
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Detecting and Handling IoT Interaction Threats in
Multi-Platform Multi-Control-Channel Smart Homes

Haotian Chi, Shanxi University and Temple University; Qiang Zeng,
George Mason University; Xiaojiang Du, Stevens Institute of Technology

https://www.usenix.org/conference/usenixsecurity23/presentation/chi

Detecting and Handling IoT Interaction Threats in
Multi-Platform Multi-Control-Channel Smart Homes

Haotian Chi
Shanxi University, Temple University

htchi@sxu.edu.cn

Qiang Zeng
George Mason University

zeng@gmu.edu

Xiaojiang Du
Stevens Institute of Technology

xdu16@stevens.edu

Abstract
A smart home involves a variety of entities, such as IoT de-
vices, automation applications, humans, voice assistants, and
companion apps. These entities interact in the same physical
environment, which can yield undesirable and even hazardous
results, called IoT interaction threats. Existing work on in-
teraction threats is limited to considering automation apps,
ignoring other IoT control channels, such as voice commands,
companion apps, and physical operations. Second, it becomes
increasingly common that a smart home utilizes multiple IoT
platforms, each of which has a partial view of device states
and may issue conflicting commands. Third, compared to de-
tecting interaction threats, their handling is much less studied.
Prior work uses generic handling policies, which are unlikely
to fit all homes. We present IOTMEDIATOR, which provides
accurate threat detection and threat-tailored handling in multi-
platform multi-control-channel homes. Our evaluation in two
real-world homes demonstrates that IOTMEDIATOR signifi-
cantly outperforms prior state-of-the-art work.

1 Introduction

Rapid development of IoT has led to the flourishing deploy-
ment of smart homes. A smart home is a complex system
involving a variety of entities, such as IoT devices, automa-
tion applications, humans, voice assistants, and companion
apps. These entities interact in the same physical environment,
which can cause undesirable and even hazardous interaction
results, called interaction threats. For example, as shown in
Figure 1(a), an app, which turns on a space heater at 6pm,
can trigger the execution of another app, which opens the
window when the temperature exceeds a threshold; this gives
burglars a chance to break in. This problem draws great atten-
tion [21, 23, 26, 29, 30, 34, 50, 54]. However, as illustrated in
Table 1, existing work has three major limitations.

First, prior work is limited to studying Cross-App Interac-
tion (CAI) threats [26], which are caused by the interaction of
automation apps (i.e., interaction threats via the automation

(a) Cross-App Interaction (CAI)
threat

(b) Cross Manual-control and Au-
tomation Interaction (CMAI) threat

Figure 1: Examples of interaction threats. (a) The interaction of the
two apps may cause the window to be opened. (b) If the user sets
“Vacation” mode using a companion app, the automation cannot turn
on the camera when a break-in happens; such an interaction threat
involves manual control and cannot be detected by prior work.

Table 1: Comparing prior work with IOTMEDIATOR (our work), regarding
whether the three limitations are addressed. ✓: Yes; ✗: No..

Detect Cross
Manual-control and

Automation Interaction?

Support
Multi-Platform

Homes?

Threat-Tailored
Handling?

Soteria [21] ✗ ✗ ✗

IoTSan [50] ✗ ✗ ✗

SafeChain [34] ✗ ✗ ✗

IoTIE [23] ✗ ✗1 ✗

iRuler [54] ✗ ✗ ✗

HomeGuard [26] ✗ ✗ ✗

IoTCom [15] ✗ ✗ ✗

IoTSafe [30] ✗ ✗ ✗

IoTGuard [22] ✗ ✗1 ✗

IOTMEDIATOR ✓ ✓ ✓
1 Some work [22, 23] recognizes this limitation but do not address it (Section 3.1).

channel), ignoring other IoT control channels. Actually,
in addition to the automation channel, an IoT device can be
controlled through various manual control channels, such as
companion apps, voice commands, and physical operations.
For example, as illustrated in Figure 1(b), a user sets the mode
to “Vacation” using a companion app, which disables the au-
tomation that turns on security cameras when the front door
is opened and the home is in “Away” mode. Unlike automa-
tion apps, manual controls are less predictable. We call the
interaction between a manual control and automation apps
Cross Manual-control and Automation Interaction (CMAI),
which has not been studied yet.

