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Abstract
The ciphertext side channel is a new type of side channels that
exploits deterministic memory encryption of trusted execu-
tion environments (TEE). It enables the adversary with read
accesses to the ciphertext of the encrypted memory, either
logically or physically, to compromise cryptographic imple-
mentations protected by TEEs with high fidelity. Prior studies
have concluded that the ciphertext side channel is a severe
threat to not only AMD SEV-SNP, where the vulnerability was
first discovered, but to all TEEs with deterministic memory
encryption.

In this paper, we propose CIPHERH, a practical frame-
work for automating the analysis of cryptographic software
and detecting program points vulnerable to ciphertext side
channels. CIPHERH is designed to perform a practical hy-
brid analysis in production cryptographic software, with a
speedy dynamic taint analysis to track the usage of secrets
throughout the entire program and a static symbolic execution
procedure on each “tainted” function to reason about cipher-
text side-channel vulnerabilities using symbolic constraint.
Empirical evaluation has led to the discovery of over 200
vulnerable program points from the state-of-the-art RSA and
ECDSA/ECDH implementations from OpenSSL, MbedTLS,
and WolfSSL. Representative cases have been reported to and
confirmed or patched by the developers.

1 Introduction

The global cloud computing market has experienced expo-
nential growth over the past few years. However, the lack of
trust in the cloud operators has always been a major obsta-
cle for many data owners to embrace the cloud technology,
especially in finance and health care settings where data se-
curity is of concern. To address this trust issue, the concept
of confidential computing has been proposed [14], which is a
norm of computation that preserves the confidentiality of the
computation and data on untrusted computing platforms.

*Corresponding authors. shuaiw@cse.ust.hk, yinqianz@acm.org

The core technique that enables confidential computing is
the Trusted Execution Environment (TEE). TEE is a hardware
feature available in most modern processors. With the help of
a hardware root-of-trust and a fast memory encryption engine,
TEE can provide an isolated execution environment for secure
data processing, guaranteeing both the confidentiality and
integrity of program instances running inside the TEE.

Memory encryption is the primary means to protect mem-
ory data against an adversary with either software-level or
physical-level access to the memory content. A memory en-
cryption engine is a hardware module sitting in between of
the CPU chip and the DRAM module, which automatically
encrypt or decrypt the data on the memory bus on-the-fly.
The mode of operation used in memory encryption is con-
strained by two factors: First, to support random memory
access in an efficient manner, memory blocks must be en-
crypted independently; chaining modes (e.g., CBC mode) are
not suitable. Second, to support large encrypted memory, en-
cryption modes requiring freshness (e.g., CTR mode) cannot
be adopted, as additional space and latency are needed to
maintain the counters [33].

As such, all TEEs supporting large encrypted memory, in-
cluding AMD Secure Encrypted Virtualization (SEV) [30], In-
tel Software Guard Extensions (SGX) on Ice Lake SP [27,28],
Intel Trust Domain Extensions (TDX) [26], and ARM Con-
fidential Compute Architecture (CCA) [4], adopt the AES
encryption with deterministic, block-based modes of oper-
ation, such as XOR-Encrypt-XOR (XEX) mode or XEX-
based tweaked-codebook mode with ciphertext stealing (XTS)
mode. The inclusion of tweak functions—an obscured, one-
way function with physical addresses as input—successfully
prevents a malicious cloud provider from correlating the mem-
ory content at different physical addresses. However, without
freshness, the same plaintext block is always encrypted into
the same ciphertext block at the same physical address.

Such design choices leads to the notorious ciphertext side
channels [33, 34]. It is demonstrated that when the secrets are
stored at fixed physical locations (e.g., the VM save area, ker-
nel data structures, user-land stacks, etc.), an adversary having
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read accesses to the ciphertext (either via software access [34]
or via memory bus snooping [32]) may be able to recover
some plaintext information of the encrypted memory, leading
to complete breach of cryptographic implementations if they
exhibit specific patterns of memory updates [33, 34]. We call
such a pattern that leads to ciphertext leakage a ciphertext
side-channel vulnerability.

While ciphertext side channels were first discovered on
AMD SEV, where the hypervisors are granted read accesses
to the ciphertext of the encrypted memory, other TEEs are
also susceptible to ciphertext side channels, when the adver-
sary is able to perform memory bus snooping. Instead of
fixing the vulnerabilities from the hardware, presumably due
to the overhead associated, AMD has recommended mitigat-
ing ciphertext side channels by fixing ciphertext side-channel
vulnerabilities from the software [2].

As the first step of such a software-based solution, in this
paper, we propose CIPHERH, a practical framework for au-
tomating the analysis of cryptographic software and detecting
program points vulnerable to ciphertext side channels. We
first formulate ciphertext side channels using symbolic con-
straints. Our qualitative formulation denotes an adversarial
view to check if consecutive secret writes can result in in-
formation leakage. Technically, we design CIPHERH to de-
liver a practical hybrid analysis for detecting cipertext side
channels in production cryptographic software. CIPHERH
launches speedy dynamic taint analysis to track the usage
of secrets throughout the entire program. Then, CIPHERH
performs static symbolic execution on each “tainted” func-
tion (in assembly code), reasoning if secret memory writes
induce ciphertext side channels using our formed symbolic
constraint. CIPHERH is carefully optimized with respect to
both intra-procedural and inter-procedural symbolic analysis,
exhibiting greater comprehensiveness and scalability than ex-
isting works. We show that existing side channel detectors
are not scalable to analyze CIPHERH’s test cases.

We have evaluated CIPHERH using real-world crypto-
graphic libraries and achieved encouraging results. Within
28 CPU hours, CIPHERH is able to complete the analysis of
RSA and ECDSA/ECDH implementations from three widely-
used cryptographic libraries, OpenSSL (ver. 3.0.2), MbedTLS
(ver. 3.1.0), and WolfSSL (ver. 5.3.0). CIPHERH successfully
detects 236 vulnerable program points, among which only
nine are false positives according to our manual confirmation.
Representative findings of CIPHERH have been responsively
confirmed by OpenSSL and WolfSSL developers, and some
patches have been issued. Particularly, we show surprising
findings that CIPHERH detects new vulnerabilities in Wolf-
SSL that can exploit newly patched code. WolfSSL developers
confirmed our findings and prepared another patch. In sum,
our contributions are as follows:

• We formulate for the first time ciphertext side channels,
an emerging threat on mainstream TEEs, using symbolic
constraints. This enables automated analysis to determine if

consecutive secret writes lead to ciphertext leakage.
• We design CIPHERH, a framework identifying ciphertext
side channels in production cryptographic software. CI-
PHERH explores a synergistic effect by combining scalable
whole-program dynamic taint analysis and precise function-
level static symbolic execution. It outperforms existing side
channel detectors with higher scalability and comprehensive-
ness.
• We have applied CIPHERH to analyze popular crypto-
graphic software and discovered a large number of vulner-
abilities. Representative cases have been confirmed by the
developers, and CIPHERH even finds new vulnerabilities
from recently patched code in WolfSSL.

2 Background of Ciphertext Side Channels

Li et al. [34] first discovered ciphertext side channels in AMD
SEV-SNP. While other attacks against AMD’s TEE [35–37,
40, 55] were already fixed in the latest variants of SEV (SEV-
SNP), the ciphertext side channel is the only one that exploits
a design flaw in SEV-SNP. Due to the use of deterministic,
block-based AES encryption, ciphertext changes of heaps,
stacks, or kernel memory in the SEV guest VMs could leak
information about execution states and even secret keys [33].
Deterministic Encryption. Deterministic encryption are
widely used in TEEs with large encrypted memory, such as
AMD SEV [30], Intel TDX [27], Intel SGX on Ice Lake
SP [27, 28], and ARM CCA [4]. Most TEEs may use AES-
XEX and AES-XTS modes of operation. For instance, in
XEX, for encrypting a 128-bit memory block in physical ad-
dress Pm, MEE first uses Pm to calculate a tweak value T (Pm).
The plaintext m in this memory block is then XOR-ed with
T (Pm) before encryption. The output of the encryption is later
XOR-ed with T (Pm) again to generate the final ciphertext c.
Therefore, the ciphertext is c = ENC(m⊕T (Pm))⊕T (Pm).
Deterministic encryption with either XEX or XTS mode of
operation leads to ciphertext side channels, because the same
plaintext at the same physical address is always encrypted
into identical ciphertext.

k1 = read_key_bit(0)
k2 = read_key_bit(1) 

ciphertext 1  

ciphertext 2  

observing ciphertext changes è k1 != k2  
observing ciphertext no change è k1 == k2  

observation1

observation2

observation1

observation2

a = k1
…
a = k2
...

cryptographic
program

① ②

①
②

Figure 1: Inferring relations of key bits.
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Dictionary and Collision Attacks. Ciphertext side-channel
attacks are classified into Dictionary Attacks and Collision At-
tacks [33]. Dictionary attacks are attacks where the adversary
collects sufficient ciphertext-plaintext pairs at fixed physical
address and builds dictionary, which are later used to infer
the plaintext when the corresponding ciphertext is observed.
Collision Attacks are attacks where memory write behaviors
directly leak secret-related information. Figure 1 presents a
schematic view of launching collision attack, where k1 and
k2, denoting the first and the second bits of the private key,
are consecutively written to variable a. By observing if the
ciphertext is changed or not after the second memory write
operation, the attacker can easily infer the relations (equali-
ty/inequality) of key bits.
Countermeasures. Hardware-based countermeasures, such
as changing the encryption mode or preventing read accesses
to encrypted memory, may be implemented but with higher
performance cost. In contrast, software-based countermea-
sures that alter the operating systems and cryptographic li-
braries are recommended by AMD [2]. Li et al. [33] pro-
poses several mitigation strategies and some have been incor-
porated into WolfSSL. However, as described in §7.2, even
patched code may to contain subtle leaks. CIPHERH is the first
tool that offers a systematic and automated analysis of cryp-
tographic software under the cipertext side-channel threats.
Moreover, CIPHERH can assist the evaluation of the efficacy
of countermeasures in production software.

3 Threat Model and Application Scope

Threat Model. In this paper, we follow the established threat
model of TEE: the adversary is assumed to have full system
privilege on the machine and is also capable of performing
physical attacks, including inferring address and content of
every memory read via memory bus snooping [32], reading
remnant data from the DRAM via cold boot attack [24], and
accessing memory directly via DMA devices [47].

