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Abstract
Privacy policies disclose how an organization collects and

handles personal information. Recent work has made progress
in leveraging natural language processing (NLP) to automate
privacy policy analysis and extract data collection statements
from different sentences, considered in isolation from each
other. In this paper, we view and analyze, for the first time,
the entire text of a privacy policy in an integrated way. In
terms of methodology: (1) we define POLIGRAPH, a type of
knowledge graph that captures statements in a privacy policy
as relations between different parts of the text; and (2) we
develop an NLP-based tool, POLIGRAPH-ER, to automati-
cally extract POLIGRAPH from the text. In addition, (3) we
revisit the notion of ontologies, previously defined in heuris-
tic ways, to capture subsumption relations between terms.
We make a clear distinction between local and global on-
tologies to capture the context of individual privacy policies,
application domains, and privacy laws. Using a public dataset
for evaluation, we show that POLIGRAPH-ER identifies 40%
more collection statements than prior state-of-the-art, with
97% precision. In terms of applications, POLIGRAPH enables
automated analysis of a corpus of privacy policies and allows
us to: (1) reveal common patterns in the texts across different
privacy policies, and (2) assess the correctness of the terms as
defined within a privacy policy. We also apply POLIGRAPH
to: (3) detect contradictions in a privacy policy, where we
show false alarms by prior work, and (4) analyze the con-
sistency of privacy policies and network traffic, where we
identify significantly more clear disclosures than prior work.

1 Introduction
Privacy Policies. Privacy laws, such as the General Data
Protection Regulation (GDPR) [1], the California Consumer
Privacy Act (CCPA) [2], and other data protection laws, re-
quire organizations to disclose the personal information they
collect, as well as how and why they use and share it. Privacy
policies are the primary legally-binding way for organizations
to disclose their data collection practices to the users of their
products. They receive much attention from many stakehold-

ers, such as users who want to exercise their rights, developers
who want their systems to be compliant with privacy laws, and
law enforcement agencies who want to audit organizations’
data collection practices and hold them accountable. Unfortu-
nately, privacy policies are typically lengthy and complicated,
making it hard not only for the average user to understand,
but also for experts to analyze in depth and at scale [3].
NLP Analysis and Limitations. To address this challenge,
as well as to facilitate expert analysis [7] and crowdsourced
annotation [8], the research community has recently applied
natural language processing (NLP) to automate the analysis of
privacy policies. State-of-the-art examples include the follow-
ing: PolicyLint [9] extracts data types and entities that collect
them, and analyzes potential contradictions within a privacy
policy; PoliCheck [10] builds on PolicyLint and further com-
pares the privacy policy statements with the data collection
practices observed in the network traffic; Polisis [11] and Pur-
Pliance [5] extract data collection purposes; and OVRseen [6]
leverages PoliCheck and Polisis to associate data types, en-
tities, and purposes. Despite promising results, this body of
work also has certain limitations.

First, existing privacy policy analyzers extract statements
(about what is collected, i.e., data type; who collects it, i.e.,
entity; and for what purpose) as disconnected labels [11] or
tuples [5,9], ignoring the links between information disclosed
across sentences, paragraphs or sections. However, today’s
privacy policies typically have a structure that discloses data
types being collected, third-party sharing and usage purposes
in separate sections1, as shown in the example in Figure 1(a).
Polisis [11] uses separate text classifiers to label data types,
third-party entities and purposes disclosed in each paragraph.
Without connecting these labels, it is unclear which data type
is collected by which entity, and what purpose applies. Pol-
icyLint [9] and PurPliance [5] adopt tuple representations

1We read through 200 privacy policies in our test set (see Section 4).
Among them, 135 discuss definitions and practices concerning the same data
types in different sections, requiring to put the information together to get the
full context about collection, use and sharing of these data types. In particular,
104 divide content into sections addressing collection, use, and sharing of
“personal information”, resembling the structure shown in Figure 1(a).
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We collect the following categories of personal information:

● Device information... such as IP address...

● Location. We use this information to provide features...

We use your personal information... to:

● Provide the Services...

● Authenticate your account...

We disclose the personal information... as follows:

● With our travel partners...

● With social networking services...

(we, collect, personal information)

(we, collect, device information)

(we, collect, IP address)

(we, collect, location)

(we, collect, this information)

(we, collect, personal information)

(travel partners, collect, personal information)

(social networking services, collect, personal information)

(we, collect, personal information)

(we, collect, personal information)

[provide features]

[provide the Services]

[authenticate your account]

[provide features]

[provide services]
[auth account]

personal 
information

we

device 
information

location

IP address

travel 
partners

social networking 
services

SUBSUME
COLLECT
Data type
Entity
Purpose

(a) (b) (c)

Figure 1: Example of a privacy policy and analysis approaches. (a) The excerpt is from the policy of KAYAK [4]. It contains sections and
lists, regarding: what is collected (data type), how it is used (purpose), who receives the information (entity), and references across sentences
(e.g., “personal information” relates to other data types; “this information” refers to “location”). (b) Prior work extracts elements found in each
sentence, mainly data types and entities, as disconnected tuples. Purposes can also be extracted to extend the tuple [5, 6]. (c) POLIGRAPH is
a knowledge graph that encodes data types, entities, and purposes; and two types of relations between them (collection and subsumption),
possibly specified across different sentences. A COLLECT edge represents that a data type is collected by an entity, while edge attributes represent
the purposes of that collection. SUBSUME edges represent the subsumption relations between generic and specific terms.

that put together entities, data types and purposes disclosed
in each sentence, as shown in Figure 1(b). However, the tu-
ples still miss context from other sentences. For example, it
cannot be inferred from the tuples that the purpose “provide
features” applies to the collection of “location”; or that the
usage purposes and third-party entities in later sections are
related to the specific types of “personal information” (e.g.,
“device information”) listed in the first section.

Second, because of this incomplete context, prior work
needs to map and relate the semantics of the terms across
different sentences by introducing ontologies that encode sub-
sumption relations between data types or entities. So far, these
ontologies have been built in a manual or semi-automated
fashion by domain experts, who define lists of terms com-
monly found in privacy policy text and other sources (e.g.,
network traffic), and subsumption relations between them
(e.g., the term “device information” subsumes “IP address”).
The resulting ontologies are not universal: they do not neces-
sarily agree with all privacy policies and need to be adapted
to different application domains, e.g., mobile [5, 9, 10], smart
speakers [12,13], and VR [6]. As a result, they often generate
ambiguous or wrong results that require further validation by
experts. Manandhar et al. [14] recently reported that state-of-
the-art analyzers [9–11] incorrectly reason about more than
half of the privacy policies they analyzed.
The POLIGRAPH Framework. Our key observation is that
a policy2 should be treated in its entirety, leveraging terms in
different sentences that are related. To that end, we make the
following methodological contributions.

First, we propose to extract and encode statements in a
policy (i.e., what data types are collected, with what entities
they are shared, and for what purposes) into a knowledge
graph [15, 16], which we refer to as POLIGRAPH; Figure 1(c)
shows an example 3. Nodes represent data types or entities.
Edges represent relations between nodes, e.g., an entity may
collect a particular data type, and a more generic data type

2In the rest of the paper, we refer to a privacy policy simply as “policy”.

may subsume a more specific data type. An edge representing
data collection may have an attribute indicating the purposes.
The graph in Figure 1(c) naturally links the extracted infor-
mation by merging the same data types and entities and estab-
lishing edges between them. It allows inferences such as “IP
address” being collected for the purpose “provide services”,
and “location” being collected by “travel partners”.

Second, for policies that are not well written, the extracted
POLIGRAPH may be missing subsumption relations between
terms that are not fully defined in the policies. To supple-
ment the missing relations, we use ontologies, as in prior
work [5, 9, 10]; however, we redefine and use them as follows.
First, we consider the subsumption relations extracted from
each individual policy as the local ontology definied by it.
Next, we also define additional subsumption relations that
encode external knowledge, beyond what is stated in the text
of an individual policy; we refer to these as global ontologies.
They can be defined by domain experts, using information
from multiple policies, or from privacy laws; for example, in
Section 2.2, we define a data ontology based on the CCPA [2].

Third, we present POLIGRAPH-ER, a methodology and
implementation that applies NLP linguistic analysis to auto-
matically extract and build a POLIGRAPH from the privacy
policy text. To that end, we address several challenges, includ-
ing coreference resolution, list parsing, phrase normalization,
and purpose phrase classification, to extract and link more
information than previously possible.
Evaluation. We evaluate POLIGRAPH-ER on a public dataset
from PoliCheck [10], consisting of over 6K policies from over
13K mobile apps. Our manual validation shows that POLI-
GRAPH improves the recall of collection statements from 30%
to 70%, compared to prior work [9], with over 90% precision.

3Examples of COLLECT edges, representing collection of a data type by
an entity: (1) “we” (first party, i.e., KAYAK) collect “personal information”,
with the purposes “provide services” and “authenticate your account”; (2)
“travel partners” collect (or precisely, are disclosed with) “personal infor-
mation”. Example of SUBSUME edges, representing subsumption relations:
“personal information” subsumes “location” and “device information”, which
in turn subsumes “IP address”.
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The improvement is enabled by both the improved NLP tech-
niques and the knowledge graph representation, which can
analyze statements spanning multiple sentences and sections.

Applications. POLIGRAPH enables two new types of auto-
mated analyses, which were not previously possible. First,
POLIGRAPH is used to summarize policies in our dataset and
reveal common patterns across them. This is possible because
POLIGRAPH, by representing each policy as a whole, allows
inferences about more collection statements. We find that 64%
of policies disclose the collection of software identifiers and,
in particular, cookies. Advertisers and analytics providers are
major entities that collect such data. This is further reinforced
by the finding that more than half of the policies disclose data
usage for non-core purposes, namely for advertising and ana-
lytics. We also find that the use of generic terms for data types
(e.g., “personal information”), often without more precise def-
initions, reduces the transparency and leaves the specific data
types being collected unknown. Second, different policies
may have different definitions of the same terms. By clearly
separating local ontologies from global ones, POLIGRAPH
allows us to assess the correctness of the term definitions. For
example, we find that many policies declare the collected data
as “non-personal information”, which contradicts common
knowledge and our CCPA-based global data ontology (see
Sections 2.2 and 5.2). We also find that non-standard terms
are widely used, with varied definitions across policies.