USENIX Association 32nd USENIX Security Symposium 1559

Second, it becomes increasingly common that a smart home
utilizes multiple automation platforms [1,4,24], while exist-
ing IoT interaction threat detection systems typically assume
one single platform. At first glance, it seems a trivial deploy-
ment issue, since the user can deploy a threat detector at each
platform to adapt to a multi-platform home. However, on
one hand, it is not uncommon that some IoT devices are con-
nected to one platform, while others to another. As a result,
each platform has a partial view of the devices and hence
it is difficult for the multiple detectors that scatter in these
platforms to predict whether/when/how one device interacts
with another. On the other hand, one device may be controlled
through multiple platforms (e.g., both Google Home [9] and
Amazon Alexa [8]), which may issue conflicting control over
devices. These issues are an elephant in the room: they cause
significant challenges in detecting interaction threats, while
existing work does not discuss them.

Third, despite the much work on detecting interaction
threats, their handling is much less studied. Static ap-
proaches [21, 23, 26, 29, 34, 50, 54] need users to discard,
rewrite or reconfigure automation apps that may cause inter-
action threats, even though many reported threats are actually
false positives. A few works [22, 30] assume that generic pre-
defined policies can fit different homes, which is impractical
given the diversity of homes, scenarios and user preferences.
A security expert can define custom policies for a home [46],
but this approach does not scale well for many homes and
incurs extra costs. Threat-tailored handling that factors in the
context and consequences of a threat instance is much desired
but not available.

We present IOTMEDIATOR, which addresses all the three
limitations. It provides accurate detection of interaction
threats in multi-platform multi-control-channel homes and
generates threat-tailored handling. Inspired by [25], we lever-
age a hub-based architecture, where a local mediator mediates
the original communication between IoT devices and their
platforms. By unifying the device identifiers across multi-
ple platforms, the mediator acquires a global view of device
events and commands. On top of this, a two-phase detec-
tion method is devised: it first identifies interaction threat
candidates via static analysis, and then detects real threats
based on dynamic information. An automation app can be
modeled as one or more automation rules, each in the form
of ⟨trigger, condition, action⟩. By considering the impact
of an automation rule on the trigger, condition and action of
another rule or a manual control, we systematically categorize
interaction threats, including the new CMAI threats. When
a threat is detected, according to the threat type and other
dynamic information, threat-tailored handling is generated.

We evaluate IOTMEDIATOR in two real-world smart
homes. The first is a one-resident apartment installed with
21 automation apps and 22 IoT devices, which are connected
to four platforms: SmartThings, Alexa, IFTTT and Philips
Hue. The second is a two-resident two-floor house, where 22

devices are connected to three platforms (SmartThings, open-
HAB, Philips Hue) and 14 automation apps installed. The
evaluation demonstrates that IOTMEDIATOR can effectively
detect all the types of interaction threats and generate threat-
tailored handling. We make the following contributions:

• Detecting Cross Manual-control and Automation In-
teraction (CMAI) Threats. We identify a new family of
interaction threats due to the interactions between manual
controls (via companion apps, voice commands or phys-
ical operations) and automation apps. While prior work
on interaction threats is limited to considering the automa-
tion channel, our work extends the scope to various control
channels and provides a comprehensive categorization.

• Supporting Multi-Platform Homes. A multi-platform
home raises intriguing challenges in detecting and handling
interaction threats. We leverage a hub-based architecture1

to mediate IoT messages between IoT devices and servers
and translate device IDs across platforms, which makes
cross-platform interaction detection and handling viable.

• Threat-Tailored Handling. Given diverse homes and user
preferences, a one-size-fits-all solution using generic poli-
cies does not work well. IOTMEDIATOR is the first that
generates threat-tailored handling, which comprises user-
friendly options tailored to the threat instance.

