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Abstract
Building provenance graph that considers causal relation-

ships among software behaviors can better provide contextual
information of cyber attacks, especially for advanced attacks
such as Advanced Persistent Threat (APT) attacks. Despite its
promises in assisting attack investigation, existing approaches
that use provenance graphs to perform attack detection suffer
from two fundamental limitations. First, existing approaches
adopt a centralized detection architecture that sends all system
auditing logs to the server for processing, incurring intolera-
ble costs of data transmission, data storage, and computation.
Second, they adopt either rule-based techniques that cannot
detect unknown threats, or anomaly-detection techniques that
produce numerous false alarms, failing to achieve a balance
of precision and recall in APT detection. To address these
fundamental challenges, we propose DISTDET, a distributed
detection system that detects APT attacks by (1) performing
light weight detection based on the host model built in the
client side, (2) filtering false alarms based on the semantics of
the alarm proprieties, and (3) deriving global models to com-
plement the local bias of the host models. Our experiments
on a large-scale industrial environment (1,130 hosts, 14 days,
∼1.6 billion events) and the DARPA TC dataset show that
DISTDET is as effective as sate-of-the-art techniques in detect-
ing attacks, while dramatically reducing network bandwidth
from 11.28Mb/s to 17.08Kb/S (676.5× reduction), memory
usages from 364MB to 5.523MB (66× reduction), and stor-
age from 1.47GB to 130.34MB (11.6× reduction). By the
time of this writing, DISTDET has been deployed to 50+ in-
dustry customers with 22,000+ hosts for more than 6 months,
and identified over 900 real-world attacks.

1 Introduction

Advanced cyber attacks, such as advanced persistent threat
(APT) attacks, have penetrated into many well-defended tar-
gets, causing significant financial losses [1,34]. These attacks
usually combine various advanced attack techniques (e.g.,

0-day, fileless and living off the land) into different attack
steps [37, 39], making the entire attack more stealthy. Tradi-
tional intrusion detection and prevention systems (IDPS) can
only detect a few known exploits, and fail to capture the entire
APT attack due to the lack of causality analysis capability.
Recently, provenance graph based detection [16, 18, 29, 49] is
considered as a promising way to combat APT attacks, where
system monitoring is applied to collect auditing logs of system
calls. Provenance graph represents the system execution as a
directed acyclic graph (DAG), where nodes represent system
entities (e.g., processes, files, and network connections) and
edges represent system event (e.g., a process creating a file).
Using provenance graphs, detection tools can obtain the con-
textual information of an APT attack by constructing a chain
of events that lead to the alarm event reported by anomaly
detection tools. Such contextual information is effective in re-
vealing advanced attack tactics such as distinguishing benign
uses of ZIP from ransomware [15, 18].

Despite of the promising early results, provenance graphs
are impractical for real-time APT detection in the industrial
setting due to two fundamental challenges: intolerable com-
putational overheads and poor balance in precision and re-
call for detection [17, 18]. On the one hand, as construct-
ing provenance graphs consumes significant computing re-
sources, existing work mainly adopts the centralized archi-
tecture, where monitored hosts (referred to as clients) upload
the collected logs for centralized processing. However, the
number of clients in an enterprise cluster is usually more than
1,000 in practice, and thus the costs of data transmissions, data
storage, and computations incurred by the centralized architec-
ture well exceed the security budgets of most enterprises [40].
For example, based on the analysis of the Cadets dataset of
DARPA Engagement 3 [38], one client generates 3.7G of
log data per day on average, and 687MB of memory is re-
quired if we adopt the state-of-the-art approach Unicorn [16]
for APT detection. Thus, if a cluster of 1,000 hosts is moni-
tored, 3.61TB of data needs to be transmitted and stored per
day, which requires 351Mb/s network bandwidth and 671GB
memory. These daunting numbers make it infeasible for most
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enterprises to adopt the provenance graphs for APT detection.
On the other hand, it is difficult to achieve a balance of preci-
sion and recall in detection. Rule-based approaches usually
rely on generic patterns to improve the recall, but they can
also misidentify benign behaviors as threats [18]. Moreover,
rule-based methods are severely limited by expert knowledge
and cannot detect unknown threats. While anomaly detection-
based approaches are able to detect unknown threats, they are
known to produce numerous false positives and suffer from
the notorious alarm fatigue problem [18].

To address these fundamental challenges, in this paper,
we propose DISTDET, the first cost-effective detection sys-
tem that synergistically combines distributed computing,
anomaly detection, and false alarm filtering techniques
for detecting and investigating cyber attacks APT attacks.
Specifically, DISTDET adopts a novel distributed detection
architecture to minimize the overall computational cost by
shifting part of the APT detection to the clients and trans-
mitting only summary graphs that represent potential attacks
to the server, which greatly reduces the costs of data trans-
mission and storage. Furthermore, DISTDET synergistically
combines anomaly detection and false alarm filtering to de-
tect unknown threats (improving the recall) and combat alarm
fatigue (improving the precision). In particular, with the novel
synergy of these techniques, DISTDET (1) achieves high pre-
cision in detecting APT attacks with low costs, (2) presents
more contextual information (summary graphs) than the ex-
isting detection tools that report only the suspicious event,
and (3) seamlessly supports provenance graph based analysis
through client-side caches. We next describe the technical
challenges and our insights in addressing these challenges.
Technical Challenges. There are three major challenges on
developing a distributed system for real-time APT detection:

① How can we ensure the overheads incurred by the APT de-
tection will not affect the performance of the clients’ daily
business? For example, to minimize the client side impacts,
the internationally renowned Endpoint Detection and Re-
sponse (EDR) company, CrowdStrike [9], has a memory
footprint of less than 25.36MB, a CPU footprint of 1%-3%,
and about 5MB of data transferred per day. Similarly, if
we consider the acceptable overhead is 3% based on the
ratio for information security investment, for a client host
with 4GB RAM and 80GB disk, DISTDET needs to limit
the CPU usage to be within 3%, the memory to be within
120MB, and the storage space to be within 2.4GB.

② How to deal with the notorious alarm fatigue of anomaly
detection in DISTDET? While anomaly detection improves
the recall, many benign but unseen behaviors can also be
flagged as anomalies, facing a more serious alarm fatigue
problem than the rule-based approach [16, 49].

③ How can the distributed system overcome the local bias and
achieve similar detection effectiveness as the centralized
architecture? Since the distributed system does not transmit
all the event logs to the server for centralized analysis, the

models built locally by each host will lack global informa-
tion, which may compromise the detection effectiveness.

Key Insights. To address these challenges, the design of DIST-
DET is powered by three key insights:
• Lightweight Client-Side Detection: While it is infeasi-

ble to perform computationally intensive APT detection,
clients are able to conduct light-weight detection by build-
ing a compact and expressive index based on the observed
normal behaviors and identify unseen behaviors based on
the index as alarms, and the server can perform more ex-
pensive analysis on the alarms sent by the clients to further
filter false alarms. In this way, the clients can not only min-
imize computational costs, but also eliminate the needs for
uploading all the observed logs.

• Unique Properties of False Alarms: Most of the false
alarms are caused by rare benign behaviors, which are not
observed during the learning period and thus cannot be
learned by the model. Through careful inspections of the
large amount of false alarms, we found that false alarms
typically possess some unique properties: (1) the alarms rep-
resenting the same behaviors will be repetitively reported
over a period of time; (2) many false alarms are related
to the benign behaviors triggered by semantically similar
commands; (3) the contexts for these alarms are generally
known to represent benign behaviors.

• Global View of Service Behaviors: Most enterprises adopt
load-balancing and thus hosts that provide the same type of
services, such as web servers, typically execute the almost
same set of processes to serve the outside world. As each
host is running in different phases, the benign behaviors
observed locally during the learning period are only limited
to certain phases. While local models can easily lead to false
alarms in detection, a global model built in the server can
observe the behaviors in all the phases and can complement
the missing observations in the local models.

