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Abstract
We present IvySyn, the first fully-automated framework for
discovering memory error vulnerabilities in Deep Learn-
ing (DL) frameworks. IvySyn leverages the statically-typed
nature of native APIs in order to automatically perform
type-aware mutation-based fuzzing on low-level kernel code.
Given a set of offending inputs that trigger memory safety
(and runtime) errors in low-level, native DL (C/C++) code,
IvySyn automatically synthesizes code snippets in high-level
languages (e.g., in Python), which propagate error-triggering
input via high(er)-level APIs. Such code snippets essentially
act as “Proof of Vulnerability”, as they demonstrate the exis-
tence of bugs in native code that an attacker can target through
various high-level APIs. Our evaluation shows that IvySyn
significantly outperforms past approaches, both in terms of ef-
ficiency and effectiveness, in finding vulnerabilities in popular
DL frameworks. Specifically, we used IvySyn to test Tensor-
Flow and PyTorch. Although still an early prototype, IvySyn
has already helped the TensorFlow and PyTorch framework
developers to identify and fix 61 previously-unknown security
vulnerabilities, and assign 39 unique CVEs.

1 Introduction

Artificial Intelligence (AI) is increasingly employed by soft-
ware systems that impact virtually every aspect of modern
society, ranging from economy and health to science and
education. In fact, the US Department of Energy predicts
that during the next five years, AI will be part of mission-
critical systems that affect the health, safety, and welfare of
the public, such as systems related to: our telco. infrastructure;
water supply and electrical power; roadway, railway, and air
transportation; banking and financial services; public safety;
healthcare; as well as public services and administration [38].
Deep Learning (DL) has been at the forefront of such ef-
forts. For instance, mobility-as-a-service providers, like Uber,
rely on DL to match riders to drivers, suggest optimal routes,
find pool combinations, and create next-generation intelligent
vehicles, in an attempt to provide reliable transportation [66].

PyTorch [46] and TensorFlow [1] are perhaps the most
widely-adopted DL frameworks that are used in various safety-
critical settings, like autonomous driving: e.g., Lyft and Tesla
rely on PyTorch to solve problems related to the self-driving
domain, such as mapping, perception, prediction, and plan-
ning [50,76]. In addition, TensorFlow is part of the operational
infrastructure of key stakeholders in technology, including
Google, Twitter, IBM, Intel, Arm, and Qualcomm [59].

Such frameworks typically provide a set of rich high-
level APIs to model developers, to allow them integrate
DL functionality into end-to-end, real-world systems. These
developer-accessible APIs perform DL-specific operations,
and are usually implemented in managed languages, like
Python. Yet, the essential parts of such operations—which
are called kernels—are implemented in memory-unsafe lan-
guages, like C/C++, to boost performance and to allow for ex-
ecution in different platforms (e.g., CPUs, GPUs, TPUs). DL
frameworks have bugs in their underlying implementations,
and it has been empirically shown that such bugs may cause
incorrect functionality, numerical errors, performance degra-
dation, memory exhaustion and CPU/GPU/TPU lockups, and
fatal runtime and memory safety errors [28, 31, 44, 77].

Bugs in kernel code are of special interest, however, as they
may result in memory safety errors [67] that can, in turn, be
abused by attackers for corrupting or leaking memory con-
tents [58], or even causing the respective runtime environment
to crash, effectively leading to a DoS. The latter can be extra
problematic in cloud settings (e.g., in AWS DL Containers [2]
or IBM Watson Discovery [30]) because an attacker with ac-
cess to publicly-available, high-level APIs can send requests
with specially-crafted inputs that exploit memory-safety er-
rors in low-level kernel code [29].

In 2021–2022 alone, TensorFlow had more than 280 CVE
numbers assigned for (potentially-exploitable) vulnerabilities
related to memory safety issues [14]. (Similar vulnerabili-
ties also exist in the PyTorch codebase.) Given that, we ask
the following questions: Can we detect such vulnerabilities—
affecting millions, if not billions, of users—in an automated
and actionable manner?

USENIX Association 32nd USENIX Security Symposium    2383



Even across complex frameworks with multiple layers of
abstractions, implemented in codebases consisting of different
low- and high-level languages, with potentially mismatched
security assumptions?

Although past approaches have attempted to answer similar
questions by employing fuzzing directly on high-level APIs,
they are either: semi-automated, and require domain-expert
annotations for specifying valid argument-value combina-
tions [74]; or not-automated at all, and require developers to
manually write helper code [23]. We take the converse path
and introduce a two-fold bottom-up approach, implemented in
our IvySyn framework. IvySyn leverages the statically-typed
nature of native APIs in order to automatically perform type-
aware mutation-based fuzzing on low-level kernels. Next,
given a set of offending inputs that trigger memory safety
(and fatal runtime) errors in low-level, native DL (C/C++)
code, it automatically synthesizes code snippets in managed
languages (e.g., Python), which propagate offending input
through high(er)-level APIs. Such code snippets essentially
act as “Proof of Vulnerability” (PoV), as they demonstrate
the existence of bugs in native, C/C++ code that attackers can
target (and potentially abuse) via high-level APIs.

We implemented IvySyn in C/C++ and Python
(≈3 KLOC), and our experimental evaluation shows
that IvySyn significantly outperforms past approaches, both
in terms of efficiency and effectiveness, in finding real
vulnerabilities in popular DL frameworks. Specifically, we
used IvySyn to test TensorFlow and PyTorch: although still
an early research prototype, IvySyn has already helped the
TensorFlow and PyTorch framework developers to identify
and patch 61 previously-unknown security vulnerabilities, in
the latest production versions, and assign 39 unique CVEs.

2 Background and Motivation

Typical Architecture of Deep Learning Frameworks. DL
frameworks, such as TensorFlow [1] and PyTorch [46], typ-
ically consist of multiple layers of abstractions. At the low-
est layer, native low-level APIs, or kernels, implement DL-
specific operations for various devices, such TPUs, GPUs, and
CPUs. Depending on the supported devices, each operation
may have one, or more, equivalent kernels available for it.
Operations that are intended to be accessible by model devel-
opers have bindings mapping them to high-level languages
(e.g., Python), while, ultimately, these bindings are wrapped
around high-level APIs that expose them to framework users.

• Kernels: The core functionality of DL frameworks is
provided by native C/C++ code, implementing standard op-
erations, such as tensor manipulation, mathematical, convo-
lutional, and gradient computations, pooling, and other DL-
specific operations. The actual, native implementations of
such operations are called kernels. Implementing core op-
erations in a language like C/C++ not only provides better
performance, but also allows framework developers to im-

plement multiple, optimized versions for different hardware
devices (e.g., CPUs, GPUs, and TPUs). The kernels are rec-
ommended to avoid using (or depending on) shared state [61],
with each invocation being self-contained, in order to be eas-
ily parallelizable. This is an important property that IvySyn
builds upon to seamlessly add its kernel fuzzing hooks (§5).

• Bindings: Even though DL frameworks provide low-
level, kernel APIs, model developers typically perform DL-
specific operations through high-level languages, such as
Python. Thus, in order to expose a subset of these operations
through developer-accessible APIs, DL frameworks generate
high-level bindings [52, 61]. These bindings translate input
arguments fed to, say, Python APIs, into the corresponding
C/C++ arguments, and transparently invoke the appropriate
kernel, abstracting away implementation details regarding the
underlying foreign-function interface. IvySyn builds upon
DL framework mappings (bindings⇄ kernels) and low-level
crashing inputs to seamlessly synthesize code snippets in-
volving the respective high-level APIs (§5.4). Even though
these bindings are not necessarily intended to be used by de-
velopers, they are still publicly-exposed and callable from,
say, Python, giving an attacker direct access to exploitable
vulnerabilities in the native kernel implementations.

• High-level APIs and DL Models: High-level language
bindings (such as the ones described above) are further
wrapped by other, high(er)-level APIs that are language-
specific (e.g., implemented in Python). The latter may add
some abstraction over the raw binding, like pre-processing
or extra sanity checks for the arguments, before invoking the
respective operations; or may be mere wrappers, adding doc-
umentation and uniformly-exporting operations to framework
modules. Eventually, the high-level APIs that wrap around
bindings of kernel operations are the ones intended to be used
by model developers. We call these developer-accessible and
documented APIs, high-level APIs. Typically, multiple such
high-level APIs are utilized when building DL models for
various tasks, such as image classification for self-driving
cars [36], malware detection [54], and face recognition [17].
Testing Deep Learning Frameworks. DL frameworks have
bugs in their underlying implementations, and it has been
empirically shown that such bugs may cause memory safety
errors, fatal runtime errors, incorrect or inconsistent function-
ality, numerical errors, performance degradation, memory ex-
haustion and CPU/GPU/TPU lockups [28, 31, 44, 77]. Bugs
in the native, C/C++, parts of DL frameworks (e.g., kernels)
are of special interest, since they may result in fatal runtime
errors and memory errors that can be abused by attackers.