We also apply POLIGRAPH to revisit two known appli-
cations of policy analysis. First, to identify contradictions
within a policy, we extend POLIGRAPH to analyze negative
statements and take into account additional contexts that are
crucial for interpreting contradictions, such as (1) fine-grained
actions (e.g., “sell” for profit vs. “sharing”), and (2) data sub-
jects (e.g., children vs. general users). We show that the major-
ity of contradictions found by prior work are false alarms due
to language nuances and missing contexts (e.g., data subjects).
Second, we apply POLIGRAPH to analyze data flow-to-policy
consistency. As a result of the improved recall of our approach,
we show that prior work [10] has underestimated the number
of policies that clearly disclose some sensitive data flows.

Overview. The rest of the paper is structured as follows. Sec-
tion 2 defines the proposed POLIGRAPH framework and the
ontologies used with it. Section 3 describes the implementa-
tion of POLIGRAPH-ER that uses NLP to build POLIGRAPH
from the text of a policy. Section 4 presents the evaluation
of our framework. Section 5 presents applications of POLI-
GRAPH to policy analysis. Section 6 discusses related work.
Finally, Section 7 concludes the paper.

2 The POLIGRAPH Framework
In this section, we introduce POLIGRAPH, our proposed

representation of the entire text of a policy as a knowledge
graph. We also revisit the related notion of ontologies, and
we propose a new definition and use it with POLIGRAPH.

2.1 Defining POLIGRAPH
We define POLIGRAPH as a knowledge graph that captures

statements in a policy considered as a whole. Throughout
this section, we will use Figure 1 as our running example to
illustrate the terminology and definitions.

Privacy laws, such as the GDPR [1] and the CCPA [2],
require that organizations disclose their practices regarding
data collection, sharing and use in their policies. To capture
these three aspects of disclosures in the policy, we represent
the corresponding three kinds of terms in POLIGRAPH: what
data types are collected, with what entities they are shared,
and for what purposes they are used.
• Data type: This kind of terms refers to the type of data

being collected. In Figure 1(a), “location” is a specific
collected data type. Generic terms can be used as well, e.g.,
“personal information” and “device information”.

• Entity: This kind of terms refers to the organization that
receives the collected data. It can be the first party if it is
the developer of the product (e.g., website, mobile app, etc.)
that writes the policy, namely “we” in Figure 1(a); or, other-
wise, a third party such as “travel partners” in Figure 1(a).

• Purpose: Policies may also specify purposes.4 In Fig-
ure 1(a), purposes include “provide services”, “authenticate
your account”, and “provide features”.

In POLIGRAPH, we represent data types and entities as
two different types of nodes. Furthermore, we encode the
following relations between them as edges.
• COLLECT edge: An entity n may collect a data type d. In

Figure 1(a), “personal information” is collected by the first-
party entity “we”, but it is also shared with the entity “travel
partners” (a third party). More formally, a COLLECT edge
ec = n COLLECT−−−−→d between an entity n and a data type d rep-
resents that d is collected by n, namely collect(n,d).

• SUBSUME edge: A generic term (hypernym) may subsume
a more specific term (hyponym). For example, “personal
information” subsumes “device information” and “loca-
tion”, and “device information” in turn subsumes “IP ad-
dress”. More formally, a SUBSUME edge es = hyper SUBSUME−−−−−→
hypo connects nodes hyper and hypo, where both nodes
hyper, hypo are data types or both are entities, and it repre-
sents that the more generic term hyper subsumes the more
specific term hypo, namely subsume(hyper, hypo).

• Purposes as edge attributes: We represent purposes by as-
signing them as a list of attributes Purposes(ec)={p1, p2, ...}
to each COLLECT edge ec. This is a natural choice that fits
how policies are written: one or more purposes are typically
associated with a data type and an entity. In Figure 1(a), en-
tity “we” (i.e., KAYAK) collects “this information”, which
refers to “location”, for the purpose “to provide features”.

4In this paper, we refer to purposes of processing of personal data as
specified in the GDPR, namely the purposes of collection, use, and sharing.
US laws often distinguish among the three, e.g., the CCPA appears to require a
policy to separately disclose the purposes of collection / use and the purposes
of sharing personal information.
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The purpose “to provide features” is captured in the list
of attributes Purposes(ec)= {provide features} assigned
to the COLLECT edge ec=we COLLECT−−−−→location.
In summary, we define POLIGRAPH, representing knowl-

edge about data collection, sharing and use disclosed within
a particular policy, as follows.
Definition 2.1. POLIGRAPH. A POLIGRAPH G = ⟨D,N;
ES,EC;P⟩ is a directed acyclic graph. Each node represents a
term that is either a data type d ∈ D or an entity n ∈ N. Each
edge can be either a SUBSUME edge es ∈ ES, or a COLLECT
edge ec ∈ EC as defined above. A COLLECT edge ec has a list
of attributes Purposes(ec) = {p1, p2, ...}, where pi ∈ P.

Figure 1(c) shows the POLIGRAPH representation of the
policy text in Figure 1(a). The technical details about building
the graph from verbatim text, such as how to map the co-
reference term “this information” to “location”, are provided
in Section 3. Next, we define relations that can be inferred
from POLIGRAPH about policy text.
Definition 2.2. Subsumption Relation. In a POLIGRAPH G,
we say that a term t1 (hypernym) subsumes another term t2
(hyponym), denoted as subsume(t1, t2), iff there exists a path
from t1 to t2 in G where every edge is a SUBSUME edge.5

Definition 2.3. Collection Relation. In a POLIGRAPH G,
we say an entity n∈N collects a data type d∈D, denoted as
collect(n,d), iff there exists an entity n′ ∈ N and a data type
d′ ∈ D where subsume(n′,n)∧ subsume(d′,d)6 and the edge
n′ COLLECT−−−−→d′ exists in G.
Definition 2.4. Set of Purposes. Following Definition 2.3, if
a purpose p ∈ Purposes(n′ COLLECT−−−−→d′), we say n collects d for
the purpose p. We denote the set of all instances of such p in
G as a set purposes(n,d).

Beyond what is captured by individual nodes, edges, and
attributes, the strength of POLIGRAPH is that it allows us to
make inferences. In Figure 1(c), there is no direct edge from
“travel partners” to “location”, but we can still infer that “loca-
tion” may be shared with “travel partners” and “social network
services”. Furthermore, we can also infer that collect(we,
location) and purposes(we, location) = {provide features}.
Such data practices that are implied, but not explicitly stated,
would be missed by prior work that only processes individual
sentences, and possibly by human readers as well.

Prior state-of-the-art work would have extracted a list of
tuples, as depicted in the example of Figure 1(b). PolicyLint
[9] and follow-up works [10,12] extract 2-tuples: ⟨entity, data
type⟩. Purposes can be extracted independently and appended
to form a longer 3-tuple ⟨entity, data type, purpose⟩ as in
OVRseen [6], or put in a nested tuple as in PurPliance [5]. In
all cases, those tuples are extracted from individual sentences

5A subsumption relation is naturally transitive. To simplify other defini-
tions, we also make it reflexive, i.e., every term subsumes itself.

6That is, a policy may disclose data collection using generic terms. For
instance, in Figure 1(c), we have collect(we, IP address) because “IP address”
is also “personal information”.

that are disconnected from each other. As a result, prior work
would fail to identify implied statements. In contrast, POLI-
GRAPH connects terms with the same semantics in different
sentences, allowing inferences and improving coverage.

Another major strength of POLIGRAPH is that its modular
design makes it easy to extend to capture additional relations.
In Section 5.3, we present POLIGRAPH extensions to handle
finer-grained semantics, including negative edges and sub-
types of COLLECT edges to distinguish among data actions
(e.g., “sell” for profit vs. “sharing”), as well as data subjects.

2.2 Ontologies
Policies refer to data types and entities at different seman-

tic granularities. For example, “device information” in Fig-
ure 1(a) is a generic data type that subsumes “IP address” and
maybe other more specific data types. Prior work [6,9,10] has
introduced hierarchies of terms, namely ontologies, to define
the subsumption relations between data types or entities. They
typically define the data and entity ontologies heuristically
and manually, by considering a combination of information
found in the network traffic and in the policy text, as well as
using domain expertise to organize terms into hierarchies.

We revisit the notion of ontologies under the POLIGRAPH
framework. First, POLIGRAPH naturally captures subsump-
tion relations described in an individual policy, which form
the local ontology. Ideally, if a policy is written in a clear and
complete way, it should either use specific terms, or clearly de-
fine generic terms that will be captured by the corresponding
local ontology. In practice, policies are not perfectly writ-
ten and parts of the ontology may be missing. For example,
in Figure 1(a), the term “social networking services” is not
further explained. Furthermore, some policies may provide
misleading definitions, e.g., “geolocation” is described as
non-personal information, whereas it is widely considered
personal by the public and privacy laws (see Section 5.2).
Second, we define and design global ontologies that encode
external knowledge or ground truth, as in prior work. For the
first time, the distinction between local and global ontologies
provides a principled way to summarize an individual policy,
as well as to assess the completeness and correctness of defi-
nitions by comparing the local against the global ontologies.

2.2.1 Local Ontologies
In POLIGRAPH, SUBSUME edges between data types or

entities induce a directed acyclic graph, which we refer to as a
local ontology, capturing the relations between more generic
and more specific terms, as defined within a particular policy.
We define local data and entity ontologies as follows.