Contributions. Based on these key insights, DISTDET devel-
ops three major components to address the challenges:
(1) Host-based Anomaly Detection. DISTDET includes the
novel designs of a hierarchical system event tree (HST, see
§ 4.1.1) and Alarm Summary Graphs (ASG, see § 4.1.3) to
minimize the impacts on the clients’ performance. For each
client, DISTDET first builds an HST as the host model based
on the logs collected during the learning period. HST is a
compact index that categorizes auditing events based on their
properties using a multi-layer tree, where the first layer con-
cerns about the entity type (i.e., process, file, network sockets)
and the last layer concerns about the parameters of the exe-
cuted commands. Compared to maintaining the entire prove-
nance graph for recording the observed behaviors, an HST
model is very efficient to compute and it reduces the average
memory footprint from 687MB [16] to 5.52MB (§ 5.2). Based
on the created HST model, DISTDET detects events that de-
viate from the model as alarms (§ 4.1.2), i.e., performing
light-weight anomaly detection. Then for each alarm, DIST-
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DET generates an ASG and transmits the ASG to the server.
An ASG is a summary graph that includes the process p that
initiates the suspicious behavior reported in an alarm, and
the events initiated by p’s ancestor processes and descendent
processes. As an ASG’s size is significantly reduced from the
original provenance graph, it drastically reduces the costs.
(2) False Alarm Filtering. DISTDET uses three steps to over-
come the notorious alarm fatigue problem: alarm deduplica-
tion, semantic alarm aggregation, and alarm ranking based on
contextual events. Based on the unique properties for false
alarms, in the client side, DISTDET eliminates alarms that
share the same properties based on the host model (§ 4.1.3),
so that duplicated alarms triggered by repetitive benign behav-
iors can be filtered out. Then in the server side, DISTDET first
applies a more computationally-intensive algorithm (§ 4.2.2)
to aggregate the alarms whose properties exhibit similar se-
mantics. Next, DISTDET provides a novel ASG Ranking algo-
rithm (§ 4.2.3) that prioritizes alarms by considering whether
their contextual events (i.e., ancestor processes and descen-
dent processes in the ASGs) are considered as anomalous and
whether these contextual events are rare among the ASGs.
(3) Global Model Derivation. To complement the missing
behaviors observed during the learning period, DISTDET de-
rives a global model by merging the HSTs sent by the clients
periodically. As a result, each host that provides the same type
of services will have a global view of the service behaviors,
addressing the local bias in the models and achieving the sim-
ilar effectiveness as a centralized architecture. To the best of
our knowledge, we are the first to propose such an approach
to generate global models to improve detection.
Evaluation. We built a prototype of DISTDET in roughly
∼20K lines of code and deployed it in an anonymized indus-
trial environment that includes 1,130 hosts. A professional red
team from a leading security company performed 4 distinct
APT attacks on 7 out of the 1,130 hosts. We then applied
DISTDET to detect these attacks for evaluating its effective-
ness. We strictly enforced the cost limit (i.e., 3% overhead) in
all the deployed hosts. We further compare DISTDET with the
state-of-the-art approaches on the DARPA TC dataset [38].
In total, we collected the system events for 14 days in our
deployed environment (∼1.6 billion events) and the DARPA
TC dataset contains ∼147 million events. We are the first to
evaluate APT detection systems using the real industry data
at this scale, and we are able to reveal the practical chal-
lenges that previous research cannot observe. For example,
many existing works, such as Unicorn [16], fail to work at this
scale as each host will need 300-600MB to hold a provenance
graph and the central server simply cannot handle the data of
1000+ hosts.

Our evaluation results demonstrate that DISTDET is highly
cost-effective in detecting APT attacks for large-scale clus-
ters. On average, the total cost of protecting the 1,130 hosts
is merely $68.93 USD, which is 56× less than the central-
ized architecture (∼ $3,842 USD): (1) the network cost is

Table 1: Representative attributes of system entities
Entity Attributes
File Name, Directory, Owner/Group, FileID, etc.
Process MD5, Name, User, Command, etc.
Network IP, Port, Protocol

Table 2: Representative attributes of system events
Operation Start/Exit, Create/Modify/Delete/Rename, Connect/Listen
Time/Sequence Record Time, Event Sequence
Misc. Subject ID, Object ID

∼15.476b/s, achieving a 676.5× reduction from ∼10.22Kb/s;
(2) the storage cost is ∼130.34MB on average for the 14-day
data persistence, achieving a 11.6× reduction from ∼1.47GB;
(3) the memory footprint is ∼5.523MB, achieving a 66× re-
duction from ∼364MB. In terms of detection effectiveness,
our results show that DISTDET achieves an almost perfect
recall for the 4 real APT attacks, and is as good as Unicorn
for the attack cases in the DARPA dataset. In particular, on av-
erage, DISTDET’s false alarm filtering component effectively
reduces the false alarms from 230 alarms per host per day to
0.71 alarms per host per day, saving 99.69% of the required
inspection efforts from security analysts. By the time of this
writing, DISTDET has been deployed to 50+ companies (with
over 22,000 hosts) for over 6 months, and over 900 real-world
attacks were identified by DISTDET.

2 Background and Motivating Example

2.1 System Auditing Events

System auditing events describe the interactions between
two system entities, which can be represented as a 3-tuple,
evt = ⟨sub ject,option,ob ject⟩. As shown in the existing
studies [10, 20, 28, 51], in most cases, subjects represent pro-
cess entities (e.g., Chrome), and objects represent files, pro-
cesses, or network entities. Thus, the collected system audit
events are mapped to three types, i.e., file events, process
events, and network events. Following the established trend,
in this work, we focus on these three types of events and the
main security-related attributes of the entities and events are
shown in Table 1 and 2. Representative attributes of entities
include file name, process command line, IP, etc. Representa-
tive attributes of events include event operations (e.g., create
a file), event time (e.g., start time/end time), etc.

2.2 Motivating Example

Figure 1 shows part of the ASGs generated by DISTDET
during the F-Lateral attack campaign. It includes 20 attack
steps represented as F1 to F20 (see § B.2 in Appendix for
details). During a two-week monitoring in our evaluation, the
anonymized industrial environment generated a total of ∼1.6
billion system events (1.6TB) from 1,132 hosts (Industry and
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Figure 1: Part of Alarm Summary Graphs (ASGs) for the F-Lateral attack campaign

Public Arena datasets together), and distinguishing truly sig-
nificant attacks from these ∼1.6 billion events is definitely
“finding a needle in a haystack”. The centralized architec-
ture adopted by the existing works will require ∼11.28Mb/s
bandwidth to transmit the raw logs to the server in real time,
∼401GB (Unicorn [16]) memory for graph computation, and
∼1.63TB disk space to store the logs, which well exceeds the
acceptable costs of most enterprises’ security budgets.
How DISTDET detects the F-Lateral attack. DISTDET first
builds the HST as the host model and transmits it to the server
to derive the global model, which helps address the local bias.
As shown in Figure 1, DISTDET takes advantage of the de-
rived global model to detect unobserved behaviors as alarms,
and generates ASGs for each alarm. The alarm events are rep-
resented as the red edges inside the ASGs. Before generating
the ASG, a sliding time window is first used to remove dupli-
cate alarms, and the numbers of duplicates are recorded as the
properties of the edge. For example, the alarm event <paexec
connect x->x:135> in F15:ASG15 is repeated 111 times,
indicating that paexec establishes a lateral channel from host
A to host B on port 135. Similarly, the frequency of a be-
nign event denotes how many times the event occurs in the
model, such as the benign event <cmd, start, conhost>
in F15:ASG15 that has occurred 18 times.

After the ASGs are sent to the server side, DISTDET parses
the commands associated with the alarm events into a syntac-
tic tree, and aggregates ASGs with similar commands. After
aggregation, 29 ASGs are remained for detecting the F-Lateral
attack, and DISTDET further computes their anomaly scores
based on our ASG Ranking algorithm. 23 ASGs (including
2 false positive ASGs) out of these 29 ASGs have anomaly
scores higher than the threshold τd and are reported by DIST-
DET as attack ASGs. As only 2 ground truth ASGs are missed,
DISTDET is highly effective to detect the attack steps of the
F-Lateral attack (precision of 91% and recall of 91%).

In total, the distributed architecture reduces the total
cost by 56 times, i.e., reducing the network cost by 676
times (11.28Mb/s → 17.08Kb/s), the memorial cost by 66
times (401GB → 6GB), and the storage cost by 11.6 times

(1.63T B→ 143.83GB). This makes DISTDET a cost effective
approach for APT detection in the industrial settings.

3 Overview

Figure 2 shows the architecture of DISTDET, which consists
of three components: (1) Host-based Anomaly Detection, (2)
False Alarm Filtering, and (3) Global Model Derivation. The
Host-based Anomaly Detection component flags anomaly
events based on the host models as alarms in the client side,
generates an ASG for each alarm, and sends the ASGs to
the server. The False Alarm Filtering reduces false alarms by
eliminating duplicated alarms in the client side, aggregating
ASGs with similar semantics, and prioritizing ASGs with high
anomaly scores. The Global Model Derivation receives the
host models sent by the clients and merges the HSTs of the
hosts that provide the same types of service to obtain global
models. These global models are then distributed to the clients
for complementing their host models.
Threat Model. Similar to most previous works [16–20, 26,
28,29,49] that detect APT attacks using system auditing logs,
we assume the integrity of the data collection in the clients,
i.e., the collected event streams are complete. We also assume
that the attacker cannot manipulate or delete the auditing logs,
i.e., log integrity is maintained all the time. In real-world at-
tacks, the attacker may uninstall the auditing tools or tamper
with the event stream. To mitigate this risk, tamper-evident
logging solutions [35] can be adopted to ensure the integrity
of the collected event stream and it is not the focus of this
work. Same as other anomaly detection methods [16, 49], we
also face the problem of model poisoning, i.e., the model is
contaminated with attack behaviors. We assume no attacks
are performed during the training period of our model. We
also do not consider the attacks performed using side chan-
nels or inter-procedural communications (IPC) that cannot be
captured by system auditing logs. It is beyond the scope of
this work since our focus is to develop a cost-effective system
for detecting APT attacks using system auditing logs.
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4 Design Details of DISTDET

4.1 Host-based Anomaly Detection
This component has two modes: the training mode and the
detection mode. In the training mode, it trains a host model
from the system event stream for each client. In the detection
mode, it detects events deviating from the model as alarms
and generates ASGs based on the alarms.