We assume the targets of attacks are the secrets in the
cryptographic software that runs inside a VM TEE, such as
SEV-SNP. The software stack inside the VM, including the
OS and application, is secure, such that the adversary cannot
alter its control flow or force it to leak secrets voluntarily. We
assume the hardware and microcode of the processor is up-to-
date: known attacks against SEV, SEV-ES, and SEV-SNP [29]
have all been fixed, leaving only generalized ciphertext side
channel leakage discovered in Li et al. [33].
Application Scope. Recent works have illustrated the feasibil-
ity of launching ciphertext side-channel attacks against crypto-
graphic libraries using the aforementioned threat model [33].
However, they primarily target manually identified program
vulnerabilities. This work presents CIPHERH, a thorough and
fully automated framework for identifying such vulnerabili-
ties in production cryptographic libraries. As reported in §7,
CIPHERH successfully detects a large collection of program

points vulnerable to ciphertext side channels in prominent
cryptographic libraries, including program points recently
patched against ciphertext side channels.

We clarify that the main audiences of CIPHERH are devel-
opers who want to deploy their cryptographic software on
modern TEEs. Before release, CIPHERH serves as a “vulner-
ability debugger” to assist developers in assessing potential
attack vectors of their software under ciphertext side channels.
CIPHERH provides fully automated and systematic analysis to
flag program points that leak secrets via ciphertext side chan-
nels. Developers can accordingly patch CIPHERH’s findings
to mitigate leakage. This design decision is consistent with
the majority of side-channel detectors in this field (though
they target cache side channels rather than ciphertext side
channels) [6, 10, 13, 16, 19, 48, 51, 52, 54, 56]. Nevertheless,
we clarify that CIPHERH is not an attack tool; the exploitabil-
ity of its findings (e.g., whether RSA private keys can be
reconstructed via CIPHERH’s findings) is beyond the scope.

Also, as introduced in §2, ciphertext side channels are cur-
rently only studied and performed on AMD SEV because
other TEEs with large memory (e.g., ARM CCA and Intel
TDX) are not commercial available yet. We note, however,
that CIPHERH is not exclusive to AMD. The analysis of
CIPHERH is orthogonal to the target platform and can be
applied to examine leakage from cryptographic software on
any other deterministic encryption-based TEE architectures.
The proposed steps in CIPHERH can also serve as a reference
approach to help check leakage in applications other than
cryptographic libraries.

4 Modeling Ciphertext Side Channels

This section formulates ciphertext side channels using sym-
bolic constraints. Then, with the help of constraint solvers, we
are able to rigorously detect if secret data written to memory
can be leaked via ciphertext side channels. Our modeling in
this section primarily considers collision attack, as a more
general form, which can naturally subsume dictionary attacks.
Notation. We use W (k) to represent the memory written
value, where W (k) is a symbolic expression (containing k)
that denotes the written value and k is a free variable repre-
senting secrets. Such function-like notations are also used in
the literature [6, 51, 52], although in this paper W (k) is the
memory written value (depending on secret k), whereas in pre-
vious cache side channel papers the formula (typically written
as F(k)) denotes a memory address based on the secret.

In collision attacks, we consider two sequential write op-
erations toward the same memory location, whose written
values are W1(k1) and W2(k2) (W2(k2) occurs after W1(k1)).
Note that k1,k2 may denote the same or different sub-keys.
For instance, considering our illustrative example in Figure 1,
we use W1(k1) = k1 and W2(k2) = k2 to encode written values
of two consecutive memory writes toward variable a.
Two Safe Cases. Before presenting the symbolic constraint
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that encodes ciphertext side channels, we first introduce two
safe cases that are free from ciphertext side channels.

k1 = read_key_bit(0)
k2 = read_key_bit(1) 

ciphertext 1  

observing ciphertext always changes è leaking
no knowledge about relations of k1 and k2

observation1a = k1
…
…
a = k2 + 2
...

cryptographic
program

observation2
ciphertext 2 

Figure 2: No leakage as the ciphertext always changes.
Safe Case 1: Following Figure 1, Figure 2 illustrates our first
safe case. Note that k1 and k2, each of which denotes one key
bit, could be 0 or 1. Therefore, k2+2≥ 2 6= k1 shall always
hold, meaning that from the attacker’s perspective, the second
memory write operation always leads to ciphertext change,
and therefore, she can learn nothing about the relations of
k1,k2. In sum, we deem this as a safe case, which can be
expressed using the following symbolic constraint:

∀k1,k2 ∈ K,W1(k1) 6=W2(k2) (1)

such that despite the value of k1,k2 in K where K denotes all
possible values of secrets, the memory write contents W1(k1)
and W2(k2) should always be distinct.
Safe Scenario 2: Similarly, considering the following case,

∀k1,k2 ∈ K,W1(k1) =W2(k2) (2)

This constraint implies that despite the value of k1,k2, the
memory write contents W1(k1) and W2(k2) are always the
same. This is another safe case, as from the attacker’s per-
spective, the observed ciphertext stays constant, leaking no
information about the relations of k1,k2.
Information Leakage Case. We underline that information
leakage occurs when neither of the two safe cases are satisfied.
In other words, the “unsafe” case needs to model two differ-
ent executions following the same path (we discuss path con-
straint later in this section), such that during one execution, the
second memory write operation changes ciphertext, whereas
during the other execution, the second memory write opera-
tion retains the ciphertext. To model two executions in a single
constraint, we take a common tactic, self-composition [16,52],
such that we self-compose a formula with a renamed version
of itself. In particular, Considering the following constraint,

∃k1,k2,k′1,k
′
2 ∈ K,W1(k1) =W2(k2)∧W1(k′1) 6=W2(k′2) (3)

where we apply self-composition to rename all occurrences of
k1 in W1 with free new symbol k′1 to obtain W1(k′1), and simi-
larly for k2 in W2. This constraint is sent to a constraint solver.
If the solver returns “SAT”, it means that the observed cipher-
text depends on the values of secret k1,k2. Particularly, when
the observed ciphertext stays the same among two memory
writes, the attacker can establish relations (W1(k1) =W2(k2))
between k1 and k2. When observing the ciphertext changes,
she can exclude relations (W1(k1) =W2(k2)) between k1 and

k2. These conclude the leakage of program secrets via cipher-
text side channels.
Path Constraint and Public Data. The solution of con-
straint presented in Eq. 3 may not be feasible in practice,
because program execution may not cover these two memory
accesses. As a common strategy, we extend Eq. 3 with path
constraint C. C is a logic formula, denoting the conjunction
of all branch conditions from the program entry point to the
second program memory write (which also covers the first
memory write instruction alone the execution). Also, when
performing symbolic execution, public input and public lo-
cal data are also represented using public symbols (omitted
in Eq. 3). When performing self-composition to generate
Eq. 3, we follow the standard practice to constraint all public
symbols to be equal in both executions [52]. Thus, if C con-
tains only public symbols, two executions modeled in Eq. 3
are guaranteed to follow the same path. And if C contains
secret symbols, each secret symbol k is renamed during self-
composition, and the constraint solver will search for secrets
used by two executions that satisfy both the path constraint
and Eq. 3. In short, we check the following augmented con-
straint:

∃k1,k2,k′1,k
′
2 ∈ K,W1(k1) =W2(k2)∧W1(k′1) 6=W2(k′2)∧C

(4)

for (i = cardinality_bits – 1; i >= 0; i--) {
  kbit = BN_is_bit_set(k, i) ^ pbit; //read one bit of k
     EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
     ...   
  pbit ^= kbit; // vulnerable memory write using kbit

1. 
2. 
3. 
4.
5. 

Figure 3: CIPHERH running example.

Working Example. Consider Figure 3, which illustrates the
usage of the formed constraint in Eq. 4. This code snippet is
from the ECDSA Montgomery ladder algorithm in OpenSSL.
In each loop iteration, one bit of the secret k is fetched via
BN_is_bit_set, determining a conditional swap at line 3.
The vulnerability is at line 5, where kbit is first calculated
with the value in pbit using exclusive or (xor), and then
written to pbit, a variable on the stack.

Let symbol ki (secret symbol) denote the return value
of BN_is_bit_set() in the ith loop iteration and symbol
a (public symbol) denote the variable cardinality_bit.
Given that lines 2 and 5 perform xor operations with pbit
twice, its effect on the memory write at line 5 is canceled
out. Also, the function call at line 2 does not modify kbit.
Thus, when performing symbolic execution, we derive two
formulas, W1(k1)≡ k1, and W2(k2)≡ k2, for two consecutive
memory writes (occuring during consecutive loop iterations)
at line 5. To check if ciphertext side channels exist, we per-
form self-composition to rename k1,k2 in W1,W2 with k′1,k

′
2,

and get W1(k′1)≡ k′1, and W2(k′2)≡ k′2. According to the loop
condition at line 1, the path constraint C for the second mem-
ory write is “a−1≥ 0∧a−2≥ 0”. Since there are no secret
symbols in C, the patch constraint is retained. Hence, we
check the satisfiability of the following constraint according
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to Eq. 4:

k1 = k2∧ k′1 6= k′2∧a−1≥ 0∧a−2≥ 0

The constraint solver yields SAT (meaning the constraint
is solvable), and provides the following solution such as:

[k1 = 0,k2 = 0,k′1 = 0,k′2 = 1,a = 2]

To interpret the results, we show that two consecutive mem-
ory writes at line 5 will result in different ciphertext changes,
depending on the value of k1,k2. When attackers observe the
ciphertext does not change in the first two loop iterations,
she infers that k1 = k2, and verse versa. This program point
leaks substantial sensitive information about the (in)equality
of every two consecutive secret bits, and CIPHERH can auto-
matically find it when analyzing the codebase of OpenSSL.
Leakage Encoding Soundness/Completeness. §2 intro-
duces real-world collision attacks [33] that exploit consecutive
memory writes to the same location. Accordingly, our threat
model (§3) and leak encoding (Eq. 4) assume that successive
memory writes are toward the same memory address addr. To
ease presentation, we assume that addr only depends on pub-
lic information when introducing the leakage encoding in this
section. Nevertheless, when addr is secret-dependent, satisfi-
able solutions of Eq. 4 may refer to different store operations.
This illustrates the incompleteness (false positives) of Eq. 4.
However, we do not observe such subtle false positives when
analyzing real-world cryptographic software, which strives to
be constant-time.