One path towards finding such bugs is to make use of pre-
trained DL models and continuously: (1) perform alternations
on them [26, 44, 71, 72, 75]; and (2) feed them back to the
target DL frameworks hoping to trigger erroneous behaviors.
However, since the unit of mutations is DL models, these
works mostly uncover errors related to incorrect/inconsistent
functionality, numerical errors, and degradation in accuracy.
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On the other hand, mutation-based approaches that perform
alternations on the input arguments of high-level APIs [23,74],
indeed generate erroneous inputs that transfer through the
stack of abstractions to native kernel implementations, and
trigger memory safety and fatal runtime errors.

However, because high-level APIs are not statically-typed,
past approaches are semi-automated or completely man-
ual: a domain-expert has to manually add annotations (with
precise information about valid argument-value combina-
tions) [74] or implement helper code (i.e., drivers) and add
type-awareness [23] for high-level APIs.
Automated Vulnerability Discovery. Our goal is to automat-
ically uncover offending inputs that are passed to high-level
DL framework APIs, transfer through the various layers of ab-
stractions, and trigger fatal runtime and memory errors in low-
level, native code. Our key insight towards full automation,
is to take a two-fold, bottom-up approach: first, we leverage
the statically-typed nature of native APIs, which allows us
to perform type-aware mutation-based fuzzing on low-level
kernel code; next, given a set of offending inputs for low-level
APIs, we leverage the inherent DL framework mappings from
low- to high-level APIs and synthesize code snippets, which
trigger memory errors on low-level, native code with inputs
passed to high-level APIs. We realize our bottom-up approach
in a framework called IvySyn, which needs no domain-expert
annotations nor manually-written driver code.

3 Threat Model and Memory Errors

Adversarial Capabilities. We assume an attacker who is
aiming at exploiting DL frameworks (e.g., TensorFlow [1],
PyTorch [46]) by triggering memory errors [67] in their re-
spective kernel codebases. Specifically, we focus on attackers
who (ab)use spatial [42] or temporal [43] memory safety vio-
lations, in DL framework components written in type- and/or
memory-unsafe languages (e.g., C, C++), with the end goal
of tampering-with critical code/data pointers [48].

Platforms like IBM’s Watson Discovery [30] are assumed
to be the canonical example of a victim, “wrapper” application
that internally leverages a DL framework (i.e., TensorFlow),
which contains memory error-based vulnerabilities that can
be further triggered via bogus input to the wrapper part. In
the case of Watson Discovery, any TensorFlow memory error
(re)classified by IBM as a vulnerability with the following de-
scription “by sending a specially-crafted request, an attacker
could exploit this vulnerability to ...” [29] is a prime example
of our focus. By identifying vulnerabilities in memory-unsafe
framework code, IvySyn aids framework developers in fix-
ing the respective bugs (§7.3), thereby implicitly protecting
any application that uses the corresponding DL framework as
well, via means of removing vulnerabilities from a perceived
exploitation path from the wrapper application (e.g., Watson
Discovery) to the low-level, native framework code.

Memory Errors. IvySyn aims at uncovering crashing inputs
that trigger: (a) memory safety errors, like (arbitrary) memory
corruption and memory disclosure vulnerabilities [58]; and
(b) fatal runtime errors—both (a) and (b) manifest as crashes
(i.e., abnormal process termination with SIGABRT, SIGFPE,
and SIGSEGV exceptions) during fuzzing/runtime.

Note that IvySyn is a software testing framework, and
similarly to the fact that tools that discover memory errors
in “library” code [35, 55] do not necessarily study how the
uncovered bugs can be exploited within the context of the
applications that use them, it does not provide automation
regarding the end-to-end exploitation of the uncovered DL-
framework vulnerabilities. However, IvySyn’s PoVs (§5.4)
provide useful information (offending arguments, vulnerable
APIs, etc.) to form an attack path (see Appendix B.)

4 Approach Overview

We introduce a two-fold, bottom-up approach for testing DL
framework implementations with the end goal of uncovering
security vulnerabilities. We realize our bottom-up approach
in a framework called IvySyn, which, given a set of native
DL kernels, aims at answering two questions automatically:

1. Are there any offending inputs to low-level APIs that
can trigger memory errors in native DL kernels?

2. Are there any high-level APIs that can propagate the
above offending inputs to low-level kernel code?

To uncover offending inputs that can trigger memory er-
rors in native DL kernel implementations, IvySyn leverages
mutation-based fuzzing [21], augmented with type-aware mu-
tations (§5.3). Then, armed with a set crashing inputs, IvySyn
automatically synthesizes appropriate code snippets that trig-
ger the respective errors from high-level APIs.

Every such code snippet acts as a “Proof of Vulnerability”
(PoV), as it demonstrates: (1) the existence of a bug in ker-
nel code that can result in memory corruption or disclosure
(integrity/confidentiality violation), or even halt the whole DL
framework runtime (availability violation); and (2) that an
attacker can trigger this bug via a high-level API, which is
available to model developers or even end users (depending
on how the DL model “consumes” untrusted user inputs when
integrated into real-world systems) [29].
Crash Reports. Listing 1 illustrates a crash report that
was generated by IvySyn while fuzzing the kernel Edit-
DistanceOp of the TensorFlow API tf.raw_ops.Edit-
Distance—which is used for computing the Levenshtein
edit distance. The report captures the offending input(s) of a
real, previously-unknown, vulnerability that was uncovered
by IvySyn, and corresponds to an invalid memory write via a
pointer (i.e., memory corruption). IvySyn crash reports con-
tain information regarding the offending input, including the
concrete values of the tensor(s) involved (ln. 2–9).
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1 # EditDistanceOp::Compute()
2 Tensor<type: int64 shape: [3,3]
3 values: [-1250999896764 ...]...>
4 Tensor<type: int64 shape: [3] values: 0 0 0>
5 Tensor<type: int64 shape: [3] values: 0 0 0>
6 Tensor<type: int64 shape: [2,3] values: [0 0 0]...>
7 Tensor<type: int64 shape: [2]
8 values: -1879048192 -1879048192>
9 Tensor<type: int64 shape: [3] values: 2 2 2>

Listing 1: Crash report produced by IvySyn while fuzzing the
kernel EditDistanceOp::Compute of the TensorFlow API
tf.raw_ops.EditDistance.

1 import tensorflow as tf
2

3 hypothesis_indices = tf.constant(-125099896764,
4 shape=[3,3], dtype=tf.int64)
5 hypothesis_values = tf.constant(0,
6 shape=[3], dtype=tf.int64)
7 hypothesis_shape = tf.constant(0,
8 shape=[3], dtype=tf.int64)
9 truth_indices = tf.constant(0,

10 shape=[2,3], dtype=tf.int64)
11 truth_values = tf.constant(-1879048192,
12 shape=[2], dtype=tf.int64)
13 truth_shape = tf.constant(2,
14 shape=[3], dtype=tf.int64)
15

16 tf.raw_ops.EditDistance(
17 hypothesis_indices = hypothesis_indices,
18 hypothesis_values = hypothesis_values,
19 hypothesis_shape = hypothesis_shape,
20 truth_indices = truth_indices,
21 truth_values = truth_values,
22 truth_shape = truth_shape)

Listing 2: PoV synthesized by IvySyn for triggering the vul-
nerability of Listing 1 (TensorFlow kernel EditDistance-
Op::Compute via binding tf.raw_ops.EditDistance).

Since IvySyn produces crash reports automatically, one
can synthesize C/C++ programs that invoke a crashing kernel
with the respective offending input. However, a native code
snippet would not be sufficient for framework developers to
replicate and analyze the corresponding bug: it is unclear
whether the bug is actually triggerable by an API available to
model developers (or users). When presented with a crashing
kernel, framework developers have to manually: (a) identify
high-level APIs that, when invoked, result into the execution
of the offending kernel code; (b) experiment with the argu-
ments of those (high-level) APIs so that the target (low-level,
kernel) code ends-up being invoked with bogus input; and
(c) put together a Python snippet that demonstrates the issue
end-to-end. IvySyn completely automates (a), (b), and (c);
given a crash report in kernel code, it synthesizes end-to-end
running programs (PoVs), which demonstrate the existence
of a bug that can by triggered via high-level APIs.

PoVs. Listing 2 shows an IvySyn PoV that trig-
gers the previously-identified vulnerability in the C++
kernel EditDistanceOp, by using the high-level API
tf.raw_ops.EditDistance (ln. 16–22). The resulting PoV
is enough to demonstrate the existence of a bug in kernel code
that can by triggered via a high-level API: one just needs to
merely execute the PoV code. Framework developers can use
such PoVs to replicate, analyze and study, and eventually fix
the respective bug(s). IvySyn’ s PoVs have helped uncover
multiple, previously-unknown vulnerabilities in TensorFlow/-
PyTorch, and have led to multiple bug-fixes and CVEs (§7.3).