4.1.1 Host Model Training

Figure 3 illustrates the trained Hierarchical System Event Tree
(HST) model, which categorizes auditing events based on
their properties using a multi-layer tree. Specifically, an HST
model consists of four layers of nodes: Event type, Operation,
Process and Attribute, where each layer concerns about a
specific set of properties of the events. Given a system event
evt, an HST finds a matched node in each layer to represent
the event’s corresponding attribute values, or create a new
node if the values are not found.

The event type layer of an HST has three submodels: pro-
cess, file and network. Based on evt’s event type t, DISTDET
uses a submodel whose event type matches t to find the nodes
in the operation layer. Then DISTDET finds or creates a node
in the operation layer based on evt’s operation type, such as
start and exit operations for a process event. After that,
DISTDET continues to find or create a node in the process

layer based on the process that initiates the event evt. Here the
md5 of the process is used as the unique identifier to represent
the process. Finally, DISTDET builds nodes in the attribute
layer to represent evt’s other attributes based on evt’s event
type. For example, a process event is mainly represented us-
ing its command line attributes, including command options
and arguments. Meanwhile, DISTDET performs on-demand
tokenization for each attribute node to improve the generaliza-
tion of the node representation. For example, some file paths
such as /tmp/prc.280002378/ and /tmp/prc.280002379/
share the same prefix /tmp/prc. Thus, by tokenizing the nu-
meric strings, DISTDET can use one node /tmp/prc.xxx/
to represent these two file paths and records its frequency, as
shown in Figure 3. Table 10 in Appendix § A.1 shows other
representative scenarios for our tokenization.

In the learning mode, DISTDET categorizes the observed
system events based on their proprieties and builds corre-
sponding nodes in the HST. The frequency of each event is
also recorded in the corresponding attribute node, which will
be used by the subsequent ASG Ranking (§ 4.2.3). When the
proportion of newly created nodes is less than 0.1% for two
consecutive days, the model is considered as converged. Our
experiment result (§ C.3 in Appendix) shows that most servers
reach convergence within 3 days. Note that the HST model
can be updated based on the global model that contains more
observed benign events. More importantly, the complexity
of finding nodes for a system event is limited to hash checks
of the attribute values in the four layers, and thus it requires
very low computational resources and memory consumption,
meeting the demand of low overhead in the client.

4.1.2 Host Model Detection

After an HST is converged in a client, DISTDET switches
to the detection mode. Given a system event evt ′, DISTDET
searches the HST to find whether there are nodes that match
evt ′’ attributes. If not found, evt ′ is reported as an alarm. That
is, any event no observed during the learning period is con-
sidered as anomaly, which will detect as many anomalous
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events as possible. Besides, the HST allows DISTDET to use
different sub-models to complement each other for anomaly
detection. Consider a user who one day uses Chrome to ac-
cess the Internet on a public library host. Due to his access
to a malicious website, the host is unfortunately subject to a
drive-by download attack and Chrome starts to execute Pow-
ershell. Since the library host is used by different people for
surfing the Internet every day, there is a lot of randomness
in the network addresses accessed and Chrome’s network
sub-model fails to converge. Fortunately, Chrome’s process
sub-model is well learned and does not involve calling too
many processes. Thus, DISTDET can detect the anomalous
behavior of Chrome by using the process sub-model.

4.1.3 ASG Generation

For an alarm, DISTDET generates an ASG that contains the
anomalous event and its contextual events. As shown in the
provenance graph-based approaches [4, 10, 13, 14, 16, 18, 29,
49, 51], processes spawn child processes to work together
for certain system tasks, such as file compression and web
downloads. To capture such critical information, for the sub-
ject process p in an alarm event evt (referred to as an alarm
process), DISTDET first builds a process lineage tree of p and
identify its ancestors within X generations and the descen-
dants within Y generations. Then DISTDET includes the first
N outgoing edges of each type (process, file and network) of
these identified nodes (i.e., their initiated events) to form an
ASG. The selection of optimal values of X, Y and N is pre-
sented in Appendix § C.1. Figure 4 shows an example process
lineage tree for an alarm process. To improve the efficiency in
building process lineage trees, DISTDET caches the observed
events from the event stream (see § A.2 in Appendix).

4.2 False Alarm Filtering
While host-based anomaly detection incurs low overhead in
detecting potential attacks, it suffers from the alarm fatigue
problem. Thus, DISTDET includes the false alarm filtering
component that takes three steps to overcome the problem.

4.2.1 Alarm Deduplication

Alarm deduplication is based on the insight that a consider-
able number of false alarms represent the same behaviors. For
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Figure 5: Syntactic tree of a command in an alarm event

example, an unscheduled upgrade operation will repetitively
add and delete numerous files in a short period of time, re-
sulting in a series of false alarms. To eliminate such duplicate
alarms, DISTDET maintains a time window for each alarm
a and all the subsequent alarms whose alarm events are the
same as a’s will be discarded. At the end of a time window, the
frequency of the duplicate alarm events will be also recorded
in the ASG generated for a. In this way, a sudden surge of
recurring alarms will only have a limited impact. Based on
our pilot studies, we set the time window to 24 hours.

4.2.2 ASG Semantic Aggregation

Besides the duplicate alarms for the same behavior, we
also observed that a large number of false alarms are
related to similar executed commands, with only differ-
ences in some arguments or operation objects. Thus, DIST-
DET aggregates semantically similar alarms to further re-
duce the reported alarms. Specifically, this process con-
sists of three steps: (1) DISTDET constructs a syntac-
tic tree of a command by tokenizing the words in the
command. Figure 5 shows an example syntactic tree for
the command </bin/sh -c /sbin/ethtool eth0|grep
Auto-negotiation|awk ’print $2’>. (2) DISTDET com-
putes the similarity between two command trees. Following
the previous study [31], the similarity of two trees is measured
by how many common sub-fragments they have. Specifically,
we consider two commands to be similar if their similarity
exceeds a threshold τs. (3) DISTDET aggregates the ASGs
with similar alarm events, and records the frequency of the
aggregated ASG. In this way, the redundancy of generated
alarms/ASGs can be further reduced. Note that ASG aggrega-
tion is performed on the server side,

4.2.3 ASG Ranking

The final step in false alarm filtering is to prioritize the alarms
by considering their rareness (frequency) as well as whether
their contextual events (i.e., ancestor processes and descen-
dent processes in the ASG) are also anomalous. We observed
that many false alarms had contextual events that were gener-
ally known to represent benign behaviors. Thus, we design a
ranking algorithm that considers the anomaly scores of alarm
events and their ancestors/descendants.
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Given an ASG, there are two types of events, i.e., normal
and alarm. For normal events, the event frequency is recorded
when DISTDET trains the host model. For alarm events, the
event frequency refers to the number of repetitions recorded
in the alarm deduplication process (§ 4.2.1). Suppose there is
an ASG containing x alarm events and y normal events. For
alarm events, since they contribute more to the anomaly of
the ASG, the anomaly score is calculated as follows:

AS(evta) =
∑

x
i=1

1
f req(evta

i )

x
(1)

where f req indicates the frequency of each alarm event. For
normal events, the anomaly score is calculated as follows:

AS(evt)=
∑

y
j=1 evt j

y
,evt j =

{
1 f req(evt j)< f reqave

0 otherwise
(2)

where f req(evt j) indicates the frequency of the normal event
evt j in the host model, and f reqave indicates the average fre-
quency of the normal events of the same type. For example,
consider an event <java, /bin/bash, process_start>. We first
get f req(evt j) by the frequency of this event recorded in the
model. Then we focus on the events that have happened in the
model where Process Layer ∈ java and Operation Layer ∈
process_start and calculate their average frequency to get
f reqave. If f req(evt j)< f reqave we consider this event con-
tributing somewhat to the anomaly score (added to the nu-
merator), otherwise we ignore it. This is to prevent the high-
frequent normal events from having a large impact on raising
the anomaly score. The anomaly score AS(ASG) is calculated
as follows:

AS(ASG)=αAS(evta)+(1−α)AS(evt),α=

{
1−α f x = 1
α f x > 1

(3)
where α f is the weight that has different values depending on
the number of alarm events. The underlying intuition is that
when x is 1, the anomaly score is obtained mainly using the
normal events; when x is greater than 1, the alarm events are
considered more important for the overall anomaly. α f is set
to 0.9 through experiments in Appendix § C.1 Note that for
the attacks that occur quite a lot in a short period of time (e.g.,
ransomware and brutal force), we handle them by checking
the frequency of suspicious behaviors (e.g., 100 times in 1
second), without relying on the anomaly scores.

We rank all ASGs and calculate a cut-off threshold τd to dif-
ferentiate false alarms and real attack incidents. If the anomaly
score of an ASG is larger than τd , it is categorized as a true
alarm otherwise a false alarm. The threshold value is related
to the current enterprise configuration, such as the number of
hosts and system monitoring events.

4.3 Global Model Derivation

A global model built in the server can complement the host
model built in each client, especially for clients that provide
the same type of services such as web servers or database
servers. For example, suppose a Mangodb cluster contains 2
hosts ha and hb that provide the storage services, and they both
have the same set of weekly scheduled tasks. During their
training periods, ha captures these tasks in its host model, but
hb misses these tasks as they happen to be scheduled outside
the training period. DISTDET addresses this local bias by
deriving a global model from both ha and hb and distributes
the global model to update the host models in ha and hb.