Definition 2.5. Local Ontology. A local ontology is either a
data ontology od = ⟨D,Ed⟩ or an entity ontology on = ⟨N,En⟩,
a directed acyclic graph that is a subgraph of POLIGRAPH
G = ⟨D,N;ES,EC;P⟩, in which every node is a data type d ∈
D or an entity n ∈ N, and every edge ed ∈ Ed ,en ∈ En (where
Ed ,En ⊂ ES) is a SUBSUME edge.
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Figure 2: Global Data Ontology based on the CCPA.

In Figure 1(c), the four blue nodes containing data types
form the local data ontology: the root node is “personal infor-
mation” and the leaf nodes are “location” and “IP address”.
The local entity ontology, which contains the three green
nodes, does not have a nontrivial hierarchical structure be-
cause the policy does not further explain the terms “travel
partners” and “social networking services”.

2.2.2 Global Ontologies
We define a global ontology to encode external knowledge,

i.e., outside a particular policy, which we consider as ground
truth in that context. It provides a reference against which
we can compare and evaluate individual policies, as well as a
complement to missing definitions in policies.
Definition 2.6. Global Ontology. A global ontology is either
a data ontology Od = ⟨Dd ,Ed⟩ or an entity ontology On =
⟨Nn,En⟩ that is a directed acyclic graph, where every node is a
data type d ∈ Dd or an entity n ∈ Nn, and every edge ed ∈ Ed
or e ∈ En is a SUBSUME edge.

Prior work [6,9,10] has implicitly and heuristically defined
such global ontologies, by taking into account and combining
the union of all subsumption relations extracted from policies
in their corpus, and the data types and entities observed in
the actual system’s output (e.g., network traffic). However,
such global ontologies have not been universal: they may
include subjective judgment, and they typically do not apply
across application domains. For example, PoliCheck’s data
ontology does not assume “personal information” to include
“device information”: this contradicts the content of the policy
depicted in Figure 1(a). Although we recognize that there is
no single way to define perfect global ontologies, we propose

Figure 3: Global Entity Ontology based on [17, 18].

that we rely on authoritative sources, such as privacy laws, to
define them. An example is described next, but other designs
can be used with POLIGRAPH as well.

Global Data Ontology Based on the CCPA. As a concrete,
illustrative example, we propose a global data ontology that is
based on the CCPA [2]. The CCPA governs the collection, use,
and sharing of personal information, as defined therein, by
companies that do business in California. To build the CCPA-
based global data ontology, we start with the definition of “per-
sonal information” in CCPA Section 1798.140(v)(1), which
includes, but is not limited to, specific data types, including a
person’s name, social security number, postal address, email
address, and IP address. We place such specific data types
into the ontology as leaf nodes. Then, since policies often dis-
close the collection of categories of these specific data types,
e.g., “contact information” instead of “email address” and
“postal address”, we organize these specific data types into
categories delineated by subsumption relations. The CCPA’s
definition of personal information also includes categories
for which it does not list specific data types, e.g., “biometric
information”. In such cases, we include the categories in the
global data ontology and augment it with common specific
data types, e.g., “biometric information” includes “voiceprint”
and “fingerprint”. Similarly, the CCPA uses the term “device
identifier” but does not define it, while we include it as a cat-
egory in the global data ontology, and place specific device
identifiers in that category. Figure 2 shows the CCPA-based
global data ontology. The above is meant as a concrete ex-
ample of a global ontology based on a privacy law. Different
laws (e.g., GDPR) can lead to different global ontologies.

Global Entity Ontology. Privacy laws give examples of the
types of entities, but not the exhaustive list of entities, with
whom an organization may share personal information. We
follow policies that often categorize entities by service types.
We obtain a list of entities and their categories from the Duck-
DuckGo Tracker Radar dataset [17] and a CrunchBase-based
dataset [18]. Based on these sources, containing 4,709 entities
in total, we propose a simple two-level ontology that classifies
entities into six categories as shown in Figure 3.

The global ontologies, serving as the ground truth of sub-
sumption relations, are used to categorize unorganized data
types and entities in POLIGRAPHs (see Section 5.1), assess
the correctness of term definitions in individual policies (see
Section 5.2), as well as complement term definitions in case
of missing definitions when we check vague disclosures of
data flows (see Section 5.4).
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Purpose Annot.
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List Annot.
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Term Normalization

Purpose Classification[HEADING] …
[TEXT] …
[LISTITEM] …
[LISTITEM] …

Document Tree

Linguistic Labels

Phrase Graph Google

device info

we

cookie ad ID

COLLECT
COLLECT
Purposes=[Ad]

SUBSUMESUBSUME
[We] collect [device info]

COLLECT

like [cookies],
SUBSUME

[This info] is shared with [Google] [to show ads].

[ad IDs].
SUBSUME

COREF

COLLECT PURPOSE

nsubj dobj pobjprep

[We]
 PRON

collect
VERB

[device info]
 NOUN (DATA)

like
PREP

[cookies]...
 NOUN (DATA)

HTML Preprocessing

Figure 4: Overview of POLIGRAPH-ER implementation. First, POLIGRAPH-ER preprocesses the HTML document to produce a simplified
document tree structure. Second, the NLP pipeline takes the document tree and labels sentences with linguistic labels. Third, the labeled
sentences are annotated by the annotators to produce a phrase graph containing all the annotations. Finally, the graph building stage deploys
term normalization and purpose classification to transform the phrase graph into a POLIGRAPH.

3 POLIGRAPH-ER Implementation
We present POLIGRAPH-ER, the NLP-based system that

we implement to generate POLIGRAPH from the text of a
policy. Figure 4 gives an overview of its implementation.

3.1 NLP on Structured Documents
HTML Preprocessing. Policies are usually published online
as structured documents, mainly in HTML format, while NLP
models expect plain text input. Simply stripping HTML tags,
such as headings and lists, would result in a loss of semantics.
As the first step, POLIGRAPH-ER preprocesses each HTML
document to a simplified document tree which preserves three
important document structures: heading, list item, and general
text. The document tree helps to generate complete sentences
as input for NLP. Please see Appendix A.1 in [19] for details.
NLP Pipeline. POLIGRAPH-ER is built based on the spaCy
library [20] and its RoBERTa-based NLP pipeline [21, 22].
The NLP pipeline labels text with linguistic labels originating
from English linguistic features, including word lemmas, part-
of-speech, sentence segmentation, and syntactic dependency
trees (see the output of “NLP Pipeline” in Figure 4). These
features are syntactic and thus require no domain adaptation.

To identify data types and entities in a policy, POLIGRAPH-
ER uses named entity recognition (NER), a standard NLP
technique to classify noun phrases into a given set of labels.
In our case, we use two labels: DATA for data types and EN-
TITY for entities. To train the NER model, we use a synthetic
training set that combines generated sentences and real pol-
icy text prelabeled by an existing NER model and rule-based
NER. Please see Appendix A.2 in [19] for details.

3.2 Annotators
In POLIGRAPH-ER, we refer to the modules that identify

relations between phrases7 as annotators. The relations are
stored as edges in a graph structure, which we call a phrase

Table 1: Overview of annotators in POLIGRAPH-ER.

Annotator Example (based on the policy in Figure 1(a))

Collection Annot. Entity COLLECT−−−−−→Data
e.g., We collect ... personal information

Subsumption Annot. Hypernym SUBSUME−−−−−→Hyponym
e.g., Device information ... such as IP address ...

Purpose Annot.
Data PURPOSE−−−−−→Purpose
e.g., We use your personal information ... to:

Provide the Services ...

Coreference Annot.
Reference COREF−−−−→Main mention
e.g., We collect ... personal information : ...

We use this information to ...

List Annot.

Preceding sentence SUBSUME / COLLECT−−−−−−−−−−−−→List item
e.g., TEXT We collect ... following information :

LISTITEM - Device information ...
LISTITEM - Location ...

graph. The phrase graph is still an intermediate step, in which
phrases referring to the same thing have not been merged.

To extract relations between phrases, annotators search
for phrases matching specific syntactic patterns [23]. In con-
trast to prior work that hardcodes heuristics to perform the
search [9], we use dependency matching to specify desired
patterns as configurable rules [24]. For example, in the collec-
tion annotator, we set the rule collect|gather|obtain|...:ROOT
to match the root verb “collect”. Then the sub-rule ENTITY:subj
matches the subject “we” under the verb as the entity, and
another sub-rule DATA:obj matches the object “device infor-
mation” as the data type. The annotator then adds a COLLECT
edge between them in the phrase graph.

By dividing linguistic analysis tasks into five annotators,
each of them focuses on a specific set of patterns. Table 1

7We use “phrase” to refer to verbatim words and phrases in the policy
text. We use “term”, which appears in previous sections as well, to refer to the
normalized forms (see Section 3.3) of phrases that appear in POLIGRAPHs.
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Table 2: Syntactic patterns used by the collection annotator.

Root Verbs
(Examples: ENTITY COLLECT−−−−−→DATA ) Syntatic Patterns

share, trade, exchange, disclose
( We share your device IDs with Google .)

ENTITY:nsubj
DATA:dobj
with,ENTITY:pobj

collect, gather, obtain, get, receive, solicit, acquire, request
( Google may collect your device IDs .)

ENTITY:nsubj
DATA:dobj

provide, supply
( We provide Google with your device IDs .)

ENTITY:nsubj
ENTITY:dobj
with,DATA:pobj

provide, supply, release, disclose, transfer, transmit,
sell, rent, lease, give, pass, divulge, submit
( We may transmit device IDs to Google .)

ENTITY:nsubj
DATA:dobj
to,ENTITY:pobj

use, keep, access, analyze, process, store, save, hold,
log, utilize, record, retain, preserve, need, maintain
( Google may use your device IDs .)

ENTITY:nsubj
DATA:dobj

have, get, gain (access to)
( Google has access to your device IDs .)