5 The IvySyn Framework

We designed IvySyn in accordance to three design principles:

1. We follow developer directives about extending DL
frameworks in order to (a) identify native APIs
and (b) add the appropriate fuzzing hooks to them.
(Insight: Following such directives allows us to auto-
matically identify native code, while the strongly-typed
nature of native APIs provides type-awareness for free.)

2. We hook kernels without shared state and use developer
tests to force-execute and fuzz them. (Insight: Force-
executed kernel fuzzing allows us to invoke native APIs
within a proper calling context.)

3. We leverage the inherent DL framework mappings be-
tween high- and low-level APIs in order to synthesize
PoVs. (Insight: Given a set of low-level crashing inputs,
working backwards allows to synthesize high-level code
snippets almost instantly.)

Figure 1 illustrates the overall architecture of IvySyn, in
terms of major components and their interactions. IvySyn’s
instrumentation extracts native kernel implementations from
the respective DL codebase in order to construct and inject
fuzzing wrappers (§5.1). IvySyn’s Watchdog invokes the
entry-points of developer test suites; as soon as the flow of ex-
ecution reaches a target kernel, IvySyn’s instrumentation will
bootstrap a force-executed mutation-based fuzzing session
(§5.2) using type-aware mutations (§5.3). IvySyn’s synthe-
sizer uses low-level crashing inputs uncovered during fuzzing
to generate PoVs, which, in turn, trigger low-level memory
errors from publicly-available APIs (§5.4).

5.1 Instrumentation
To test native code, IvySyn first needs to extract the functions
that correspond to DL-framework kernels, and then create and
inject appropriate fuzzing wrappers around them.
Extracting Kernel Implementations. The process of iden-
tifying kernel code is slightly different between PyTorch
and TensorFlow. Nevertheless, it is completely automated
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Figure 1: Overview of the IvySyn fuzz testing framework.

in both frameworks, as IvySyn leverages developer directives
regarding extending framework code. In TensorFlow, each
kernel inherits from the OpKernel interface and implements
a Compute() method [61]—the body of Compute() basically
includes the implementation of a particular kernel. IvySyn
parses the source code of TensorFlow and creates a set of C++
classes that directly inherit from OpKernel, or from a class
that (directly or indirectly) inherits from OpKernel, and over-
rides Compute(). Next, it further prunes that set of classes by
removing: (1) kernel implementations that deal with shared
state (e.g., include synchronization locks, like std::tensor-
flow, or interact with ResourceMgr objects); and (2) other
edge cases, such as classes that modify the type signature
of Compute() (e.g., by altering the arity of the method) or
classes that re-define Compute() so that it has an empty body.

In PyTorch, each kernel implementation has a cor-
responding descriptor in the YAML file ‘native-
_functions.yaml’ [51]. Each descriptor provides the
symbol name of the C/C++ function implementation,
followed by a list of arguments (with their respective symbol
names), along with their types, and the type of the return
value. IvySyn parses native_functions.yaml and creates
an initial set of C/C++ symbols that correspond to native
code that implements PyTorch kernels. Next, it curates
the set by removing symbols in the following categories:
(1) out-variants of functions—if f(...) has a companion
function f.out(..., *rv), then we can safely ignore the
latter, as it is a version of f() where the return value is passed
by reference to rv; (2) pure wrappers/helpers of functions,
merely wrapping-around target kernel(s); and (3) functions
with argument types that IvySyn does not handle—these
correspond to esoteric, non-{tensor, array, scalar} types, like
MemoryFormat and Generator, as well as lists of objects
and object indexers. Note that (3) can easily be supported
with additional engineering work.

The net effect of all the above is a set of functions that
correspond to kernel code for which PyTorch and TensorFlow
provide bindings to be invoked by high-level APIs and model
developers. IvySyn creates and injects fuzzing wrappers for
these kernels, called target kernels.
Creating and Injecting Wrappers. Given a set of target ker-
nels, IvySyn creates and injects fuzzing wrappers as follows:
first, it renames the original kernel function, say func(), to
do_func(); then, it replaces the body of the original function
with wrapper code, initializing an IvySyn fuzzing session.

Listing 3 (in Appendix A) shows a concrete exam-
ple of IvySyn’s instrumentation on the PyTorch ker-
nel cosine_similarity that corresponds to the high-
level API torch.nn.functional.cosine_similarity.
Initially, various checks are performed in order to avoid recur-
sive fuzzing or testing kernels that have already been fuzzed
(ln. 4–8). In either case, fuzzing is skipped by calling the orig-
inal kernel implementation. Otherwise, the global variable
already_fuzzing, indicating that a new fuzzing session has
been initiated, is set (ln. 9). Afterwards, the instrumented
code passes the original arguments of the target function to
the IvySyn fuzzer (i.e., the input arguments provided to the
original kernel, in the case of PyTorch, or the arguments that
are stored in the context object, which, in turn, is provided
as input to TensorFlow’s Compute).

The wrapper code also provides an additional vector con-
taining information about the respective argument types
(ln. 11–23). This is required because IvySyn performs type-
aware mutations, and internally the fuzzer uses the original
arguments as seeds to create dedicated pools of mutations for
each argument type (§5.3). Once the fuzzer has been prop-
erly initialized, the main fuzzing loop iterates over the pool
of available mutations (ln. 25–37) until all generated muta-
tion combinations are exhausted or a user-defined cap on the
maximum number of combinations is reached.
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Each combination of input values is used to execute the
function under test (ln. 32–33) with the hope of triggering a
low-level memory safety or runtime error. Finally, the result
of the original invocation is returned (ln. 40–41) so that the
invoking code can continue on the normal flow of execution.

5.2 Force-executed Kernel Code Fuzzing

DL frameworks typically consist of multiple layers of ab-
stractions, and do not expose low-level APIs (i.e., kernels) for
direct usage. Instead, as noted in Section 2, and also illustrated
in the left part of Figure 1, kernels are intended to be implic-
itly used by high-level APIs as follows: high-level APIs⇝
bindings⇝ kernels. Therefore, directly fuzzing kernel APIs,
without a proper calling context (i.e., a specific chain of func-
tions active on the call stack and a set of properly-initialized
global variables), will lead to incorrect functionality.

Fortunately, DL frameworks often contain extensive test
suites of developer-provided unit tests. These are written
in high-level languages (e.g., Python) and invoke high-level
APIs, which, in turn, call DL framework bindings, and eventu-
ally execute the respective kernel code. IvySyn is designed to
leverage such developer-provided unit tests and force-execute
target kernels in order to perform mutation-based fuzzing,
with a proper calling context.

To bootstrap a force-executed fuzzing session, IvySyn cre-
ates a Watchdog process that runs the entry-point of the
developer-provided unit tests (e.g., tf-tests/*.py in the
case of TensorFlow). As explained earlier, during instrumen-
tation, the original kernel function definitions are interposed
with IvySyn wrapper code. Therefore, as soon as the execu-
tion of a developer test reaches an instrumented kernel, it will
kick-start a “force-executed” fuzzing session. This approach
works seamlessly because (1) force-executed kernels are in-
voked with a proper calling context, and (2) kernels usually
avoid shared state by design. (Kernels that do interact with
shared state are currently ignored by IvySyn; see §5.1.)
Crash-report Generation. Each combination of mutated in-
puts is assigned a unique index number (UIN). IvySyn logs
the UIN that corresponds to the current mutated input(s) com-
bination into a log file, which is named after the function
being fuzzed. Once a crash happens, this log file will contain
the UIN of the last attempted input combination, which is the
one that caused the memory error. IvySyn leverages this in-
formation to re-initialize the fuzzer, get the offending input(s),
and stitch together a crash report (Listing 1).
Watchdog. IvySyn’s Watchdog kick-starts a fuzzing session
by invoking the entry-points of unit tests, but also monitors
all processes performing fuzz testing. Specifically, when a
test exits, the Watchdog collects its exit code: a negative code
indicates that some native function, which the test invoked,
has crashed (abnormal process termination with SIGABRT,
SIGFPE, or SIGSEGV). In this case, the Watchdog re-runs the
test until the latter exits gracefully—which would mean that

the fuzzer has not uncovered any additional crashes for the
native functions invoked by the specific test. Furthermore, the
Watchdog is responsible for enforcing user-defined timeouts,
so that each fuzzing session completes within a desired time-
frame, and also prevents potential CPU hogging.

5.3 Type-aware Mutations

IvySyn leverages mutation-based fuzzing [21] to stress-test
DL kernel code. However, and most importantly, it further
augments traditional mutation-based fuzzing with the abil-
ity to perform type-aware mutations with respect to input
types relevant to the target DL framework—such as tensors
and arrays. Our intuition is that plain, byte-level mutations
(even when guided by code coverage information), will lead
to test inputs that hit shallow argument-type checks, with-
out triggering any interesting edge case behaviour. On the
contrary, type-aware mutations lead to test inputs that pass
argument-type checks, and exercise interesting functionality.