More specifically, this process consists of four steps:
1) DISTDET extracts the list of service-specific processes

from each host model. The process nodes in the host mod-
els are classified into two categories, i.e., system process
and service-specific process. The system processes come
with the OS installation, which are the same in all the hosts
with the same type of OS, such as /init and /usr/bin
for Linux. In contrast, service-specific processes are the
processes of the software applications, and the combina-
tion of these processes can indicate the type of services the
host provides. We obtained the list of system processes by
summarizing the system processes of different operating
systems. Thus, each model can derive a list of service-
specific processes by excluding the system processes.

2) For the extracted service-specific processes in a host, DIST-
DET computes the word embeddings of the extracted pro-
cesses’ names, such as < p1, p2, ..., p10 > of the model-1
in Figure 6. DISTDET uses word2vec [8], a popular pre-
trained word embedding model, to compute the embed-
dings of the process names for each host.

3) DISTDET clusters the models based on their embedding
vectors using the k-means algorithm. In this way, the hosts
that provide the same type of services are grouped in the
same clusters. The value of k is set based on the current en-
terprise setting, which is 146 in our evaluation (see § 5.4).

4) DISTDET then merges the behaviors of the common pro-
cesses in the same cluster. As shown in Figure 6, model-1,
model-2, and model-7 are in the same cluster and they
share the common processes p1 and p2. DISTDET merges
the behaviors of p1 and p2 in these three models to ob-
tain p′1 and p′2, and then replaces p1 and p2 in the local
model with p′1 and p′2 to obtain the global models, see
§ A.3 in Appendix for details. The global models are then
distributed to each host to update the host local models.

5 Evaluation

We built DISTDET (∼20K lines of code in C++) upon an in-
dustrial EDR tool of a leading security company and deployed
it in the company’s industry arena for adversarial engagement
(1,130 hosts). We then performed real attack campaigns in the
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Figure 6: Global Model Derivation

deployed environment to collect the ground truth dataset for
evaluation. Due to the intolerable overhead incurred by the
centralized architecture for 1,000+ hosts, we cannot compare
the detection effectiveness with the state-of-the-art techniques
on the industry dataset. Thus, we resort to the DARPA TC
dataset [38] for comparing DISTDET with the state-of-the-art
techniques. In particular, our evaluations aim to address the
following research questions:
RQ1. How much can DISTDET reduce the costs, compared
to the existing centralized detection approaches?
RQ2. What is the overall effectiveness of DISTDET?
RQ3. How effective is DISTDET in filtering false alarms?
RQ4. How well does DISTDET perform when conducting
investigation on ASGs?
RQ5. How well does DISTDET perform when it is deployed
in real-world industrial environments?

5.1 Evaluation Setup
5.1.1 Industry Arena Dataset

DISTDET is deployed in a leading security company’s indus-
try arena, which includes 1,130 hosts (168 windows hosts
and 962 Linux hosts) and a virtual machine server (16 CPUs,
32GB RAM, and 1TB hard disk) running 64bit CentOS 7.4.
We deployed the client side components of DISTDET to these
hosts and the server side component to a server that manages
the cluster of hosts. We conducted a 14-day long adversar-
ial engagement to evaluate the costs and the effectiveness of
DISTDET. In total, the collected system auditing logs con-
tain ∼1.6 billion system events (1.63TB), as shown in Ta-
ble 3 (row-1). Column “EventRate” shows the number of
captured system events per second (eps) and Column “Event
Size” indicates the average size of captured events. We can
see that the event rate of our collected dataset is much lower
than DARPA’s, which owes to the data deduplication [52]
performed by our auditing tool. We further present the dis-
tribution of the types of events in Appendix § B.1. A profes-
sional red team from the security company performed four
distinct attacks, including the well-known APT29 [43] and the
APT32 [44] attacks, and two attacks that exploit the recent vul-
nerabilities (e.g., Log4j2 and Weblogic) on the hosts running
the vulnerable (CVE-2021-44228 [33]) version of Apache
Log4j2 [11] and the vulnerable (CVE-2020-14645 [32]) ver-
sion of Oracle WebLogic [3]. We show the mappings between
the attack steps (e.g., A1 indicates a step of the APT29 attack)
and the stages (e.g., “initial access”) in the MITRE ATT&CK

Table 3: Overview of the evaluation datasets
Dataset Host Days Data Event Event Event

Num Size Num Rate Size
Industry Arena 1,130 14 1.63 TB 1.6B 1.189 eps 1100 Byte

DARPA-CADETS 1 11 39G B 41 M 43 eps 1013 Byte
DARPA-THEIA 1 11 80 GB 106 M 111 eps 810 Byte

Public Arena 2 6 7GB 16M 15 eps 483 Byte

matrix [45] in Table 4. The 4 attacks (116 attack steps) cover
all the 12 attack stages. Note that all hosts have completed
the host model training before the attacks.

5.1.2 Darpa TC Dataset

The Darpa TC dataset was released by the DARPA TC pro-
gram, generated during a red-team vs. blue-team adversarial
engagement in April 2018 [38]. We used the attack datasets
from the THEIA and CADETS teams in the DARPA TC
program. THEIA is a system that tags and tracks multi-level
host events and data by instrumenting the Ubuntu Linux ma-
chines during the engagement. The CADETS data is derived
from the FreeBSD DTrace data. Table 3 and 5 shows the de-
tails of these datasets, including six attack campaigns, where
CADETS 1-4 are four repeated attacks, and THEIA 5-6 are
two two consecutive attacks. In total, the DARPA TC datasets
contain ∼147 million system events (119GB) from 2 hosts in
11 days. We convert the DARPA datasets to the compatible
data formats for DISTDET to analyze, and use the pre-attack
data for training the host models.

5.1.3 Public Arena Dataset

One recent work Log2vec [12] converts users’ behavior logs
(i.e., user logs) into a heterogeneous graph and detects APT
attacks by discovering anomaly nodes in the graph. The sys-
tem audit logs in the Industry Arena and Darpa TC datasets
cannot be applied to Log2vec due to lack of user and lo-
gin information. Therefore, to compare the performances of
Log2vec and DISTDET, we further craft the Public Arena
dataset, which contains logs in both system audit logs and
user logs generated during attacks. Table 3 and 5 show the
details of the Public Arena dataset, including two attacks,
where Insider [5] is a common threat that steals sensitive
information, and Lateral [5] is a typical lateral movement
attack where APT actors move from host A to host B. The
attacks were conducted by the company’s red team on 2 hosts
(windows) located in the public cloud workspace. In total, the
Public Arena dataset contains ∼16 million system audit logs
(7GB) and 682 user logs (91KB) from 2 hosts in 6 days. We
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Table 4: Mappings between the attack steps and the stages in the MITRE ATT&CK matrix
Attack Initial Execution Persistence Privilege Defense Credential Discovery Lateral Collection Command Exfiltration Impact TotalCampaign Access Escalation Evasion Access Movement & Control

A-APT29 A1 A2-A6 A7-A11 A12-A15 A16-A23 A24 A25-A31 A32 A33 A34-A38 - - 38
B-APT32 B1 B2-B8 B9-B11 B12,B13 B14-B31 B32-B34 B35-B44 B45,B46 B47 B48-B51 B52 B53 53
C-Log4j2 C1 C2 C3 - - - C4-C7 C8-C10 - - - - 10

D-Weblogic D1 D2 D3 - - - D4-D7 D8-D10 - - - - 10
Total 4 14 10 6 26 4 25 9 2 9 1 1 111

E-Insider E1 - - - E8 - E2-E4 - E5 - E6-E7 - 8
F-Lateral F1 F2 F5 - F3-4,F18 F12 F6-11,F13-14 F15-17 - F19 F20 - 20

Table 5: Statistics of ground truth for attack campaigns
Dataset Attack Host Host Duration # of # of Attack Attack

Campaign Num Type Events Events ASG

Industry
Arena

A-APT29 2 Windows 1d0h7m 358K 489 45
B-APT32 2 Windows 1d2h13m 355K 423 68
C-Log4j2 2 Linux 1d14h43m 459K 220 12

D-weblogic 1 Linux 0d0h12m 1.7M 268 14
DARPA

TC
Cadets 1-4 1 FreeBSD 10d23h28m 41M 2313 24
Theia 5-6 1 Linux 9d20h6m 106M 1266 15

Public
Arena

E-Insider 1 Windows 0d11h44m 1.9M 1508 8
F-Lateral 2 Windows 0d2h45m 783K 4415 23

make the Public Arena dataset publicly available [5] to enable
reproducible study and facilitate further research.

5.1.4 Labeling Ground Truth

We identify the attack events as the ground truths in the In-
dustry Arena, Darpa TC and Public Arena datasets. To do
so, we developed scripts to flag attack events in the raw logs.
Our scripts take as input the config files that contain the key
attributes used in each attack, such as timestamps, host IDs,
host IPs, process commands, process file paths, and match
the corresponding attack events in the raw logs accordingly.
The configuration files for the APT attacks were generated
by the red team during the attacks, and the configuration files
for the Darpa TC dataset were generated from their ground
truth files. We consider a detection result of DISTDET as a
true positive if the ASG contains a ground truth attack event.

