in [39], but not with enough detail to settle the issue. This can
result in severe interoperability issues if clients disagree with
the server and enforce their interpretation of the specification
during renegotiation.

3.3 Timeout and Retransmissions
For a DTLS implementation, it is mandatory to support re-
transmissions, as without it, interoperability is not guaranteed
and handshaking might fail in the event of packet loss. How-
ever, the server must not retransmit the HelloVerifyRequest.
Otherwise, the server would need to hold per-client state and
thus would risk getting flooded with ClientHello messages.

3.4 Handshake Message Fragmentation
Each DTLS implementation must support the fragmentation
of its handshake messages and also the processing of received
handshake message fragments. Otherwise, the implementa-
tion is not entirely functional and can fail during benign use.
Typically, a DTLS implementation should support the frag-
mentation of each handshake message; in that regard, the
DTLS specification does not prohibit fragmentation for any
of the handshake messages. However, that potentially cre-
ates a DoS vulnerability via memory exhaustion if the server
allows fragmentation of initial ClientHello messages. If a
server starts buffering the fragment before the cookie was val-
idated, it is holding per-client state too early, which leads to a
possible DoS vulnerability. An attacker can consume exces-
sive resources on the server by sending a series of ClientHello
fragments, causing the server to allocate state. To prevent this
issue, developers must ensure that the fragmentation feature
does not introduce DoS vulnerabilities.

3.5 Concurrent Cipher States
RFC 6347 [45] makes the following statement about renego-
tiation:

Note that because DTLS records may be reordered,
a record from epoch 1 may be received after epoch

4862 32nd USENIX Security Symposium USENIX Association

2 has begun. In general, implementations SHOULD
discard packets from earlier epochs, but if packet
loss causes noticeable problems they MAY choose
to retain keying material from previous epochs [...]
to allow for packet reordering.

This is somewhat vague, and misunderstandings may lead
to vulnerabilities in the implementation of DTLS; accepting
records with a previous epoch number after completing the
handshake can be dangerous. For example, an attacker could
inject clear application data with epoch 0 after a successful
DTLS handshake, which would have a similar impact as the
Renegotiation attack [42]. Generally, a server should always
reject application data from DTLS records with epoch 0.

4 Methodology
The goal of our research is to assess the state of DTLS imple-
mentations and to publish the first comprehensive dataset on
the DTLS ecosystem on the publicly accessible Internet. To
accomplish this, we first extend the tools TLS-Attacker and
TLS-Scanner to evaluate DTLS implementations automati-
cally. We then evaluate open-source DTLS implementations
and perform the large-scale scan on the DTLS ecosystem. In
our evaluation, we focus only on DTLS server implementa-
tions. We do not consider co-located attackers, access to the
library’s internals, or timing side channels. Additionally, we
excluded issues related to client authentication or pre-shared
keys (PSK) from our large-scale study.

Extending TLS-Attacker. Although generic DTLS sup-
port was already introduced to TLS-Attacker by Brostean et
al. [24], the implementation was not designed to work reliably
outside a lab environment. TLS-Attacker lacked proper sup-
port for the receiving of retransmissions, dynamic sending of
retransmissions itself, and the ability to modify fragments of
handshake messages. These features are crucial for our tests
and large-scale scans that evaluate real servers deployed in
different environments and had to be implemented by us.

Extending TLS-Scanner. We integrated the new TLS-
Attacker version in TLS-Scanner and adjusted existing testing
strategies to fit DTLS. We describe the adapted tests in Sec-
tion 4.1. To test for the DTLS-specific problems identified
in Section 3, we implemented new tests in TLS-Scanner and
introduce them in Section 4.2. For retransmissions, we used
the following configuration: Whenever TLS-Scanner receives
an unexpected response (or no response at all), it performs
a retransmission of the last flight up to three times to ensure
that the response it got from the server is indeed correct.

4.1 Tested (D)TLS Properties
Supported Features. We collect the supported protocol
versions, cipher suites, compression algorithms, and elliptic
curves to determine if obsolete and insecure algorithms are
still in use. To do so, we send ClientHello messages that first
offer an extensive list of features, i.e., all specified cipher

suites. Subsequently, we remove entries that the server nego-
tiates until the server does not find suitable parameter choices
anymore. At the time of writing, around 60 officially defined
extensions exist, some of which are only applicable in specific
use cases. In order to analyze extensions supported by DTLS
hosts, we chose a subset of common (D)TLS extensions and
offered them in our ClientHello. We specifically selected ex-
tensions that the server must include in the ServerHello mes-
sage upon acting on them. This way, we have definitive proof
that the server supports an extension. The tested extensions
can be found in Table 8.

Certificate Ecosystem. We probe a server for all certificates
by performing handshakes with different cipher suites and
key exchange groups. We evaluate how many self-signed or
expired certificates are used and the public key and signature
types.

Identification of Application Protocols. In an uncontrolled
environment, it is typically not clear which application proto-
col is used by a server. We use the ALPN extension [26] to
gather hints of the used application protocol. For ALPN, we
consider 40 standardized ALPN values,1 which we evaluate
using the same strategy as for cipher suites and extensions.
However, a server misconfiguration may result in a mismatch
between the announced protocol and the actual application
protocol. Therefore we performed smaller pre-scans for our
study and manually identified some of the applications that
were running on the scanned ports. We then implemented a set
of application layer test vectors for STUN [50], TURN [34],
CoAP [53], and VPN from Citrix and Fortinet.

Attacks. We test each server for known protocol vulnera-
bilities. Some vulnerabilities can be identified solely based
on supported protocol features (e.g., Sweet32 [11]), while
others require dedicated tests. We evaluate the following at-
tacks: Renegotiation attack [42], CVE-2020-13777 (GnuTLS
session ticket bug), CBC padding oracle [61], Bleichen-
bacher [13], invalid curve [32], Sweet32 [11], Logjam [4],
FREAK [10], ALPACA [15], Raccoon [37], and CRIME [48].
Details about how we scan for these vulnerabilities can be
found in Appendix A.

4.2 Tested DTLS-Specific Features
We extended TLS-Scanner to perform tests for the DTLS-
specific implementation pitfalls introduced in Section 3. Be-
low, we define categories for our catalog of DTLS-specific
tests.

Stateless Cookie Exchange (A). We first check whether
the server performs the cookie exchange during a new hand-
shake (A1) and determine the cookie length (A8). We then
test whether the server skips the cookie exchange in three
cases: resumption via session ID (A2), resumption via session

1https://www.iana.org/assignments/tls-extensiontype-val
ues/tls-extensiontype-values.xhtml#alpn-protocol-ids

USENIX Association 32nd USENIX Security Symposium 4863

https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids

ticket (A3), and renegotiation (A4). We also check whether
a server unnecessarily holds per-client state by waiting three
seconds for retransmitted HelloVerifyRequest messages (A5).
Further, we check whether the server performs the cookie
generation as recommended (A6): For each ClientHello, we
modify a different field that should be included in the compu-
tations but keep the cookie static and check if the server is still
accepting the cookie. To test whether the client IP address and
source port influence the cookie generation we first request
a cookie and then subsequently send a ClientHello with the
cookie from a different IP address and source port. Finally, to
test if cookies are validated at all, we send a ClientHello with
flipped cookie bits (A7).

Timeout and Retransmissions (B). To test retransmis-
sions, we first start a handshake but do not send a
ClientKeyExchange after receiving the ServerHelloDone. In-
stead, we wait for three seconds. If we receive the last flight
of server messages again, we consider the server to support
the sending of unprovoked retransmissions (B1). In a sec-
ond test, we intentionally retransmit the ClientHello with the
cookie instead of sending a ClientKeyExchange. If the server
responds with a retransmission of the ServerHello flight, we
consider it to support client-requested retransmissions (B2).

Handshake Message Fragmentation (C). To test if the
server supports fragmentation, we execute several handshakes
in which we fragment the initial ClientHello without cookie
(C1, C2) and the ClientKeyExchange message (C3, C4). Each
handshake is tested twice. During the first handshake, the
fragments are serialized in a single UDP datagram, and in the
second handshake, each fragment is serialized in an individual
UDP datagram. This test approach also allows us to test if the
server supports fragmentation of initial ClientHello messages
in multiple UDP packets. If a server allows this kind of frag-
mentation, it is potentially vulnerable to DoS attacks since
the server starts buffering the fragments and creates per-client
state before the cookie is evaluated.

Multiple Cipher States (D). We implemented three tests
to test the epoch mechanism. In the first test, the Finished
message, which must be encrypted with epoch 1, is sent un-
encrypted with epoch 0 (D1). In the second test, the Finished
is sent encrypted with epoch 1, and then application data is
sent unencrypted with epoch 0 (D2). Finally, we start a hand-
shake and intentionally send the encrypted Finished before the
ChangeCipherSpec (D3). We note that we excluded D2 from
our large-scale study. In contrast to the lab environment, deter-
mining if the unencrypted application data gets processed is
challenging during black-box tests. The application protocol
deployed on the server may serve as an indicator; however,
determining a definitive result requires a more sophisticated
implementation of each possible application protocol which
we consider out of scope for this study.