Furthermore, our leakage encoding is unsound. Note that
in addition to collision attacks launched to exploit ciphertext
side channels [33], we envision that secret-dependent control
branches/memory addresses may also be exploited via cipher-
text side channels. Different secret values, for instance, may
result in executing distinct secret-dependent branches and
updating different ciphertext blocks. Our leakage encoding
does not consider such cases due to two reasons: 1) detect-
ing secret-dependent control branches/memory addresses is
technically feasible by extending de facto cache side channel
detectors, and 2) we are not aware of any real-world cipher-
text attacks that rely on such dependencies. Leveraging such
dependencies to exploit and mitigate ciphertext side channels
is left for future research.
Design Consideration: Information Flow Tracking. When
forming the constraints in this section, we assume that k1,k2
represent program secrets. Nevertheless, in addition to the ci-
phertext side channels directly over the secrets, it is crucial to
treat data derived from the secrets as “sensitive” and tracking
information propagation [45]. As a common practice in this
line of research, we design CIPHERH to track explicit and im-
plicit information flow propagated from the secret. This shall
comprehensively model the attack surface of cryptographic
software.
Design Consideration: Verification vs. Detection. Formu-
lations in this section reveal the feasibility of rigorously veri-
fying the absence of cipertext side channels: we can leverage

static analysis techniques like abstract interpretation [15] to
obtain a sound approximation (the “upper-bound”) of program
semantics at each memory access point, and check the satisfi-
ability of Eq. 2 and Eq. 1 to prove the safety of the program.
Nevertheless, performing whole-program abstract interpreta-
tion is inherently not scalable. For instance, relevant works
performing abstract interpretation on binary code [19, 20, 51]
either analyze toy programs [19] or manually-scoped sensitive
code fragments [20, 51].

Hence, we instead aim to design a scalable bug detector
for cryptographic software. As will be introduced in §5, CI-
PHERH explores a hybrid approach by using dynamic taint
analysis (which is scalable and rapid) to collect functions
tainted on an execution trace. Then, it performs static sym-
bolic execution toward each tainted function, covering paths
that are not on the dynamic trace. CIPHERH is more com-
prehensive and accurate than dynamic taint analysis, as it
analyzes different paths in a “tainted” function, and uses con-
straint solving to detect ciphertext side channels. CIPHERH,
in addition, is much more scalable than whole-program static
analysis, as it mostly perform intra-procedural static anal-
ysis (see §5.2.1) toward tainted functions, whereas conven-
tional static methods perform inter-procedural analysis toward
all functions. CIPHERH can also perform lightweight inter-
procedural analysis to harvest more vulnerabilities; see our
optimized strategy in §5.2.2.

Design Consideration: Constraint Solving. It is worth not-
ing that the constraint solver can provide a pair of counterex-
amples k1,k2 that satisfy Eq. 4 (meaning we find a ciphertext
side channel). This counterexample can be used to debug
the cryptographic software, making it easier to expose the
vulnerability. In fact, we manually confirm some CIPHERH’s
findings by debugging the cryptographic software with coun-
terexamples in §7.1.

Design Consideration: Standard vs. Relational Symbolic
Execution. CIPHERH performs standard symbolic execution
and self-composition to generate Eq. 4. As noted in recent
papers [16], this standard approach is less scalable for two
reasons. ¬ Self-composition creates numerous (unnecessary)
queries independent of secrets. ­ Self-composition dupli-
cates the entire formula (as in Eq. 4), doubling the size of
the self-composed formula and imposing a heavy burden on
constraint solving. CIPHERH alleviates ¬ by checking if se-
cret symbols (ki) exist in the formula before self-composition.
Also, CIPHERH launches only function-level symbolic exe-
cution, with “empty” symbolic states at each function entry
point. This design reduces constraint solving cost, but may
introduce false positive and false negative findings (see §9).
Relational symbolic execution (RelSE) [21, 43] can princi-
pally eliminate ¬ and ­, and its recent extensions [16,17] are
carefully optimized to apply RelSE toward binary code. We
leave adopting RelSE as a future work to improve scalability.
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CipherH

Figure 4: The analysis workflow of CIPHERH.

5 Design

As noted in §4, when analyzing modern cryptographic soft-
ware, performing whole-program static symbolic reasoning
is prohibitively expensive, if not impossible. Therefore, the
technical pipeline of CIPHERH explores a synergistic effect,
by combining whole-program dynamic taint analysis and per-
function static symbolic reasoning.

Dynamic taint analysis enables coarse-grained and efficient
tracking of how secrets are used in cryptographic software. In
contrast, static symbolic execution, a more costly technique,
is conducted toward each path of a “tainted” function. It de-
livers a finer-grained, constraint solving-based detection of
ciphertext side-channel vulnerabilities.

Figure 4 depicts the overall workflow of CIPHERH, which
consists of a dynamic analysis phase and a static analysis
phase. Given a target cryptographic software, CIPHERH first
performs a dynamic taint analysis to analyze how program
secrets (“tainted” in this phase) are used by functions in the
software (see §5.1). When executing real-world cryptographic
software, thousands of functions are frequently invoked in the
call chain. This dynamic analysis phase delivers a rapid and
scalable analysis to track the potential usage of secrets. Its
output is usually a small collection of “tainted functions.”

The static analysis phase of CIPHERH is performed on the
executable E compiled from the cryptographic software. This
phase has two stages (§5.2): intra-procedural symbolic reason-
ing and inter-procedural analysis. The intra-procedural stage
analyzes each tainted function Fi ∈ E: we launch symbolic
execution to analyze every path in Fi, and for a memory write
of secrets, we form a constraint according to §4 to check for
ciphertext side channels. The inter-procedural stage performs
scalable albeit coarse-grained symbolic reasoning over Fi and
its callee functions to check if a callee function of Fi satisfies
our cipertext leakage patterns (see §5.2.2). If so, CIPHERH
reports Fi and the flagged callee function.
Compiler-IR Taint Tracking. CIPHERH first performs taint
tracking about the usage of program secrets. Taint analysis
has been studied widely in the literature. In our research, we
also explored the direction of binary code-level taint analysis.
Nevertheless, our preliminary study shows that speed is a
primary limit for binary-level solutions. Moreover, we find
that the information flow policies in binary-level tainting tools,
particularly for implicit information flow, appear to be less
comprehensive. Some works use trace-based approach, such
that an execution trace will be first logged, and taint analysis

is performed on the trace. However, those trace-based taint
analysis is inherently confined to analyzing defects on a single
trace, which likely cause false negatives (see cases in §7.4).

Since CIPHERH is primarily meant for cryptographic soft-
ware developers, we explore compiler-level solutions. Recent
relevant research [9] has demonstrated the applicability of
DataFlowSanitizer (DFSan) [38], a dynamic taint tracking
solution provided by the LLVM ecosystem, for taint tracking
in real-world cryptographic software. Consequently, we also
use DFSan for dynamic taint analysis; see details in §5.1.
Binary Code Symbolic Execution. Aligned with most exist-
ing works in this field [6, 16, 19, 51, 52, 56], CIPHERH detects
ciphertext side-channel vulnerabilities based on binary in-
structions (after obtaining the taint analysis results). This
design decision can better take into account low-level details
like register allocation and memory accesses. In §7.6, we show
that compiler optimizations can affect the presence of cipher-
text side-channel vulnerabilities, an observation also noted
in [46] (though they focus on cache side channels). CIPHERH
currently uses a well-developed binary analysis framework,
angr [5], for symbolic execution. In the static analysis phase,
angr needs to disassemble the executable of cryptographic
software. Our observation shows that angr manifests a high
engineering quality for these reverse engineering tasks. We
thus assume that the disassembling and analysis results of
angr are reliable. Complex executables such as obfuscated
code are beyond the scope of our research, as CIPHERH is
mainly designed for developers to test their own software.

5.1 Dynamic Taint Analysis

We now elaborate on the dynamic analysis phase of CIPHERH.
The input of CIPHERH is cryptographic software S, a set of
secrets labelled by the user, and a set of well-formed inputs
to S. As a common assumption shared by most existing trace-
based side channel detectors [6, 52], well-formed inputs shall
smoothly cover the primary key usage procedure (e.g., decryp-
tion) in cryptographic software. More importantly, CIPHERH
compensates for uncovered paths via static analysis when
these uncovered paths can be reached starting from a function
covered in the dynamic phase (see §5.2).

DFSan implements a comprehensive set of information
flow rules to track information propagation across variables
and memory regions. We confirm that DFSan faithfully tracks
program explicit information flow across arithmetic, logic,
and memory operations. Moreover, it tracks implicit informa-
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uint32 x, y, key[3]; // key is secret
uint32 buf[12];
if (key[0] == 12) // secret-dependent control flow

x = 1; // implicit flow taint x

y = buf[key[1]]; // secret-dependent mem access
// implicit flow taint y

Figure 5: Two implicit information flows captured by DFSan.

tion flow occurred at secret-dependent control-flow branches
and memory accesses. Figure 5 illustrates these two implicit
information flows. In particular, x is tainted, given that the
first element in the secret key is used in the if condition. Fur-
thermore, y is tainted, given that the index of buf is derived
from the second element in key. In addition, DFSan correctly
tracks inter-procedural taint propagation, in the sense that
tainted inputs in a function callsite will be propagated to the
callee function parameters, and the tainted return value will
be propagated back to the caller function.
Taint Propagation and Tainted Function Collection. To
use DFSan, we compile the cryptographic software S into
LLVM intermediate representation (IR), which inserts neces-
sary routines alongside each IR statement to track the prop-
agation of taint labels. We use the DFSan APIs to initialize
the taint labels at user-marked program secrets. These pro-
gram secrets are the taint source points. Accordingly, we use
DFSan APIs to hook each function entry point, memory load,
and function callsite as a taint sink point. Then, we compile
and execute the instrumented IR code with user-provided
test input and record which taint sink point is tainted during
execution. This phase will produce a collection of “tainted”
functions, with each function satisfying one of the following
conditions: 1) any of its input is tainted, 2) the return value of
its callee function is tainted, and 3) it loads tainted data from
memory. These tainted functions are candidates of the static
analysis phase, as explained below.
Input Requirement. Typically in cryptographic libraries, le-
gitimate inputs can cover primary computation procedures
(e.g., decryption). We find that in comparison with general-
purpose software, coverage is less concerned when perform-
ing dynamic analysis toward cryptographic libraries. Chang-
ing different ciphertext (or private keys) does not notably
change the execution flow; some loop statements may be
performed for more (or less) iterations in accordance with
different ciphertext. Overall, the taint analysis phase requires
“legitimate inputs”, meaning reasonable, common test inputs.
When performing taint analysis, we only log one execution
trace (with one input) for each case (e.g., the RSA implemen-
tation in WolfSSL). CIPHERH does not need many inputs to
reach functions that process secrets.