2 Threat Model

Interaction threats can be created or exploited by attackers
in multiple ways. (1) Given those widely installed apps, an
attacker can develop and promote apps that cause interac-
tion threats with the popular apps. The apps can individually
pass the malicious-app checking but cause threats together.
(2) By sniffing encrypted WiFi traffic of a home [24, 63], an
attacker can infer information about devices and apps in a
victim home and use it to inject and predict interaction threats.
For example, a robot vacuum cleaner that starts working at
10am triggers another app, which sets the home to “home”
mode when motion is detected [30]. An attacker can infer
when the interaction arises and break in a home, without trig-
gering an alarm since it is the “home” mode. (3) Consider the
example in Figure 1(a): via the interaction threat, an attacker
can manipulate a well secured device (e.g., the window) by
compromising a vulnerable device (e.g., turning on the space
heater). Prior work [22, 26, 29, 30, 34, 54] assumes a similar
threat model.

We clarify that not all interactions are hazardous, but when
a new interaction arises, the user should be aware of it to
avoid confusions and undesired interaction results. Our work
reports interactions to users and provides handling options.

1We clarify that the architecture was first proposed by a work that protects
user privacy [25]; we employ it for a very different purpose (Section 3.2).

1560 32nd USENIX Security Symposium USENIX Association

(a) Cannot capture manual controls

(b) Cannot generalize to other platforms

(c) Cannot send corrective commands

Figure 2: Limitations of prior systems.

3 Design Overview

3.1 Challenges
As illustrated in Table 1, existing approaches cannot detect
or handle interaction threats well in multi-platform multi-
control-channel homes. We discuss the challenges in design-
ing cross-platform interaction detection and handling.

Monitoring manual controls in real time is required for
detecting CMAI threats. Manual device control via com-
panion apps or voice commands generates cyberspace com-
mands and results in new events. Manual physical opera-
tions do not generate cyberspace commands but cause new
events as well after changing device states. Neither static
approaches [21, 26, 34, 50, 54] nor the instrumentation-based
dynamic approaches [22,30] can capture manual controls. As
shown in Figure 2(a), automation app instrumentation cannot
monitor manual control behaviors since the commands do not
go through the automation apps. Therefore, to detect CMAI
threats, the detector must be able to monitor manual controls
as well as automation apps.

Threat detection across multiple platforms needs a global
view. Most existing works [21,26,30,34,50,54] only consider
a single-platform system (e.g., SmartThings or IFTTT) and
cannot accurately detect threats in multi-platform homes. To
detect (and handle) interaction threats among automation apps
running on different platforms, a solution must have a global
view (and control) over the different platforms. To achieve
a global view, one can employ a generablizable accessing
method for multiple platforms, or adopt an accessing method
supported by each individual platform. However, due to the

heterogeneity and closed-source nature of most platforms,
neither can a generablizable technique be found from exist-
ing work (e.g., code instrumentation [22, 30] and API-based
webhooking [30] are not applicable to most proprietary plat-
forms), nor does it hold that each platform supports at least
one technique for third-party accessing (see Figure 2(b)).

To bypass the limitation, a few works [22, 23] rewrite apps
from different platforms and migrate them to a single plat-
form, so that a single-platform approach can be applied. This
suffers from the following issues. (1) It needs significant ef-
forts to rewrite apps and mitigate apps from one platform to
another. (2) Different platforms have different strengths (e.g.,
in app expressiveness, device connections, security and stor-
age), and the user may want to utilize the multiple platform to
benefit from the strengths. Therefore, we need to find a viable
path to deal with multiple platforms.

Threat-tailored handling is needed. Handling approaches
proposed by existing works are in two categories: (1) re-
configuring, re-writing or discarding automation apps, and
(2) enforcing policies in runtime. Static approaches [21, 26,
34, 50, 54] usually propose the first category since they can-
not intervene in the system runtime behaviors. The process
is time-consuming and error-prone. Plus, due to false posi-
tives, users may be asked to modify apps that do not cause
interaction threats. Dynamic approaches [22, 30] can employ
the second category. However, it is unclear how to define
generic policies that fit all the diverse homes, user needs, and
scenarios. As an example, Celik et al. [22] use generic inter-
action handling policies and context-aware security policies.
Some generic policies are used to prevent interaction threats,
which is overly restrictive and disrupts desired automation.
On the other hand, context-aware security policies, e.g., “the
door must be locked when a user is not present at home or
sleeping”, define specific scenarios where devices must or
mustn’t be in certain states. Nevertheless, it is difficult, if not
impossible, for experts to provide policies that fit all homes,
or for end users to define a complete set of such policies to pre-
vent all threats while ensuring good usability. Worse, existing
techniques, such as code instrumentation [22, 30], have other
limitations. As shown in Figure 2(c), the detector can only
intervene while instrumented automation apps are executed,
so cannot actively send post-execution corrective commands.