5 Evaluation of Software Libraries
In total, we analyzed twelve different implementations. We
focused on open-source implementations, as this allowed
us to investigate the root causes of the discovered issues.
This includes well-known libraries like OpenSSL (v1.1.1m),
LibreSSL (v3.4.2), Mbed TLS (v3.0.0), GnuTLS (v3.7.2),
wolfSSL (v5.0.0), Botan (v2.19.3), MatrixSSL (v4.3.0), and
JSSE (Sun JSSE provider of Java, v17.0.3). Furthermore, we
analyzed PionDTLS (v2.1.3), Scandium (v3.0.0), and two
variants of TinyDTLS (one from Eclipse (98e2cd7) and one
from Contiki-NG (42356d9)), which exclusively implement
DTLS and are, therefore, of particular interest. We refer to
Eclipse’s variant of TinyDTLS as TinyDTLSE and to Contiki-
NG’s as TinyDTLSC. Whenever possible, we used the utilities
to configure and launch DTLS servers that are provided by
the developers (e.g., for OpenSSL openssl s_server). For
JSSE, we used the DTLS server from Fiterau-Brostean et
al [24]2. We excluded BoringSSL and NSS from our study as
these libraries do not provide working DTLS example server
utilities.

We evaluated each implementation in a lab environment
with the extended TLS-Scanner. In our evaluation, we enabled
the key exchange algorithms RSA, DH, and ECDH. Where
possible, we additionally performed our tests for PSK cipher
suites and both with and without client authentication. Table 1
summarizes the results regarding our DTLS-specific tests, and
the following subsections provide an overview of all results.
We observed no differences when using PSK cipher suites
or client authentication. Therefore, we do not differentiate
between these cases in our results.

5.1 Cookie Exchange
DoS Amplification Vulnerability in Session Resumption
(A2, A3, E). All tested servers perform a cookie exchange
during a new handshake. However, during a session resump-
tion and renegotiation, the individual implementations behave
differently. JSSE, Scandium, and wolfSSL do not execute a
cookie exchange during a session resumption. A possible
reason is that the server’s first response in a resumption is
small, rendering amplification attacks ineffective. However,
we manually identified tricks to force all three servers to fall
back to a full handshake without a cookie exchange, making
practical DoS amplification and memory exhaustion attacks
viable again.

Interestingly, a slightly different strategy is needed for ev-
ery server to trigger a full handshake without a cookie ex-
change: In wolfSSL (CVE-2022-34293), an attacker only
needs to send a ClientHello with any 32-byte session ID or a
ClientHello with a non-empty session ticket extension. This
causes wolfSSL to fall back to a full handshake and skip the
cookie exchange, allowing it to be used as an amplifier in
a DoS attack. In Scandium (CVE-2022-2576), an attacker

2https://github.com/pfg666/jsse-dtls-server

4864 32nd USENIX Security Symposium USENIX Association

https://github.com/pfg666/jsse-dtls-server

Label Test Botan
GnuTLS

JSSE
LibreS

SL

Matri
xSSL

Mbed
TLS

OpenSSL

PionDTLS

Scandium

TinyDTLSC

TinyDTLSE

wolfS
SL

A1 Issues a cookie during a new handshake ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
A2 Issues a cookie during a resumption with session ID ✓ ✓ E ✓ ✓ ✓ ✓ - E - - E
A3 Issues a cookie during a resumption with session ticket ✓ ✓ E ✓ - - ✓ - - - - E
A4 Issues a cookie during a renegotiation - ✗ - ✓ - - ✗ - - - ✓ -
A5 Performs no HelloVerifyRequest retransmissions ✓ ✓ ✓ ✓ E ✓ ✓ ✓ ✓ ✓ ✓ ✓
A6 Performs recommended cookie computation ✓ ✗b ✗a ✗b ✗c ✗d ✗b ✗b ✓ ✓ ✗c ✓
A7 Validates the received cookie ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
A8 Cookie length 32 16 32 20 16 32 20 20 32 16 16 32

B1 Sends retransmissions without requesting ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓
B2 Processes client-requested retransmissions ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

C1 Processes fragmented ClientHello in a single datagram correctly ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓
C2 Processes fragmented ClientHello in cross datagrams correctly E ✓ E ✗ E ✓ ✗ E ✓ ✗ ✗ ✓
C3 Processes fragmented ClientKeyExchange in a single datagram ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓
C4 Processes fragmented ClientKeyExchange in cross datagrams ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

D1 Rejects unencrypted Finished ✗ ✓ ✓ ✓ E ✓ ✓ ✓ ✓ ✓ ✓ ✓
D2 Rejects unencrypted Application Data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ E ✓ ✓
D3 Processes reordered ChangeCipherSpec and Finished correctly ✗ ✗ ✓ ✓ E ✓ ✓ ✗ ✓ ✗ ✗ ✗

✓ Applies ✗ Does not apply E Does not apply and results in a vulnerability - Resumption/Renegotiation not supported

a: Excludes only the port. b: Includes only IP address and port.
c: Includes only IP address, port, and the values version, random, and session ID from the ClientHello. d: Includes only IP address.

Table 1: Overview of the introduced DTLS-specific tests regarding (A) anti-DoS cookie handling, (B) retransmissions, (C)
fragmentation, and (D) reordering and epochs.

needs to send a ClientHello that contains a valid session ID
combined with an invalid cipher suite list missing the cipher
suite negotiated in the previous session. The valid session ID
in the ClientHello message tricks Scandium into skipping the
cookie exchange, and the enforced cipher suite mismatch re-
sults in the fallback to a full handshake. In JSSE (CVE-2023-
21835), an attacker also requires a valid session ID or session
ticket. However, JSSE always falls back to a full handshake
if the session ID or session ticket used for the resumption
has been negotiated in a session without the Extended Master
Secret extension [12].

Possible Interoperability Issue with Renegotiation (A4).
OpenSSL and GnuTLS do not perform a cookie exchange
upon renegotiation. In contrast, LibreSSL, for example, does
issue a cookie. As described in Section 3.2, we do not see a
vulnerability in either behavior; however, the cookie exchange
does not serve a purpose during a renegotiation and simply
slows down the connection. The results indicate that clients
should always be prepared to do a cookie exchange to prevent
interoperability issues.

DoS Vulnerability via HelloVerifyRequest Retransmission
(A5, E). MatrixSSL responds to an initial ClientHello mes-
sage with multiple HelloVerifyRequest messages. While in-
vestigating this faulty behavior, we found that MatrixSSL
will retransmit the HelloVerifyRequest until a timeout (32s)
is reached or it receives the second ClientHello with
the cookie. Within these 32 seconds, the server sent six
HelloVerifyRequest messages, each with a size of 44 bytes.
This means that MatrixSSL creates per-client state after re-
ceiving the initial ClientHello and holds it until the timer

expires. By holding state, the server risks getting flooded, as
an attacker could quickly exhaust the server’s memory by
requesting many cookies. Further, the server can be abused
as an amplifier by sending initial ClientHello messages with
an amplification factor of 3.8. A similar issue was discovered
by Fiterau-Brostean et al. in PionDTLS [24].

Disregarded ClientHello Parameters (A6). We observed
a deviation from the recommended cookie computation in
eight of the tested implementations. However, none of the
deviations does result in interoperability issues or vulnera-
bilities since the cookie computation includes the client IP
address and therefore remains unpredictable for an attacker
with spoofed addresses.

Different Cookie Lengths (A8). In our evaluation, we
could identify three different cookie lengths: 16, 20, and 32
bytes. None of these cookie lengths are small enough that an
attacker could reasonably guess a cookie.

5.2 Retransmissions
Epoch Confusion. During the scanning process, we ob-
served that MatrixSSL sends faulty retransmissions after com-
pleting the handshake. If a client does not send any mes-
sage after a completed handshake, MatrixSSL retransmits its
ChangeCipherSpec and Finished messages. Upon sending
the new ChangeCipherSpec message, MatrixSSL increases
its epoch, resulting in an invalid value for the retransmitted
Finished. Since the client cannot process this epoch number,
all further communication will fail.

Missing Support for Retransmissions (B). Botan and
TinyDTLSC do not implement a retransmission mechanism.

USENIX Association 32nd USENIX Security Symposium 4865

They can neither process nor send retransmissions. In con-
trast, TinyDTLSE only processes received retransmissions
correctly but does not send retransmissions itself. This causes
connection attempts to fail if a packet gets lost in transmis-
sion.

DoS in Example Server. In a handshake with RSA key
exchange, the example server of OpenSSL and LibreSSL
does not always close the connection correctly. If the server
receives a malformed ClientKeyExchange followed by a
ChangeCipherSpec, it is impossible to close the connection
with an Alert message. Both implementations respond to new
handshake attempts from different source ports by retransmit-
ting the ServerHello, Certificate, and ServerHelloDone mes-
sages from the aborted connection. The bug prevents both
servers from performing further connections until restarted.

5.3 Fragmentation
DoS by Exploiting Fragmentation (C2, E). Botan, JSSE,
MatrixSSL, and PionDTLS process fragmented ClientHello
messages before a cookie has been exchanged. After receiving
a ClientHello fragment, they wait for the remaining fragments
of the ClientHello message. This behavior forces the server
to create per-client state, enabling DoS attacks via memory
exhaustion as an attacker can flood the server with ClientHello
fragments.