Table 5 shows the details of the ground truth. The number
of attack events is much larger than the generated ASGs. This
is because our ASGs aggregates duplicate events generated
by some attack steps. For example, the C9 step in the C-
Log4j2 attack (network scan) generates 180+ attack events.
For the Public Arena dataset, we marked 21 malicious user
logs, including 11 for the E-Insider and 10 for the F-Lateral.

5.1.5 Evaluation Metrics

Cost Metrics. Since few existing works have focused on
evaluating the cost of attack detection, we propose a new
metric for evaluating the cost of APT detection in a large-
scale cluster of hosts, which is based on the actual cost spent
by the customers when using the security products. In general,
the total cost has a positive correlation with the number of
clusters that need to be protected and can be divided into
three components: network, computation and storage. Among
them, the network cost is mainly the bandwidth required for
data transmission from the clients to the server. EDR products
such as CrowdStrike are delivered in the form of SaaS model,

where all clients transfer telemetry data to a server deployed
in the public cloud, and the network accounts for a major
portion in the total cost. The computational cost is mainly
the memory usage in the detection process. The storage cost
is mainly for the persistence of the raw data (the size of the
detection results is almost negligible compared to raw data).
Although real-time detection can be done without persisting
the data, the subsequent attack investigation and responses
require the raw data. Thus, the cost of data persistence should
take into consideration. We measure the host cost as follows:

HostCost =CostN ∗αn +CostC ∗αc +CostS ∗αs (4)

where CostN denotes the network bandwidth per host, CostC
denotes the memory footprint per host for data processing,
CostS denotes the average storage size per host for data per-
sistence, and αn, αc, αs denote the price indexes of network
bandwidth (yearly), memory, and storage respectively. More
specifically, CostN is computed using the average number of
transmissions per host per second. The amount of transmis-
sions varies between the centralized (total size of events) ar-
chitecture and the distributed architecture (total size of ASGs
and host models). CostC is computed using the memory foot-
print in the server for the centralized architecture, while it
includes the memory usage of both clients and the server for
the distributed architecture. CostS is computed using the av-
erage daily raw data size generated by a single host for the
centralized architecture, while it uses the size of the event
cache data in the clients for the distributed architecture. Note
that these cost metrics are summarized based on industrial se-
curity products, which directly affects the enterprises’ security
budgets and can represent the real-world usages.
Effectiveness Metrics. We use precision and recall to evalu-
ate the overall effectiveness of DISTDET.

5.2 RQ1: Cost Reduction by DISTDET

We compare the costs of DISTDET and Unicorn [16] (i.e.,
one of the most representative centralized architecture) on the
Industry Arena dataset. We implemented Unicorn to consume
the event logs from real-world hosts and used the optimal
configuration from the original paper.
Storage Cost (CostS). For DISTDET, CostS includes event
caching and models generated by all hosts within 14 days,
with a total of 143.83GB, of which the models occupy
220.7MB. The average model size is ∼200KB, which is re-
lated to the type of application running on the host. CostS of
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Table 6: Cost comparison between the distributed architecture (DISTDET) and the centralized architecture (Unicorn)
Architecture CostN CostS CostC Host Cost Cluster Totalcost

Distributed
(DISTDET)

15.47b/s
(cluster:17.08Kb/s)

130.34MB
(cluster:143.83GB)

client side: 5.52MB
server side: 3KB
Total: 5.523MB
(cluster:6GB)

Net: 0.00016USD
Storage: 0.013USD

Computing: 0.048USD
Total: 0.061 USD

68.93 USD

Centralized
(Unicorn)

10.22kb/s
(cluster:11.28Mb/s)

1.47GB
(cluster:1.63TB)

364MB
(cluster:401GB)

Net: 0.107USD
Storage: 0.146USD

Computing: 3.15USD
Total: 3.4 USD

3842 USD

(a) Throughput (server side). (b) False alarms reported by the
global (dotted) /local models (solid).

Figure 7: Throughput of DISTDET (server side) and effective-
ness of global model.

the centralized architecture is the raw event data size gener-
ated by all hosts within 14 days, which is 1.63TB. DISTDET
reduced the storage cost from 1.47GB/host (1.63TB/1130) to
130.34MB/host (143.83GB/1130), a reduction of 11.6×.
Network Cost (CostN). For DISTDET, all hosts transferred
2.462GB of data (i.e., ASGs and models) in 14 days, with
an average bandwidth of 17.08Kb/s (2.462GB/14days). For
the centralized architecture, all hosts transmitted 1.63TB of
data to the server in 14 days, with an average bandwidth of
11.28Mb/s (1.63TB/14days). As shown in Table 6, compared
with UNICORN, DISTDET reduces the bandwidth from the
average 11.28Mb/s to 17.08Kb/s (676.5× reduction).
Computational Cost (CostC). We measure the CPU and mem-
ory usages of DISTDET on both the clients and the server.
Figure 8 shows the CPU utilization as well as the memory
footprints of DISTDET on the clients, where the red line rep-
resents the baseline consumption of the EDR process without
DISTDET deployed, and the blue and green lines represent
the consumption of the EDR process with DISTDET deployed
during model training and model detection, respectively. Dur-
ing the model training period, DISTDET only builds HST, the
average CPU utilization and memory footprint of the EDR
process are 6.63% and 74.89MB respectively. Compared with
the baseline (CPU: 5.63%, memory: 71.42MB), the average
overhead of CPU and memory are 1% and 3.47MB, respec-
tively. During the detection period, the costs include HST
detection, event caching, ASG generation and alarm dedupli-
cation. DISTDET introduces an average overhead of 1.225%
and 5.52MB for CPU and memory, respectively. This incurs
negligible impacts on the daily business of the clients.

Figure 7(a) shows the CPU and memory utilization on
the server side. When the number of ASGs fed to the server

(a) CPU utilization (client side) (b) Memory usage (client side)

Figure 8: Client side Computational overhead of DISTDET

reaches 10,000 per second, the CPU utilization reaches ∼98%,
while the memory usage is only around 5MB. This means
that DISTDET can process at most ∼10,000 ASGs per second
in this setting. In total, the 1,130 hosts have a throughput of
0.063 ASGs/s with the original memory usage of 3.2MB and
each host has a memory footprint of only 3KB (3.2MB/1130)
on the server side (Table 6). In addition, DISTDET takes 3.8
minutes and an average of 12.05MB of memory to derive the
global models for all 1130 hosts. Since the global models
only need to be derived once and it takes less time, we ignore
its computational cost. For the centralized architecture, the
average memory usage of Unicorn running on the server side
is 364MB/host (the server memory is not enough to run all
host data). DISTDET reduced the average computational cost
from 364MB/host to 5.523MB/host (5.52MB for the client
side and 3KB for the server side, i.e., a 66× reduction).

Overall Cost Reduction. We acquired the typical prices of
enterprise network bandwidth, server storage, and server mem-
ory from a well-known cellular network provider [42] and
Dell [22, 23], through which we derived the values of the
price indexes αn, αs and αc. On average, DISTDET reduces
the host cost (the expense of securing a single host) from
3.4 USD to 0.061 USD (56× reduction). Thus, to protect the
entire cluster of 1,130 hosts, DISTDET costs only 68.93 USD
compared to 3,842 USD for the centralized system. Besides,
the money spent is only the cost that we can quantify, and
there are other hidden costs such as business impairment and
technical barriers. For example, when employing the central-
ized system, using 11.28Mb/s network bandwidth for security
detection can severely impact other daily businesses. On the
other hand, since the server side requires 401GB of memory
to detect APT attacks in real time, an additional cluster with
such scale needs to be set up. These obstacles greatly limit
the real-world usage of existing centralized approaches.
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Table 7: Detection results on the evaluation datasets. The
results of UNICORN are from [16].

Dataset Precision Recall Accuracy F1
Industry Arena (DISTDET) 0.99 1.0 0.99 0.99

DARPA CADETS&THEIA (DISTDET) 0.98 1.0 0.98 0.98
DARPA CADETS&THEIA (DeepLog) 0.14 0.02 0.45 0.04

DARPA CADETS (UNICORN) 0.98 1.0 0.99 0.99
DARPA THEIA (UNICORN) 1.0 1.0 1.0 1.0

Public Arena (DISTDET) 0.88 0.9 0.83 0.89
Public Arena (Log2vec) 0.53 0.43 0.97 0.47

5.3 RQ2: Effectiveness of DISTDET

5.3.1 Effectiveness on the Industry Arena Dataset

Table 7 (row1) shows the overall results. In total, DIST-
DET reported 141 attack ASGs out of 11K ASGs, of which
2 were false positives (FPs). Since there are 139 labelled
attack ASGs, DISTDET managed to miss no true attacks,
achieving a recall of 100% and a precision of 99%. In
particular, we found that FPs were caused by the follow-
ing two reasons: (1) Rare benign behaviors. The Windows
Explorer.EXE started an unexpected theme update, resulting
in the file creation of \\Local\\ Microsoft\\ Windows\\
ActionCenterCache\\xx.png. The related events were
recorded with low frequencies in the model, causing a false
alarm. (2) Missing logs in the collection. Due to the missing
logs in the collection, a scheduled task apt-daily.service
was flagged as an attack, which is a service that regularly
refreshes the list of available packages in the Ubuntu server.
This indicates that the completeness of the data collection
and the frequencies of the normal edges in the model play
important roles in the precision of DISTDET. In practice, we
can collect log data as completely as possible and reinforce
the models to ensure the detection effectiveness. Further, we
show that DISTDET is able to restore the attack chain in § C.2.