3.2 IOTMEDIATOR Overview
We design a system IOTMEDIATOR to detect and handle
interaction threats in multi-platform systems, overcoming the
aforementioned challenges. IOTMEDIATOR can run on a
local device, such as a desktop, Raspberry Pi, WiFi router,
etc. Figure 3 shows its architecture, which has three modules:
Messenger, Threat Detection and Threat Handling.

The Messenger module is built to acquire a global view and
control over the multiple platforms. It has two components
device gateway and device virtualization, which connect with

USENIX Association 32nd USENIX Security Symposium 1561

Figure 3: Architecture of IOTMEDIATOR.

Figure 4: Device identifier unification across platforms.

the smart devices and platforms, respectively. As shown in
Figure 3, Messenger segregates and mediates the original
connections between IoT devices and platforms. Therefore,
Messenger is capable of (1) intercepting all events from IoT
devices and forwarding them to IoT platforms; (2) intercept-
ing all cyberspace commands coming from automation apps,
companion apps and voice commands and forwarding them
to IoT devices; and (3) generating commands and sending
them to IoT devices.

Comparison with PFirewall. The mediation architecture
was first proposed in PFirewall [25]. Our work differs from
PFirewall in the following aspects. (1) Different purposes.
PFirewall, as well as Peekaboo [38], protects IoT user privacy,
while our work studies interaction threats. (2) One-way vs.
two-way mediation. PFirewall mediates outgoing data flows
(i.e., IoT events) only, while IOTMEDIATOR mediates data
flows in both directions (i.e., IoT events and commands). (3)
Cross-platform checking. PFirewall does not conduct cross-
platform checking, while IOTMEDIATOR does. For example,
when two platforms issue lock-related commands to a home,
IOTMEDIATOR needs to figure out whether the two com-
mands refer to the same lock or not. To facilitate this capacity,
as shown in Figure 4, our Messenger assigns a unique ID UID
to each physical device, and maintains a mapping between
the unique ID and an instance ID per platform that connects
the device. The mappings are then used to translate between
unique IDs and device instance IDs.

Modules Threat Detection and Threat Handling are built
on top of Messenger. They are capable of viewing and con-
trolling all the events/commands mediated by Messenger. In
the Threat Detection module, a candidate screening compo-
nent utilizes static information (e.g., automation apps, de-

Figure 5: Cross-platform interaction detection framework.

vice types) to identify interaction threat candidates, which
are monitored in the runtime by a dynamic verification com-
ponent to detect real interaction threats. When a real inter-
action is detected, the option generation component in the
Threat Handling module automatically generates handling
options, according to the details of the detected threat in-
stance. Once a handling option is selected as the solution by
the user, the solution enforcement component enforces the
solution to handling the current and future occurrences of the
interaction threat. We present the details of interaction threat
detection and handling in Section 4 and Section 5, respec-
tively. We are open-sourcing the code of IOTMEDIATOR at
https://github.com/HaotianChi/IoTMediator.

4 Detecting Interaction Threats

Figure 5 shows the workflow of interaction threat detection,
which consists of two major phases: candidate screening and
dynamic verification.

4.1 Candidate Screening
The candidate screening phase identifies all potential interac-
tions between each pair of automation apps (i.e., CAI), or be-
tween each manual control and automation app (i.e., CMAI).
Therefore, the candidate screening needs to take as inputs all
the trigger-condition-action rules defined by automation apps
and all the device controls (i.e., commands) supported by the
devices. This paper employs the existing rule extraction tech-
niques as a building block (see more details in Section 7). The
device gateway can easily obtain the supported commands
of each connected device from its device information during
the join phase. With these inputs, this paper focuses on the
interaction analysis based on automation rules and device
control commands.