ENTITY:nsubj
access,to,DATA:pobj

make (use of)
( Google makes use of device IDs .)

ENTITY:nsubj
use:dobj
of,DATA:pobj

outlines the patterns and relations that each annotator tries
to identify. Note that some edge types (COREF and PURPOSE)
exist only in the phrase graph and will be converted in the
final POLIGRAPH. We discuss each annotator as follows.
Collection Annotator. The collection annotator finds affir-
mative sentences that disclose data collection, use or shar-
ing, extracts entities and data types, and adds COLLECT edges
from entities to data types in these sentences. The annotator
matches around 40 verbs and 20 sets of syntactic patterns. Ta-
ble 2 lists some of the patterns in the active voice. For clarity,
we do not list patterns in the passive voice (e.g., “this infor-
mation is shared with...”) and composite patterns (e.g., “allow
us to collect...”), but they are all handled by the annotator. We
gather these patterns from actual policies in the dataset which
we use to evaluate POLIGRAPH (see Section 5).

The collection annotator only labels COLLECT edges for
affirmative statements. To distinguish affirmative sentences
from negative and interrogative ones, it checks the existence
of negative modifiers (e.g., not, never) and interrogative words
in the dependency tree. While negative statements are by
default excluded, we extend POLIGRAPH in Section 5.3 to
use the information to analyze negative statements.
Subsumption Annotator. The annotator identifies subsump-
tion relations between phrases and adds SUBSUME edges from
a hypernym to its hyponyms. It matches 11 syntactic patterns
of subsumption as shown in Table 3. These extend the patterns
used in prior work [5, 9, 10].
Purpose Annotator. The annotator identifies phrases that
describe purposes of data collection in three forms: (1) in
order to ⟨verb⟩ ...; (2) to ⟨verb⟩ ...; (3) for ... purpose(s). It
links such purpose phrases to corresponding data types with
PURPOSE edges, which are not part of POLIGRAPH and will
be converted into Purposes(·) attributes on the corresponding
COLLECT edges in POLIGRAPH. For example, in the sentence
“We use this information to provide ads”, the purpose phrase
“to provide ads” is linked to the data type “this information”.

Table 3: Syntactic patterns used by the subsumption annotator.

Phrases Sentences

X such as Y1,Y2... X includes Y1,Y2...
such X as Y1,Y2... X includes but is not limited to Y1,Y2...
X , for example, Y1,Y2...
X , e.g. / i.e. Y1,Y2...
X , which includes Y1,Y2...
X including / like Y1,Y2...
X , especially / particularly, Y1,Y2...
X , including but not limited to, Y1,Y2...
Y1,Y2... (collectively X)
X = hypernym phrase; Y1,Y2... = hyponym phrases.

Coreference Annotator. The annotator resolves pronouns
(e.g., “it”, “they”, etc.) or phrases modified by demonstrative
determiners (e.g., “this”, “those”, etc.) to the phrases which
they refer to. This task, known as coreference resolution, is a
non-trivial NLP task. Prior work [5, 9, 10] could not handle
coreferences properly, which has resulted in a loss of seman-
tics and misinterpretation of many collection statements.

We find that existing coreference resolution models [25,26]
cannot handle non-personal references well, whereas they are
commonly found in policies. To address the issue, we design
a heuristic-based coreference annotator that handles common
forms of coreferences in policies. First, for a phrase starting
with a determiner “this”, “that”, “these”, “those” or “such”
(e.g., “these providers”), the annotator looks backward for the
nearest phrase with the same root word (e.g., “ad providers”)
in the same or previous sentence. Specifically, if the root word
is “data” or “information” (e.g., “this information”), the anno-
tator looks backward for the nearest data type labeled by NER
as the referent. Second, for a pronoun like “it”, “this”, “they”,
or “these”, the annotator tries to infer whether the pronoun
refers to a data type or an entity based on existing SUBSUME
edges, and looks backward for the nearest data type or en-
tity. The annotator links coreference phrases to the referred
phrases with COREF edges, which are only used in phrase
graphs to resolve coreferences.

We evaluate our method on 200 coreferences from our test
set (see Section 4). 168 are resolved correctly. Four coref-
erences are partially resolved because they refer to multiple
phrases while the annotator supports only one referent for
each phrase. The other 28 are not resolved or are resolved
wrongly. This yields 84-86% accuracy, which suggests that it
outperforms general-purpose coreference models.8

List Annotator. This special annotator uses the document
tree to discover relations between list items and their preced-
ing sentence. First, if a noun phrase modified by “following”
or “below” (e.g., “the following information”) precedes list
items, it adds SUBSUME edges from the phrase to list items.
Second, it propagates relations between the preceding sen-
tence of a list and any list item to all list items in case other
annotators fail to label them.

8For example, Coreferee [26] reported 82-83% accuracy on general
corpora. However, as it does not treat data types as named entities, it cannot
resolve coreferences of data types.
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3.3 From Phrase Graph to POLIGRAPH

The final step of POLIGRAPH-ER is to build a POLIGRAPH
from a phrase graph. This involves merging phrases (data
types and entities) with the same meaning to one node and
converting purpose phrases to edge attributes.
Normalizing Data Types and Entities. POLIGRAPH-ER
starts by mapping data types and entities in the phrase graph
to their normalized forms. For example, “contact details” and
“contact data” are synonyms to the normalized term “contact
information” which we want to keep in the POLIGRAPH.

For data types and entities in our global ontologies (see Sec-
tion 2.2), we consider them as standard terms and write regular
expressions to capture their synonyms. For example, the regu-
lar expression contact\b.*\b(information|data|detail|method)
matches synonyms of “contact information”. POLIGRAPH-ER
maps these synonyms to “contact information”, which aligns
with the term in the global data ontology, as the normalized
form. We also programmatically create regular expressions for
variants of company names from public datasets. If a phrase
is not a standard term and thus does not match any regular
expressions, POLIGRAPH-ER simply strips stop words and
takes the lemmatized form of the phrase as the normalized
form. For example, “your vehicle records” is normalized to
“vehicle record”. This is usually enough to capture variants of
the same term caused by word inflections.

For coreferences, as the annotator has linked each corefer-
ence phrase to what it refers to, POLIGRAPH-ER follows the
COREF edge to find the referred phrase and use the same nor-
malized form. For example, in Figure 1(a), “this information”
would be normalized to “geolocation”, same as the phrase
“location” that it refers to. Please see Appendix A.3 in [19]
for details on the phrase normalization.
Unspecified Data and Unspecified Third Party. As a spe-
cial case of phrase normalization, policies often use blanket
terms like “information” and “third party” without further
details. For example, in the sentence “We collect information
to provide services”, the word “information” can be inter-
preted as unspecified (or all possible) data types. We find it
more appropriate to treat such blanket terms specially than
assuming them to have consistent meaning across the text.
POLIGRAPH-ER uses two special nodes, “unspecified data”
for data types and “unspecified third party” for entities, as
the normalized forms of such blanket terms in POLIGRAPHs.
Please see Appendix A.3 in [19] for details.
Classifying Purpose Phrases. The purpose annotator identi-
fies purpose phrases. To allow automated analysis of purpose,
we coarsely group purpose phrases into five categories: ser-
vices, security, legal, advertising, and analytics. These cate-
gories are derived from the business and commercial purposes
defined in the CCPA [2]. As in prior work [6], we distinguish
between core (i.e., services, security, and legal) and non-core
(i.e., advertising and analytics) purposes of data collection.

We fine-tune a sentence transformer model [27] to clas-

sify purpose phrases into these categories. For example, the
phrase “to provide features” is classified as services, whereas
the phrase “for advertising purposes” is classified as advertis-
ing. Note that a purpose phrase can be classified into multiple
labels if it mentions more than one purpose. To train the
model, we manually annotate a dataset of 200 phrases. We
use SetFit [28] to enable few-shot fine-tuning with this small
dataset. This can be done because the underlying transformer
model is already trained on a large corpus to gain language
knowledge, and SetFit takes advantage of contrastive learn-
ing to learn the differences between classes effectively. The
performance of purpose classification is reported in Section 4.
Building POLIGRAPH. Finally, POLIGRAPH-ER builds the
POLIGRAPH from the phrase graph by merging phrases with
the same normalized form into one node, keeping COLLECT
and SUBSUME edges, and inferring the Purposes(·) attributes
from PURPOSE edges in the phrase graph.

Figure 5 shows an example of a POLIGRAPH generated
from a simple policy [29] for demonstration purposes. Due to
a lack of space, we show a subset of data types. The complete
version can be found in Figure 10 in Appendix A.4 in [19]. A
typical POLIGRAPH from the policies that we have analyzed
(see Section 5) can contain up to hundreds of nodes and edges.
It is common to see vague phrases like “statistical user data”
that are not further clarified, and misleading definitions like
claiming anonymized information to include data types that
are likely personal and identifiable. However, it is important
that POLIGRAPH does capture data collection, along with its
purposes, and subsumptions for further analysis.

4 POLIGRAPH-ER Evaluation
In this section, we evaluate POLIGRAPH-ER’s performance

in analyzing policies. At the beginning of each subsection,
we state the research question (RQ) addressed therein, our
approach, and a preview of the results.
The PoliCheck Dataset. Throughout this section and Sec-
tion 5, we use the public dataset provided by PoliCheck [10].
We choose this dataset because it is among the largest public
datasets for policies. The dataset consists of policies of 13,796
Android apps on Google Play Store. The number of policies
is large enough to necessitate automated analysis. Further-
more, it also comes with the apps’ network traffic data that
facilitate flow-to-policy consistency analysis in Section 5.4.
We write a crawler script based on the Playwright library [30]
to download the policy text from each URL. We obtain the
most recent version of the policies from March 2023. After
excluding non-English, invalid, and duplicate webpages, we
obtain 6,084 unique policies used by 13,626 apps.
Test Set. Out of the full PoliCheck dataset, we randomly
select a set of 200 policies, and we read and annotate them in
order to build ground truth for various evaluation tasks. This
test set has no overlap with the data used to generate the NER
corpus or to train the purpose classifier (see Section 3).
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Figure 5: The POLIGRAPH generated from
“Puzzle 100 Doors” app’s policy [29].