5.3.2 Comparison with State-of-the-Art

We compare DISTDET with the state-of-the-art anomaly
detection systems including Unicorn, DeepLog [30] and
Log2vec [12]. We contacted the authors of Log2vec to get the
prototype code, and obtained the source code of Unicorn [2]
and DeepLog [46] from GitHub. Due to the memory lim-
itation, the state-of-the-art systems (Unicorn, Deeplog and
Log2vec require 364MB, 7.5GB and 10.63GB memory per
host respectively) cannot handle all the 1,130 hosts in the
Industry Arena dataset. Therefore, we compare DISTDET
with Unicorn and DeepLog on the Darpa TC dataset. Since
Log2vec cannot handle system audit logs, we compare its
performance with DISTDET on the Public Arena dataset.
DISTDET vs. Unicorn As shown in Table 7, DISTDET
achieves almost the same precision and recall with Unicorn
on the DARPA TC dataset. Yet, DISTDET outperforms Uni-
corn in terms of interpretability and granularity of the results.
DISTDET uses an ASG, which records the attack nodes and
the contextual events, as the detection result. This provides

better interpretability and can effectively facilitate the subse-
quent investigation by the security analysts. Unicorn uses the
entire provenance graph that tracks the system state transi-
tions as the detection result. Security analysts have to find the
attack nodes from the whole graph for follow-up investigation
and reaction, which requires a lot more manual effort.
DISTDET vs. DeepLog As shown in Table 7, the performance
of DeepLog on DARPA TC dataset is quite poor (with F1 of
0.04). The reason is that the natural language sequence model
used by DeepLog is difficult to distinguish between attack
logs and benign behavior logs. First, many attack logs have
no casual and sequential relationships with normal behavior
logs. For example, the first attempt to exploit Nginx server
in the DARPA CADETS 1 campaign generated a network
activity log <Nginx, connect, source IP, destination IP>. This
attack step could be initiated by the attacker at any time and
had no sequential relationship with other benign behaviors.
Secondly, unlike the system logs used for system diagnosis in
DeepLog experiment, which have many types of logs, system
audit logs only have three types of logs: process, network, and
file. The sequence models constructed with only these three
types of logs cannot achieve satisfactory performances.
DISTDET vs. Log2vec Table 7 (row 6-7) shows that although
Log2vec can achieve a high accuracy, its recall is quite low.
Thus, DISTDET outperforms Log2vec greatly, with recall of
89% and 47%, respectively. There are mainly two reasons.
First, Log2vec only leverages login, file and web network logs
to detect attacks, which cannot detect attacks captured in other
important logs (e.g., process logs). Second, Log2vec requires
long-term user logs to construct logical relationships among
days (516 days in [12]), which cannot be easily adopted in
the industry settings. Note that, DISTDET reported three false
negatives in the Public Arena dataset, all of which are caused
by insider attacks (e.g., the attacker logged in host B from
host A using mstsc, and the user of host A also did this during
the training period). These missed behaviors can be restored
during the investigation phase using cached data on the client
side, which will be described in § 5.5.

5.4 RQ3: False Alarm Filtering

As aforementioned, DISTDET performs false alarm filtering
at multiple stages. On the one hand, the detection by the
comprehensive global model can reduce the false positives
caused by local bias. On the other hand, DISTDET deals with
alarm fatigue through client side alarm deduplication and
server side semantic alarm aggregation. We next measure the
effectiveness of false alarm filtering for each stage.
Effectiveness of Global Model. As DISTDET builds a global
model for hosts with the same type of service, we first group
the hosts into different service clusters. Among 1,130 hosts,
25 hosts have < 5 processes listed in their host models, which
were new or template hosts that do not actually conduct any
business. Thus, we clustered the remaining 1,105 hosts us-
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ing the method described in Section 4.3. In total, we get a
total of 146 clusters with an average of 7.57 hosts per cluster,
see Appendix § C.1 for details. Overall, for different clusters,
the global model can reduce false positives by an average
of around 70%. Particularly, we select the MongoDB, Redis
and Kubernetes clusters, which provide the most represen-
tative services for the enterprises, as case studies to show
the effectiveness of the global model. DISTDET is applied to
train a local model for each host in the MongoDB, Redis and
Kubernetes clusters, and derived global models based on the
local models. We then deployed the global model to each host
along with its local model to perform a week-long detection.
We measured the alarms reported by both the models in each
cluster. As we did not perform any attack, any alarm reported
is a false positive. Figure 7(b) shows the results. The number
of false positives generated by the global models (dotted lines)
is much less than that of the local models (solid lines). When
relying on only the local models for detection, the average
number of false positives generated per host is 240, while the
average number reported by the global models is 39. This
shows that the global model can effectively complement the
host models to eliminate local bias.
Effectiveness of Alarm Deduplication. In our two-week ex-
periment, 1,130 hosts generated a total of ∼1 million alarms,
with an average of 69 alarms per host per day. This is a labor-
intensive task for security analysts to handle these alarms.
Using a sliding time window of 24 hours for deduplication,
the number of alarms is reduced to ∼76,000 (4.8 alarms/host/-
day). This indicates that DISTDET reduced 93.03% of the
duplicate alarms in the clients with a small overhead, saving
a lot of network bandwidth.
Effectiveness of Alarm Semantic Aggregation. After seman-
tic aggregation, 11,242 ASGs (0.71 alarms/host/day) were
remained out of the ∼76,000 ASGs with the similarity thre-
hold τs of 0.85 (see Appendix § C.1 for details). This shows
that semantic aggregation can further eliminate 85.21% of the
alarms. In addition, two experienced security analysts manu-
ally investigated 50 samples each day from the filtered alarms
(700 alarms in total), and no attacks were found.

In summary, after the above steps, DISTDET reduces the to-
tal number of alarms from 3.6 million (230 alarms/host/day)
to 11k (0.71 alarms/host/day), saving 99.69% of the security
analysts’ labor cost without filtering true positives.

5.5 RQ4: Investigation with DISTDET

DISTDET persists data on the client through event caching
(see Appendix A.2), so that analysts can obtain the missing
provenance graph data from the cache on demand. We mea-
sure the effectiveness of log reduction in the event caching
and the performance of investigation using cached data.
Effectiveness of Log Reduction. We compare DISTDET with
the state-of-the-art system audit log reduction approaches,
i.e., NodeMerge [41] and Full Dependence (FD) [21], on the

Table 8: Log reduction on the DARPA TC dataset.

Tools
NodeMerge
(Raw Data)

FD
(without CSR)

DISTDET
(Raw Data)

Reduction 3.37X 4.8X 1.33X
Memory 928.61MB 290MB 2MB

Table 9: The distribution of attacks DISTDET identified.
Attack Type Percentage(%) Attack Type Percentage(%)

Cryptomining 27 Ransomware 20
Infectious Malware 6 Macro virus 2

Worm 7 Rootkit 7
Brute Force 2 Other 29

Darpa TC dataset. We reproduced NodeMerge to measure its
effectiveness, and the result of FD was from [21]. Table 8
compares the log size reduction ratio (i.e., ratio of the data
size before and after the reduction) of these approaches, and
Table 12 in Appendix § C.4 presents the detailed results. The
average reduction ratio of DISTDET (1.33) is somewhat less
than NodeMerge (3.37) and FD (4.8). This is expected, be-
cause DISTDET mainly compresses repeated long strings in
node attributes, most (96.1%) of which are null in the Darpa
TC dataset. NodeMerge merges read-only file nodes, while
FD mainly merges similar edges between node pairs. Since
these nodes and edges have a higher proportion in the Darpa
TC dataset, they achieve better reduction results. More impor-
tantly, these approaches compress different parts of the log
data, they are complementary to each other and can be ap-
plied together. Furthermore, DISTDET only consumes 2MB
of memory to caches all data in real time, strictly conform-
ing to the overhead constraint on the client. As a compari-
son, due to the complex compression algorithms, NodeMerge
(928.61MB) and FD (290MB) are only suitable for offline
analysis and may be applied once a day or a week.
Effectiveness of Investigation. We perform causality analysis
and connect the same nodes (processes, files, or networks) in
different ASGs in chronological order to restore the attack
scenario graph for each campaign. When ASGs fail to connect,
we request the missing association nodes from the cached data
on the client. We use F-Lateral as the case study to show the
investigation process in Appendix § C.5. In total, through
on-demand investigation, we find all the missed attack ASGs,
indicating that DISTDET preserves all the information that is
necessary to perform an attack investigation. Table 6 shows
that it only needs 130MB storage to cache the industry data
generated in 14 days (9MB/day/host) on average, and 1.6GB
for 0.5 years.

5.6 RQ5: Application of DISTDET in the Wild

By the time of this writing, DISTDET has been beta deployed
to 50+ industry customers for more than 6 months, covering
22,000+ hosts in total. The customers cover different indus-
tries such as finance, retail, and healthcare providers, and
the customer clusters cover various common business types
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such as databases, apps, and electronic transactions. In these
customer clusters, DISTDET generated an average of 4,400
alarms per day (0.2 alarm/host/day) after ASG semantic ag-
gregation and about 90 alarms per day were flagged as attack
ASGs by ASG ranking. The daily false positive rate fluctu-
ates in the range of 1-10%. In practice, we had 5-6 full time
security operators handling the alarm data with a processing
efficiency of 800 alarms per person per day. Overall, 900+ real
attacks were found during roughly 6 months (5 attack cam-
paigns per day on average). Table 9 shows the distribution
of these 900+ attacks, with ransomware and cryptomining
account for roughly half of the attacks.