We empirically studied ≈240 CVEs assigned to Tensor-
Flow vulnerabilities, as well as bug reports that involve mem-
ory safety issues in PyTorch, and put together a set of muta-
tions for input types relevant to DL operations [34]. Overall,
we observed that crashes are commonly caused by inputs that
are likely to trigger edge-case behavior, such as tensors with
large positive or negative values, empty lists and tensors, and
deep tensors with multiple dimensions. Next, we describe an
indicative set of mutations currently supported by IvySyn.

• Tensors and Lists: For input arguments of type tensor,
IvySyn creates a pool of tensor mutations containing ten-
sors with large positive and negative values, tensors with
empty shapes, tensors containing random dimensions (includ-
ing 0-sized dimensions), as well as deep tensors with up to
15 dimensions (configurable limit). Similarly, for list inputs,
IvySyn creates a pool of various lists, containing large posi-
tive and negative values, as well as empty lists.

• Concrete Values: When the input is a single value (e.g., in-
teger, double, boolean, or string), IvySyn creates a pool for
the corresponding primitive type, consisting of the zero value,
large positive and negative integers and doubles, empty and
large strings (e.g., 300-characters long; configurable), etc.

• Original-arguments Permutation: IvySyn also adds the
original, concrete input arguments (passed to the kernel) in
the corresponding pool for each type. Hence, when iterating
over the mutation pools, some combinations of mutations
end-up being permutations of the original arguments.

When initializing the mutation pools for fuzzing a target
kernel, IvySyn looks at the types of the input arguments,
which are available at the native level, and constructs a pool of
mutation values for each type, based on the mutation strategies
described above. IvySyn then lazily iterates over the pool of
all feasible value combinations, until a user-defined timeout
is hit or until there are no further mutations to perform.
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IvySyn does not use any code coverage information to
prioritize some mutations over others—it is completely black-
box with respect to testing. Yet, as we demonstrate later (§7),
IvySyn significantly outperforms state-of-the-art coverage-
guided—but type-unaware—approaches, as it finds more
crashes, and does so faster. This emphasizes the importance
of type-aware mutations and confirms our intuition that byte-
level mutations are less successful at uncovering crashes when
dealing with complex DL data structures such as tensors.

5.4 PoV Synthesis

The ultimate goal of IvySyn is to synthesize PoVs: that is,
code snippets in a managed language (e.g., Python) which
invoke vulnerable kernel code via a developer-accessible
API (e.g., a binding or a high-level API). In order to do so,
IvySyn’s synthesizer collects crash reports generated during
fuzzing and uses them to synthesize appropriate PoVs.

First, given a crash report with information regarding the
offending input arguments and the respective crashing kernel
implementation (see Listing 1), the synthesizer converts low-
level input arguments into the corresponding input arguments
for high-level APIs. Specifically, in PyTorch, C++ scalar types,
such as int and long, are converted into a Python int; C++
double and float are converted into Python float, etc.; and
for tensor arguments, the synthesizer constructs the tensor us-
ing the information about the tensor’s shape, type, contents,
and other parameters that were logged into the crash report.
In TensorFlow, all arguments are represented as tensors, at
the kernel level, and are logged as such. Therefore, the syn-
thesizer, in turn, constructs all arguments as tensors with the
proper tensor type, shape and content.

Next, given concrete input arguments for a high-level API,
the synthesizer needs to actually identify which high-level
API to invoke with them. PyTorch inherently constructs pairs
of low-level-function⇝ binding mapping for each kernel that
is exposed to Python. TensorFlow also inherently constructs
similar pairs of low-level-function⇝ binding mappings dur-
ing framework initialization. IvySyn intercepts those map-
pings and records them into a file, which is used by the syn-
thesizer to determine the proper binding that corresponds to a
low-level crashing kernel. Once the appropriate binding has
been identified, the synthesizer creates a call to it and saves the
generated PoV (see Listing 2). Lastly, IvySyn iterates through
each synthesized PoV, executes it, and categorizes it based on
the type of the signal raised after each crash (i.e., SIGSEGV,
SIGFPE, or SIGABRT).

Our synthesis approach builds upon the inherent DL frame-
work mappings from bindings to kernels (and vice versa)
and is, therefore, straightforward and fully-automated. Fur-
thermore, it is considerably faster than prior work on code
synthesis [3, 7]; given low-level crashes, IvySyn takes only
seconds to synthesize tens of PoVs (§7).

5.5 Design Rationale

We designed IvySyn pursuant to the idea of testing DL frame-
works, and selected TensorFlow and PyTorch as our prime
targets. We also tried to follow a modular design, without de-
pending on assumptions that fundamentally limit our scope.

More specifically, IvySyn assumes that its target (strongly-
typed, low-level) APIs are declared in a well-defined manner
(e.g., listed in a YAML file or inherit-from/implement a C++
interface) to instrument them with appropriate fuzzing hooks.
In addition, IvySyn assumes the existence of developer-
provided unit tests to kick-start kernel fuzzing—usually there
is a plethora of unit tests in production-grade software. Since
IvySyn is a black-box tool, it requires a set of mutation strate-
gies and input values. To this end, we empirically studied a set
of TensorFlow CVEs and PyTorch bug reports, and compiled
a preliminary set of mutation strategies. We acknowledge that
our approach may be biased towards uncovering bugs par-
ticularly in TensorFlow and PyTorch, which were our prime
targets. Yet, it is possible to substitute (or extend IvySyn with
different) mutation strategies and input values, if deemed ap-
propriate. Finally, IvySyn’s synthesis assumes the existence
of mappings between high- and low-level APIs. Such map-
pings are present in any codebase that involves interfacing
(safe) managed code with (memory-unsafe) native code.

The core idea behind IvySyn, is its two-fold, bottom-
up approach. Extending IvySyn to other DL frameworks
(e.g., TFLite [65] or MXNet [4]) or platforms (e.g., TPUs) is
an interesting avenue for future work. Although so far we
have only applied IvySyn on DL-framework code, we antici-
pate our approach to generalize to other, non-DL codebases as
well, provided there is a synergy between high- and low-level,
native (interfacing) APIs.

6 Prototype Implementation

IvySyn consists of ≈1.9 KLOC of C/C++ and ≈1.1 KLOC
of Python, along with various shell scripts (≈100LOC).
Instrumentation. The instrumentation component of IvySyn
(for source code rewriting in order to inject the fuzzer code;
Figure 1) is implemented using Clang v11.0.1. It consists
of ≈900 LOC as follows: in the case of PyTorch, the instru-
mentation is done by a Python script, which leverages the
Clang Python bindings for visiting and instrumenting the
target native functions (≈550 LOC of Python); in Tensor-
Flow, we implemented the instrumentation as a native Clang
pass (≈300 LOC of C++), along with ≈40 LOC of shell
code for running the pass on the files containing the kernel
implementations, and instrumenting everything accordingly.
Instrumentation via means of static binary code rewriting via
the Egalito framework [73], as well as rewriting via Intel’s
Pin DBI framework [40], could be supported in the future.
Native Fuzzer. The native fuzzer component of IvySyn is
implemented in C++ as an in-tree part for each framework.
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In total, it consists of ≈2.1 KLOC. To incorporate Address-
Sanitizer (ASan) in IvySyn to support memory inspection
and security analysis (§7.5), we modified the build process of
PyTorch and TensorFlow. Finally, the Watchdog required to
run the developer tests (and to restart them in the case of a
crash) was implemented in ≈200 LOC of Python.
Synthesizer. The synthesizer component is implemented in
≈750 LOC of Python for parsing the logged crash files and
generating the Python PoVs, along with ≈100 LOC of shell
code for categorizing the reproduced PoVs.

7 Evaluation

In this section, we assess IvySyn both in terms of its effi-
ciency in uncovering low-level crashing inputs over time, as
well as in terms of its effectiveness in leveraging crashing in-
puts to synthesize PoVs that trigger the respective errors from
high-level (framework) APIs. More specifically, we answer
the following research questions:

RQ1: Is IvySyn efficient in uncovering crashing inputs over
time? (§7.2)

RQ2: Is IvySyn effective in leveraging crashing inputs to
synthesize PoVs? (§7.3)

RQ3: Which IvySyn mutations are the most successful in
uncovering memory errors? (§7.4)

RQ4: What are the security ramifications of the PoVs syn-
thesized with IvySyn? (§7.5)

7.1 Experimental Setup
Statistical Significance. Due to the non-deterministic na-
ture of fuzzing, results of individual experiments tend to vary
across multiple runs. We therefore ran our experiments multi-
ple times and report statistically significant results, according
to the guidelines of Klees et al. [37]. Specifically, when ap-
plicable, we report medians of runs over time, along with
their respective 95% confidence intervals (CIs), as well as the
p-values of two-sided Mann-Whitney U-tests. We also report
Cohen’s d-effect sizes.
Atheris. We compared IvySyn’s efficiency in uncover-
ing crashing inputs against Atheris [23], a state-of-the-art
coverage-guided Python fuzzer that utilizes both Python and
native (C/C++) code coverage information. Atheris is a
production-grade tool, built by Google, and is used to fuzz test
their TensorFlow codebase. However, Atheris is not fully
automated: it requires helper code (i.e., drivers) to convert an
input byte-buffer into the proper Python API arguments [24].
Next, it uses libFuzzer [55] to perform coverage-guided mu-
tations on its input byte-buffer and derive values (i.e., series
of raw bytes) that, when turned into Python API arguments,
will increase both native and Python code coverage. We used
IvySyn to generate Atheris drivers for TensorFlow and Py-
Torch kernels, as follows.