How exploitable these vulnerabilities are depends on the
size of the generated state and its lifetime. In the case of
MatrixSSL, the library restricts the maximum size of the
ClientHello to 210 bytes and the fragmentation of a message
to 16 fragments. These limitations weaken the attack by con-
straining the size of the state and its lifetime. For JSSE and
PionDTLS, the strength of the vulnerability varies based on
the server configuration. In the example server of JSSE, the
user can define a maximum size for the ClientHello message,
while in PionDTLS, the user can set a timer to determine the
lifetime for the generated state.

We additionally evaluated whether these implementations
disable the fragmentation functionality when attacked, but no
such countermeasure is implemented.

In OpenSSL and LibreSSL, we observed the same behavior.
However, when investigating this behavior, we found that
the API allows users to implement no cookie exchange, a
stateful cookie exchange, or a stateless cookie exchange. The
example server uses the stateful cookie exchange by default,
but stateless mode can be requested through command line
parameters. Developers using either library should make sure
they use the stateless implementation.

Missing Fragmentation Support (C). We discovered that
both TinyDTLS variants do not process any fragmented mes-
sages and can not fragment their own messages. However,
at the time of writing, the developers of TinyDTLSE have
started the development of this feature.

5.4 Message Order and Epochs
Possible Injection of Unencrypted Application Data
(D2, E). TinyDTLSC processes unencrypted application
data sent with epoch 0 after completing a handshake. This bug
has severe consequences as it allows an attacker to inject arbi-
trary application data at any point once a handshake between
two peers has been completed. An attacker can simply send
unencrypted application data with epoch 0 with a spoofed IP
to the victim after a benign handshake with two honest peers
has been established. The victim will accept this application
data as part of the benign connection. In 2020, a similar issue
was discovered in PionDTLS [24].

Processing of unencrypted Finished messages (D1).
Botan accepts unencrypted Finished messages delivered with
epoch 0 during a handshake. In comparison to D2, this bug
does not result in an immediate vulnerability since an attacker
is unable to construct a valid Finished message.

Crashes on Receiving Unexpected Messages (D1, D3, E).
Upon receiving an unencrypted Finished message or the
ChangeCipherSpec and Finished messages in the wrong or-
der within a regular handshake, MatrixSSL attempts to re-
transmit its initial handshake messages. While doing so,
MatrixSSL wrongfully assumes it is performing a session
resumption. Consequently, it sends a new ServerHello, fol-
lowed by an early ChangeCipherSpec and Finished. It sends
the Finished message within a record with epoch 1 but does
not encrypt the record’s payload. Then, before the client can
send any other messages, MatrixSSL crashes with a segmen-
tation fault.

Delayed Completion of the Handshake (D3). We ob-
served that Botan, GnuTLS, PionDTLS, TinyDTLSE , and
wolfSSL completed the handshake delayed when they re-
ceived the ChangeCipherSpec and Finished messages out of
order. In that event, they do not buffer out of order messages
and wait for a retransmission from the client. This behavior
can lead to a less efficient connection establishment when
packets are received out of order due to the unreliable trans-
port protocol.

Failed Handshakes (D3). In addition, we observed that
TinyDTLSC can not handle receiving the ChangeCipherSpec
and Finished messages in the wrong order. It fails to find the
key material to decrypt the Finished message and sends an
Alert to abort the whole connection establishment. This bug
is a rediscovery from [24] and is still unfixed.

5.5 Cryptographic Vulnerabilities
Padding Oracle Vulnerability in PionDTLS (E). Our
evaluation showed that PionDTLS is vulnerable to a direct
CBC padding oracle attack. The vulnerability results from an
observable difference in the processing of different padding
values [38]. We found that if the plaintext of an encrypted
message contains valid padding and the unpadded message is

4866 32nd USENIX Security Symposium USENIX Association

too short to contain a MAC, the server throws an internal ex-
ception and closes the connection. In all other cases, the server
correctly processes an invalid message, omits it, and keeps
the connection alive as prescribed in the DTLS specification.
This behavior is exploitable and can be abused to extract
confidential data if CBC cipher suites are negotiated [41, 61].

Insecure Renegotiation in TinyDTLSC (E). TinyDTLSC

supports insecure renegotiation and is therefore vulnerable to
the Renegotiation attack [42]. This bug is also a rediscovery
from [24] and is still unfixed.

5.6 Vendor Feedback
We responsibly disclosed all discovered bugs and vulnerabili-
ties listed in Table 1, except for deviations from the recom-
mended cookie computation (A6) to the respective vendors.
The developers of JSSE, Scandium, and wolfSSL promptly
addressed and fixed the DoS amplification vulnerabilities
(CVE-2022-34293, CVE-2022-2576, CVE-2023-21835) (A2,
A3, E). However, at the time of writing, among the memory
exhaustion vulnerabilities (C2, E), only the JSSE implemen-
tation has been fixed. For the vulnerabilities in MatrixSSL,
the developers acknowledged the receipt of our report and
started the investigations. For the two TinyDTLS variants,
the developers informed us about their plans to discontinue
the TinyDTLSC variant, indicating that the discovered issues
will likely not be fixed and that this implementation must
not be evaluated in the future. Regarding D3, the developers
of wolfSSL and TinyDTLSE replied to us that they inten-
tionally do not cache records of future epochs and expect
the peer to send the ChangeCipherSpec and Finished mes-
sages in one UDP datagram. Furthermore, the developers
of Botan mentioned that their implementation is primarily
utilized with other transport protocols that emulate reliable
packet exchange. As a result, they do not consider missing sup-
port for retransmissions (B) a limitation for their customers.

6 Analysis of the DTLS Ecosystem
Using the knowledge gained from evaluating the open-source
libraries, we conduct the first large-scale study on the state
of the server-side DTLS ecosystem on the Internet from May
2022 to June 2022.

6.1 Host Discovery
In contrast to the TLS ecosystem, the DTLS ecosystem has
not been analyzed yet. It is still unknown on which ports
DTLS servers are mostly deployed. To make an independent
port selection, port scans must be conducted. Since we aim to
avoid noise and high load for deployed systems, we applied
a scanning methodology that minimizes the necessary scans:
First, we used ZMap [22] to scan 217 random IP addresses
on every port. If at least 100,000 DTLS servers are deployed
on a specific port, by scanning 217 hosts, we can expect to
find at least one among them in our sample with a probability
of more than 95%. We configured ZMap to send a DTLS

Port Hosts Found Hosts Evaluated

443 273,140 168,924 61.85%
10443 262,724 236,519 90.03%
1106 47,654 44,189 92.73%
3391 36,719 34,636 94.33%
4433 17,874 15,027 84.07%

12346 15,334 13,712 89.42%
12446 9,388 7,842 83.53%
12681 1,368 - -

∑ 664,201 520,849 78.42%

Table 2: Results of our scan of 220 random IP addresses show-
ing the top eight DTLS ports by hosts that sent DTLS records.
We evaluated all hosts that sent at least a ServerHello mes-
sage. Since our scans interfered with the running services on
port 12681, we excluded the port from our study.

ClientHello and saved each received response. We dismissed
all ports where no DTLS record was received, which left
us with 2343 ports and a total of 2403 hosts. From this, we
estimate that there are around 78.7 million DTLS IPv4 hosts
on the Internet across all ports. To determine the ports where
the largest number of DTLS servers are located, we repeated
our scans for these ports and increased our sample size to 220.
For eight of the 2343 ports, we received at least four responses
with DTLS records. For our study, we scanned the entire IPv4
address space for each of these eight ports using ZMap again.
Table 2 provides an overview of the results of our scan.

Evaluability. We evaluated all hosts for which we could
receive a ServerHello message from the server. However, on
all ports from Table 2, some hosts could not be thoroughly
evaluated. This is mainly due to two reasons: (i) The server
did not respond after some time, for example, due to blocking
our requests or (ii) bugs in the DTLS implementation pre-
vented a server from completing the DTLS handshake with
our scanner.

Port 443 had the highest quota of unevaluated hosts, with
38.15%. As the primary cause, we could identify that many
of these hosts implement the OpenConnect VPN proto-
col [35]. To complete a DTLS handshake with these hosts, the
ClientHello message requires a session ID from a previous
TLS handshake with the server. In addition, the client must
authenticate to the server to switch to the DTLS channel. We
thus excluded these servers prompting client authentication
from our study.

We also excluded all hosts found on port 12681 from the
study. The owner of a large number of hosts on that port con-
tacted us shortly after we started our evaluation and informed
us that our scans were interrupting services due to a buffer
overflow in custom logging code that was triggered by benign
protocol messages sent by our scanner. We stopped our eval-
uation and did not attempt to reevaluate these hosts to avoid
interrupting any running services.

USENIX Association 32nd USENIX Security Symposium 4867

0% 20% 40% 60% 80% 100%

12446
12346

4433
3391
1106

10443
443

Fraction of Hosts

Po
rt

VPN - Fortinet TURN STUN
VPN - Citrix Viptela - Cisco Unknown

Figure 2: Distribution of the identified services. Note that
services with ≤ 0.01% support are not included.