The industry customers have also deployed other EDR
products on their clients, while we observed that only 25% of
the attacks can be flagged by them. DISTDET has exhibited
superior performance over existing EDR products mainly in
two aspects: (1) the ability to detect unknown attacks. DIST-
DET uses a fine-grained anomaly detection model such that
it is capable of detecting attacks that cannot be flagged by
existing rule-based EDR products. (2) The ability to overcome
alarm fatigue. Compared with ordinary EDR products that
generate 700 alarms per host per day, the alarm rate of DIST-
DET in customer clusters is only 0.2 alarms per host per day.
This allows security operators to respond more quickly. For
example, in an anonymized company, 4 hosts were infected
with the mining virus mkatz.ini [47]. Our security opera-
tors quickly noticed the mining behavior from the 16 alarms
generated in 3 days by these 4 hosts with DISTDET deployed.
Actually, the attack is also detected by other rule-based detec-
tion tools (i.e., we further checked all the alarms generated
by other rule-based detection tools after we identifying these
attacks). However, due to the overwhelming number of false
alarms (10,000+ alarms) generated, the attack is missed by
security operators. This demonstrates DISTDET’s ability to
address alarm fatigue in the real-world settings.

6 Discussion

Evasion Attacks. Adversaries may launch mimicry at-
tacks [36, 39] that camouflage attacks as benign behaviors
to evade detection. However, conducting mimicry attacks on
provenance graph based models is more challenging than on
small sequence of events, as it is difficult to launch an entire
attack campaign using all normal behaviors. Moreover, unlike
Unicorn [16] and Provdetector [49] which use graph level and
path level data for modeling, DISTDET uses event-based HST
to build a fine-grained model, making the evasion more costly,
i.e., attackers have to keep the most fine-grained attributes of
the attack events consistent with those in the model.
Model Building and Updating. Some hosts may exhibit be-
haviors that make it difficult for DISTDET’s host models to
converge, e.g., public Internet hosts have random network ac-
cess. While this will compromise the capabilities of DISTDET
in detecting anomalies in network accesses, DISTDET still

can protect the host by using other sub-models (i.e., process
models and file models). Besides, unlike existing modeling
methods that require a lot of effort to retrain the models after
deployment, DISTDET’s host models can be easily updated
based on the manually identified false alarms.
Limitations. DISTDET shares assumptions and limitations
with other anomaly-based detection systems: (1) Attack noise
in the training period: Our host models can be contaminated
when attack behaviors occur during the training period. In a
live industrial setup, we use our accumulated attack knowl-
edge such as heuristic rules to minimize the impact of attacks
in the training period. The model will be uploaded to the cloud
to find out whether it is polluted, and mitigate the polluted part.
(2) Poor generalization: Our HST models in the clients are
efficient to compute but have limited generalization to other
types of benign behaviors. In future work, we plan to leverage
the cloud to train behavior models based on business needs
by using more computational expensive techniques, such as
graph embeddings and CNN, and distribute this model as the
baseline model to complement the HST models.

7 Related Work

Causality Analysis via System Audit Logs. Causality anal-
ysis based on system auditing logs aims to automatically
reconstruct a series of events that represent attack steps [24].
As causality analysis suffers from the dependency explo-
sion problem, recent efforts have been made to mitigate the
dependency explosion problem by performing fine-grained
causality analysis [25, 27], prioritizing dependencies [18, 26],
customized kernel [6], and optimizing storage [21, 41, 52].
Causality analysis can work with DISTDET to build a more
detailed provenance graph upon our ASGs to reveal more
contextual information of the attacks.
Anomaly Detection. Recent log anomaly detection sys-
tems [30, 50] usually convert logs into sequences and then
employ different machine learning methods to detect abnor-
mal logs in sequences. However, these systems do not con-
sider the logical relationships among the nodes of provenance
graphs, which is the key to represent the contextual informa-
tion of APT attacks. Thus, they cannot achieve satisfactory
performances and are more often used for system diagno-
sis. Furthermore, as described in § 5.3.2, machine learning
methods require a large computational cost to train models
(DeepLog requires 7.5GB per host), which significantly limits
their adoption in the industrial settings. DISTDET addresses
this fundamental limitation by employing a novel distributed
detection architecture to minimize the overall cost by shifting
part of the APT detection to the clients and collects summa-
rized graphs (i.e., ASGs) instead of all logs.
False Alarm Filtering. Existing alert correlation and dedupli-
cation systems [17, 29, 48, 53] perform alert deduplication or
correlation based on alert properties, whose performances are
not robust as they are specific to their domains and heavily
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rely on their alert detection systems. Different from these
works, DISTDET adopts a novel four-step approach (global
model, alert deduplication, alert semantic aggregation and
alert ranking) that integrates monitoring and detection with
alarm filtering and provides novel techniques in every step to
achieve better filtering performance. Also, none of the existing
works leverage global models of process behaviors to filter
alarms. For example, NoDoze [18] is an alert ranking tech-
nique that assigns an anomaly score based on the frequency
to combat threat alert fatigue produced by the rule-based host
IDPS. However, NoDoze is actually a centralized system that
requires all logs being sent to the server for training, which
is impractical in the industry settings, especially when con-
sidering that the filtering effectiveness of NoDoze is only
around 84%. The 1,130 hosts in the Industry Arena generate
260K alarms every day, and security analysts need to handle
42K alarms every day after using NoDoze (VS. 800 alarms
reported by DISTDET).

8 Conclusion

We propose DISTDET, a cost-effective detection system that
detects APT attacks through distributed computing, anomaly
detection, and false alarm filtering. In particular, DISTDET
adopts a novel distributed detection architecture to minimize
the overall cost by shifting part of the APT detection to the
clients and transmitting only summary graphs that represent
potential attacks to the server, which greatly reduces the costs
of data transmission and storage. Our evaluations on real
industry data show that DISTDET effectively reduces the
detection cost by 56 times, while maintaining a comparable
detection accuracy as the state-of-the-art techniques.
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Appendices
Appendix A Design of DISTDET

A.1 Tokenization of the HST
Table 10 shows representative types of tokenization.

Table 10: Representative types of tokenization
Type Original command/filepath/ip Tokenized command/filepath/ip
hash docker inspect 5facb37bd928 docker inspect xxxxxxxxxxxx
pid taskset -cp 0-2 30110 taskset -cp 0-2 xxxxx

number date -d 1073876 second ago +%s date -d xxxxxxx second ago +%s
ip 192.168.28.37 192.168.28.x

filename /net/cali2e2859502e8 /net/calixxxxxxxxxxx

A.2 Event Caching
The goal of Event Caching is to cache the event stream for
generating ASGs, which requires forward and backward trac-
ing of the alarms. However, the biggest challenge is how to
achieve caching of event streams on the limited storage re-
sources of client. To this end, we use a lightweight disk-based
database sqlite to cache data. The central idea is to minimize
the storage space for duplicate strings. By analyzing a large
amount of event stream data, we found that the most repeated
strings in events are command and file paths. For this, we
use a multi-level hashing mechanism to reduce the storage
space for these long strings. Figure 9 illustrates the Event
caching method. We first perform the primary hash, which
extracts the duplicate long commands and file paths from the
events and stores them in the form of hash index, generating
a command hash table and a file hash table respectively. After
that, there are still a lot of duplicate shared long paths in both
tables. Thus we dump the hash of the duplicate long paths
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cd C:\Users\User\AppData\Local\Google\Chrome\User Data\
Command 10,000 repetitions
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Figure 9: Event Caching

from the two tables into a path hash table. Here, a duplicate
string is deemed to be a long path if it has more bits than
the hash value, which is 19 bits in this work. As shown in
Figure 9, the example command is repeated 1,000+ times
in the host, and the path in the command is repeated 8,000+
times. Through two-level hash, a total of 18,000+ repeated
storage elements are saved. The results in Section 5.2 show
that our event caching method losslessly caches one day’s
data in 9.31MB (130.34MB/14day) on average, with an aver-
age compression rate of 10 times. The memory footprint in
the agent is extremely small.

<mongod, connect, 192.168.1.x:44938:tcp > <mongod, connect, sz-mongdb-1.cv><mongod, read, mongodb27017.conf>
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Figure 10: Case study of Global Model Derivation

A.3 Case study of Global Model Derivation
Figure 10 shows how the behaviors of the common process,
mongod, are merged in the MongoDB cluster. MongoDB-A,
MongoDB-B and MongoDB-C have unique events <mongod,
connect, 192.168.1.x: 44938: tcp>, <mongod,
read, mongodb 27017.conf> and <mongod, connect,
sz-mongdb-1.cv> respectively. DISTDET merges these
unique events into the global model and updates the host
HSTs correspondingly. DISTDET then repeats to merge all
common processes in the cluster. In the experiment, we
limit the maximum number of leaf nodes per process node
to 500 (configurable) to mitigate the leaf node explosion in
the model. Since the tokenization heuristics cover most of
the attribute changes, no over-limited nodes are found in

the 1,132 host models in the Industry Arena dataset. If the
number of leaf nodes exceeds the maximum value, the excess
leaf nodes will generate false alarms because they are not
learned into the model. Operators will discover these special
cases when analyzing the models and add corresponding
tokenization heuristics to mitigate the problem.