Figure 6: Statistics of common COLLECT edges.
The numbers of edges that have Purposes(·)
attributes are shown in parentheses.

Figure 7: Statistics of common SUBSUME edges
between data types.

4.1 POLIGRAPH Generation
RQ1. How accurate is POLIGRAPH-ER in generating POLI-
GRAPHs from policies w.r.t. the definitions in Section 2.1?

To answer this question, we present the statistics of POLI-
GRAPH’s COLLECT and SUBSUME edges, as well as manual val-
idation of the precision of these edges. The tool successfully
generates POLIGRAPHs for 5,255 policies. The remaining
policies cannot be processed because they either do not claim
to collect data, or use irregular or unsupported HTML tags
that cannot be correctly parsed.

4.1.1 Characterization of POLIGRAPH Edges

First, we characterize the COLLECT and SUBSUME edges in
the POLIGRAPHs generated by POLIGRAPH-ER.

COLLECT Edges. POLIGRAPH-ER extracts 103,185 COLLECT
edges from 100,565 sentences in total. Among them, 34,052
edges have Purposes(·) attributes from 38,994 purpose
phrases. Figure 6 shows the common COLLECT edges found
in the dataset. Generic terms, such as “personal information”
and “personal identifier”, are commonly used to express data
types in policies. Some specific terms, such as “cookie / pixel
tag”, “email address”, and “ip address” are also found in many
policies. Furthermore, we find that policies disclose data col-
lection by first-party (i.e., “we”) more frequently than by
third-party entities. Major third-party entity categories are
“advertiser” and “analytic provider”. Google, as the platform,
is also frequently mentioned in the policies.

SUBSUME Edges. POLIGRAPH-ER extracts 52,007 SUBSUME
edges from 20,959 sentences in the dataset. Figure 7 shows
common SUBSUME edges that connect data type nodes. “Per-
sonal information”, “contact information” and “personal iden-
tifier” are the most frequently used generic terms to represent
data types. Notably, we find that many policies declare the
collected data as “non-personal information”: this conflicts
with our CCPA-based global data ontology. We will discuss
the issue of misleading definitions in Section 5.2.

“Unspecified”. The nodes “unspecified data” and “unspeci-
fied third party” (see Section 3.3) are found in 72.0% (3,785)
of POLIGRAPHs. This is because many policies discuss data
collection, sharing, and use in separate sections. When they
discuss sharing, precise data types are often omitted. When
they discuss purposes of use, both data types and entities can
be unspecified terms. For example, KAYAK’s policy states:
“To protect rights and property, we may disclose your infor-
mation to third parties” [4]. Without further details on “in-
formation” and “third parties”, the statement is captured in
the POLIGRAPH as unspecified third party COLLECT−−−−→unspecified
data with security as the purpose.

4.1.2 Manual Validation of POLIGRAPHs
We manually evaluate whether POLIGRAPH-ER extracts

the correct edges. To evaluate the precision of POLIGRAPH
edges, we sample five edges from each of 100 randomly se-
lected POLIGRAPHs in the dataset and read the corresponding
policy text to validate whether each edge is correctly extracted
from the text. To help with this evaluation, POLIGRAPH-ER
stores the sentences from which each edge is generated. We
find that the precision for COLLECT edges is 90.4%, and the
precision for SUBSUME edges is 87.7%.9

In theory, false positive edges can propagate to more in-
correct inferences. For example, a false advertiser COLLECT−−−−→
personal information edge would lead to wrong inferences of
advertiser collecting all data types subsumed by personal in-
formation. However, we find that such cases are rare, and false
positives are often caused by recognizing irrelevant phrases as
data types or entities10, which is less of an issue if we scope
the analysis to a subset of common data types or entities (as
we show in Section 4.2). Most false-positive edges come from
NLP errors including: (1) NER recognizing irrelevant phrases

9We do not evaluate recall as it turned out to be difficult for humans
to label edges without biases for all data types and entities. We will report
recalls in Section 4.2 where we consider a subset of common data types.

10For example, in the sentence “the app may use third party code”,
POLIGRAPH-ER mistakes “third party code” as a data type.
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as data types or entities, and (2) mistaking some interrogative
or negative sentences as affirmative statements.

We also evaluate POLIGRAPH-ER’s purpose classification
model. We randomly sample five purposes phrases identified
by the purpose classifier from each policy in the test set,
manually assign labels to the phrases, and compare them to the
ones labelled by the purpose classification model. Overall, the
macro-averaged precision and recall are 91.0% and 94.8%,
respectively, for this multi-label multi-class classification task.

4.2 Comparison to Prior Policy Analyzers
RQ2. How well does POLIGRAPH-ER analyze collection state-
ments compared to prior state-of-the-art policy analyzers?

To answer this question, we use POLIGRAPHs to infer col-
lection relations, namely collect(n,d) indicating that an entity
n may collect a data type d. We obtain tuples of collection
statements from prior state-of-the-art, namely PolicyLint [9].
We compare both results to manually labeled ground truth.
Methodology. Since PolicyLint extracts tuples (see Fig-
ure 1(b)), we convert pairs of collect(n,d) relations in POLI-
GRAPHs into PolicyLint tuples ⟨n, collect, d⟩. Still, we cannot
compare data types and entities from the two tools directly
because they normalize phrases in different ways. To work
around the issue, we select a subset of terms to compare. For
data types, we only consider the following precise data types
in PolicyLint, since they are comparable to the same data
types extracted by POLIGRAPH-ER: “mac address”, “router
ssid”, “android id”, “gsf id”, “sim serial number”, “serial num-
ber”, “imei”, “advertising identifier”, “email address”, “phone
number”, “person name”, and “geographical location”.11 For
entities, we only distinguish between the first party and third
party, i.e., all tuples are converted to either ⟨we, collect, data
type⟩ or ⟨third party, collect, data type⟩; “unspecified third
party” in POLIGRAPH is considered a third party.

POLIGRAPH-ER finds 13,529 tuples in the entire dataset.
PolicyLint finds 6,410 tuples. To evaluate the precision and
recall of both tools, we manually extract the same tuples (col-
lection relations) from our test set to establish the ground
truth. To do this, we first use coarse regular expressions to
match all possible mentions of the 12 data types in policies
with a likely high chance of false positives. Then two of our
authors read the text to determine if each data type is collected
by the first party or any third party to create the tuples.
Precision. POLIGRAPH-ER achieves 96.9% precision, and
PolicyLint achieves 91.8% precision. As previously explained,
NLP errors are the main reason of wrong collection relations.
We improve the precision by using recent NLP models. The
precision of POLIGRAPH-ER is higher than reported in Sec-
tion 4.1.2 because here we only consider a subset of data types
and thus many falsely labeled data types are excluded. Also
note that both tools show lower precision for third-party tu-

11Note that we map “coarse geolocation”, “precise geolocation”, and
“geolocation” in POLIGRAPH all to “geographical location” in the tuple
because PolicyLint does not distinguish between them.

Table 4: Manual validation and ablation studies results

# tuples prec. (1st/3rd party) recall (1st/3rd party)

Manual Validation
Ground Truth 878 - -
POLIGRAPH-ER 640 96.9% (99.8% / 91.9%) 70.6% (64.0% / 87.5%)
PolicyLint 291 91.8% (93.0% / 82.4%) 30.4% (37.9% / 11.3%)
Ablation Studies
no-subsumption-annot. 345 96.5% (99.6% / 89.4%) 37.9% (38.1% / 37.5%)
no-coreference-annot. 616 96.9% (100% / 91.4%) 68.0% (62.5% / 81.9%)
no-list-annotator 614 97.1% (100% / 92.0%) 67.9% (61.6% / 83.9%)
per-sentence-extraction 471 97.0% (100% / 89.8%) 52.1% (53.0% / 49.6%)
per-section-extraction 573 97.0% (99.7% / 91.5%) 63.3% (61.0% / 69.4%)

ples (see Table 4) because some policies use company names
rather than “we” to refer to the first party, and both tools can
mistake the company names as third parties in this case.
Recall. POLIGRAPH-ER achieves 70.6% recall, compared to
PolicyLint’s 30.4% recall. As we will explain later in the abla-
tion studies, the graph structure and improved NLP techniques
both contribute to the higher recall. Despite the improvement,
the recall of our tool is still limited, mainly by its linguis-
tic analysis approach. First, some policies use lists or tables,
which does not contain complete sentences for analysis. Sec-
ond, our annotators cannot capture all forms of collection
statements and can miss data types and entities in long or
convoluted sentences.

Given the high precision and improved, but imperfect, re-
call, we recommend to interpret what POLIGRAPH-ER cap-
tures as a lower bound of the actual collection statements.
Appendix D in [19] discusses the factors that impact the per-
formance of POLIGRAPH-ER in more detail.

4.3 Ablation Studies
RQ3. POLIGRAPH consists of many components. Where does
the performance improvement come from?

To answer this question, we conduct ablation studies to un-
derstand how each component and design decision contributes
to POLIGRAPH-ER’s performance improvements. We modify
POLIGRAPH into the following experimental configurations,
and we summarize the evaluation results in Table 4.
Removing Components. In the no-subsumption-annotator,
no-coreference-annotator, no-list-annotator configurations,
we disable one component at a time and assess the effect.

As shown in Table 4, disabling the subsumption annotator
reduces recall from 70.6% to 37.9%. The reason is that the
precise data types that we evaluate are often subsumed by
generic terms. They have to be linked by SUBSUME edges to al-
low inferences of collection relations. Each of the coreference
and list annotators contributes about 3% to recall.
Limiting Extraction Area. In the per-sentence-extraction
configuration, we modify POLIGRAPH-ER to behave like Pol-
icyLint and extract tuples within sentence boundaries12. This
is done by filtering out collect(n,d) relations in POLIGRAPHs
where the entity and data type comes from different sentences.