6.2 Identified Services
Based on the ALPN extension, we were only able to negoti-
ate an application protocol with 12,074 of the 168,924 hosts
on port 443 and one host on port 4433. On the remaining
ports, no host negotiated any of our offered protocols using
ALPN. This can be either due to a lack of support for ALPN
in general or due to the specific protocols offered in the exten-
sion. Since protocols are listed as ASCII strings, some servers
might use custom values instead of the values specified by
IANA. Among the 12,074 hosts, we were able to negotiate
the following three application protocols: 11,958× TURN,
11,593× STUN, and 11466× HTTP 1.1. With 92% of the
12,074 hosts with identified ALPN support negotiating all
three protocols. It is surprising that HTTP 1.1 was negotiated
by so many servers, given that HTTP usually requires TCP.
We attempted to trigger an HTTP reply from these servers to
confirm that HTTP is used but were unable to do so. We thus
assume that this is a misconfiguration of ALPN.

Independent of the ALPN extension, we tried to identify
the service over the server’s response. The distribution of the
identified services is summarized in Figure 2. We could detect
a VPN application from Fortinet as the most popular service
on ports 443, 10443, and 4433. In contrast, the majority of
hosts (97%) on ports 12346 and 12446 are running Viptela,
a WAN management tool acquired by Cisco in 2017. 3 We
identified this service based on the certificates we obtained
from these hosts. Additionally, we found 11,522 STUN and
11,549 TURN services which are mainly located on port 443.
Deeper analyses showed that almost all of these hosts also
negotiate TURN or STUN as application layer protocols.

6.3 Data Collection Results
Here we analyze the collected protocol features and compare
configuration differences between the individual ports.

Supported Protocol Versions (Table 3). On port 3391,
DTLS 1.0 was used almost exclusively, while on ports 12346

3https://www.cisco.com/c/en/us/solutions/collateral/ent
erprise/design-zone-security/sase-viptela-cvd.html

and 12446, DTLS 1.2 was dominant. While analyzing ex-
cluded hosts that sent a DTLS record but did not send a
ServerHello, we were able to identify a third version through
the protocol version field of received alert records: DTLS 0.9,
which is based on a pre-release draft of DTLS 1.0. We largely
attributed this version to older Cisco servers by analyzing the
certificates used by these hosts. A reference in a mailing list4

indicates that Cisco used this pre-release version of DTLS in
their AnyConnect VPN protocol implementation. We identi-
fied support for this pre-release draft version for 24,455 hosts
on port 443.

Supported Cipher Suites (Table 3). On each considered
port, most servers share a similar DTLS configuration. For
example, on ports 10443 and 4433, the Camellia, ARIA, and
ChaCha20-Poly1305 encryption schemes are supported by
more than 87% of hosts. In contrast, hosts rarely use them on
ports 3391, 12346, and 12446. This also applies to widespread
support for weak algorithms; on port 443, we noticed that
13.5% of the hosts accept at least one cipher suite with NULL
encryption, which does not achieve confidentiality if negoti-
ated. In addition, we also determined support for old 64-bit
block ciphers like 3DES and IDEA, with the highest ratios on
port 1106, with 99.67%, and 3391, with 86.4% of hosts. Al-
most all hosts on port 1106 supported the RC4 stream cipher.
RC4 is forbidden in DTLS as continuous internal state is re-
quired, which can not be maintained if datagrams of unknown
size are lost in transit. Interestingly, the same hosts also sup-
ported modern AEAD cipher suites, such as ChaCha20 with
Poly1305 authentication tags, which have much stronger se-
curity properties than the deprecated RC4 cipher [7, 28, 60].
Generally, support for AEAD cipher suites has been high
across all ports except for port 3391, where block ciphers in
CBC mode have almost exclusively been supported. While
block ciphers in CBC can be implemented securely, minor
implementation mistakes can make the servers susceptible to
padding oracle attacks [38].

Regarding the preferred key exchange mechanism, we
found that ECDHE key exchange is preferred over RSA and
DHE across all ports. Hosts on ports 12346 and 12446 often
enforced cipher suites that achieve Perfect Forward Secrecy
(PFS). Static (EC)DH cipher suites have not been supported
by any host in our scan.

Supported Elliptic Curves (Table 7). Similarly to the dis-
tribution of cipher suites, we see different elliptic curve con-
figurations across the analyzed ports. For example, curves
over binary fields were generally not supported, except on
ports 12346 and 12446, where approximately 39% of hosts
supported each binary field curve.

The most common curves we observed across all ports were
secp256r1, secp384r1, and secp521r1. This is unsurprising
as these curves are also very common among TLS implemen-

4https://lists.unix-ag.uni-kl.de/pipermail/vpnc-devel/2
008-September/002585.html

4868 32nd USENIX Security Symposium USENIX Association

https://www.cisco.com/c/en/us/solutions/collateral/enterprise/design-zone-security/sase-viptela-cvd.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise/design-zone-security/sase-viptela-cvd.html
https://lists.unix-ag.uni-kl.de/pipermail/vpnc-devel/2008-September/002585.html
https://lists.unix-ag.uni-kl.de/pipermail/vpnc-devel/2008-September/002585.html

Port Total v1.0 v1.2 RSA DHE ECDHE RSA-PSK DHE-PSK ECDHE-PSK PSK Only PFS mTLS

443 168,924 142,417 164,535 146,849 9,963 165,970 0 4,770 4,013 4,752 17,028 3,596
10443 236,519 235,148 236,060 234,579 69 236,402 0 66 66 66 1,779 47
1106 44,189 43,685 43,692 10 4 44,158 0 3 3 3 0 1
3391 34,636 34,636 15 33,398 16,410 34,582 0 3 3 3 1,210 34,520
4433 15,027 14,933 14,974 14,278 571 14,994 0 545 545 541 183 43

12346 13,712 432 13,709 13,707 13,681 13,404 0 3 3 3 12,424 13,697
12446 7,842 248 7,839 730 7,808 7,679 0 3 3 3 7,105 7,827

Port Total NULL RC4 DES 3DES IDEA CAMELLIA ARIA AES CHACHA CBC AEAD

443 168,924 22,792 0 13 9,256 250 119,772 105,583 168,627 113,214 154,474 162,563
10443 236,519 0 0 10 3,529 0 235,203 219,371 236,425 232,823 236,113 235,912
1106 44,189 0 44,075 0 44,041 0 11 6 43,872 41,039 44,052 41,653
3391 34,636 0 0 0 29,928 0 14 6 34,611 7 34,611 14
4433 15,027 3 0 3 501 0 14,891 13,125 15,006 13,902 14,969 14,939

12346 13,712 0 0 0 4 0 30 26 13,710 27 1,286 13,702
12446 7,842 0 0 0 4 0 32 28 7,838 29 733 7,832

Table 3: Distribution of the supported protocol features. The data shows that the ecosystem on a given port is mostly heterogeneous
and dominated by a few configurations, likely caused by individual products deployed on these ports.

tations [58]. The sparse support for most other curves over
prime fields and all curves over binary fields in general also
led to their deprecation with RFC 8422 [40, Section 5.1.1].
Support for the newer curves, x25519 and x448, was minimal
across all ports, except for port 3391, where 74.4% supported
x25519.

Supported Extensions (Table 8). The Renegotiation exten-
sion [46] is the only one almost all hosts support. The three
ports 10443, 1106, and 4433 show similarly high support for
the EC Point Format [40] (>99%), Encrypt Then Mac [29]
(>91%), Extended Master Secret [12] (>96%), Max Fragment
Length [23] (>91%) and Session Ticket [51] (>95%) exten-
sions. For port 443, the support was slightly lower for all
of these extensions, with 95.2%, 67.2%, 77%, 81.1%, and
94.4%, respectively. Surprisingly, the Heartbeat [52] exten-
sion is supported by only 5.18% of all evaluated servers. We
expected higher support since the extension allows DTLS
peers to determine if a peer is still alive and since more than
34% of TLS servers offered this extension in 2018 on port
443 [33]. We suspect that disabling the Heartbeat extension is
a reaction to the discovered Heartbleed bug (CVE-2014-0160)
in OpenSSL.

6.4 Certificate Details
We were able to get certificates from 98.55% of the evaluated
servers (see Table 6). Some servers were exclusively support-
ing cipher suites with pre-shared keys (PSK) and therefore do
not own any X.509 certificates for authentication.

Self-Signed Certificates on Port 1106. 99.75% of all
servers on port 1106 use a self-signed certificate to authen-
ticate themselves. Self-signed certificates cannot be verified
based on a PKI and must manually be configured as trusted.
Consequently, they are not suitable for communication with
public peers. Additionally, all except one of these servers used
an identical self-signed certificate. For this certificate, the is-
suer and subject fields contain the following content: C = XX,

L = Default City, O = Default Company Ltd. These
servers are also the ones that wrongfully support the RC4
stream cipher. We assume they use the same software in a
default configuration or are hosted by the same operator.

Expired Certificates. Across all evaluated ports, we iden-
tified widespread use of expired certificates. In total, 28,569
(5.49%) hosts sent expired certificates, the majority on port
443. All DTLS client implementations should reject such
certificates.