5.2 Static Symbolic Reasoning

Our symbolic execution targets tainted functions collected
during the dynamic taint analysis phase. We perform both
intra- and inter-procedural symbolic analysis to identify pro-
gram points vulnerable to ciphertext side channels. We now

discuss the intra-procedural and inter-procedural analyses.

5.2.1 Intra-Procedural Symbolic Reasoning

Given the executable file e compiled from the cryptographic
software, we use angr to disassemble e and analyze the assem-
bly functions. Note that for each tainted function fs, the taint
analysis phase has flagged certain tainted data in fs, which
may be function parameters, data loaded from memory, or
the return value of a function callsite. The intra-procedural
symbolic execution is mostly standard: we follow the con-
ventional setup to create fresh symbols si to represent the
unknown register or memory cell values. Moreover, we cre-
ate new “key symbols” (e.g., ki, as used in our constraints in
§4) to represent program variables or memory cells that are
tainted, i.e., they are part of the program secrets or are derived
from them via information flow propagation.

While tainted function parameters and return values can be
easily marked in assembly code, it is more obscure to mark
tainted data loaded from memory, as our taint analysis occurs
in LLVM IR rather than assembly code. We thus take a con-
servative design, and create new key symbols for any data
loaded from heap, globals, or caller functions’ stack frames,
as long as one tainted data is loaded from memory. This is a
conservative design decision, as we “over-taint” heap/glob-
als/previous stack frameworks without performing point-to
analysis on assembly code (which is hardly possible) to de-
cide precise usage of secrets. Moreover, given our symbolic
execution covers many paths not covered by the taint analysis
phase, this “over-tainting” design helps to better estimate the
usage of secrets within different paths and detect ciphertext
side-channel vulnerabilities.

After initialization, we then launch static symbolic execu-
tion from the entry point of fs to traverse its control flow
graph in a path-by-path manner. At each if condition, angr
constructs symbolic constraints of the encountered branch
condition and finds solutions that satisfy either the true or false
branch. This way, we achieve much better intra-procedural
code coverage than trace-based analysis. See how static sym-
bolic execution enables uncovering vulnerabilities that are
not covered by taint analysis in §7.4. When encountering a
callsite, we refrain from analyzing the callee function, but cre-
ate a new symbol denoting the unknown value of the function
call returns. Note that in case this return value was tainted
during our taint analysis, we create a new key symbol ki,
whereas we create a non-secret symbol si for others. As an
essential component of symbolic execution, CIPHERH main-
tains a lookup table M during the intra-procedural traversal.
Each item (a,v) ∈M denotes a value that has been written
to memory, where a is the symbolic memory address and v is
the symbolic value. For each memory access via address a′,
CIPHERH searches for the existence of a′ in M (this involves
“pointer alias” analysis; details will be discussed below). De-
pending on whether the memory access is read or write, CI-
PHERH fetches or modifies the entry’s content if the search
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returns a match. If not, CIPHERH inserts a new entry for a′ in
M containing a fresh symbol v′ denoting unknown value read
from memory, or the value to be written for memory write.

Deciding Pointer Alias. When performing a memory access
toward the memory lookup table M using a symbolic pointer
a′, we need to decide if the address a′ has been previously
recorded in M . This step involves a comparison between a′

and existing addresses (a,_) ∈M .* This task is particularly
difficult for symbolic execution, given that many pointers are
represented in the symbolic forms, e.g., we need to decide if
a pointer 4a+8 equals to another pointer 8a+4.

Determining if two symbolic pointers are equivalent
(“alias”) is challenging. Angr compares two symbolic pointers
based on their syntactical equivalence, which is also adopted
in relevant static analysis of side channels [51]. In the cur-
rent implementation of CIPHERH, we adopt angr’s solution
to compare the syntactical equivalence of two pointers. This
strategy is accurate, because if two pointers are syntactically
equivalent, then they must point to the same memory location.
Nevertheless, it may potentially overlook some pointers that
are syntactically distinct but semantically equivalent. In fact,
our tentative study explored to extend angr and to decide the
semantic equivalence of two symbolic pointers using con-
straint solving techniques. For instance, constraint solvers can
rigorously prove that two pointers a+4 and a+8 must not be
equivalent (a is a base address of an array), whereas pointers
4a+8 may be aliased to 8a+4. This approach, however, is
very slow in practice, because a large volume of constraint
checking is involved when analyzing complex software like
production cryptographic libraries. Overall, we deem the cur-
rent solution of deciding pointer alias as a practical tradeoff
which offers a high level of accuracy and scalability.

Checking Ciphertext Side Channels. To ease forensics, CI-
PHERH maintains a separate memory write table W similar
to M explained before. Each item (a,v, i) ∈W denotes a
symbolic value v that has been written to memory address a
by assembly instruction i. When a memory write via address
address a′ and content v′ occurs at instruction i′, we check
whether v′, as a symbolic formula, contains key symbols. If so,
we further compare a′ with each (ai,vi, ii) ∈W to decide if
there exists ai satisfying ai = a′. We also check if vi, denoting
the most recently-written data to a′, contains key symbols.
Note that here we check the syntactical equivalence to decide
if ai and a′ are alias. If so, we feed vi and v′ to form the ciper-
text side channel constraint (Eq. 4) and check the satisfiability.
This way, we can decide if ciphertext side channels exist at
i′. When Eq. 4 is satisfiable, CIPHERH returns the vulnerable
program points i′, ii and a pair of counterexamples to users
for debugging. CIPHERH also updates the value stored in a′

with v′ and resume symbolic traversal.

*The strategy of updating the lookup table M , representing memory, is
often referred to as a “memory model” [11, 12, 23].

5.2.2 Inter-Procedural Symbolic Reasoning

Motivation. The above intra-procedural analysis enables the
discovery of a substantial number of ciphertext side channels,
as reported in §7. Nevertheless, we clarify that a memory
address a may be repeatedly written using secrets across
multiple function calls. In fact, §7.2 will report a surprising
finding such that “inter-procedural” ciphertext leakage en-
ables exploiting a recent patch of ciphertext side channels
in WolfSSL. Therefore, we envision it as demanding to per-
form inter-procedural analysis and better reveal the full attack
interface of cryptographic libraries under ciphertext attacks.
Challenge. Having that stated, our preliminary study illus-
trates that standard inter-procedural analysis of modern cryp-
tographic systems is hardly possible owing to a lack of scala-
bility. As discussed in §4, though recent works launching
static analysis toward cryptographic libraries [19, 20, 51],
they only handle very small programs or crucial code frag-
ments (several caller/callee functions) in cryptographic li-
braries [20, 51]. As will be shown in §7, both CacheS [51]
and CacheAudit [19, 20] fail to analyze full call graphs of our
evaluated cryptographic libraries.
Pattern-Based Search. This work takes a reasonable trade-
off for inter-procedural analysis. In particular, we search for
function F that is suspicious for ciphertext side channels, if
F meets both pattern ¬ and ­ described below. ¬ F is re-
peatedly called by its caller function Fc at the same callsite.
This means that F is called in a loop of Fc. ­ At least one of
f ’s input parameters is tainted. Both ¬ and ­ are are owning
to observations over real-world cryptographic software, in
which function Fc calls its callee function F , often denoting a
small routine function, and passes secrets to F via parameters.
By repetitively calling F , Fc processes consecutive fragments
of a secret key (or encrypted data). This assumption helps to
eliminate many false positives, as shown in §7.5.

In all, during our intra-procedural analysis, we use sym-
bolic execution to traverse each path of a tainted function Fc.
During the traversal, we search for every encountered callee
function and decide if any callee function F meets the afore-
mentioned patterns. If so, we will proceed further to launch
intra-procedural symbolic execution toward F , and decide if
F has memory write instructions whose content is derived
from its tainted parameters. If so, we would conclude that F
enables ciphertext side channels, assuming multiple runs of
F from Fc write secrets into the same memory address.
Clarification. To clarify, this inter-procedural analysis may
introduce false positives, as consecutive runs of F in a loop
may have different non-secret inputs or load different contents
from memory, and so may not follow the same path and mem-
ory access footprints. Besides, even with presence of secret
memory writes, the ciphertext side channel constraints may be
indeed unsatisfied (as we do not perform constraint solving),
leading to false positives. It may also introduce false negatives,
as obviously cross-function ciphertext side channels may oc-
cur without necessarily following our defined patterns. It is
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possible that secrets are passed via memory loads or return
values of F’s callees, instead of F’s parameters. Overall, our
inter-procedural analysis is primarily designed with scalabil-
ity and observations over real-world cryptographic software’s
implementation into mind. Though inaccurate, we show that,
in practice, the proposed patterns achieve high scalability and
reasonable accuracy, detecting a substantial number of true
positive findings (after manual confirmation) with negligible
false positives (9 out of 153); see details in §7.

6 Implementation

CIPHERH contains about 2.3k lines of code, including a taint
analysis module written in C++ by extending LLVM DFSan, a
symbolic execution module implemented over angr in Python,
and some scripts.
Taint Analysis. We compile each cryptographic software us-
ing gllvm [22], which can generate whole-program LLVM
bitcode files from unmodified C/C++ source code. Dynamic
taint analysis is performed through DFSan. We write taint
source configurations to taint private keys in the evaluated
cryptographic software. We also define taint sink points as a
function’s parameters, return values of its callsites, and mem-
ory load outputs. DFSan requires compiler instrumentation
for all code, except for functions listed in the ABI list. After
instrumenting LLVM IR with DFSan utilities, we compile the
bitcode file into an executable. To execute each cryptographic
software, we use their shipped test programs or write simple
test programs. These test programs contain reasonable in-
puts to invoke RSA encrypt/decrypt, ECDSA sign/verify, and
ECDH key exchanges procedures in the evaluated software.
Symbolic Execution. When performing symbolic execution,
we compile the cryptographic software into a 64-bit ELF bi-
nary executable. The call graph is first constructed in angr
to get information about caller/callee relations. Such infor-
mation is used in the inter-procedural taint analysis phase
(§5.2.2). When analyzing each tainted function Fi, we first
note all tainted variables in Fi identified during the taint anal-
ysis phase, which can be function parameters, return value
of its callee, or memory load operations. We create a fresh
key symbol ki to represent the value of each tainted variable.
Angr uses a popular constraint solver, z3 [18], to check each
formed constraint during the intra-procedural analysis phase.
As reflected in §5, CIPHERH improves angr by disabling
its default cross-function analysis, and implement our own
inter-procedural analysis procedure (§5.2.2). CIPHERH also
enhances secret symbol propagation by taking account ex-
tra implicit information flows, and constructs constraints to
check ciphertext side channels (§4). During implementation,
we put two “bounds” on the symbolic execution phase, i.e.,
the loop unroll parameter and the maximal analysis time of
each assembly function. We set the loop unroll for two (more
loop unrolling should not enable detecting more flaws), and
the maximal processing time of each function is 30 minutes

(see Table 2 for the number of timeout functions).
Compilation. The current implementation of CIPHERH an-
alyzes 64-bit ELF binary compiled on x86-64 architectures.
We use Clang (ver. 9.0.1), the LLVM C frontend, to compile
cryptographic software into LLVM IR for taint analysis. We
use the default compilation toolchain of the cryptographic
software to compile cryptographic software into binary code
for symbolic execution. At this step, we configure Clang with
the same optimization level as in the cryptographic software’s
compilation configuration (usually -O2 or -O3). When using
the same optimization level, taint information in LLVM IR
can be smoothly mapped to corresponding instructions in the
assembly code. We do not observe cases where LLVM IR
functions have different number of parameters in comparison
to its assembly counterpart. Tainted callsites in LLVM IR can
also be found in the assembly code easily using the callee
name. We do not need to precisely match tainted memory
load in LLVM IR with assembly code (which is difficult). As
noted in §5.2.1, we assign a memory load from heap/global-
s/previous stack frameworks with a key symbol whenever any
tainted data is loaded from memory during taint analysis.