First, we ran IvySyn and used its argument logging func-
tionality to collect the argument types of kernels APIs.
Next, we used IvySyn’s synthesizer to derive the respec-
tive high-level API arguments and constructed code snip-
pets involving the corresponding Python APIs. Then, we
used these snippets to generate drivers for two variants
of Atheris, called Atheris+ and Atheris++, to compare
IvySyn against Atheris in terms of efficiency. We did not
compare against Atheris in terms of effectiveness in synthe-
sizing PoVs, because Atheris lacks such functionality.

• Atheris+ (drivers without type awareness): We pro-
vided drivers that invoke the Python APIs with the correct
number of arguments, but let Atheris choose, from its default
pool (tf.bool, tf.string, tf.int32, etc.), the type that
will increase code coverage when assigned to each argument.
This variant is similar to traditional byte-level mutation-based
fuzzers (e.g., AFL), and corresponds the default operation
of the tool. However, without IvySyn’s automation, putting
together such drivers still requires manual effort.

• Atheris++ (drivers with type awareness): This is not
an off-the-shelf tool. Instead, it borrows automation for driver
generation and type information, from IvySyn, regarding ar-
guments of type string, bool, numerical, and tensor. We
built this variant to compare IvySyn against a stronger base-
line, which leverages type information, as well as native and
Python code-coverage feedback.
DocTer. We compared IvySyn’s effectiveness in synthesiz-
ing PoVs against DocTer [74]. Similarly to IvySyn, DocTer
also performs mutations on high-level APIs, and generates
test cases that may trigger fatal runtime and memory errors
on kernel implementations. DocTer’s test cases are therefore
directly comparable to IvySyn’s PoVs. However, we did not
compare in terms of efficiency against DocTer, because the
later is not fully automated. Instead, it requires a domain-
expert to add annotations (specifying valid argument-value
combinations for target APIs) and it is unclear how to reason
about the time required for his manual effort. Yet, we reused
existing annotations and the DocTer authors’ instructions to
compare the number of PoVs/test cases generated by both
tools, on a subset of the latest TensorFlow and PyTorch APIs,
for which the available annotations were directly reusable.
Target Frameworks. We present results obtained on Tensor-
Flow v2.6 (commit 919f693) and PyTorch v1.11 (commit
bc2c6eda). IvySyn automatically instrumented 1440 Tensor-
Flow and PyTorch kernels with CPU or GPU implementations,
or both, and eventually fuzzed 1159 of those [33].

• TensorFlow: IvySyn automatically instrumented 539 of
the 669 TensorFlow kernels inheriting from the OpKernel
class, excluding 80 kernels with shared state (i.e., kernels
which either include a mutex or interact with a ResourceMgr
object), and 50 edge cases, such as Compute APIs with an
empty body or non-standard signatures (§5.1). Out of the
539 instrumented TensorFlow kernels, 412 were reachable by
developer tests, and these were eventually fuzzed by IvySyn.
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Figure 2: Total number of crashes found by IvySyn vs.
Atheris in 308 TensorFlow kernels over time. Continuous
lines correspond to medians over 5 iterations; dotted lines
show the 95% CIs (p-values < 10−5; Cohen’s d-effect > 2).

0 20 40 60 80 100

Fuzzing time (hours)

0

5

10

15

20

N
um

b
er

of
P

yt
or

ch
cr

as
he

s

IvySyn

Atheris++

Atheris+

Figure 3: Total number of crashes found by IvySyn vs.
Atheris in 283 PyTorch kernels over time. Continuous lines
correspond medians over 5 iterations; dotted lines show the
respective 95% CIs (p-values < 10−5; Cohen’s d-effect > 2).

• PyTorch: IvySyn automatically instrumented 901 of
the 1669 implemented PyTorch kernels (according to
native_functions.yaml, which contains declarations for
the natively-implemented kernels), excluding 768 kernels. A
subset of these kernels were excluded because they provide du-
plicate (or equivalent) functionality to kernels which IvySyn
already instrumented: 111 so-called out-variants of kernels,
73 kernels for in-place operations, and 92 other edge cases,
such as helper APIs. IvySyn did not instrument 181 kernels
with unsupported argument types, 19 kernels for complex,
recursive neural network operations, and 292 APIs with no
matching declarations. (These kernels could be supported
with additional engineering effort [32].) Out of the 901 instru-
mented PyTorch kernels, 747 were reachable by developer
tests, and these were eventually fuzzed by IvySyn.
Timeouts and Hardware Testbed. We configured all fuzzing
sessions to fuzz the respective kernels individually, and in a
random order, for up to a 20-min. timeout For each fuzzing
session, we used one (user-space) thread and 16GB of RAM,
on different (but identically-configured) VMs, with different
pseudo-random generator seeds. All fuzzing sessions were
completely independent from each other, and fuzzing of indi-
vidual kernels that did complete in the 20-min. time chunk,
either uncovered a crash or exceeded the 16GB of assigned
memory; or, in the case of IvySyn and DocTer only, there
were no more mutations left to perform. In all experiments,
we used Debian v11 on 4-core Intel Xeon 3.7GHz CPU.

7.2 Uncovering Crashing Inputs (RQ1)
To assess the efficiency of IvySyn in terms of uncovering
crashing inputs on native kernel implementations—i.e., “How
quickly can IvySyn find crashing inputs?”—we compare

against Atheris on TensorFlow and PyTorch. We focused on
a subset of 308 TensorFlow and 283 PyTorch kernels (out of
the 1159 total fuzzed kernels) for two reasons.

First, IvySyn must be able to successfully synthesize a
Python snippet for them because Atheris, by itself, is not
fully automated and relies on the snippets synthesized by
IvySyn to generate its drivers. Second, the corresponding
binding invoked by the synthesized Python code snippet needs
to map to exactly one kernel, in order for Atheris to spent
its 20-min. slot on fuzzing that single kernel, like IvySyn
does—as opposed to, say, selecting bindings that map to mul-
tiple kernels, which may (depending on the input arguments)
invoke multiple native kernels, and thus result in less than
20-min. of fuzzing time per kernel.

Figure 2 and Figure 3 show the number of crashes un-
covered by IvySyn, Atheris+, and Atheris++, over time
on TensorFlow and PyTorch kernels, respectively. All three
tools uncovered crashing inputs that led to abnormal process
termination with SIGABRT, SIGFPE, or SIGSEGV exceptions.
Continuous lines show medians of 5 iterations, whereas the
dotted lines show 95% CIs. The respective p-values were
less than 10−5 and Cohen’s d-effect sizes were greater than 2
(i.e., they are considered “huge” in the literature).

The difference between the median number of crashes
found by IvySyn versus the two Atheris variants is sig-
nificant. Not only did IvySyn ultimately find more crashes in
both frameworks (i.e., 71 vs. 59 and 35 in TensorFlow; and
23 vs. 17 and 8 in PyTorch), but it also did so considerably
faster. For example, in TensorFlow, IvySyn found a median
of 71 crashes in less than 10 hours, whereas Atheris+ and
Atheris++ found a median of 5 and 8 crashes, respectively,
in the same time frame; and took more than 9x of total time to
complete (i.e., Atheris++ ≈85 hours vs. IvySyn ≈9 hours).
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Fuzzer TensorFlow PyTorch

Total Crashes
Atheris+ 47 9

Atheris++ 64 18
IvySyn 80 25

Union All 87 30

Table 1: Crashes found by IvySyn and Atheris in 308
TensorFlow and 283 PyTorch kernels. (Aggregate results of 5
iterations for each fuzzer on each framework.)

Similarly, in PyTorch, IvySyn found a median of 23
crashes in less than 18 hours, whereas Atheris+ and
Atheris++ found a median of 3 crashes in the same time
frame; and took more than 5x of total time to complete
(i.e., Atheris++ ≈81 hours vs. IvySyn ≈16 hours). No-
ticeably, in both frameworks, Atheris++, which leveraged
IvySyn-provided type awareness, eventually outperformed
Atheris+ in a statistically significant manner, but fell short
compared to IvySyn. Yet, Atheris++ is not an off-the-shelf
tool. Instead, it is a customized, strong baseline that borrows
type information from IvySyn. Thus, it was expected to be
closer to IvySyn—in terms of total crashes found.