Keys and Signatures. On port 1106, we found 44,079 cer-
tificates that contained an ECDSA public key and were signed
with ECDSA. Only nine certificates5 contained an RSA pub-
lic key and were signed using RSA. On all other ports, RSA
public keys and signatures were used almost exclusively.

6.5 DTLS-Specific Features
For our DTLS-specific tests introduced in Section 3, the re-
sults are summarized in Table 4.

Cookie Exchange. The results show that the received
cookie is mostly verified by the hosts across all ports ex-
cept port 443 (A7). On that port, 13.5% of the servers did
not validate the received cookie and accepted a ClientHello
message with a random cookie. An analysis of their certifi-
cates indicated that the servers belong to the company Zscaler
and likely use the same DTLS implementation. Further analy-
sis revealed that their DTLS implementation always issues a
static cookie. Both behavior patterns pose a significant threat
because the servers can be abused as amplifiers by sending
ClientHello messages with a random cookie. The server’s
response size varied depending on the server’s Certificate
message. Most often, the received DTLS data was bigger than
2,300 bytes and reached an amplification factor of 33. In ad-
dition, we identified that their servers are among those that
support cipher suites with NULL encryption. We could not

5We identified 10 hosts that support RSA key exchange, but stopped
responding during the certificate extraction.

USENIX Association 32nd USENIX Security Symposium 4869

Label Test 443 10443 1106 3391 4433 12346 12446

Total Hosts 168,924 236,519 44,189 34,636 15,027 13,712 7,842

A1a No cookie exchange during a new handshake 461 526 566 147 60 6 8

A2a Supports session resumption with session ID 48,681 102,451 4 3 5,775 4 4
No cookie exchange during a resumption with session ID 0 0 0 0 0 0 0

A3a Supports session resumption with session ticket 56,172 101,327 4 7 5,696 3 2
No cookie exchange during a resumption with session ticket 3 10 0 0 0 0 0

A4a Supports renegotiation 23,088 0 0 0 1 0 0
No cookie exchange during a renegotiation 16,048 0 0 0 0 0 0

A5a Performs HelloVerifyRequest retransmissions 10 22 4 84 1 24 14
A6 Performs recommended cookie computation 4,264 394 1 33,938 10 3 3
A7a Does not validate the received cookie 22,797 0 3 0 2 0 0

A8

Cookie length: 8 bytes 0 0 0 0 2 0 0
Cookie length: 16 bytes 22,831 0 43,611 5 0 0 0
Cookie length: 20 bytes 140,811 235,921 8 6 14,377 13,700 7,828
Cookie length: 24 bytes 762 0 0 0 0 0 0
Cookie length: 32 bytes 4,059 72 4 34,478 588 6 6

B1 Sends retransmissions without requesting 15,163 432 43,605 34,478 903 48 47
B2 Processes client-requested retransmissions 140,517 235,344 43,566 34,463 15.254 13,696 7,830

C1a Does not process fragmented ClientHello in a single datagram 15,980 17,699 509 34,629 1,763 13,704 7,834
C2a Does not process fragmented ClientHello in cross datagrams 12,136 17,410 20,327 34,629 1,762 13,704 7,834
C3a Does not process fragmented ClientKeyExchange in a single datagram 11,679 16,783 509 34,628 1,696 13,704 7,834
C4a Does not process fragmented ClientKeyExchange in cross datagrams 11,962 17,254 20,327 34,629 1,279 13,704 7,834

D1a Processes unencrypted Finished 0 0 0 0 0 0 0
D2a,b Processes unencrypted Application Data - - - - - - -
D3 Processes reordered ChangeCipherSpec and Finished 133,640 219,603 409 8 13277 7 7

a: Test description was inverted to emphasize interesting server behaviors.
b: Excluded from our large-scale study.

Table 4: Detailed results on our DTLS-specific tests of the Internet scan. Note that we inverted test descriptions compared to
Table 1 to emphasize interesting server behaviors. The cookie lengths listed above cover all lengths we observed during our
evaluation.

complete a handshake with these hosts regardless of which ci-
pher suite was selected, indicating a severe deviation from the
specification. We reported the observed behaviors to Zscaler,
who acknowledged that the servers do not validate the cookie,
as well as the intentional support of the NULL encryption.

Regarding session resumption, we discovered that less than
0.01% of all evaluated hosts do not execute a cookie exchange
during resumption (A2, A3). We did not further evaluate
whether a server can be forced to fall back to a full hand-
shake without a new cookie exchange. We generally found
that servers deviate from the RFC’s recommended cookie
computation but prevent DoS attacks by including the client’s
IP address (A6) and enforcing cookie exchanges for new
DTLS sessions (A1).

Retransmissions. Across all ports, the majority of hosts
supported retransmissions (B). However, most hosts do not
implement a timer but only send retransmissions themselves if
they receive retransmissions from the client. A notable excep-
tion are the hosts on ports 1106 and 3391, which also actively
implement a timer. This is a behavioral difference from the
server implementations evaluated in Section 5. However, for
DTLS, it is sufficient that one peer implements the timer for
the connection to be functional.

Missing Features. Almost all servers on ports 3391, 12346,
and 12446 could not process fragmented messages (C) and
messages received in the wrong order (D3). We expect these

services to have connectivity problems from time to time. In
contrast, most hosts on port 10443 supported both fragmenta-
tion (92.9%) and message reordering (92.8%).

6.6 Vulnerability Analysis
Subsequently, we analyze which known protocol attacks se-
lected in Section 4.1 affect real server deployments. An
overview of the tested attacks and the number of vulnerable
hosts provides Table 5.

ALPACA [15]. Almost no hosts used strict ALPN valida-
tion. We could only identify 63 hosts on port 443 that imple-
mented the mitigation, indicating that the DTLS ecosystem is
still potentially affected by cross-protocol attacks. However,
at the time of writing, there is no known DTLS cross-protocol
attack exploitable through ALPACA. We did not evaluate if
those servers are also using compatible certificates on other
DTLS services.

Sweet32 [11]. We identified 16.75% of the servers using
the 3DES and IDEA encryption schemes, making them po-
tentially vulnerable to Sweet32. Most of these servers are
located on two ports: 99.67% of the servers on port 1106 and
86.41% of the servers on port 3391. However, the support of
64-bit block ciphers only poses a real threat if those ciphers
get negotiated and are used to transmit large amounts of data.

Raccoon [37]. The analysis of the supported cipher suites
revealed no support for static DH key exchange. However,

4870 32nd USENIX Security Symposium USENIX Association

Port Total Insecure
Renegotiation

CVE-
2020-13777 CRIME Logjam FREAK Sweet32 Bleichen-

bacher
Padding

Oracle
Invalid
Curve Raccoon ALPACA

not mitigated1

443 168,924 1,124 0 11 0 0 9,256 28 129 0 4004 168,861
10443 236,519 0 0 0 0 0 3,529 0 318 0 63 236,519
1106 44,189 0 0 0 0 0 44,041 0 0 0 3 44,189
3391 34,636 0 0 0 0 0 29,928 0 0 0 31 34,636
4433 15,027 0 0 0 0 0 501 0 25 0 540 15,027

12346 13,712 0 0 0 0 0 4 0 0 0 12,301 13,712
12446 7,842 0 0 0 0 0 4 0 0 0 7,016 7,842

∑ 520,849 1,124 0 11 0 0 87,263 28 472 0 23,958 520,768

1: We evaluated the potential attack surface by testing for a mitigation through the Application-Layer Protocol Negotiation (ALPN) extension.

Table 5: Overview of the number of hosts vulnerable to the evaluated attacks.

we detected the support of ephemeral DH key exchange in
48,506 servers, among which 23,958 reused their keys for
more than one connection, making them likely vulnerable
to the Raccoon attack. This vulnerability is especially com-
mon among ports 12346 and 12446 with around 89% each,
whereas port 1106, despite its larger sample size, only had ap-
proximately 0.01% vulnerable hosts. While the vulnerability
is quite common, it is hard to exploit as it requires very precise
timing measurements and can (for the most part) only attack
connections that naturally negotiate FFDHE cipher suites.

Insecure Renegotiation [42]. We were able to execute a
renegotiation with 23,089 of the hosts across all ports. Among
these, we discovered 1,124 servers that support insecure rene-
gotiation. The affected servers are willing to renegotiate
while the client is not presenting the Renegotiation Info exten-
sion or the TLS_EMPTY_RENEGOTIATION_INFO_SCSV cipher
suite [46]. This makes them potentially vulnerable to a rene-
gotiation attack. However, the severity of this flaw depends
on the concrete application.

Padding Oracle Vulnerabilities [61]. We identified 472
hosts with a CBC padding oracle vulnerability. They are dis-
tributed among three of the studied ports. These vulnerabili-
ties manifested in two distinct response patterns that were both
observable [38], meaning that the differences in the server re-
sponses were directly visible (e.g., different number of alerts).
Further, the low number of vulnerable hosts indicates that the
DTLS ecosystem is less affected by padding oracle vulnera-
bilities than the TLS ecosystem. In 2018, a study by Merget
et al. [38] revealed vulnerabilities in 1.83% of the Alexa Top
Million hosts by scanning their TLS implementation. Similiar
to the Raccoon attack, these flaws can only be exploited if
CBC cipher suites get naturally negotiated.