7 Evaluation

We evaluate CIPHERH on ECDSA, RSA, and ECDH im-
plementations of several real-world cryptographic libraries,
including WolfSSL, OpenSSL and MbedTLS. To demonstrate
the use of each cryptographic algorithm, we write a sample
program for ECDSA signature and verification, RSA encryp-
tion and decryption, and ECDH key exchange, respectively.
We compile all test cases into 64-bit ELF binaries on Ubuntu
18.04. We use the default optimization level for the evalu-
ations. But we also analyze how optimizations may affect
ciphertext side-channel vulnerabilities in §7.6.
Result Overview. We present the vulnerable program points
detected by CIPHERH in Table 1. As reported, all the eval-
uated implementations contain memory writes that are vul-
nerable to ciphertext side-channel attacks. In sum, we find a
total of 236 vulnerable program points from these evaluated
cases, where 83 are from intra-procedural analysis and 153
are from inter-procedural analysis. We report the statistics of
taint analysis in the last column of Table 1: for all evaluation
settings, a considerable number of functions are covered dur-
ing the taint analysis, where we taint in total 369 functions
(about 13.6%). Moreover, we report the number of functions
analyzed during (inter-/intra-) symbolic execution, and func-
tions that contain ciphertext side-channel vulnerabilities in the
“Vulnerable Function” columns. From a conservative point of
view, it is reasonable to assume that developers may fix most
leakages in a function at once. Thus, instead of “overclaiming”
the findings using vulnerable program points, we view these
23 functions found by intra-procedural analysis and 25 func-
tions found by inter-procedural analysis practically revealing
vulnerabilities of common cryptographic libraries under ci-
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Table 1: Evaluation results of different cryptographic algorithm implementations. Opt. denotes the optimization levels used
when compiling executables.

Implementation Algorithm Opt. Intraprocedural Symbolic Execution Interprocedural Symbolic Execution Function
(Vulnerable/Analyzed) Functions Vulnerable Program Points (Vulnerable/Analyzed) Functions Vulnerable Program Points (Tainted/Covered)

WolfSSL 5.3.0 ECDSA -O2 3/53 6 1/2 12 53/92
WolfSSL 5.3.0 RSA -O2 3/30 14 3/5 30 30/78
OpenSSL 3.0.2 ECDSA -O3 4/68 6 4/11 29 68/1061
OpenSSL 3.0.2 RSA -O3 9/142 53 11/38 55 142/1296
MbedTLS 3.1.0 ECDH -O2 2/37 2 2/5 5 37/87
MbedTLS 3.1.0 RSA -O2 2/39 2 4/7 22 39/83

Total 23/369 83 25/68 153 369/ 2697

phertext side channels. Our follow-up analysis is primarily
based on these vulnerable functions.

During taint analysis, OpenSSL shows many times the num-
ber of covered functions than that of WolfSSL and MbedTLS.
Comparing to OpenSSL, as a fully-fledged cryptographic li-
brary, we find that WolfSSL and MbedTLS subsume relatively
lightweight cryptographic implementations designed to usu-
ally low-cost embedded devices. Accordingly, we find that the
OpenSSL case also contains a vast majority of the vulnerable
program points (143 out of totalling 236) found by CIPHERH.

Existing research [33] has successfully exploited the cipher-
text side channels and extract secret keys from the ECDSA
implementation in OpenSSL that uses the constant time
swap-based Montgomery ladder algorithm. We report that
CIPHERH automatically discovered these findings. More im-
portantly, CIPHERH discovers a substantial number of vulner-
able program points in the RSA and ECDH implementations,
which are unknown to the research community. We present
case studies in §7.2–7.3. Also, it is known that WolfSSL
has timely patched the ciphertext side-channel vulnerabili-
ties exploited in [33]; two patches [57] are applied toward the
ecc_mulmod and mp_cond_swap_ct functions in the ECDSA
implementation. CIPHERH discovers zero vulnerabilities in
ecc_mulmod, indicating the validity of the patch. Neverthe-
less, we report surprising findings that the other patch remains
vulnerable, as reported by CIPHERH. The flaw in the patched
code is presented in §7.2.1, whereas other confirmed findings
are presented in §7.4. The developers of WolfSSL prepared
new patches for our findings, which were re-analyzed by CI-
PHERH and revealed no vulnerabilities.

Table 2: Processing time of diff. cryptographic algorithm.
Implementation Algorithm Processing Time Timeout FunctionsTaint Analysis Symbolic Execution
WolfSSL 5.3.0 ECDSA 118.3s 12300.1s 3
WolfSSL 5.3.0 RSA 108.7s 9660.6s 3
OpenSSL 3.0.2 ECDSA 467.1s 18960.2s 5
OpenSSL 3.0.2 RSA 465.3s 36720.4s 6
MbedTLS 3.1.0 ECDH 86.1s 10140.3s 2
MbedTLS 3.1.0 RSA 88.6s 10980.7s 2

Total 1334.1s 98762.3s 21

Processing Time. Table 2 reports the analysis time. Sym-
bolic execution is more time consuming than taint analysis.
CIPHERH completes taint analysis for all cases within 23
minutes. For most functions, performing symbolic execution
takes less than ten minutes. However, due to path explosion,
the analysis of a few functions did not finish within 30 min-
utes, which were manually terminated and labelled as timeout.
The number of timeout functions is reported in the last col-

umn of Table 2. Overall, the results suggest that CIPHERH is
efficient enough to analyze real-word cryptographic code.

Table 3: Efficiency comparison with prior relevant tools.
Abacus CacheS CacheAudit

RSA/OpenSSL failed (in a few seconds) failed failed
RSA/MbedTLS failed (≈ 7.3h) failed failed

ECDH/MbedTLS timeout (> 18h) failed failed

To compare analysis speed of CIPHERH with cache
side channel detectors, we run three representative tools,
Abacus [6], CacheS [51], and CacheAudit [19], to analyze
RSA/OpenSSL, ECDH/MbedTLS, and RSA/MbedTLS. Aba-
cus performs symbolic execution and constraint solving to-
ward an execution trace (logged by Pin). It is optimized for
speed and shows a significant improvement in efficiency com-
pared to CacheD [52]. CacheAudit and CacheS perform static
abstract interpretation [15] on the program call graphs. We
compile our test cases into 32-bit x86 executables as they can-
not analyze 64-bit executables. Table 3 reports the evaluation
results. None of them are scalable to analyze our test cases.

Abacus fails in analyzing RSA/OpenSSL and
RSA/MbedTLS. For ECDH/MbedTLS, it cannot fin-
ish symbolic execution on an execution trace after 18 hours.
Abacus launches trace-based symbolic execution over a
tainted trace, meaning that it explores less behaviors (and
detects fewer bugs). Moreover, when analyzing production
cryptosystems, there are often hundreds of caller/callee
functions on an execution trace. It is seen that the symbolic
formulas are accumulated and formula sizes are growing
during analysis, making constraint solving slower and more
costly. CIPHERH performs function-level, static symbolic
execution toward each tainted function. The symbolic
state at each function entry point is “empty” (including
only unbounded symbols). Thus, CIPHERH is generally
facing much simpler constraints, irrelevant of the number
of involved functions. CIPHERH takes about three hours to
analyze this case, and CIPHERH is more comprehensive than
Abacus as it performs static symbolic execution.

CacheAudit and CacheS perform sound (or “soundy”, in
the language of CacheS) static abstract interpretation which
is heavyweight. Their modeled symbolic, abstract domains,
and cache status are generally complex. We also find that
CacheAudit/CacheS fail to support some instructions in the
test cases; adding support for these cases is challenging on
our end, as it needs to define new abstract operators in their
abstract domains, cache models, and prove soundness accord-
ingly. More importantly, they need to first extract a subgraph
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(with a few caller/callee functions) to reduce the complexity.
Thus, analyzing the entire call graph of production crypto-
graphic code like OpenSSL and MbedTLS seems impractical.

We also note that though CIPHERH exhibits higher scala-
bility in this comparison, the scope of several existing cache
side channel detectors differs from that of CIPHERH. In par-
ticular, CacheAudit is a verifier not a detector, whereas both
CacheAudit and Abacus perform quantitative analyses rather
than qualitative ones like CIPHERH.
Code Release & Vulnerability Disclosure. We release CI-
PHERH at [1]. We have reported all findings to developers and
discussed with them about patching the vulnerabilities. We
have also provided developers with CIPHERH and detailed
instructions for their early adoption, such that the developers
could identify and fix other vulnerabilities by themselves. By
the time of writing, we have received responses from both
OpenSSL and WolfSSL. OpenSSL developers have confirmed
our findings and are willing to work on software-level patches,
which may take time and effort. WolfSSL developers have al-
ready issued a new patch to fix the vulnerabilities discovered
on their old patch. Furthermore, another patch for the mod-
ular exponentiation algorithm has been provided (see §7.4).
We anticipate that they will make announcements about the
patched vulnerabilities.