Since Figure 2 and Figure 3 only show the number of
crashes found on completely independent fuzzing sessions,
Table 1 sheds some light on how the sets of total crashes found
by each fuzzer compare across each other. In TensorFlow,
IvySyn found 80 crashes in 308 kernels, while Atheris++

found 64 crashes and Atheris+ found 47 crashes. Further-
more, the union of crashes of all fuzzers in the 308 Tensor-
Flow kernels was 87. That is, since IvySyn alone found 80
crashes, there were only 7 crashes found by Atheris, but
not by IvySyn. In particular, 4 crashes were triggered by
Atheris+ by passing incorrect argument types (IvySyn and
Atheris++ failed to trigger those, because they always pro-
vide proper argument types). The remaining 3 crashes were
triggered by Atheris++, but not IvySyn, because the former
generated inputs with value combinations that happen not to
be in the mutation pools of IvySyn (see §5.3).

In PyTorch, IvySyn found 25 crashes in 287 kernels, while
Atheris++ found 18 crashes and Atheris+ found 9 crashes.
Additionally, the union of all crashes found in the 387 Py-
Torch kernels was 30. That is, there were only 5 crashes
found by Atheris, but not IvySyn. Similarly to TensorFlow,
these 5 crashes were only triggered by Atheris++ because
of crashing inputs not in the mutation pools of IvySyn.

Overall, Figure 2, Figure 3, and Table 1, suggest that type
awareness, as introduced by IvySyn, consistently helped both
IvySyn and Atheris++ to (i) find more crashing inputs than
Atheris+, and (ii) find these crashing inputs faster. Yet,
Atheris++—a state-of-the-art coverage-guided fuzzer, en-
hanced with type awareness and automation by us—still fell
short compared to IvySyn.

Framework Fuzzed Unique Synthesized
Kernels Crashes PoVs

TensorFlow 412 103 86 /103 (83%)

PyTorch 747 81 49 /81 (60%)

All 1159 184 135 / 184 (73%)

Table 2: PoVs successfully synthesized by IvySyn in Tensor-
Flow and PyTorch, along with the number of fuzzed kernels
and the respective number of unique crashes found.

This is because code coverage information rarely helped
derive crashing inputs whose values were not in the mutation
pools of IvySyn; and even when it did so, it was considerably
slower compared to IvySyn.

7.3 Synthesizing PoVs (RQ2)

To assess the effectiveness of IvySyn in terms of synthesizing
PoVs, we investigated how well IvySyn can utilize the low-
level crashing inputs uncovered during its fuzzing sessions to
synthesize high-level code snippets.

Table 2 shows the collective numbers of TensorFlow and
PyTorch kernels fuzzed across all our experiments with
IvySyn, the number of unique crashes uncovered, and the
number of PoVs successfully synthesized from them. In to-
tal, IvySyn fuzzed 1159 TensorFlow and PyTorch kernels
with either CPU or GPU implementations, or both, and found
crashes in 184 of them. Then, armed with those 184 crashes,
IvySyn successfully synthesized 135 PoVs (73%), in less
than three seconds. IvySyn failed to synthesize PoVs for 17
TensorFlow crashes (17%), and 32 PyTorch crashes (40%),
due to current IvySyn limitations. In TensorFlow, out of the
17 crashing kernels for which IvySyn’s synthesizer failed to
construct PoVs: 2 were deprecated at the Python level; 6 were
not directly exposed to Python; 5 kernels required complex
list input arguments, which the synthesizer failed to infer; and
4 were not reproducible when installing the pre-built binaries
from the PyPI Python package repository. In PyTorch, out
of the 32 crashing kernels for which the synthesizer failed to
construct PoVs: 31 had no (Python) binding, while for the last
case, IvySyn failed to generate a PoV because of complex
input(s) required to properly invoke the crashing kernel.

Despite its current limitations, IvySyn helped Tensor-
Flow and PyTorch framework developers identify and fix
61 previously-unknown vulnerabilities, and assign 39 CVEs.
IvySyn vs. DocTer. DocTer’s test cases also trigger fatal
runtime and memory errors, and are comparable to IvySyn’s
PoVs (§7.1). We modified DocTer to target the specific subset
of 125 TensorFlow and 105 PyTorch kernels, which (i) were
fuzzed by IvySyn, and (ii) the available DocTer annotations
were directly reusable (i.e., the latest APIs maintained the
same type signature).
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IvySyn SIGSEGV∓ SIGABRT† SIGFPE Total
Type-aware Mutations TensorFlow PyTorch TensorFlow PyTorch TensorFlow PyTorch PoVs

Tensor with random dimension sizes 21 8 10 − 3 4 46∨

Tensors with extreme values 2 − 22 − 1 − 25±

Permutations of original arguments 1 1 17 − − − 19∗

Zero values N/A − N/A − N/A 12 12
Lists with extreme values N/A 13 N/A − N/A − 13
Tensors with empty shape 1 2 5 − − − 8⊕

Extreme values in primitive types N/A 6 N/A − N/A − 6
Empty lists N/A 3 N/A − N/A − 3
Deep tensors 1 − 2 − − − 3

Total PoVs 26 33 56 0 4 16 135

Table 3: Total number of PoVs per mutation and per crash type. The 39 CVEs of previously-unknown security vulnerabilities
uncovered by IvySyn are distributed as follows: 21∨, 8±, 7∗, and 3⊕ (per mutation type); and 17∓ and 22† (per crash type).

We run DocTer on each framework, according to its de-
velopers’ instructions and default settings, and compare with
IvySyn over 10 runs. In TensorFlow, the median of success-
fully synthesized PoVs over 10 iterations was 15 PoVs (union:
19) for IvySyn vs. 12 PoVs (union: 16) for DocTer. Further-
more, the average total running time was 186 mins (std. dev. 5
mins) for IvySyn vs. 197 mins (std. dev. 6 mins) for DocTer.
In PyTorch, the median of successfully synthesized PoVs over
10 iterations was 11 PoVs (union: 14) for IvySyn vs. 7 PoVs
(union: 9) for DocTer. Additionally, the average total running
time was 560 mins (std. dev. 20 mins) for IvySyn vs. 738
mins (std. dev. 14 mins) for DocTer.

In both frameworks, IvySyn consistently found more PoVs
than DocTer with p-values less than 10−2 and Cohen’s d-
effect sizes greater than 2. Across all runs combined, IvySyn
found 10 TensorFlow and 9 PyTorch PoVs, which DocTer
did not manage to find. Conversely, DocTer found 7 Tensor-
Flow and 4 PyTorch PoVs, which IvySyn failed to discover.
IvySyn failed to derive these PoVs for two main reasons.
First, as described in Section 5.1, IvySyn fuzzes inputs pro-
vided to the Compute function of the OpKernel class. How-
ever, some of the high-level TensorFlow API parameters corre-
spond to static attributes in the OpKernel class, which are not
passed as inputs to Compute; these attributes are thus fuzzed
by DocTer, but not IvySyn. Second, the two tools follow dif-
ferent strategies for filling tensors with values: DocTer fills in
random values uniformly, whereas IvySyn fills tensors with
one value. We leave as future work the possibility of further
improving IvySyn’s implementation, inspired by DocTer.

Overall, IvySyn’s total running time was consistently less
than DocTer’s in both frameworks, and IvySyn consistently
found more PoVs in both frameworks. Ultimately, although
DocTer leveraged domain-expert annotations—and it is un-
clear how to reason about the total time needed to compile
them—during the course of comparable, fully-automated runs,
IvySyn found more PoVs than DocTer per unit of time.

7.4 Type-aware Mutations (RQ3)

In Section 5.3, we empirically studied CVEs assigned to
TensorFlow vulnerabilities and PyTorch bug reports that in-
volve memory safety issues, and compiled a set of type-aware
mutations relevant to DL operations. Furthermore, in RQ1 we
already showed that, by iterating over its type-aware muta-
tion pools, IvySyn significantly outperforms approaches that
leverage code coverage information to derive test inputs.

We now investigate exactly how many PoVs were due to
each IvySyn type-aware mutation category, and what were the
specific crash types triggered. Table 3 shows, in descending
order, the total number of PoVs per mutation type, as well
as the respective crash types triggered on each framework.
Cases where the specific mutation type was not applicable on
the target framework or no crashes/PoVs were uncovered, are
marked as N/A and empty cells, respectively.

We make the following observations. First, mutations that
involved tensors with random dimensions uncovered the great-
est number of PoVs: 46 in total (34 in TensorFlow, 12 in Py-
Torch). The specific crash types triggered were SIGSEGV (21
in TensorFlow, 8 in PyTorch), SIGABRT (10 in TensorFlow),
and SIGFPE (3 in TensorFlow, 4 in PyTorch). Second, muta-
tions involving tensors consisting of extreme values led to
25 PoVs, all in TensorFlow. The specific crash types were 2
SIGABRT, 22 SIGFPE, and 1 SIGSEGV. Third, permutations of
original argument values led to 18 TensorFlow and 1 PyTorch
PoVs, and the respective crash types were SIGSEGV (1 in
TensorFlow, 1 in PyTorch) and SIGABRT (17 in TensorFlow).
Fourth, mutations involving zero values led to 12 PyTorch
PoVs (all SIGFPE). Fifth, mutations involving lists consisting
of extreme values led to 13 PyTorch PoVs (all SIGSEGV).