Bleichenbacher Attack [13]. For 28 hosts on port 443,
we discovered a Bleichenbacher vulnerability. We identified
two distinct subgroups based on their specific alerts. In both
cases, the behavioral differences between a valid and invalid
PKCS#1 padding could allow an attacker to recover RSA en-
crypted Premaster Secrets or forge RSA signatures. Overall,
compared to the results of Böck et al. [14] on the TLS ecosys-
tem, the Bleichenbacher vulnerability is nearly mitigated in
DTLS. They discovered vulnerabilities in 2.8% of the Alexa

Top Million hosts. While the Bleichenbacher attack is espe-
cially severe if RSA gets negotiated by real clients naturally,
it is also potentially possible to perform a downgrade attack
if the client supports any RSA cipher suite.

CRIME [48]. We found only eleven servers that support
DEFLATE compression and are vulnerable to the CRIME
attack if an attacker can (partially) control the encrypted con-
tent. Note that the client connecting to the server also needs
to support compression and naturally negotiate it with the
server. This result indicates that the CRIME attack is mostly
mitigated in the DTLS ecosystem.

Other Attacks. None of the evaluated hosts support the
intentionally weakened EXPORT ciphers indicating that the
FREAK [10] and Logjam [4] attacks do not pose a threat
to the DTLS ecosystem. Despite high support for the Ses-
sion Ticket extension [51] of 87%, none of the hosts were
vulnerable to the GnuTLS session ticket bug (CVE-2020-
13777). Further, we did not find hosts vulnerable to an invalid
curve [32] attack.

6.7 Malformed Application Data
We identified 10,875 servers on port 443 that send malformed
encrypted application data after a successful handshake. Their
records contain a random epoch and sequence number in the
record header. We were unable to decrypt these records with
the negotiated keys. Surprisingly, the Finished messages of
these servers contained the expected epoch values and se-
quence numbers and could be decrypted correctly. We at-
tribute this behavior to servers of the company AnchorFree,
which did not respond to our reports.

7 Applicability to DTLS 1.3
DTLS 1.3 is primarily based on TLS 1.3 but incorporates spe-
cific modifications to work on unreliable transport protocols.
Consequently, there are significant cryptographic divergences
between DTLS 1.3 and its predecessors, while generic DTLS
concepts mostly stayed the same.

DTLS 1.3 still uses the same anti-DoS cookie concept,
which means that the same implementation pitfalls (Sec-
tion 3.1) might be present. In contrast to previous RFCs, the
DTLS 1.3 RFC explicitly mentions that HelloRetryRequest

USENIX Association 32nd USENIX Security Symposium 4871

messages should not be retransmitted to avoid the creation of
a local state (Section 3.3). Ignoring this advice may obviously
result in a vulnerability again. The renegotiation feature was
replaced with key updates, which resolves our concerns in
Section 3.2. The epoch concept is still present, which poten-
tially enables the implementation flaws in Section 3.5; the
RFC does not explicitly warn about this flaw. Fragmentation
and message sequence numbers are still present, potentially
enabling flaws from Section 3.4. The RFC does not explic-
itly warn about not keeping state for fragmented ClientHello
messages.

In general, most of our potential flaws and tests can be
adapted to DTLS 1.3 in the future and should be considered
by developers.

8 Related Work
Flaws in DTLS. In 2012, AlFardan and Paterson presented
a DTLS-specific technique to exploit timing-based CBC
padding oracles in DTLS [41]. They could amplify minor tim-
ing differences by sending the same record with different se-
quence numbers multiple times. In 2013, the authors extended
their work by discovering Lucky 13 - a timing-based CBC
padding oracle vulnerability in the TLS specification. They
evaluated the vulnerability also in the context of DTLS [5].
The attack was later reanalyzed [49, 6, 56], where the vulner-
ability reappeared multiple times.

Analysis of DTLS Implementations. DTLS implemen-
tations have already been evaluated in a controlled lab en-
vironment utilizing protocol state fuzzing (or state learn-
ing) [59, 55, 24, 25]. During state learning, DTLS messages
are sent in different orders to the peer, to construct a mealy
machine model of the state machine implementation. This
model can then later be analyzed to find flaws related to the
state machine of the analyzed implementation. While Van
Drueten [59] and Tåkvist [55] could not find new vulnera-
bilities, Fiterau-Brostean et al. examined thirteen server im-
plementations [24] using protocol state fuzzing and uncov-
ered four security vulnerabilities. A time-consuming man-
ual analysis of the obtained state machines was required
to identify flaws. In [25], the analysis process was auto-
mated such that the previously discovered bugs could now be
confirmed without further manual analysis. While state ma-
chine learning is a powerful tool, it is not suitable to extract
general properties of DTLS implementations or to test for
known cryptographic vulnerabilities. For example, Fiterau-
Brostean et al. [24, 25] did not test for all cryptographic at-
tacks [11, 61, 13, 32, 10, 4, 15, 48, 37] nor for the following
issues and properties: Cookie exchange (A2, A3, A4, A7, A8),
retransmissions (B), fragmentation (C), and reordering (D3).
Additionally, previous state learning approaches require care-
ful tuning of the tested implementation and the learner to fully
automate the process and avoid false positives, making them
unsuitable for large-scale scans.

Asadian et al. applied symbolic execution to analyze four

server implementations for violations of the DTLS specifica-
tion [8]. They focused only on handshakes with a pre-shared
key to reduce the execution time of their evaluation and uncov-
ered vulnerabilities and non-conformance issues in OpenSSL
and TinyDTLS.

Large-Scale Scans on the TLS Ecosystem. In contrast
to DTLS, the TLS ecosystem has been the subject of multi-
ple large-scale studies, which tracked its development over
time [33], evaluated provided HTTPS certificates [20], com-
pared deployment for different ports and application proto-
cols [30, 36], and even analyzed clients based on passively col-
lected data [27]. Additionally, studies estimated the impact of
vulnerabilities such as Heartbleed [21], weak Diffie-Hellman
parameters [57, 19], ROBOT [14], padding oracles [38], Log-
jam [4], DROWN [9], Curveswap [58], Raccoon [37], and AL-
PACA [15]. Further, Dahlmanns et al. performed an Internet-
wide study of ten (D)TLS-based industrial IoT protocols [16].
They evaluated the configuration of 705 DTLS servers found
on ports 5683 and 5684 as part of their scan for CoAP hosts.
They analyzed the negotiated protocol versions, cipher suites,
and certificates obtained using ZGrab2 [3].

9 Conclusions and Future Work
In this work, we analyzed DTLS server implementations of
well-known open-source libraries in a controlled environment
and presented the first large-scale study of the DTLS server
ecosystem by scanning an estimated 0.66% of publicly avail-
able IPv4 servers on the Internet.

Regarding our first research question, we determined that
several (D)TLS libraries show unsupported features, func-
tional bugs, or non-conformance issues. While the libraries
are mostly secure, the discovered issues limit their robust-
ness. Further, we observed that DoS attacks are still a real
threat to DTLS implementations. We found five DoS vulnera-
bilities via memory exhaustion and three DoS amplification
vulnerabilities across well-known libraries.

As for our second research question, we found that few
DTLS configurations dominate every evaluated port. We at-
tribute this to a few individual pre-configured products de-
ployed on a given port. We also found that DTLS servers are
relatively secure against known attacks, except for the Rac-
coon [37] and ALPACA [15] attacks which have only been
discovered recently. The most pressing issues in the DTLS
ecosystem appear to be DoS amplification vulnerabilities,
with 4.4% of servers being affected.

While our evaluation focused on the analysis of DTLS
servers, the state of the ecosystem regarding clients is still
widely unknown, as a thorough evaluation requires access
to real-world network traffic collected by passive scans. An-
other related area not covered by our study is WebRTC, which
is used for real-time communication over the Internet, such
as video conferencing and also uses DTLS. To evaluate We-
bRTC, a dedicated setup is required, as server instances are
short-lived and only started on demand after a signaling phase

4872 32nd USENIX Security Symposium USENIX Association

has been executed.
However, it is questionable how relevant DTLS will be for

the community, even with the recent specification of DTLS
1.3 [47]. DTLS competes directly with QUIC [31] as both
protocols try to achieve similar goals. Today, it is unclear
which protocol will dominate the ecosystem in the future and
whether the newly specified DTLS 1.3 protocol will be widely
adopted. The methodologies used in our work will be useful
when answering questions about the prevalence and security
of these two standards in the future.

Acknowledgements
We thank the anonymous reviewers and shepherd for their
valuable feedback. This research was partially funded by Ger-
many’s Excellence Strategy - EXC 2092 CASA - 390781972
and by the German Federal Ministry of Education and Re-
search (BMBF) through the project KoTeBi. Nurullah Eri-
nola was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - 450197914.

References
[1] TLS-Attacker. https://github.com/tls-attacker/TL

S-Attacker.

[2] TLS-Scanner. https://github.com/tls-attacker/TL
S-Scanner.

[3] ZGrab2. https://github.com/zmap/zgrab2.

[4] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Na-
dia Heninger, Drew Springall, Emmanuel Thomé, Luke Va-
lenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice. In 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS,
2015.

[5] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky Thir-
teen: Breaking the TLS and DTLS Record Protocols. In IEEE
Symposium on Security and Privacy, SP, 2013.