12The per-sentence-extraction is different from removing SUBSUME edges
because PolicyLint ideally is still able to find data types and entities that are
subsumed by generic terms within the same sentence.
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(a) Collection of Data Types (b) Third-party Entities of Data Collection (c) Purposes of Data Collection

Figure 8: Policy Summarization — Statistics of policies that disclose (a) the collection of eight categories of data types; (b) data collection by
third-party entities (per data type category); and (c) the purposes for the collection (per data type category). For example, 3,348 policies claim
to collect data types under the “software identifier” category; 794 policies disclose that data types in this category are collected by “advertiser”
as the third-party entity. And 1,847 policies disclose the collection of this category for the “services” purpose.

Similarly, per-section-extraction only considers collection
relations within the boundaries of sections13. These configu-
rations help assess the improvement by introducing the graph
structure to infer relations across sentences and sections.

Table 4 shows the results. The per-sentence-extraction con-
figuration has only 52.1% recall compared to POLIGRAPH-
ER’s 70.6%. On one hand, the sophisticated NLP method-
ology still improves performance over PolicyLint. On the
other hand, the graph structure is necessary to infer 18.5%
of all relations. The graph is more effective in identifying
third-party data collection—it allows us to find 37.9% of
third-party tuples, because the disclosure of third-party shar-
ing often uses broader terms (e.g., “Anonymous information
may be shared with analytic providers”) and the exact data
types (or entities) must be inferred through POLIGRAPH. The
per-section-extraction configuration, by connecting data types
and entities within a longer textual region, achieves 63.3%
recall but still falls behind the full version by missing 7.3%
of relations. As explained in Section 1, the typical structure
of policies that discuss data collection, use and sharing in
separate sections makes it necessary to find exact data types
and entities in different sections. Therefore, we argue that
POLIGRAPH enables a much better coverage by connecting
information disclosed in different sentences and sections to
infer more collection relations in a policy.

5 POLIGRAPH Applications
In this section, we present two novel applications enabled

by POLIGRAPH. Section 5.1 presents policies summarization,
which provides inferences on the common patterns across
different policies. Section 5.2 looks into how the same or
similar terms are defined across different policies. In addition,
we show that POLIGRAPH can improve two applications
that have been explored by prior work. Section 5.3 extends
POLIGRAPH to identify contradicted statements. Section 5.4
applies POLIGRAPH to check the consistency between the
data flows of a mobile app and its policy.

13As explained in Section 3.1, POLIGRAPH-ER keeps headings from
HTML, which is considered as the boundaries of sections here.

5.1 Policies Summarization
We use POLIGRAPH to summarize all policies in our

dataset and reveal common patterns among them. Specifi-
cally, we aim to identify: (1) how common each category of
data types is collected; (2) what kind of entities collect these
data types; and (3) the purposes for which these data types
are used. As data types and entities captured by POLIGRAPHs
are unorganized and differ across policies (see Section 4.1.1),
we use our global ontologies to categorize data types and
entities in a canonical manner.
Data Types. In this analysis, we use the eight parent nodes of
the leaf nodes in the data ontology shown in Figure 2 to group
the data types into eight categories14: “government identifier”,
“contact information”, “software identifier”, “hardware identi-
fier”, “protected classification”, “biometric information”, “ge-
olocation”, and “internet activity”. Figure 8a shows the num-
bers of policies that disclose the collection of data types in
each category. Overall, 77.9% (4,093) of policies disclose the
collection of at least one of these data categories.

Finding 1. The most frequently collected data category is
“software identifier”, which mostly originates from “cookie” as
the specific data type being collected. 63.7% (3,346) of poli-
cies disclose the collection of “software identifier”. Among
the specific data types, “cookie / pixel tag” is the most com-
mon and found in 80.3% (2,688 / 3,346) of these policies.
On the other hand, identifiers specific to mobile apps, mainly
“advertising ID” and “Android ID”, are found in only 26.0%
(870) and 2.8% (95) of these policies, respectively. Many
developers simply write one policy for various products, in-
cluding mobile apps and web-based services. Furthermore,
some developers seem to use “cookie” as a generic term for
all kinds of device identifiers for tracking.

Third-Party Entities. We use the six parent nodes of the
leaf nodes in the entity ontology shown in Figure 3 to
group entities into six categories14: “advertiser”, “analytic

14“Unspecified data”, “unspecified third party” and other data types and
entities that are not part of the global ontologies (see Section 2.2) are excluded
from the analysis of policies summarization.
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provider”, “social media”, “content provider”, “auth provider”,
and “email service provider”. Figure 8b reports how each data
type category is disclosed to be shared with or collected by
these third-party entities (i.e., collect(n,d) relations).
Finding 2. “Software identifier” is frequently shared with
advertisers. Third-party sharing of other data categories (e.g.,

“geolocation”, “protected classification”, and “internet activ-
ity”) is also non-negligible. We find that 23.8% (796 / 3,348)
of policies that disclose to collect “software identifier” involve
sharing with advertisers. Analytic providers and social media
are other major third parties with whom apps share data. 620
policies share data in other categories (e.g., “geolocation”,
“internet activity”, and even “protected classification”) with
third parties. As data in these categories may be sensitive, it
is doubtful whether the sharing of them is appropriate.
Finding 3. Many policies disclose data sharing using generic
terms, e.g., “personal information”. This leads to the infer-
ence that the app may share all data types that a generic term
subsumes. This often happens when policies disclose data
collection, sharing, and use separately. For example, Figure 1
shows that “personal information” is shared with entities such
as “social networking services”. This may be alarming to
users since “personal information” subsumes sensitive data
types, such as “location” and “IP address”. The use of generic
terms reduces transparency. Users are left wondering which,
if not all, “personal information” is shared. We find that 710
policies declare third-party collection or sharing using generic
terms that subsume data types in multiple categories.
Purposes. Figure 8c reports the statistics of policies that dis-
close purposes of data collection, as discussed in Section 3.3,
per data type category.
Finding 4. 56.9% (2,990) policies disclose that their apps col-
lect data for non-core purposes. In over 80% of them (2,398),
the main non-core purpose is advertising. We find that, while
“software identifier” remains the most common data type cat-
egory used for non-core purposes, the potential use of other
data types for non-core purposes is concerning. For instance,
the collection of “geolocation”, “protected classification”, and
“internet activity” for non-core purposes is declared in about
10% of policies. The CCPA [2] defines “government identi-
fiers”, “precise geolocation”, and certain protected classifica-
tions as sensitive personal information—the law limits the
usage of these data (e.g., users have the right to limit the use
of such personal information for non-core purposes).

5.2 Correct Definitions of Terms
The second novel application enabled by POLIGRAPH is

assessing the correctness of definitions of terms. Besides sum-
marizing policies on their own right, we can check whether a
policy defines terms in ways that are consistent with external
knowledge as captured by global ontologies. This is necessary
because policies often provide their own definitions of terms.
This is not a problem if the definitions align with external
knowledge (e.g., privacy laws), but it may be misleading if

Table 5: Examples of different definitions found in POLIGRAPHs
with respect to the global data ontology. For example, “geolocation”
is defined as “non-personal information” in 123 policies.

Hypernym Hyponym (# Policies)

non-personal info. ip address (126), geolocation (123), device identifier (108),
gender (76), application installed (72), age (70), identifier
(46), internet activity (44), device information (38), coarse
geolocation (35) ...

aggregate/deidentified/
pseudonymized info.

ip address (122), device identifier (89), geolocation (78),
browsing / search history (16) ...

internet activity ip address (151), device identifier (107), geolocation (40),
advertising id (13), cookie / pixel tag (10) ...

geolocation ip address (76), postal address (15), router ssid (10) ...

personal identifier advertising id (74), cookie / pixel tag (49), device identifier
(39), geolocation (35), date of birth (27), gender (23) ...

they do not agree. For example, some policies define “geolo-
cation” as “non-personal information”. In this section, we
check whether the definitions of data type terms in individual
policies (as captured by their POLIGRAPHs’ local ontologies)
align with our CCPA-based global data ontology (see Fig-
ure 2). Overall, such different definitions are found in 25.5%
(1,339 / 5,255) policies in our dataset, as listed in Table 5.

Finding 5. Many policies define data types that they col-
lect to be “non-personal”, “aggregated”, “deidentified”, or

“pseudonymized”. However, this can be inconsistent with the
definitions in the CCPA. Indeed, in the CCPA, “deidentified
information” is defined as information that “cannot reason-
ably identify, relate to, describe ... to a particular consumer”.
Although entities technically can deidentify personal informa-
tion, some of the data types we observe in Table 5, notably
“geolocation”, “gender”, “age”, and “date of birth”, are gener-
ally considered personal information by the public and accord-
ing to the CCPA. Declaring these data types as non-personal
or deidentified can be misleading. For example, Paleblue de-
clares in its policy [31] that “Paleblue may also invite you
to share non-personal information about yourself which may
include... (1) your age or date of birth; (2) your gender...”.

Finding 6. Many policies use non-standard terms. They can
have broad or varied definitions across different policies. For
example, it is not surprising that the definition of “profile
information” is application-specific. One policy from the
Manager Readme app [32] defines “profile information” to
include “name” and “location”, while another policy from
Armor Game Inc. [33] defines the term to include “gender”
and “birthday”. In these cases, the use of non-standard terms
is acceptable as the policies clearly explain what they mean
by the terms. However, we also find many policies that do
not clearly define their non-standard terms. Particularly, while
“profile information” is found in 178 policies, subsumption
relationships are found in only 17 of them in their correspond-
ing POLIGRAPHs. Table 6 presents examples of non-standard
terms and their possible definitions found in the policies.
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Table 6: Examples of non-standard terms found in policies. For
example, “technical information” is used in 311 policies but its
detailed definition is only found in 126 policies.