Finally, regarding the aggregate number of crash types,
IvySyn’s type-aware mutations uncovered 26 and 33
SIGSEGV, and 4 and 16 SIGFPE, in TensorFlow and PyTorch,
respectively; but 56 versus 0 SIGABRT.
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This is because in the codebase of TensorFlow, SIGABRT
signals are explicitly raised in case of sanity checks failing
unexpectedly. In contrast, PyTorch does not raise such signals.

Overall, by utilizing various categories of type-aware mu-
tations, IvySyn uncovered 135 PoVs across two different
frameworks. These PoVs, and the respective bug reports, were
perceived critically by the corresponding developers, who con-
firmed and fixed (with high-priority) 61 previously-unknown
security vulnerabilities, and assigned 39 CVEs.

7.5 Security Analysis (RQ4)

IvySyn successfully synthesized PoVs for 135 of the total
184 TensorFlow and PyTorch crashes found. These PoVs trig-
gered abort signals (i.e., SIGABRT), floating-point exceptions
(i.e., SIGFPE), and segfaults (i.e., SIGSEGV), and halted the
respective execution. To assess how, and to what extent, these
PoVs could be abused to corrupt memory locations, leak pro-
gram contents, or cause the respective runtime environment
to crash, we conducted a security analysis using ASan.

In TensorFlow, IvySyn synthesized PoVs for 4 floating-
point exceptions, 56 abort signals, and 26 segfaults. In Py-
Torch, IvySyn synthesized PoVs for 16 floating-point excep-
tions and 33 segfaults. Although floating-point exceptions
and aborts do not cause memory corruption, they are still
a security-relevant threat, as they can crash the DL frame-
work runtime and cause a DoS. Overall, segfaults are more
severe, and we focused our analysis on them. Specifically,
we used ASan to categorize the 26 TensorFlow and 29 out of
the 33 PyTorch segfaults according to their root cause. The
remaining 4 PyTorch segfaults were in GPU-specific kernel
implementations, thus they could not be analyzed by ASan.

In TensorFlow, 18 out of the 26 segfaults were caused by
a NULL-pointer dereference (3 memory-write and 15 -read
operations). These 18 crashes, similarly to the floating-point
exceptions and aborts, cannot be directly leveraged by an
attacker to gain a read/write primitive [58]. Yet, they could
still be used to crash the DL framework and facilitate a DoS
attack. The remaining 8 segfaults were reported by ASan
as memory read (6) and write (1) operations at controlled
addresses, and 1 memory write caused by a heap overflow. By
controlling the addresses of these operations, an attacker could
leverage them to gain arbitrary read/write primitives [48].

In PyTorch, 10 out of the 29 segfaults were caused by a
NULL-pointer dereference (3 memory-write and 7 -read op-
erations). The remaining 19 segfaults were security-critical:
3 were caused by an out-of-bounds memory write operation
on the heap—an attacker could carefully massage the heap
and leverage such bugs to gain a write primitive on objects
next to the vulnerable one; 12 segfaults were reported by
ASan as memory read operations at controlled addresses, and
4 segfaults were reported as memory read operations at heap
addresses. Again, by controlling the addresses of such opera-
tions, an attacker could gain arbitrary read/write primitives.

8 Related Work

Our work aims at testing DL frameworks through their
developer-accessible APIs using fuzzing, and relates with
various techniques, including mutation-based [6, 55] and
grammar-based [7,68] fuzzing, model-based testing [5,11,13,
19, 27], and learning-based testing [3, 7]. These techniques
have been extensively used in the past for program testing
in binary and non-binary input domains, as well as for API
testing across domains, ranging from OS kernel drivers to
cloud services APIs and DL framework APIs.
Binary-input Testing. Random input fuzzing was first intro-
duced in the 90’s in an attempt to automatically find reliabil-
ity issues in Unix command-line utilities [41]. Most recent
mutation-based fuzzing tools, like AFL and libFuzzer [55], are
guided by code-coverage feedback and have found hundreds
of CVEs. Typically, coverage-guided fuzzing tools are further
improved with search strategies that specifically target rare
code paths [9], avoid path collisions [20], target specific pro-
gram locations efficiently [8], and leverage neural networks
in order to flip difficult-to-pass branches [10, 56].
IvySyn is similar to the above works in that it also applies

mutation-based fuzzing to uncover memory errors in C/C++
code. However, unlike IvySyn that attempts to find crashes in
APIs of DL frameworks, all the above works target domains
with binary-input formats, such as audio and image processing
applications, ELF parsers, and command-line utilities.
Non-binary-input Testing. In domains with complex, non-
binary input structure—e.g., XML parsers, compilers, and
interpreters—traditional mutation-based fuzzing has been
combined with grammar-aware mutations [45,57,69] in order
to help generate test cases that reach execution stages beyond
syntactic or semantic checks. Furthermore, grammar-based
fuzzing—using probabilistic context-sensitive grammars [68],
context-free grammars [7], or automata [3]—has also been
used to synthesize test cases for non-binary input domains.

Although IvySyn contains a synthesis component to ulti-
mately generate PoVs, its synthesizer does not require gram-
mars. Instead, it follows a bottom-up approach: starting from
a given set of known crashing inputs in a low-level language,
it synthesizes a valid program in a managed language, which,
when executed, will propagate the specific offending inputs
to the native APIs. Our synthesis approach is straightforward
(as the cross-language mapping between low- and high-level
APIs is inherent to the design of DL frameworks), and requires
only few seconds to synthesize tens of PoVs in a complex
language (e.g., Python).
Testing System Interfaces. IvySyn is related to past works
that focus on finding errors in interface implementations of
systems in various domains, ranging from testing cloud ser-
vice APIs [5, 19] to OS kernel interfaces [11, 13, 27] and
native library interfaces [6]. Similarly to the above, IvySyn
also takes into consideration the additional notion of calling
context: that is, invoking an API requires not only the proper
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argument types, but also the proper caller(s) chain and global
state (i.e., variables initialization). However, instead of lever-
aging, say, model-based testing [5, 11, 13, 19, 27] (to infer
dependencies and generate API sequences), IvySyn relies on
developer unit tests to force-execute the target APIs, which
are then invoked and fuzzed with a proper calling context.

Furthermore, unlike all past works that automatically syn-
thesize fuzzing drivers [6], IvySyn is performing mutation-
based fuzzing on native code and uses crashing inputs to
synthesize PoVs on a high-level, managed language. Thus,
IvySyn operates across layers of abstractions implemented in
different low- and high-level languages, with different security
assumptions (instead on a homogeneous C/C++ stack).
Testing Deep Learning Frameworks. IvySyn most closely
relates to past works that aim at finding bugs in the under-
lying implementations of DL frameworks. Mutation-based
approaches that make use of pre-trained DL models as
seeds [18,26,44,71,72,75] mostly uncover errors with regards
to incorrect or inconsistent functionality, numerical errors, and
performance degradation; while others that perform mutations
on the input parameters of high-level DL framework APIs
uncover—similarly to IvySyn—fatal runtime and memory
safety errors in DL kernel implementations [23, 74].

However, unlike IvySyn, these tools are not fully-
automated. Specifically, DocTer [74] requires a domain-
expert to manually add annotations for specifying valid
argument-value combinations. Likewise, in Atheris [23],
a developer has to manually implement driver code and add
type-awareness with respect to high-level APIs.

Conceptually, IvySyn’s main difference compared to prior
work in testing DL frameworks is the design and implemen-
tation of a two-fold, bottom-up approach. To the best of our
knowledge, IvySyn is the first fuzz testing framework to re-
alize such an approach and has three key benefits: (1) it is
fully-automated and requires no manual effort, like manually
constructing fuzzing drivers or adding domain-expert annota-
tions; (2) it hooks directly on the strongly-typed native APIs
and can perform type-aware mutations, targeted to test DL
framework APIs; and (3) it leverages inherent DL framework
mappings and low-level crashing inputs to seamlessly synthe-
size code snippets involving the respective high-level APIs.
As shown earlier (§7), these benefits allow IvySyn to auto-
matically find more crashing inputs than low-level fuzzers,
and more PoVs than comparable high-level API fuzzers.
Testing Deep Learning Models. Lastly, a target domain re-
lated, but orthogonal, to ours is testing DL models with re-
spect to their robustness against adversarial examples [22].
Adversarial examples that confuse DL models is a topic of
intense research with attacks [25,47,75] and defenses [12,39]
developed in an iterative manner. Our target domain relates
with that of the above works, but our goal is orthogonal since
our objective is to uncover memory errors in the implementa-
tions of DL frameworks; not bugs in pre-trained DL models
in order to improve robustness against adversarial examples.