Appendix B Dataset Details

B.1 Dataset Event Type
Table 11 shows the proportion of event types in the datasets.

Table 11: Dataset Event Type
Dataset Process File Network Other
Industry 19.45% 8.06% 36.22% 36.27%
Darpa 5.10% 43.70% 7.40% 43.70%
Public 0.21% 86.86% 8.53% 4.40%

B.2 Attack Steps of the F-Lateral Campaign
The APT actor compromises the target host A, moves laterally
to host B and steals important data on host B. F1: Brute force
cracking into the target host A; F2: Use the WMI tool to query
host information; F3: Disable security tools; F4: Disable
windows defender; F5: Add scheduled tasks; F6: Get a list
of accounts in host A; F7: Gather information about domain
trust relationships; F8: Enumerate files and directories; F9:
Get process information; F10: Obtain a list of other systems
by IP address, host name, or other logical identifier on the
network that can be used to move laterally from host A; F11:
Get detailed information about the operating system and the
hardware, including versions, patches, service packs, and ar-
chitectures; F12: Execute mimikatz to get a ticket for lateral
movement; F13: Execute WMIexec to obtain the password
of target host B; F14: Execute SNETCracker to brute force
other hosts on the intranet; F15: Execute paexec to move
laterally to host B, and execute the ipconfig command; F16:
Download the remote control Trojan twice through paexec,
but the Trojan cannot be started; F17: Execute mstsc to move
laterally to host B; F18: Disable windows defender on host
B; F19: Execute CMD on host B, download the remote con-
trol Trojan, and run successfully; F20: Steal files through the
remote control Trojan;

Appendix C Experiment Results

C.1 Finding the Optimal Parameter Values
Figure 11 shows how the key parameters influence the perfor-
mance on detecting attacks in the Industry Arena dataset.
K in Global Model Clustering. We compare the results of
clustering using different K values, ranging from 2 to 500.
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(a) K in Global Model Clustering. (b) F1 scores on different X,Y,N values (c) ASG sizes on different X,Y,N values

(d) Sliding time window (e) Similarity threshold τs. (f) Ranking threshold τd

Figure 11: Performance of DISTDET on different parameters.

In Figure 11(a), when the value of K is 146, the Calinski-
Harabasz index [7] that measures the K-Means clustering
effect reaches the maximum value, and the clustering achieves
the best performance.
Parameters in ASG Generation (X, Y, N). We employ F1
score and ASG size to measure the effectiveness and cost
of DISTDET under different X, Y, N values. As shown in
Figure 11(b) and Figure 11(c), as the parameters of X gener-
ations ancestors, Y generations descendants and first N out-
going edges increase, the number of context nodes in ASGs
increases, which improves the ranking results of ASGs. But it
consumes more memory and transmission bandwidth. When
the value of X, Y and N exceeds 12, 2 and 15, respectively,
we find that the newly added context nodes have no signif-
icant impact on the F1 score, but instead increase the ASG
sizes. Thus, we adopt the ancestors within 12 generations
and the descendants within 2 generations. For each identified
process node, we use the first 15 outgoing nodes of each type
(if available).
Sliding Time Window. For the optimal value of the sliding
time window, we measured the aggregation rate by varying
the value of the time window, as shown in Figure 11(d). As the
time window is increased to more than 24 hours, the increases
of the aggregation rate become marginal. We thus set the
sliding time window to 24 hours.
Similarity Threshold τs. We selected 313 alarms as the test
set, including 176 alarms with similar semantics (22 groups
of different types, 8 in each group) and 137 alarms with dis-
similar semantics. We calculated the aggregation rate (similar
alarms/total alarms) and aggregation accuracy by varying τs.
Figure 11(e) shows that the larger the threshold τs, the higher

the aggregation accuracy and the lower the aggregation rate.
When the threshold τs is lower than 0.85, the aggregation
accuracy rate is lower than 100%, which will introduce false
positives, and when it is higher than 0.85, the aggregation rate
is significantly lower than 56.23% (maximum aggregation
rate). Therefore, the semantic aggregation was performed on
the server with the similarity threshold τs of 0.85.
Weighting Factor α f and Ranking Threshold τd . To de-
termine the optimal threshold value, we first created a tested
dataset leveraging some of the most commonly used attack
techniques including redis 0day vulnerability, anti-virus web-
shell, reverse shell. Overall, our tested dataset covered 28
hosts, which generated 52 attack ASGs (true alarms) and 87
normal ASGs (false alarms) in total (labeled as described in
§5.1.4). We then calculated the anomaly score for each of
these ASGs using different τd values. The results show that,
when the weighting factor α f is less than 0.9, the anomaly
scores of attack ASGs and normal ASGs are crossed and in-
distinguishable. Therefore, α f = 0.9 is used in our evaluations.
Figure 11(f) shows the distribution of true alarms and false
alarms. We can see a significant difference in the distribution
of anomaly scores for the false alarms and the true alarms.
Thus, we set the ranking threshold τd to 0.3 (shown as the red
line), where the majority portion (more than 80%) of the false
alarms can be filtered.

C.2 Detection Coverage

We further use the detection coverage that is often used in
security companies and the MITRE ATT&CK [45] to mea-
sure the ability of restoring the entire attack campaign. We
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Table 12: Log reduction details on the Darpa TC dataset

Darpa
dataset

NodeMerge DISTDET
Read-only

files count(%)
Reduction

Factor
Total

Path count
Long

Path count(%)
Null

Path count(%)
Reduction

Factor
Cadets 23.4M(69.1%) 4.58 82.7M 4.5M(5%) 66M(79.8%) 1.21
Theia 13M(66.8%) 2.89 226.6M 0(0%) 226.6M(100%) 1.55
Trace 2.7M(34.5%) 3.45 63.3M 0(0%) 63.3M(100%) 1.33

FiveDirections 34.5M(23.5%) 2.81 47.8M 0(0%) 47.8M(100%) 1.26
Total 73.6M(35.4%) 3.37 420.4M 4.5M(1.1%) 403.8M(96.1%) 1.33

(a) False positives reported by the
host models over time (box plot).
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Figure 12: Convergence of host models and detection cover-
age of attacks.

compute the detection coverage of the attack campaign, i.e.,
the ratio of detected attack steps to the total number of steps
in a given attack campaign. Figure 12(b) shows the results
for each attack. We can see that the detection results cover all
the attack steps in the MITRE ATT&CK matrix, indicating
that the anomaly detection capability of DISTDET is indepen-
dent of the exploit types and attack techniques adopted by
the attackers. Overall, 109 (98%) of the 111 attack steps in
the four attacks were detected. The two missed steps are the
C5 step of C-Log4j2 and the D6 step of D-Weblogic. Manual
analysis revealed that both steps were missed due to the data
collection problem.

C.3 Convergence of Host Models

To understand whether and how soon our local models can
reach convergence, we measure the number of false alarms
reported by the host models over time. Specifically, we ran-
domly selected 50 hosts that provide representative business
services, including test servers, mail servers, DNS servers,
SOAPA servers, yum repositories, Desktop, etc. For each
host, we started the model training, saved a model every day,
and obtained 10 models after 10 days. Then each of the ten
models was deployed on the host for detection. Figure 12(a)
shows the results. We use the evolution of the false positive
rate (FPR) over time to measure whether the model achieves
convergence. We can see that the FPRs decrease quickly in
the first three days, and the FPRs of most hosts drop below
1% after three days of training. We can also notice that there
are some fluctuations of the FPRs in some hosts (i.e., isolated
nodes on the box plot), which are mainly caused by scheduled
tasks and unexpected maintenance tasks performed by the
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Figure 13: Investigation process of the F-Lateral campaign

users. To mitigate these issues, domain knowledge such as
whitelists can be further adopted to reduce the false alarms.

C.4 Log reduction on the Darpa TC dataset
Table 12 shows the number and proportion of reduction ob-
jects for NodeMerge and DISTDET in the Darpa TC dataset.

C.5 Case Study of Investigation
Figure 13 shows the investigation process of the F-Lateral
campaign, where the nodes fetched from the client are marked
with red boxes. Since the attack steps are all conducted
through the user interface (UI), the ancestor of most of the
alarm processes in ASGs is explorer, which is the Windows
UI management process. ASG1-18 and ASG21-23 are con-
nected into two subgraphs by the explorer on host A and
host B, respectively, lacking associated nodes in the middle.
Therefore, we request the explorer descendant nodes that
occurred between ASG18 and ASG21 from the host A client
side, and find the mstsc (the APT actor moved from host A
to host B) process and related events, thus obtaining ASG19.
Similarly, we find rdplcip (host B accepts host A’s login)
process related events from the nodes requested by host B
client side, and get ASG20. The ASGs (ASG15-20) across
hosts are all connected using the network events of Host A
and Host B. As a result, the scenario graph of the F-Lateral
is completely restored. We share the rest attack graphs along
with our Public Arena Dataset [5] to the community.
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