7.1 Result Validation
CIPHERH has found in total 236 vulnerable program points,
as reported in Table 1. In this section, we explore each find-
ing and confirm if they are true positives. A true positive
means that the ciphertext changes associated with the flagged
program point indeed depend on the user-labelled secrets.
Intra-procedural Results. During intra-procedural symbolic
execution, CIPHERH forms a constraint (Eq. 4) to check
the existence of side-channel vulnerabilities. When Eq. 4
is satisfiable, the constraint solver will provide a pair of so-
lutions (counterexamples) k1,k2 and k′1,k

′
2. We opportunis-

tically leverage the provided solutions to validate the test
results. In particular, to valid each vulnerable program point,
we instrument the vulnerable function’s entry point and mod-
ify the secret bytes using either k1,k2 or k′1,k

′
2. Note that these

counterexamples should satisfy path constraints C covering
two memory writes using secrets. We then compile the in-
strumented source code into two binaries. We execute both
these binaries and monitor the ciphertext of the block corre-
sponding to the vulnerable memory write. If a program point
is a true positive, we expect to see that the ciphertext stays
the same when using k1,k2 whereas it is changed when using
k′1,k

′
2. We performed such tests on all 83 findings in Table 1

and confirmed that they are all true positives.
Inter-procedural Results. We rely on specific patterns to
detect ciphertext side-channel vulnerabilities related to re-
entrancy of a callee function F from a caller function Fc’s loop
statements (§5.2.2). Since no constraint solving is performed,
we had to validate the results manual efforts. Specifically, we

manually comprehend how F is invoked repetitively in Fc, as
well as how secrets are passed via F’s parameters and stored
in memory. To ensure the accuracy of our findings, two of
the authors examined and cross-checked all findings. Both
authors have sufficient experience in side-channel attacks and
cryptographic library analysis. We confirmed that 142 out of
153 findings are true positives.

The remaining 9 cases are false positives. These nine
false positives are present in nine of 25 reported functions
in Table 1. Figure 6 shows one of the false positive cases in
RSA/MbedTLS. nlimbs is tainted and written to X->n at line
5. Since function mbedtls_mpi_grow is called in a loop in
its caller function, our pattern-based inter-procedural analysis
treats this function as vulnerable, and CIPHERH flags line
5 as “vulnerable”. However, as the path constraint at line 3
ensures that nlimbs does not equal X->n, the memory write
at line 5 always modifies X->n. Therefore, the ciphertext of
the block containing X->n will continue to change whenever
line 5 is executed, leaking zero information to the attacker.
The other eight false positive cases exhibit similar patterns.

1. 
2. 
3. 
4.  
5.  
6.
7. 
 

int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs){
   ...                          // nlimbs is tainted               
   if( X->n < nblimbs ) {   // path constraint 
       ...
       X->n = nblimbs;   //the reported program point 
       X->p = p;
    }

                                               

Figure 6: A false positive flagged by CIPHERH.

7.2 Case Study of ECDSA/ECDH
This section describes in detail the vulnerabilities found by
CIPHERH in algorithms associated with elliptic curve (includ-
ing ECDSA and ECDH).

7.2.1 ECDSA in WolfSSL

Figure 7 depicts the code snippet of a patch of WolfSSL (Ver
5.3.0) in response to the ciphertext side channels reported by
Li et al. [33]. Function ecc_mulmod executes scalar multi-
plication based on Montgomery ladder, and the main loop at
line 3 obtains each bit of the secret to perform conditional
swap (line 6), double (line 11), and add (line 13). Compared
to the unpatched version (see Appendix A), the countermea-
sures feature two components: ¬ Incrementing the variable
swap (which reflects each bit of secret) at each iteration so
that the same ciphertext is never observed; and ­ copying the
output of conditional swap to different memory addresses. CI-
PHERH reports no flaw of ¬, since the constraint solver fails
to find a satisfiable solution for the involved consecutive mem-
ory accesses. Nonetheless, for ­, CIPHERH discovers new
vulnerable program points. The primary reason is because
the double and add operations only modify one of the two
swapped variables. If the unchanged variable is written back
to its previous location, the same ciphertext can be observed.

Specifically, consider the ith iteration of the loop, in which
R[0] and R[1] are copied to R[2] and R[3] according to
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static int ecc_mulmod(const mp_int* k, ...) {  
  ...
  for(i = 1,j = 0,cnt = 0; (err == MP_OKEY) && (i < t); i++) {
    ...
    swap += (kt->dp[j] >> cnt) + 2;  // obtain bits from exponent 
    ecc_cond_swap_into_ct(R[(2-set)+0], R[(2-set)+1)],      
             R[set+0],  R[set+1], modulus->used, swap);
    set = 2 - set;  // change to operate on set copied into
    // ensure 'swap' changes to a previously unseen value
    swap += (kt->dp[j] >> cnt) + swap; 
    ecc_projective_dbl_point_safe(R[set+0],     // double points
                     R[set+0], a, modulus, mp);  
    ecc_projective_add_point_safe(R[set+0],      // add points                                
           R[set+1], R[set+0], a, modulus, mp, &infinity) }
   ...             
 }
                                                            

1. 
2. 
3. 
4.
5. 
6.
7. 
8. 
9. 
10.
11.
12.
13.
14.
15.
16.

Figure 7: The elliptic curve scalar multiplication implemen-
tation from WolfSSL. Patches have been applied to defend
against ciphertext side channels in the code snippet.

the value of swapi (swapi refers to the last bit in swap during
the ith loop iteration) at line 6. Then, R[2] is doubled at line
11, and assigned the sum of R[2] and R[3] at line 13. Note
that R[3] remains unchanged in the above operations. In the
(i+ 1)th iteration, R[2] and R[3] are written back to R[0]
and R[1] depending on swapi+1. To ease understanding, we
list the possible value of R[0] and R[1] after the conditional
swap of R[2] and R[3] according to different combinations
of swapi and swapi+1 in Table 4. An observation is that two
of the four possible combinations of swapi and swapi+1 can
be leaked by monitoring the ciphertext of swapi and swapi+1.
Specifically, the same ciphertext of R[1] implies that both
swapi and swapi+1 are 0, while both equal 1 are reflected
by the same ciphertext of R[0]. The remaining two cases
share the same ciphertext change pattern (i.e., both ciphertext
of R[0] and R[1] change). As aforementioned, the WolfSSL
developers confirmed this flaw and have prepared a new patch.

Table 4: The value in R[0] and R[1] after performing condi-
tional swap twice with different combinations of swapi and
swapi+1. a and b represent the initial value of R[0] and R[1],
respectively. The same ciphertext observed are boldfaced.

swapi

swapi+1 0 1

0 R[0] = 2*a + b R[0] = b
R[1] = b R[1] = 2*a + b

1 R[0] = 2*b + a R[0] = a
R[1] = a R[1] = 2*b + a

Quantitative Analysis. Though CIPHERH is not designed to
provide quantitative leakage analysis, we manually analyzed
the above flaw from a quantitative standpoint. A uniformly
distributed, k-bit secret has a total of 2k possibilities. By ex-
ploiting the above flaw, once the same ciphertext of R[0] or
R[1] are observed, the attacker can infer swapi and swapi+1,
then each bit of the secret can be recovered in sequence. An
extreme case is that both R[0] and R[1] keep changing so
that the possible values of the secret are reduced to two. Fur-

thermore, considering other attack primitives [41] [3], even
a minor leak of information from ECDSA scalar may likely
result in full key compromise.

7.2.2 ECDH in MbedTLS

CIPHERH also reported vulnerabilities in MbedTLS’s
ECDH implementation. Four inter-procedural vul-
nerable program points are detected in function
mbedtls_mpi_safe_cond_swap. We list its code snip-
pet in Appendix B. These reported vulnerabilities are related
to conditional swap operations. From the code snippet, it is
seen that each bit of the secret is leaked via ciphertext side
channels. Consistent with previous work [33], CIPHERH
confirms the same vulnerable code snippet also exists in the
ECDSA implementation of OpenSSL.

7.3 Case Study of RSA Vulnerabilities
CIPHERH successfully detects a number of vulnerable pro-
gram points in the RSA implementations. Note that for
the three evaluated RSA implementations, OpenSSL and
MbedTLS use the fixed window-based modular exponentia-
tion, while WolfSSL uses the montgomery ladder-based one.
We elaborate on RSA/OpenSSL and RSA/MbedTLS in this
section, and leave discussion about RSA/WolfSSL in §7.4.

7.3.1 RSA in OpenSSL

The fixed window-based modular exponentiation has a
loop statement in which, for each loop iteration, a win-
dow is used to fetch several key bits and to query a
pre-computed lookup table. Figure 8 depicts the table
lookup function in OpenSSL. The parameter idx and
buf of function MOD_EXP_CTIME_COPY_FROM_PREBUF de-
note the window-size key and the table base pointer,
respectively. The inter-procedural analysis of CIPHERH
finds a vulnerable program point at line 9, when one ele-
ment of the pre-computed table is written to a BIGNUM
b. Note that function MOD_EXP_CTIME_COPY_FROM_PREBUF
is called iteratively in a loop statement within function
BN_mod_exp_mont_consttime, causing memory writes at
line 9 to be consecutive. Moreover, note that this denotes
a strong dictionary attack opportunity, given that attackers
can build the mapping between the plaintext and ciphertext
of b using the dictionary attack to reveal window-size key
idx. Due to compiler optimization, acc is deemed as safe,
since its value is passed via a register rather than the stack in
assembly (we use the -O3 optimization, the default configura-
tion of OpenSSL); see discussion on how different compiler
optimizations affect ciphertext side channels in §7.6.
Quantitative Analysis. For each window-size secret idx
with L bits (L is usually 5 on 64-bit x86 platforms), there
are 2L possible values for idx. When L=5, for two secret seg-
ments, there is 1/32 probability that they are identical, which
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 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, 
                   unsigned char *buf, int idx, int window) {
    ...
    for (int i = 0; i < top; i++, table += width) {
      BN_ULONG acc = 0; // temporary variable storing bignumber   
      for (j = 0; j < width; j++) {    // conditional assign
        acc |= table[j] & ((BN_ULONG)0 - 
                       (constant_time_eq_int(j,idx)&1));}
      b->d[i] = acc;  }  // write the pre-computed value to b
    ...
  }
                                                            Figure 8: The table lookup process in OpenSSL. OpenSSL

uses the fixed window-based modular exponentiation, which
needs to query a pre-computed table with several key bits.

directly gives attackers the knowledge whether two 5-bit key
segments are identical or different. The security guarantee of
RSA with len(key)-bit entropy then no longer holds.

7.3.2 RSA in MbedTLS

Fixed window-based modular exponentiation is also imple-
mented in MbedTLS. We detected vulnerable functions shar-
ing similar root cause with the OpenSSL case. Overall, when
using the window-size key to query the lookup table, the query
output is conditionally written to a BIGNUM. This memory
write is vulnerable to ciphertext side channels. Specifically,
we believe that the collision attack can be launched to de-
termine whether the fetched value is expected, allowing the
attacker to directly infer each window-size key and ultimately
recover the entire secret key.