Term (# Policies) Possible definitions found in policies

technical info. (311) From 126 policies: advertising id, age, android id, browsing
/ search history, cookie / pixel tag, device identifier, email
address, geolocation, imei, ip address, mac address ...

profile info. (178) From 17 policies: age, contact information, date of birth, email
address, gender, geolocation, person name, phone number ...

demographic info.
(315)

From 112 policies: age, browsing / search history, date of birth,
email address, gender, geolocation, ip address, postal address,
precise geolocation, race / ethnicity, router ssid ...

log data (81) From 52 policies: advertising id, android id, cookie / pixel tag,
coarse geolocation, cookie / pixel tag, email address, geoloca-
tion, imei, ip address, mac address, person name ...

5.3 Contradiction Analysis
In this section, we apply POLIGRAPH-ER to analyze contra-

dictions within a policy. To that end, we extend POLIGRAPH
to also analyze negative collection statements (e.g.,“We do not
collect personal data”) ignored in previous sections (which
only analyzed affirmative statements). We also propose ex-
tensions to the main POLIGRAPH framework so as to capture
additional contexts that are crucial to interpret contradictions.

Prior work, namely PolicyLint [9], identifies contradictions
by detecting affirmative and negative sentences that mention
the same or conflicting entities and data types. By manually
checking all the 86 contradictions identified by PolicyLint in
our test set, we found 79 of them turn out to be false alarms.
This is because the analysis ignores many contexts surround-
ing the “contradicted” statements, as explained below.
• Different Purposes: PolicyLint considers “we collect PII

to provide the service” and “we do not collect PII for ad-
vertising purposes” as contradicting statements, despite
them discussing data collection for different purposes, i.e.,
services vs. advertising.

• Different Data Subjects: PolicyLint considers “we collect
PII” and “we do not collect PII from minors” as contradict-
ing. A human reader would recognize that the sentences
discuss different data subjects, i.e., general user vs. child.15

• Different Actions: PolicyLint considers “... share PII with
third parties” and “... do not sell PII to any third party” as
contradictions. A human reader would recognize that they
refer to different actions, i.e., share vs. sell.

• Contradictions According to Global Ontologies: In addi-
tion, some policies do not literally contradict themselves,
but the data types and entities in the affirmative and nega-
tive statements overlap according to PolicyLint’s ontolo-
gies. For example, in the policy of Horizone Media [34],
PolicyLint reports “we use anonymous identifiers” and

15Beyond semantics, another source of error for PolicyLint was its im-
plementation. In order to find and skip text about children policy, which
was considered outside the framework, it performed string matching using
hardcoded regular expressions, which often failed due to sentence variability.

“we do not collect personal information” as a contradic-
tion. The policy does not define “anonymous identifiers”
as “personal information”, but PolicyLint views all “identi-
fiers” as “personal information” in its data ontology. In this
case, the policy can be considered as misleading but does
not directly contradict itself. Note that we already discuss
misleading definitions in Section 5.2.

5.3.1 Framework Extensions
The main POLIGRAPH framework, described in Section 2,

introduced data types, entities and purposes. However, it only
deals with affirmative, not negative, statements. In this section,
we extend POLIGRAPH to also analyze negative statements,
and we show how to deal with contradicted statements in fine-
grained contexts. To that end, we add a new type of negative
edge (NOT_COLLECT), actions as edge subtypes, and the notion
of data subject, as described next.16

Negative Collection Statements. The collection annotator
(see Section 3) identifies negative sentences and by default
excludes them. In this section, we modify the annotator to
also account for negative collection statements and represent
them as NOT_COLLECT edges. For example, “we do not col-
lect personal information” will be represented with edge we
NOT_COLLECT−−−−−−→personal information in POLIGRAPH. Similarly
to its positive counterpart, a NOT_COLLECT edge can have
Purposes(·) attributes.
Refining Actions. We further consider five subtypes of
COLLECT (and NOT_COLLECT) edges that represent different
data actions: {collect, be_shared, be_sold, use, store}. We de-
note an action-sensitive COLLECT edge as n COLLECT [apos]−−−−−−→d, and
an action-sensitive NOT_COLLECT edge as n NOT_COLLECT [aneg]−−−−−−−−−→d,
where apos and aneg are one of the 5 subtypes of data actions.

We extend the collection annotator to map verbs to these
subtypes accordingly. For example, “... do not sell personal
information to advertisers” is represented as edge advertis-
ers NOT_COLLECT [be_sold]−−−−−−−−−−→personal information in POLIGRAPH. Ta-
ble 9 in Appendix B.1 in [19] provides the list of verbs and
corresponding actions, which can be extended if so desired.
Data Subjects. We extend data type nodes to include sub-
jects, i.e., the group of people to which the data type pertains,
following the terminology of Contextual Integrity [35]. We de-
note a subject-sensitive data type node as a pair (d,s), where
d is the data type, and s is the subject of the collected data.

We add a new subject annotator in POLIGRAPH-ER to iden-
tify subjects of data types. Currently, we implement it to iden-
tify a commonly-seen data subject: children. In the current

16The extensions are presented in this section, as opposed to as part of the
main framework, for several reasons. First, they are specific to contradiction
analysis, and motivated by the limitations of prior work in taking into account
fine-grained contexts in that analysis. Second, as shown in Section 5.3.3,
although effective in refining contexts for contradiction analysis, these exten-
sions do not address all aspects of fine-grained contexts: e.g., one can define
additional types of actions, data subjects, and other contexts. Third, these
extensions do not affect the validity of previous results in Sections 4 and 5,
which were based only on affirmative, and ignored negative, statements.
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implementation, we define subject s ∈ {child, general user},
and we represent the statement “we don’t collect personal
information from children” as we NOT_COLLECT [collect]−−−−−−−−−−→(personal in-
formation, child) in POLIGRAPH. We note, however, that the
modular implementation of POLIGRAPH-ER allows for the
set of subjects to be extended to include additional subjects.

5.3.2 Contradiction Analysis
To identify potential contradictions, we assess whether a

positive edge and a negative edge in a POLIGRAPH involve
conflicting data types, subjects, entities, actions, and purposes.
A pair of edges may contradict if all these parameters conflict;
otherwise, the two statements address different aspects of data
collection, as outlined earlier, thus do not contradict.
Definition 5.1. Conflicting Edges. A positive edge epos =
npos

COLLECT [apos]−−−−−−→(dpos,spos) and a negative edge eneg = nneg
NOT_COLLECT [aneg]−−−−−−−−−→ (dneg,sneg) in a POLIGRAPH are conflicting if
all the following parameters conflicts:
• Data types dpos and dneg conflict iff dpos = dneg or ∃d′ :

subsume(dpos,d′)∧ subsume(dneg,d′).
• Entities npos and nneg conflict iff npos = nneg or ∃n′ :

subsume(npos,n′)∧ subsume(nneg,n′).
• Purposes Ppos = Purposes(epos) and Pneg = Purposes(eneg)

conflict iff (1) Ppos ∩Pneg ̸=∅, or (2) Pneg =∅.
• Data subjects spos and sneg conflict iff spos = sneg.
• Actions apos and aneg conflict iff apos = aneg.

5.3.3 Results on Contradiction Analysis
Reducing False Alarms. POLIGRAPH with the above ex-
tensions encodes additional parameters, which allows us to
reclassify many of the statements erroneously classified as
candidate contradictions in PolicyLint, due to missing context,
as non-contradictions. To evaluate the benefit, (1) we map con-
tradicting tuples reported by PolicyLint to POLIGRAPH edges
and (2) we check whether each pair of edges are conflicting
as defined above. POLIGRAPH-ER maps 2,555 PolicyLint
contradictions to 1,566 pairs of edges in our dataset. Out of
them, only 13.5% (211) pairs are conflicting, taking contexts
into account as per Definition 5.1. The remaining 86.5% are
not conflicting, due to one or more of the reasons shown in
Table 7. Please see Appendix B.2 in [19] for details.
Validation. We manually verified all the 83 contradictions re-
ported by PolicyLint in our test set. POLIGRAPH-ER reported
68 pairs as non-conflicting and we agree with all of them. For
the other 15 pairs of conflicting edges, 7 pairs of edges are
considered contradictions by human readers.

Despite the additional contexts captured by our extended
framework compared to PolicyLint, POLIGRAPH-ER still has
false alarms. We manually verify all 211 pairs of conflict-
ing edges identified by POLIGRAPH-ER, and find that only
25.1% (53) pairs are real contradictions. The most common
reason (54.0%, 114 pairs) why conflicting edges may not be
real contradictions is additional language nuances, not yet
represented in POLIGRAPH. For example, the sentence “we
do not collect personal data when you visit the site” does not

Table 7: Reclassification of PolicyLint contradictions

# pairs of edges

Invalid* 183 (11.7%)
Non-conflicting parameters 731 (46.7%)

Different purposes 114 (7.3%)
Different data subjects 121 (7.7%)
Different actions 624 (39.8%)

Contradictions according to PolicyLint’s ontologies 441 (28.2%)
Conflicting edges 211 (13.5%)

Total 1,566
* “Invalid” means that POLIGRAPH-ER maps a negative PolicyLint tuple to
a positive edge or the reverse. This is often because PolicyLint misinterprets
positive or negative sentences due to NLP limitations.

contradict with “we collect personal data when you sign up”
due to the different conditions addressed. Other contexts we
identify during manual validation include data sources and
consent types. Please see Appendix B.3 in [19] for details.
Conclusion. Our extensions of POLIGRAPH to analyze con-
tradictions, by taking account of more contexts, prevent many
false alarms in prior work and narrow down possible con-
tradictions to a smaller set. However, one should be aware
that even the extended framework does not cover all possible
contexts and nuances in human language.