[6] Martin Albrecht and K.G. Paterson. Lucky Microseconds: A
Timing Attack on Amazon’s s2n Implementation of TLS. In
35th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, EUROCRYPT, 2016.

[7] Nadhem AlFardan, Daniel J. Bernstein, Kenneth G. Paterson,
Bertram Poettering, and Jacob C. N. Schuldt. On the Security
of RC4 in TLS. In 22th USENIX Security Symposium, 2013.

[8] Hooman Asadian, Paul Fiterau-Brostean, Bengt Jonsson, and
Konstantinos Sagonas. Applying Symbolic Execution to Test
Implementations of a Network Protocol Against its Specifica-
tion. In IEEE Conference on Software Testing, Verification and
Validation, ICST, 2022.

[9] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Na-
dia Heninger, Maik Dankel, Jens Steube, Luke Valenta, David
Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper,
Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval
Shavitt. DROWN: Breaking TLS Using SSLv2. In 25th
USENIX Security Symposium, 2016.

[10] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
Messy State of the Union: Taming the Composite State Ma-
chines of TLS. In IEEE Symposium on Security and Privacy,
S&P, 2015.

[11] Karthikeyan Bhargavan and Gaëtan Leurent. On the Practical
(In-)Security of 64-Bit Block Ciphers: Collision Attacks on
HTTP over TLS and OpenVPN. In ACM SIGSAC Conference
on Computer and Communications Security, CCS, 2016.

[12] K. Bhargavan (Ed.), A. Delignat-Lavaud, A. Pironti, A. Lang-
ley, and M. Ray. Transport Layer Security (TLS) Session Hash
and Extended Master Secret Extension. RFC 7627 (Proposed
Standard), September 2015.

[13] Daniel Bleichenbacher. Chosen Ciphertext Attacks Against
Protocols Based on the RSA Encryption Standard PKCS #1. In
Advances in Cryptography - 18th Annual International Cryp-
tology Conference, 1998.

[14] Hanno Böck, Juraj Somorovsky, and Craig Young. Return Of
Bleichenbacher’s Oracle Threat (ROBOT). In 27th USENIX
Security Symposium, 2018.

[15] Marcus Brinkmann, Christian Dresen, Robert Merget, Damian
Poddebniak, Jens Müller, Juraj Somorovsky, Jörg Schwenk,
and Sebastian Schinzel. ALPACA: Application Layer Pro-
tocol Confusion - Analyzing and Mitigating Cracks in TLS
Authentication. In 30th USENIX Security Symposium, 2021.

[16] Markus Dahlmanns, Johannes Lohmöller, Jan Pennekamp, Jörn
Bodenhausen, Klaus Wehrle, and Martin Henze. Missed Oppor-
tunities: Measuring the Untapped TLS Support in the Industrial
Internet of Things. 2022.

[17] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.1. RFC 4346 (Proposed Standard), April
2006.

[18] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), August
2008.

[19] Kristen Dorey, Nicholas Chang-Fong, and Aleksander Essex.
Indiscreet Logs: Diffie-Hellman Backdoors in TLS. In 24th
Annual Network and Distributed System Security Symposium,
NDSS, 2017.

[20] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex
Halderman. Analysis of the HTTPS Certificate Ecosystem. In
Conference on Internet Measurement Conference, IMC, 2013.

[21] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann,
Jethro Beekman, Mathias Payer, Nicolas Weaver, David Adrian,
Vern Paxson, Michael Bailey, and J. Alex Halderman. The
Matter of Heartbleed. In Conference on Internet Measurement
Conference, IMC, 2014.

[22] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap:
Fast Internet-wide scanning and its security applications. In
22nd USENIX Security Symposium, 2013.

[23] D. Eastlake 3rd. Transport Layer Security (TLS) Extensions:
Extension Definitions. RFC 6066 (Proposed Standard), January
2011.

[24] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri

USENIX Association 32nd USENIX Security Symposium 4873

https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tls-attacker/TLS-Scanner
https://github.com/zmap/zgrab2

de Ruiter, Konstantinos Sagonas, and Juraj Somorovsky. Anal-
ysis of DTLS Implementations Using Protocol State Fuzzing.
In USENIX Security Symposium, 2020.

[25] Paul Fiterau-Brostean, Bengt Jonsson, Konstantinos Sagonas,
and Fredrik Tåquist. Automata-Based Automated Detection
of State Machine Bugs in Protocol Implementations. In 30th
Annual Network and Distributed System Security Symposium,
NDSS, 2023.

[26] S. Friedl, A. Popov, A. Langley, and E. Stephan. Transport
Layer Security (TLS) Application-Layer Protocol Negotiation
Extension. RFC 7301 (Proposed Standard), July 2014.

[27] Sergey Frolov and Eric Wustrow. The use of TLS in Censor-
ship Circumvention. In 26th Annual Network and Distributed
System Security Symposium, NDSS, 2019.

[28] Christina Garman, Kenneth G. Paterson, and Thyla Van der
Merwe. Attacks Only Get Better: Password Recovery Attacks
Against RC4 in TLS. In USENIX Security Symposium 2015,
2015.

[29] P. Gutmann. Encrypt-then-MAC for Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS). RFC
7366 (Proposed Standard), September 2014.

[30] Ralph Holz, Johanna Amann, Olivier Mehani, Mohamed Ali
Kâafar, and Matthias Wachs. TLS in the Wild: An Internet-
wide Analysis of TLS-based Protocols for Electronic Com-
munication. In 23rd Annual Network and Distributed System
Security Symposium, NDSS, 2016.

[31] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. RFC 9000 (Proposed Standard), May
2021.

[32] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. Practical
Invalid Curve Attacks on TLS-ECDH. In 20th European Sym-
posium on Research in Computer Security, ESORICS, 2015.

[33] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Ken-
neth G. Paterson, Narseo Vallina-Rodriguez, and Juan Ca-
ballero. Coming of Age: A Longitudinal Study of TLS De-
ployment. In Internet Measurement Conference, IMC, 2018.

[34] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN). RFC 5766 (Proposed
Standard), April 2010.

[35] N. Mavrogiannopoulos. The OpenConnect VPN Protocol Ver-
sion 1.2. draft-mavrogiannopoulos openconnect-03 (Internet-
Draft), October 2020.

[36] Wilfried Mayer, Aaron Zauner, Martin Schmiedecker, and
Markus Huber. No Need for Black Chambers: Testing TLS in
the E-mail Ecosystem at Large. In 11th International Confer-
ence on Availability, Reliability and Security, ARES, 2016.

[37] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj So-
morovsky, Johannes Mittmann, and Jörg Schwenk. Raccoon
Attack: Finding and Exploiting Most-Significant-Bit-Oracles
in TLS-DH(E). In USENIX Security Symposium, 2021.

[38] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig
Young, Janis Fliegenschmidt, Jörg Schwenk, and Yuval Shavitt.
Scalable Scanning and Automatic Classification of TLS
Padding Oracle Vulnerabilities. In USENIX Security Sym-

posium, 2019.

[39] Nagendra Modadugu and Eric Rescorla. The Design and
Implementation of Datagram TLS. In Proceedings of the
Network and Distributed System Security Symposium, NDSS,
2004.

[40] Y. Nir, S. Josefsson, and M. Pegourie-Gonnard. Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Se-
curity (TLS) Versions 1.2 and Earlier. RFC 8422 (Proposed
Standard), August 2018.

[41] Kenneth G. Paterson and Nadhem J. AlFardan. Plaintext-
Recovery Attacks Against Datagram TLS. In 19th Annual
Network and Distributed System Security Symposium, NDSS,
2012.

[42] M. Ray and S. Dispensa. Authentication gap in TLS renegotia-
tion, 2009.

[43] E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446 (Proposed Standard), August 2018.

[44] E. Rescorla and N. Modadugu. Datagram Transport Layer
Security. RFC 4347 (Proposed Standard), April 2006.

[45] E. Rescorla and N. Modadugu. Datagram Transport Layer
Security Version 1.2. RFC 6347 (Proposed Standard), January
2012.

[46] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Trans-
port Layer Security (TLS) Renegotiation Indication Extension.
RFC 5746 (Proposed Standard), February 2010.

[47] E. Rescorla, H. Tschofenig, and N. Modadugu. The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3. RFC
9147 (Proposed Standard), April 2022.

[48] Juliano Rizzo and Thai Duong. The CRIME attack. In
Ekoparty Security Conference, 2012.

[49] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir. Pseudo
Constant Time Implementations of TLS Are Only Pseudo Se-
cure. In ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS, 2018.

[50] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session
Traversal Utilities for NAT (STUN). RFC 5389 (Proposed
Standard), October 2008.

[51] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport
Layer Security (TLS) Session Resumption without Server-Side
State. RFC 5077 (Proposed Standard), January 2008.

[52] R. Seggelmann, M. Tuexen, and M. Williams. Transport
Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension. RFC 6520 (Proposed Standard),
February 2012.

[53] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Ap-
plication Protocol (CoAP). RFC 7252 (Proposed Standard),
June 2014.

[54] Juraj Somorovsky. Systematic Fuzzing and Testing of TLS
Libraries. In ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2016.