7.4 Advantage of Static Path Exploration

CIPHERH features a hybrid analysis, where we switch to
traverse all paths of each tainted function using symbolic
execution. During evaluation, we find several vulnerabilities
on paths that are not covered during the dynamic taint analysis
phase. This justifies the importance of launching static path
exploration. In contrast, prior works like CacheD [52] only
performs symbolic execution toward the tainted execution
trace for the sake of scalability.

Figure 9 shows the code snippet of function fp_exptmod
from RSA/WolfSSL, where the parameter G denotes the base
and X is the secret exponent. Under the default compilation
setting, function _fp_exptmod_base_2 is inlined in func-
tion fp_exptmod, which enables the exploration of static
symbolic reasoning. Note that when the base is 2, func-
tion _fp_exptmod_base_2 , which is not covered during
dynamic taint tracking, will be invoked instead of function
_fp_exptmod_ct (covered during taint analysis).

Though _fp_exptmod_base_2 is not executed by taint
analysis, the static symbolic execution can cover it, and suc-
cessfully reports two intra-procedural vulnerable program
points at line 18 and line 20. Specifically, variable buf stores
digits in secret X, and variable y indicates each bit of the secret.

1. 
2. 
3. 
4.  
5.  
6.
7. 
8. 
9. 
10.
11. 
12.
13.
14.
15.
16.
17. 
18.
19.
20.
21.
22.

 int fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y){
   ...  
   if (X->sign == FP_NEG) 
      ...                   
   else if (G->used == 1 && G->dp[0] == 2) {  
      return _fp_exptmod_base_2(X, X->used, P, Y);}
   else {  // positive exponent so just exptmod
      return _fp_exptmod_ct(G, X, X->used, P, Y);}
 } 
                             
  static int _fp_exptmod_base_2(fp_int * X, int digits, fp_int * P,
                     fp_int * Y) {  // is called when the base is 2
    ...
    for (;;) {
      buf    = X->dp[digidx--];
      // grab the next msb from the exponent
      y = (int)(buf >> (DIGIT_BIT - 1)) & 1;
      buf   <<= (fp_digit)1;
      // add bit to the window
      bitbuf |= (y << (WINSIZE - ++bitcpy));
      ... }
  }

                                                         

Figure 9: The code snippet of function fp_exptmod
and function _fp_exptmod_base_2 from WolfSSL.
_fp_exptmod_base_2 is called when the base is 2 to
calculate 2k. In this case, each bit of the exponent k can be
leaked by ciphertext side channels.

To fill the window, y is added to bitbuf. However, an obser-
vation is that when y is equal to 0, the write operation at line
20 does not change the value of bitbuf. Hence, the collision
attack can be launched to infer the corresponding y (whether
it equals zero or not) during each write to bitbuf. As afore-
mentioned, this flaw has been reported to the developers. They
confirmed the finding and prepared a patch. We analyzed their
patch using CIPHERH and found no vulnerability.

7.5 Pattern-Based Search
We use pattern-based search to identify inter-procedural vul-
nerable program points. The patterns compose ¬ a callee
function F is repeatedly called from the same callsite in its
caller, and ­ F’s parameters are tainted and written into mem-
ory. ¬ and ­ are owing to observations over real-world cryp-
tographic software. Here, we study whether and to what extent
these patterns affect the presence of inter-procedural analysis
findings. Given manual efforts are extensively involved at this
step to confirm each finding, we use the ECDH/MbedTLS
case for the study. The results are reported in Table 5.

Table 5: Inter-procedural findings for the ECDH/MbedTLS
case by different patterns.

Pattern Function Inter-Procedural False
(Vulnerable/Analyzed) Vul. Program Points Positives

¬ & ­ 2/5 5 1
¬ 8/19 17 10
Nil 11/35 21 14

CIPHERH yields more findings when ­ is disabled (the 3rd
row in Table 5). Specifically, 17 vulnerable program points
are reported, residing within eight different functions. We
manually studied these findings and identified ten false posi-
tives. Compared to the findings when enabling ­, CIPHERH
reports 12 more program points, out of which nine are false
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positives and three are new true positives. Overall, we believe
imposing ­ as reasonable, given that it facilitates excluding a
large number of false positive cases in exchange for a small
number of false negatives.

The “Nil” setting in Table 5 indicates that both ¬ and ­
are disabled. Holistically, this requires us to flag a pair of
functions as “vulnerable” if they are consecutively called, and
both write secrets to memory. Nevertheless, our preliminary
study shows that this basic setup introduces too many false
positives and is too obscure for manual investigation of each
case. Therefore, we measure a simpler setting by flagging a
vulnerable function F if it is called twice and writes secret
to memory. We find that 11 out of 35 functions analyzed by
CIPHERH are deemed vulnerable. Four more vulnerable pro-
gram points are identified compared to the result of enforcing
only ¬. We manually studied these new reports, and found
that they are all false positives: secret memory writes in F
are toward distinct addresses due to different function inputs.
In conclusion, we interpret that the two patterns ¬ and ­ are
adequate for delivering a scalable inter-procedural analysis
with convincing accuracy and low false positive rates.

7.6 Compiler Optimization
In the preceding experiments, the default optimization set-
tings (-O2 for WolfSSL and MbedTLS, -O3 for OpenSSL)
were used. Nevertheless, it is obvious that the compiler opti-
mization affect the vulnerabilities. Aggressive optimization
tends to place variables into registers, resulting in less mem-
ory writes and thus less vulnerabilities, which is the case for
RSA/WolfSSL as shown in Table 6.

Table 6: Intra-procedural findings for RSA/WolfSSL under
different optimization levels.

Optimization Functions Number Intra-Procedural Function Number
Options (Vulnerable/Analyzed) Vul. Program Points (Tainted/Covered)
-O2 3/30 14 30/78
-O0 12/69 33 69/153

1. 
2. 
3. 
4.  
5.  
6.
7. 
8. 
9. 
10.
11.
12.
13.
14. 

static int _fp_exptmod_ct(fp_int * G, fp_int * X, int  
                     digits,  fp_int * P, fp_int * Y) {
   ...
   for (;;) {
     if (--bitcnt == 0) {
        ...
        // read next digit and reset bitcnt 
        buf    = X->dp[digidx--];
        bitcnt = (int)DIGIT_BIT;  }
     // grab the next msb from the exponent
     y     = (int)(buf >> (DIGIT_BIT - 1)) & 1;
     buf <<= (fp_digit)1;
    ...  }
}

                                               

Figure 10: The code snippet shows that two more vulnerable
program points are detected when using -O0 for compilation.

Consider Figure 10, where function _fp_exptmod_ct ex-
ecutes the montgomery ladder-based modular exponentiation
algorithm. During each loop iteration, one bit of the secret
exponent is fetched at line 11. When WolfSSL is compiled

using -O0, y and buf are stored on the memory stack, and
memory writes to them introduce ciphertext side-channel vul-
nerabilities. Specifically, two vulnerable program points are
detected at line 11 and line 12 when CIPHERH performs intra-
procedural analysis. With these two vulnerabilities, attackers
can infer the relations between every pair of adjacent bits,
by observing the ciphertext changes in the memory block
containing y. Given that y equals 0 or 1, the possible values
of the secret are reduced to two. The other 17 newly-found
flaws in WolfSSL (compiled using -O0) have similar causes.

8 Related Work

Static Analysis-Based Approaches. The majority of ex-
isting efforts in this field employ static analysis to detect
side channels in cryptographic software implementations.
CacheAudit [13, 19] uses abstract interpretation to model
secret-dependent cache status and to quantify information
leaks. CaSym [10] locates program points vulnerable to cache
side channels using symbolic execution and constraint solv-
ing. Nevertheless, it has limited scalability and analyzes small
programs. SymSC [25] evaluates timing side channels when
considering thread interleaving. [49,50] use type systems and
program synthesis to detect and mitigate power side chan-
nels. Debreach [44] detects and mitigates compression side
channels in PHP code with taint analysis and constraint solv-
ing. Their threat models are distinct with cache side channels.
CacheD [52] and Abacus [6] also perform symbolic execution,
but only over a single execution trace. In this manner, the cost
of performing symbolic execution and constraint solving is
substantially reduced, allowing for the analysis of production
cryptographic software. Given the generally low scalability
of abstract interpretation, CacheS [51] optimizes the abstract
symbolic formula by only tracking coarse-grained non-secret
information in cryptographic software. CacheS appears to re-
port the best scalable findings of all static analysis tools. Nev-
ertheless, it primarily analyzes a subgraph of the program call
graph. We show that it still cannot perform whole-program
static analysis for real-world cryptographic software in §7.
In contrast, CIPHERH explores a hybrid analysis approach
in which it uses dynamic taint analysis to track secret propa-
gation throughout the whole cryptographic software, and it
switches to static symbolic execution to analyze every path of
each tainted function. Taint tracking offers a comprehensive,
inter-procedural view of secret usage, and we limit expensive
symbolic execution to each individual function. As discussed
in §4, a promising advance, namely relational symbolic ex-
ecution (RelSE) [21, 43], has also been employed for side
channel analysis [16, 17]. We leave extending CIPHERH with
RelSE as a future direction to enhance scalability.
Dynamic Analysis-Based Approaches. There also exist a
number of dynamic approaches. DiffFuzz performs feedback-
driven differential testing to detect a pair of inputs leading to
timing side channels [42]. DATA [53, 54] and Stacco [58] ap-
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ply trace differentiation analysis to decide secret leaks among
a collection of execution traces. MicroWalk [56] quantifies
and localizes side channel leakages over logged traces. Mani-
fold [59] uses generative neural networks to synthesize private
user images and text messages from traces. Existing works
often require launching a large number of dynamic execu-
tions, and this is reasonable with conventional cache-based
side channel leakage, in which attackers assess how different
secrets lead to distinct cache access patterns or cache states. In
ciphertext side channels, we however analyze how the same
memory block is repeatedly accessed. This highlights the
distinction between our work and previous dynamic methods.