5.4 Data Flow-to-Policy Consistency Analysis
In this section, we compare the statements made in a policy

(extracted using POLIGRAPH) to the actual data collection
practices (as observed in the network traffic generated). This
application has been previously explored by PoliCheck for
mobile apps [10] and its adaptations to other app ecosystems,
e.g., smart speakers [12, 13] and VR devices [6].

5.4.1 Data Flow-to-Policy Consistency
As in prior work [5, 10], we represent data collection prac-

tices observed in the network traffic as data flows. A data flow
is a tuple f = (n,d) where d is the data type that is sent to
an entity n. Given a POLIGRAPH, we check whether the data
flow is clearly disclosed in it as below.
Definition 5.2. Clear Disclosure. Following Definition 2.1,
G= ⟨D,N;ES,EC;P⟩ is a POLIGRAPH. A data flow f =(n,d)
is clearly disclosed in the policy represented by G iff it
contains the entity (n ∈ N) and the data type (d ∈ D), and
collect(n,d) is true in G.

Recall that PoliCheck also accepts broader terms of data
types and entities as consistent but vague disclosure, if the
broader terms subsume the specific data types in the data
flows according to the global ontologies. We define vague
disclosures of a data flow in a similar way as follows.
Definition 5.3. Vague Disclosure. Following Definitions 2.1
and 2.6, G = ⟨D,N;ES,EC;P⟩ is a POLIGRAPH, Od =
⟨Dd ,Ed⟩ is the global data ontology, and On = ⟨Nn,En⟩ is
the global entity ontology. A data flow f = (n,d) is vaguely
disclosed in G according to global ontologies Od and On,
iff f is not clearly disclosed in G, and there exist a data
type d′ ∈ D ∩ Dd and an entity n′ ∈ N ∩ Nn that satisfy:
collect(n′,d′) is true in G; subsume(d′,d) is true in Od ; and
subsume(n′,n) is true in On.
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Figure 9: Flow-to-policy consistency comparison of POLIGRAPH

vs. PoliCheck. The numbers in parentheses represent the number of
apps that collect the data type. For example, 85 apps have data flows
that collect “phone number”.

Our definitions of clear and vague disclosures correspond
to the same concepts in PoliCheck. Both clear and vague
disclosures are considered consistent disclosures. Otherwise,
the data flow has inconsistent disclosure in the policy.

5.4.2 Data Flow-to-Policy Consistency Results
Dataset. To facilitate a comparison to PoliCheck, we use
the same dataset from it [10]. In addition to policy URLs
for apps, this dataset also contains data flows extracted from
the apps’ network traffic. Different from the policy dataset in
Section 4, we use the versions of policies from 2019 for a fair
comparison with PoliCheck results, because the data flows
were collected around February 2019. We crawl the historical
versions of policies from Internet Archive [36]. In total, we
have 8,757 apps with both data flows and policies available.

Figure 9 compares flow-to-policy consistency results per
data type in POLIGRAPH vs. PoliCheck. An app may send
one data type to multiple entities, resulting in multiple data
flows per data type. In this case, we report the worst disclosure
type for the app, e.g., if, at least, one of the data flows of the
data type is inconsistent, the disclosure type is reported as
inconsistent. We present the results for nine data types—three
out of 12 data types are analyzed in [10], but excluded here
as only less than 10 apps exhibit the three in their data flows.
Clear disclosures. We find that POLIGRAPH-ER outper-
forms PoliCheck in terms of capturing more clear disclosures.
PoliCheck underestimates the number of clear disclosures for
all data types due to its limited recall (see Section 4.2). Clear
disclosure of contact information is especially underestimated.
72 of 85 apps that collect “phone number”, and 47 of 79 apps
that collect “email address” clearly disclose the collection.
Vague disclosures. Here, POLIGRAPH-ER extracts fewer
vague disclosures than PoliCheck. Further investigation re-
veals that this is because our global data ontology has a dif-

ferent design compared to PoliCheck’s. In PoliCheck’s data
ontology, “personal information”, a commonly seen term in
policies, subsumes “device identifiers”. While this would ef-
fectively increase PoliCheck’s coverage, namely that the col-
lection of all data types related to “device identifiers” found
in the data flows would be categorized as vague disclosures,
it is unclear whether “device identifiers” can be strictly cat-
egorized as “personal information”. Many policies do not
consider “device identifiers” as “personal information”.

POLIGRAPH also enables the analysis of purposes of data
collection associated with data flows. Please refer to Ap-
pendix C in [19] for additional results.

6 Related Work
Formalizing Policies. A body of related work focuses on
standardizing or formalizing policies. W3C P3P standard [37]
proposed an XML schema to describe policies. The Con-
textual Integrity (CI) [35] framework expresses policies as
information flows with parameters including the senders, re-
cipients and subjects of information, data types, and transmis-
sion principles that describe the contexts of data collection.
None of them replaces text-format policies, but they give in-
sights into defining policies and serve as analysis frameworks.
POLIGRAPH builds on the CI framework by extracting en-
tities, data types, and part of the transmission principle (i.e.,
purposes) from the policy text.

Policy Analysis. Another body of work analyzes policy text.
OPP-115 [7] is a policy dataset with manual annotations
for fine-grained data practices labeled by experts. Shvartzsh-
naider et al. [38], with the help of crowdsourced workers,
analyze CI information flows extracted from policies to iden-
tify writing issues, such as incomplete context and vagueness.
This manual approach is difficult to scale up for hundreds or
thousands of policies due to the significant human efforts.

Automated Policy Analysis. The progress in NLP has made
it possible to automate the analysis of unstructured text, such
as policy text. Privee [39] uses binary text classifiers to an-
swer whether a policy specifies certain privacy practices, such
as data collection, encryption and ad tracking. Polisis [11],
trained on the OPP-115 dataset, uses 10 multi-label text clas-
sifiers to identify data practices, such as the category of data
types being discussed and purposes. Classifier-based methods
use pre-defined labels which cannot capture the finer-grained
semantics in the text. PolicyLint [9] first uses NLP linguis-
tic analysis to extract data types and entities in collection
statements. PurPliance [5], built on top of PolicyLint, further
extracts purposes. Conceptually, both works focus on ana-
lyzing one sentence at a time, and extracting a tuple ⟨entity,
collect, data type⟩, as well as purpose in PurPliance, albeit
in a separate, nested tuple ⟨data type, for / not_for, ⟨entity,
purpose⟩⟩. Unlike POLIGRAPH, these works view extracted
tuples individually and do not infer data practices disclosed
across multiple sentences.
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Knowledge Graphs. Graphs are routinely used to integrate
knowledge bases as relationships between terms [15]. Google
has used a knowledge graph built from crawled data to
show suggestions in search results [40]. OpenIE [41] and
T2KG [16] use NLP to build knowledge graphs from a large
corpus of unstructured text. In POLIGRAPH, we use knowl-
edge graphs, for the first time, to represent policies.

7 Conclusion
Summary. We present POLIGRAPH, a framework that repre-
sents a privacy policy as a knowledge graph that (1) connects
statements about data collection, use and sharing across dif-
ferent parts of the policy text, and (2) clearly defines and
distinguishes between local and global ontologies. We design
and implement POLIGRAPH-ER—a tool that leverages NLP
linguistic analysis to generate POLIGRAPHs from policy text.
Because POLIGRAPH allows inferences of collection rela-
tions across paragraphs and sections, it significantly improves
recall over prior work, while maintaining a high precision (see
Section 4.2). Our manual validation shows that POLIGRAPH-
ER improves the recall of collection statements from 30% to
70% in comparison to PolicyLint [9]. Meanwhile, the preci-
sion is improved from 92% to 97%. POLIGRAPH, and the
global ontologies used with it, also enable new policy analy-
ses that were not previously possible: summarizing patterns
in a corpus of policies (see Section 5.1) and assessing the
correctness of definitions of terms (see Section 5.2). Our mod-
ular design also allows for extensions to the framework so
as to analyze contradicting statements in more fine-grained
contexts than prior work (see Section 5.3).

The source code of POLIGRAPH-ER and the dataset used
in this paper are made publicly available [42, 43].
Limitations. The proposed approach has its limitations. First,
wrong edges in POLIGRAPH may propagate to wrong infer-
ences (see Section 4.1.2). Second, despite our improvement
in covering more sentence patterns than prior work (see Sec-
tion 4.2), POLIGRAPH-ER still faces the limitations of NLP.
For example, it cannot parse tables and some lists, and misses
a non-negligible number of collection statements. It is difficult
to cover all possible syntactic patterns.

In the contradiction analysis (see Section 5.3.3), although
we extend POLIGRAPH to encode additional context in poli-
cies (such as fine-grained action types and children as data
subjects), we show that there are still false alarms due to the
inevitability of handling all possible language nuances (e.g.,
other types of data subjects, conditions, sources). Additional
discussion can be found in Appendix D in [19].

Finally, as discussed in Section 4.1, given the high precision
and improved, but imperfect, recall, we recommend to inter-
pret what POLIGRAPH-ER captures as a lower bound of the
actual collection statements. The aforementioned limitations
may unevenly affect different writing styles of policies (e.g.,
text vs. tables), different sentence structures (i.e., missing syn-
tactic patterns), and even different applications. Therefore, the

results of NLP analysis, especially results on each individual
policy, should be validated by human experts.
Future Directions. Recent advancements in generative large
language models (LLMs), represented by ChatGPT [44, 45],
have greatly enhanced the capacity of NLP to understand
complex text, easing the necessity for combining many NLP
components and heuristics. However, the natural language
interface of generative models can be a challenge for auto-
mated analysis. We expect that knowledge graphs will remain
powerful tools to integrate model answers for automated anal-
ysis at scale. We will explore the potential of LLMs in policy
analysis, to extend the POLIGRAPH framework so as to bet-
ter incorporate additional elements in policy text, such as
conditions of data collection and consent requirements.
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