9 Conclusion

DL frameworks involve code that spans different low- and
high-level languages. In this context, it is no surprise that, due
to missing sanity checks and mismatched security assump-
tions, untrusted inputs may transfer through the stack of APIs
and reach memory-unsafe code. The question then becomes:

“How can we automatically detect such code defects and report
them to framework developers in an actionable manner?”

With IvySyn, we presented a path towards answering this
question. Specifically, IvySyn first identifies DL kernel code
implementations and adds fuzzing hooks in order to perform
mutation-based fuzzing with type-aware mutations. Next,
given a set of crashing kernels, it synthesizes high-level code
snippets that propagate offending inputs, which crash native
kernels, thought high-level APIs. Such code snippets serve
as a proof of vulnerability, and can help developers replicate,
analyze, and eventually fix the respective bug(s).

Although still an early prototype, IvySyn has already
helped TensorFlow and PyTorch framework developers iden-
tify and fix 61 previously-unknown security vulnerabilities,
and assign 39 unique CVEs. Arguably, IvySyn has improved
the security posture of the two most popular DL frameworks,
explicitly and implicitly affecting millions, if not billions, of
users worldwide. We posit that in such a rapidly evolving
ecosystem, the need for fully-automated vulnerability discov-
ery frameworks, like IvySyn, is undeniable.

Availability

The prototype implementation of IvySyn is available at:
https://gitlab.com/brown-ssl/ivysyn

Responsible Disclosure

The authors followed the community guidelines [49, 64] and
responsibly disclosed the discovered vulnerabilities, and bugs,
to the framework developers of PyTorch and TensorFlow.
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A Instrumentation Example

IvySyn automatically instruments DL kernel implemen-
tations and injects wrappers that kick-start a force-executed
fuzzing session. Listing 3 shows an example of such a wrap-
per for the PyTorch kernel cosine_similarity.

1 Tensor cosine_similarity(const Tensor& x1,
2 const Tensor& x2, int64_t dim, double eps){
3

4 if (fuzzing::already_fuzzing ||
5 fuzzing::was_fuzzed("cosine_similarity"))
6 // Return the original function result
7 return do_cosine_similarity(x1, x2,
8 dim, eps);
9 fuzzing::already_fuzzing = true;

10

11 Tensor retval, x1_fuzz, x2_fuzz;
12 int64_t dim_fuzz; double eps_fuzz;
13 std::vector<std::string> types =
14 {"Tensor&", "Tensor&",
15 "int64_t", "double"};
16 std::vector<void *> args{};
17 args.push_back((void *) &x1);
18 ... // Repeat for x2, dim, and eps
19 // Initialize fuzzer with the original
20 // args and types
21 fuzzing::Fuzzer fuzzer =
22 fuzzing::Fuzzer("cosine_similarity",
23 types, args);
24

25 while (fuzzer.has_more_mutations(true)){
26 // Get the next combination of inputs
27 x1_fuzz = fuzzer.get_next_mut_tensor();
28 ... // Repeat for x2, dim, and eps
29 try {
30 // Invoke the original function
31 fuzzer.mut_start_time();
32 do_cosine_similarity(x1_fuzz,
33 x2_fuzz, dim_fuzz, eps_fuzz);
34 fuzzer.mut_end_time(false);
35 } catch (...) { ... }
36 }
37 fuzzing::already_fuzzing = false;
38

39 // Return the original function result
40 return do_cosine_similarity(x1, x2,
41 dim, eps);
42 }

Listing 3: Example instrumentation performed by IvySyn
on the kernel cosine_similarity of the PyTorch API
torch.nn.functional.cosine_similarity.

B Root-cause Analysis

To provide a better insight regarding how the offending inputs
discovered by the PoVs of IvySyn can lead to memory or fa-
tal runtime errors, we discuss the root causes of three crashes
in kernels across PyTorch and TensorFlow. All three cases
were previously-unknown vulnerabilities, which were first dis-
covered by IvySyn, while the two TensorFlow vulnerabilities
presented were also assigned CVEs [15, 16].

B.1 _remove_batch_dim (PyTorch)

IvySyn uncovered a memory corruption vulnerability in
PyTorch’s _remove_batch_dim [53] kernel; Listing 4 shows
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1 Tensor _remove_batch_dim(const Tensor& self,
2 int64_t level, int64_t batch_size,
3 int64_t out_dim) {
4 if (!has_level(self, level)) {
5 auto self_sizes = self.sizes();
6 VmapDimVector expanded_sizes(
7 self_sizes.begin(), self_sizes.end());
8 expanded_sizes.insert(
9 expanded_sizes.begin() + out_dim,

10 batch_size);
11 return self.expand(expanded_sizes);
12 // ...
13 }

Listing 4: Relevant code from the vulnerable
_remove_batch_dim kernel in PyTorch.

1 class EditDistanceOp : public OpKernel {
2 void Compute(OpKernelContext* ctx) override {
3 // ...
4 if (g_truth == g_hypothesis) {
5 auto loc = std::inner_product(g_truth.begin(),
6 g_truth.end(), output_strides.begin(),
7 int64_t{0});
8 OP_REQUIRES(
9 ctx,

10 0 <= loc &&
11 loc < output_elements,
12 errors::Internal("...")
13 output_t(loc) =
14 gtl::LevenshteinDistance<T>(truth_seq,
15 hypothesis_seq, cmp);
16 // ...
17 }

Listing 5: Relevant code from the vulnerable Compute()
function of the EditDistanceOp kernel in TensorFlow. The
highlighted line indicates the bug-fixing patch, which was
omitted in the original version of the kernel.

the relevant code. In particular, when has_level returns
false, execution will reach ln. 6, where the attacker-provided
value batch_size will be written at an offset from the
expanded_sizes vector, which is also determined by the
attacker-provided value out_dim (ln. 8–10). Since there are
no sanity checks on either argument, and both are 64-bit val-
ues, the attacker can essentially gain an 8-byte, controlled
(“buffer underflow”) write and further tamper-with the control-
or data-flow of the respective process [70].

B.2 EditDistanceOp (TF)
IvySyn uncovered a memory corruption in TensorFlow’s

EditDistanceOp kernel; Listing 5 shows the relevant code.
The loc variable is computed as the inner product of the
attacker-controlled g_truth and output_strides variables
(ln. 5-7). This variable is then used as an index for a write
operation relative to the output_t array.

1 void Compute(OpKernelContext* ctx) override {
2 const Tensor& handle = ctx->input(0);
3 OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(
4 handle.shape()),
5 errors::InvalidArgument( "`handle`
6 must be scalar"));
7 const string& name =
8 handle.scalar<tstring>()();
9 // ...

10 }

Listing 6: Relevant code from the vulnerable Compute() func-
tion of the DeleteSessionTensorOp kernel in TensorFlow.
The highlighted lines indicate the bug-fixing patch, which
was omitted in the original version of the kernel.

The upper bound of the loc value is properly checked
(ln. 11), however no check on whether the value is positive
exists. As a result, an attacker can perform a controlled write,
in the vicinity of output_t, by providing inputs such that the
loc variable results in a negative value. After reporting this
vulnerability to the TensorFlow developers, a check on the
value of the loc variable was added (ln. 10).

This vulnerability was deemed of critical severity and was
assigned a high CVE score [16], as it allows an attacker to
hijack the control- or data-flow of the respective process.

B.3 DeleteSessionTensorOp (TF)
IvySyn uncovered a fatal runtime error in TensorFlow’s

DeleteSessionTensorOp kernel. In this case, the attacker
can trigger the error by providing a non-1-dimensional ten-
sor as the input for the handle argument, resulting in ab-
normal process termination. As shown in Listing 6 (ln. 6),
the scalar() method will be invoked on the input tensor.
Internally, scalar() checks whether the provided tensor is 1-
dimensional, and exits the program by calling abort() if the
check fails. The kernel developers wrongly assumed that the
user will always provide a 1-dimensional input and omitted
to check the input shape before calling scalar(). After re-
porting this vulnerability, it was patched by inserting a check
and throwing a Python InvalidArgument error (ln. 3-5).

Similar wrong assumptions about the shapes and contents
of the input arguments exist across the entire TensorFlow
codebase, resulting to a high number of missing validation
checks, thereby allowing an attacker cause a DoS. Various
other vulnerabilities discovered by IvySyn were handled in a
similar manner, with the TensorFlow developers adding the
proper checks instead of making assumptions about the pro-
vided input [60,62,63]. Even though an attacker may not gain
a memory corruption/disclosure primitive, the promptness in
the response of the TensorFlow security team, as well as the
assignment of CVEs, indicate the importance of identifying
and fixing these types of (DoS) vulnerabilities.
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