[55] Fredrik Tåkvist. Analysis of DTLS Implementations Using
State Fuzzing. August 2020.

[56] Ye Tang, Huiyun Li, and Guoqing Xu. Cache Side-Channel
Attack to Recover Plaintext against Datagram TLS. In Inter-

4874 32nd USENIX Security Symposium USENIX Association

national Conference on IT Convergence and Security, ICITCS,
2015.

[57] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney,
Joshua Fried, Marcella Hastings, J. Alex Halderman, and Nadia
Heninger. Measuring small subgroup attacks against Diffie-
Hellman. In Annual Network and Distributed System Security
Symposium, NDSS, 2017.

[58] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia
Heninger. In Search of CurveSwap: Measuring Elliptic Curve
Implementations in the Wild. In IEEE European Symposium
on Security and Privacy, EuroS&P, 2018.

[59] N. van Drueten. Security analysis of DTLS 1.2 implementa-
tions. January 2019.

[60] Mathy Vanhoef and Frank Piessens. All Your Biases Belong
to Us: Breaking RC4 in WPA-TKIP and TLS. In USENIX
Security Symposium, 2015.

[61] Serge Vaudenay. Security Flaws Induced by CBC Padding -
Applications to SSL, IPSEC, WTLS ... In International Con-
ference on the Theory and Applications of Cryptographic Tech-
niques: Advances in Cryptology, 2002.

A Configuration of TLS-Scanner
We now describe how we test specific vulnerabilities with
TLS-Scanner:

ALPACA [15]: At the time of writing, there is no known
DTLS cross-protocol attack exploitable through ALPACA.
To estimate the potential attack surface, we evaluate if strict
ALPN is deployed as a countermeasure. This is the case if
the server only accepts ClientHello messages that propose the
extension.

CRIME [48]: We consider any server as vulnerable as soon
as the server supports (D)TLS compression.

CVE-2020-13777: For this vulnerability, we decrypt the
issued session ticket with the encryption algorithm AES-128-
CBC using an all-zero key. We then consider any server as
vulnerable as soon as the established Master Secret can be
found in the decrypted session ticket.

FREAK [10] & Logjam [4]: We consider any server as
vulnerable that supports intentionally weakened EXPORT

cipher suites.

Raccoon Attack [37]: We do not evaluate if the code on the
server is running in constant time but consider it vulnerable
as soon as the server reuses a DH key during any observed
handshake during the scan.

Renegotiation Attack [42]: We consider any server as vul-
nerable as soon as the server allows insecure renegotiation. In
DTLS the vulnerability is only exploitable if the server wraps
epoch numbers. We do not evaluate if the server wraps epoch
numbers to keep the load on the scanner and the server low,
as this would require 216 handshakes per tested server.
Side-Channel Attacks [13, 61, 32]: For Bleichenbacher
and CBC padding oracle attacks, we use the adapted statis-
tical test technique from [37] to test potentially observed
side channels for statistical significance (p ≤ 0.0001). For
CBC padding oracles, we use the four vectors of Merget et
al. [38] with one to ten repetitions, while for Bleichenbacher,
we use twelve different vectors and evaluate three different
message flows inspired by Böck et al. [14]. For the invalid
curve [32] evaluation, we perform 19 attempts to compute a
valid Finished message with a point of order five, resulting in
an expected false negative rate of less than 0.01%.

In all cases, we only test a single version, cipher suite (and
key exchange group) combination instead of exhausting the
input space due to the large number of tests we are already
performing in this study. As indicated by previous research,
this choice will likely undercount the discovered vulnerabili-
ties, as some vulnerabilities only show in particular combina-
tions [14, 37, 38].

Sweet32 [11]: We consider any server as vulnerable that
supports 64-bit block ciphers. We note that to perform the
attack, this is generally not enough, as also long-lived connec-
tions with large amounts of known data are required that also
frequently transmit secret values.

B Results of the Large-Scale Study
Below we present the results regarding the collected certifi-
cates in Table 6, the supported elliptic curves in Table 7, and
the supported extensions in Table 8.

General Public Key Type Signature Algorithm

Port Total Self-signed Expired RSA ECDSA RSA ECDSA

443 168,924 9,752 17,695 162,908 519 163,291 136
10443 236,519 4,026 6,549 234,803 628 235,368 63

1106 44,189 44,080 7 9 44,079 9 44,079
3391 34,636 3,981 3,892 34,419 92 34,458 53
4433 15,027 509 422 14,316 85 14,390 11

12346 13,712 1 2 13,635 0 13,632 3
12446 7,842 1 2 7,795 0 7,795 0

Table 6: Overview of the collected certificates. Almost all hosts on port 1106 used a self-signed certificate to authenticate
themselves. Note that since some servers only support pre-shared key cipher suites, the certificates do not add up to 100%.

USENIX Association 32nd USENIX Security Symposium 4875

Port Total sect233k1 sect233r1 sect283k1 sect283r1 sect409k1 sect409r1 sect571k1

443 168,924 0 0 470 470 470 470 471
10443 236,519 0 0 0 0 0 0 0

1106 44,189 0 0 0 0 0 0 0
3391 34,636 0 0 0 0 0 0 0
4433 15,027 0 0 1 1 1 1 1

12346 13,712 5,300 5,297 5,296 5,295 5,295 5,294 5,293
12446 7,842 3,080 3,078 3,077 3,077 3,076 3,076 3,076

Port Total sect571r1 secp192k1 secp192r1 secp224K1 secp224r1 secp256k1 secp256r1

443 168,924 471 0 22 0 4,002 7,664 52,946
10443 236,519 0 0 0 0 380 0 2,908

1106 44,189 0 0 0 0 0 0 43,966
3391 34,636 0 0 0 0 0 2 34,164
4433 15,027 1 20 20 20 22 21 119

12346 13,712 5,293 0 0 0 0 0 5,316
12446 7,842 3,076 0 0 0 0 0 3,101

Port Total secp384r1 secp521r1 bpP256r11 bpP384r11 bpP512r11 x25519 x448

443 168,924 142,370 37,629 472 474 474 4,327 4,130
10443 236,519 212,042 402 0 0 0 25 22

1106 44,189 9 0 0 0 0 1 0
3391 34,636 34,148 1,352 2 2 2 25,767 0
4433 15,027 12,920 25 21 21 21 9 2

12346 13,712 5,323 13,315 0 0 0 23 20
12446 7,842 3,108 7,623 0 0 0 25 22

1: "bp" indicates a Brainpool curve.

Table 7: Distribution of the supported elliptic curves. The most common curves across all ports were secp256r1, secp384r1, and
secp521r1 which are also very common among TLS implementations. Interestingly, a large share of hosts on ports 12346 and
12446 support sect curves, which are rare for TLS and have been deprecated by RFC 8422 [40, Section 5.1.1]. The newer curves,
x25519 and x448 were only supported by a small share of hosts, except for port 3391, where 74% supported curve x25519. These
findings again indicate mostly homogeneous configurations on some of the ports.

Port Total ALPN Certificate Status
Request

Certificate Status
Request V2

EC Point
Format

Encrypt
Then Mac

Extended
Master Secret

443 168,924 12,074 36 0 160,734 113,551 130,039
10443 236,519 0 2 0 235,922 220,263 233,760

1106 44,189 0 0 0 44,105 43,615 44,107
3391 34,636 0 26,962 0 10 9 34,531
4433 15,027 1 5 0 14,967 13,762 14,560

12346 13,712 0 2 0 10 29 5,947
12446 7,842 0 2 0 10 31 3,501

Port Total Heartbeat Max Fragment
Length

Renegotiation
Info

Session
Ticket

Truncated
HMAC

443 168,924 12,275 136,935 166,332 159,449 0
10443 236,519 2,207 220,717 235,970 235,897 0

1106 44,189 0 44,104 44,107 44,103 0
3391 34,636 3 9 34,609 10 0
4433 15,027 428 13,805 14,991 14,408 0

12346 13,712 7,755 5,943 13,702 131 0
12446 7,842 4,337 3,497 7,838 84 0

Table 8: Overview of the prevalence of the tested extensions. Surprisingly, ALPN was supported by 7% of hosts on port 443
while hosts on all other ports indicated no support except for a single server on port 4433. The Heartbeat extension is supported
by only 5% of all evaluated servers although the extension allows DTLS peers to determine if a peer is still alive.

4876 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	TLS-Scanner

	Analysis of DTLS Implementation Pitfalls
	Stateless Cookie Exchange
	Renegotiation
	Timeout and Retransmissions
	Handshake Message Fragmentation
	Concurrent Cipher States

	Methodology
	Tested (D)TLS Properties
	Tested DTLS-Specific Features

	Evaluation of Software Libraries
	Cookie Exchange
	Retransmissions
	Fragmentation
	Message Order and Epochs
	Cryptographic Vulnerabilities
	Vendor Feedback

	Analysis of the DTLS Ecosystem
	Host Discovery
	Identified Services
	Data Collection Results
	Certificate Details
	DTLS-Specific Features
	Vulnerability Analysis
	Malformed Application Data

	Applicability to DTLS 1.3
	Related Work
	Conclusions and Future Work
	Configuration of TLS-Scanner
	Results of the Large-Scale Study