9 Discussion and Limitations

False Negatives. CIPHERH is not sound, meaning that it may
miss some leaks (i.e., CIPHERH has false negatives). On the
one hand, functions that are not on the execution trace covered
by taint analysis cannot be explored. On the other hand, some
inter-procedural vulnerabilities can be neglected as we adopt
pattern-based inter-procedural static analysis. The patterns
we form are from observations of real cryptosystems and they
are general, in the sense that we use the same patterns in our
evaluation to analyze different cryptographic algorithms im-
plemented in different cryptographic libraries. In §7.5, we ex-
perimentally demonstrated that the currently-formed patterns
eliminate most false positives at the expense of a few false
negatives. Moreover, pattern-based inter-procedural analysis
is configurable, allowing developers to provide extra patterns
for their domain-specific scenarios.
False Positives. CIPHERH may produce false positives, par-
ticularly in its inter-procedural analysis, as clarified in §5.2.2.
Besides, due to the lack of context when analyzing a single
function, our positive findings may be indeed unreachable
when executing a program from the beginning. Nevertheless,
our empirical results show that CIPHERH is very accurate
with small number of false positives (9 out of 153).
Assembly Code Analysis. Cryptographic libraries may em-
ploy (inline) assembly code to offer architecture-specific im-
plementations. We clarify that since CIPHERH uses LLVM
DFSan to conduct taint analysis, the analysis will need to be
launched on LLVM IR. In other words, we will have to con-
figure the compilation toolchain to convert source code into
LLVM IR for taint analysis, whereas the assembly language
implementation of certain cryptographic libraries (e.g., the
default modular exponentiation implementation of OpenSSL
on x86 64-bit) is not analyzable.

Given that said, developers can manually mark secret vari-
ables for a specific assembly language function, and then use
the symbolic execution module of CIPHERH to locate vul-
nerable program sites. We report that for the RSA assembly
language implementation of OpenSSL, by manually anno-
tating the taint information of the modular exponentiation
functions on x86-64, we found vulnerabilities that are consis-

tent with findings shown in Figure 8.
Proof of Concept (PoC) Exploits. CIPHERH flags assembly
instructions vulnerable to ciphertext side channels. Similar to
other tools in this field, CIPHERH cannot synthesize proof of
concept (PoC) exploits. We believe it is exceedingly difficult
for side channel detectors to “generate PoC attacks”. Exploit-
ing ciphertext side channels is a multi-step procedure [33] that
requires pre-knowledge of the target cryptographic software
and manual efforts. It is challenging to automate the exploita-
tion process in an end-to-end manner (e.g., with a PoC script),
let alone synthesize a PoC exploit using CIPHERH.
Padding Oracles. Oracle attacks were introduced by Ble-
ichenbacher [8] to compromise PKCS#1 v1.5 encoding
schemes. Multiple research works have shown the network
security threat [7,31,39] due to Bleichenbacher attacks. While
CIPHERH currently focus on secret leakage due to ciphertext
side channels, its combination with oracle attacks may likely
strengthen the attack surface and lead to even more severe
outcomes. We leave it as one future work to explore.

10 Conclusion

CIPHERH is the first tool to systematically detect cipher-
text side channels in production cryptosystems. It combines
whole-program dynamic taint analysis and function-level
static symbolic execution to deliver high scalability and com-
prehensiveness. We have applied CIPHERH to analyze cryp-
tographic software and discovered a large number of flaws.
Representative cases have been confirmed by the developers.
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tacking rsa-based sessions in ssl/tls. In International
Workshop on Cryptographic Hardware and Embedded
Systems, pages 426–440. Springer, 2003.

[32] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-che Tsai,
and Raluca Ada Popa. An off-chip attack on hard-
ware enclaves via the memory bus. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14,
2020, pages 487–504. USENIX Association, 2020.

[33] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas
Eisenbarth, Radu Teodorescu, and Yinqian Zhang. A
systematic look at ciphertext side channels on amd sev-
snp. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1541–1541. IEEE Computer Society, 2022.

[34] Mengyuan Li, Yinqian Zhang, and Yueqiang Cheng. CI-
PHERLEAKS: Breaking constant-time cryptography
on AMD SEV via the ciphertext side channel. In 30th
USENIX Security Symposium (USENIX Security 21),
pages 717–732, 2021.

[35] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin.
CROSSLINE: Breaking “Security-by-Crash” based
Memory Isolation in AMD SEV. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2937–2950, 2021.

[36] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan
Solihin. Exploiting unprotected i/o operations in amd’s
secure encrypted virtualization. In 28th USENIX
Security Symposium, pages 1257–1272, 2019.

[37] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. TLB Poisoning Attacks on AMD
Secure Encrypted Virtualization. In Annual Computer
Security Applications Conference, 2021.

[38] LLVM. Dfsan. https://clang.llvm.org/docs/
DataFlowSanitizer.html, 2020.

[39] James Manger. A chosen ciphertext attack on rsa op-
timal asymmetric encryption padding (oaep) as stan-
dardized in pkcs# 1 v2. 0. In Annual international
cryptology conference, pages 230–238. Springer, 2001.

[40] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s virtual
machine encryption. In 11th European Workshop on
Systems Security. ACM, 2018.

[41] Phong Q Nguyen and Igor E Shparlinski. The insecurity
of the elliptic curve digital signature algorithm with par-
tially known nonces. Designs, codes and cryptography,
30(2):201–217, 2003.

[42] Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu.
Diffuzz: differential fuzzing for side-channel analysis.
In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 176–187. IEEE,
2019.

[43] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar.
Shadow of a doubt: testing for divergences between soft-
ware versions. In Proceedings of the 38th International
Conference on Software Engineering, pages 1181–
1192, 2016.

[44] Brandon Paulsen, Chungha Sung, Peter AH Peterson,
and Chao Wang. Debreach: Mitigating compression
side channels via static analysis and transformation.
In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 899–
911. IEEE, 2019.

[45] Andrei Sabelfeld and Andrew C Myers. Language-
based information-flow security. IEEE Journal on
selected areas in communications, 21(1):5–19, 2003.

[46] Laurent Simon, David Chisnall, and Ross Anderson.
What you get is what you C: Controlling side effects in
mainstream C compilers. IEEE EuroS&P, 2018.

[47] Patrick Stewin and Iurii Bystrov. Understanding dma
malware. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 21–41. Springer, 2012.

[48] Chungha Sung, Brandon Paulsen, and Chao Wang.
CANAL: a cache timing analysis framework via LLVM
transformation. ASE, 2018.

[49] Jingbo Wang, Chungha Sung, Mukund Raghothaman,
and Chao Wang. Data-driven synthesis of provably
sound side channel analyses. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering
(ICSE), pages 810–822. IEEE, 2021.

USENIX Association 32nd USENIX Security Symposium    6859

https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html


[50] Jingbo Wang, Chungha Sung, and Chao Wang.
Mitigating power side channels during compila-
tion. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 590–601, 2019.

[51] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng
Zhang, and Dinghao Wu. Identifying cache-based side
channels through secret-augmented abstract interpreta-
tion. USENIX Security, 2019.

[52] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and
Dinghao Wu. CacheD: Identifying cache-based timing
channels in production software. In USENIX Security,
2017.

[53] Samuel Weiser, David Schrammel, Lukas Bodner, and
Raphael Spreitzer. Big numbers-big troubles: Systemat-
ically analyzing nonce leakage in (ec) dsa implementa-
tions. USENIX Security, 2020.

[54] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja
Miller, Stefan Mangard, and Georg Sigl. DATA – dif-
ferential address trace analysis: Finding address-based
side-channels in binaries. In USENIX Sec., 2018.

[55] Jan Werner, Joshua Mason, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose. The
SEVerESt of them all: Inference attacks against se-
cure virtual enclaves. In ACM Asia Conference on
Computer and Communications Security, pages 73–85.
ACM, 2019.

[56] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth,
and Berk Sunar. MicroWalk: A framework for finding
side channels in binaries. In ACSAC, 2018.

[57] WolfSSL. Patches for ciphertext side channels. https:
//github.com/wolfSSL/wolfssl/pull/4666, 2021.

[58] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yin-
qian Zhang. Stacco: Differentially analyzing
side-channel traces for detecting SSL/TLS vulner-
abilities in secure enclaves. In Proceedings of
the ACM SIGSAC Conference on Computer and
Communications Security, CCS’17. ACM, 2017.

[59] Yuanyuan Yuan, Qi Pang, and Shuai Wang. Automated
side channel analysis of media software with manifold
learning. USENIX Security’22.

A Unpatched ECDSA implementation in
WolfSSL

static int ecc_mulmod(const mp_int* k, ecc_point* P, ecc_point* Q,...) {  
   ...
   for (i = 1; (err == MP_OKAY) && (i < t); i++) {
     ...
     b = v & 1;   // v denotes the secret digits
     v >>= 1;
     // the value of swap is 0 or 1
     swap ^= b;
     if (err == MP_OKAY)  // swap R[0] and R[1] according to swap
       err = mp_cond_swap_ct(R[0]->x, R[1]->x, modulus->used, swap);
     if (err == MP_OKAY)
       err = mp_cond_swap_ct(R[0]->y, R[1]->y, modulus->used, swap);
     if (err == MP_OKAY)
       err = mp_cond_swap_ct(R[0]->z, R[1]->z, modulus->used, swap);
     swap = (int)b;
      // double and add points
     if (err == MP_OKAY)
       err = ecc_projective_dbl_point_safe(R[0], R[0], a, modulus, mp);
     if (err == MP_OKAY) {
       err = ecc_projective_add_point_safe(R[0], R[1], R[0], a, modulus,
                                                        mp, &infinity);
   }
   ...                                                         
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Figure 11: The elliptic curve scalar multiplication
implementation from WolfSSL without defining
WC_PROTECT_ECVRYPTED_MEM. The attacker can infer
secret k by ¬ monitor the ciphertext of swap. ­ monitor the
ciphertext of conditional swap in mp_cond_swap_ct.

B Vulnerabilities in ECDH/MbedTLS

int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,  mbedtls_mpi *Y,
                                                unsigned char swap) {
   ...    // swap reflects one bit of the secret
   limb_mask = mbedtls_ct_mpi_uint_mask( swap );
   s = X->s;
   // conditional swap of X->s and Y-> s 
   X->s = mbedtls_ct_cond_select_sign( swap, Y->s, X->s );
   Y->s = mbedtls_ct_cond_select_sign( swap, s, Y->s );
   // conditional swap of X->p and Y->p
   for( i = 0; i < X->n; i++ ) {
      tmp = X->p[i];
      X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
      Y->p[i] = ( Y->p[i] & ~limb_mask ) | (     tmp & limb_mask );
    }
   ...                                                         
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Figure 12: Conditional swap operations in ECDH implemen-
tation of MbedTLS. Four inter-procedural vulnerable program
points are reported by CIPHERH at line 7, 8, 12 as well as 13.
The attacker can monitor the ciphertexts of X and Y to infer
swap.
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