4.1.1 Identifying CAI Candidates

Consider two automation rules Ri = ⟨Ti,Ci,Ai⟩ (i = 1,2),
where Ti, Ci, Ai denote the trigger, condition and action, re-
spectively. R1 and R2, if misconfigured, may cause interaction
threats (e.g., conflicts, chained execution). Figure 6 shows ex-
amples of CAI. Note that the contribution of this paper is not
to discover new CAI patterns, but to present a novel approach

1562 32nd USENIX Security Symposium USENIX Association

(a) Potential Race Condition (b) Potential Race Condition

(c) Chained Execution (d) Chained Execution

Figure 6: Examples of CAI.

Table 2: Summary of different interaction threat patterns and the pre-
requisites for candidate screening. Notations: “," concatenates multiple
constraints; Ri = ⟨Ti,Ci,Ai⟩ (i = 1,2,3) denote three automation rules, where
Ti, Ci, Ai denote the trigger, condition and action, respectively; c denotes a
manual control; T1 = T2 denotes that two triggers are the same; A(·) ⇒C(·)
and A(·) ⇏C(·) denotes that A(·)’s effect satisfies and dissatisfies C(·), respec-
tively; c ⇒ C3 and c ⇏ C3 denotes that c’s effect satisfies and dissatisfies
C3, respectively; A(·) 7→ T(·) denotes that A(·)’s effect triggers T(·); c 7→ T3
denotes that MC’s effect triggers T3; A1 = ¬A2 denotes that two actions have
conflict; c = ¬A3 denotes that a manual command and a rule action have
conflict; C1 ∧C2 denotes that both conditions could be satisfied.

Interaction Pattern Prerequisite
CAI - Condition Enabling A1 ⇒C2
CAI - Condition Disabling A1 ⇏C2
CAI - Race Condition T1 = T2, A1 = ¬A2
CAI - Potential Race Condition (RC) A1 = ¬A2
CAI - Chained Execution A1 7→ T2

CAI - Action Revert A1 7→ T2, A2 = ¬A1

CAI - Condition Bypass T1 = T2, A1 = A2, C1 ̸=C2
CAI - Infinite Loop A1 7→ T2, A2 7→ T1
CMAI - Chained Execution c 7→ T3

CMAI - Potential Race Condition (RC) c = ¬A3

CMAI - Condition Enabling c ⇒C3

CMAI - Condition Disabling c ⇏C3

to detecting and handling CAI threats in multi-platform sys-
tems. For the ease of presentation, we collect the CAI threat
patterns from state-of-the-art works [26, 50, 54], as shown in
Table 2 and Figure 7.

We adopt the SMT-based approach in [26] for candidate
screening. We list in Table 2 the prerequisite that a pair of
rules, R1 and R2, must satisfy to be considered as a candi-
date of a certain CAI pattern. When the candidate screen-
ing component identifies a CAI candidate ⟨R1,R2,P⟩ where
two automation rules R1 = (T1,C1,A1) and R2 = (T2,C2,A2)
cause a potential threat pattern P, it reports the candidate to
the dynamic verification component, which verifies if the can-
didate actually causes real interaction in runtime. Note that
prerequisites of some CAI patterns, including race condition,
potential race condition, condition bypass, infinite loop, are
commutative, while the others are not and, in this case, the
order of R1 and R2 in ⟨R1,R2,P⟩ matters.

4.1.2 Identifying CMAI Candidates

Manual control, like automation actions, can interact with
the trigger, condition, or action of automation apps. We
term this family of interactions as Cross Manual-Control and

Figure 7: CAI patterns. In rules Rm = ⟨Tm,Cm,Am⟩,m ∈ {1,2}, Tm,
Cm and Am are the trigger, condition and action, respectively.

(a) Chained Execution (b) Potential Race Condition

(c) Condition Disabling (d) Condition Enabling

Figure 8: Examples of CMAI.

Automation Interactions (CMAI) and categorize them into
four patterns. Table 2 shows the prerequisite for candidate
screening and Figure 8 illustrates some CMAI examples. To
identify all potential CMAI, we collect a set of all supported
controls by the devices (i.e., actuators) in a home, denotes
as C . By checking whether each control c ∈ C interacts with
the trigger, condition and action of every automation app, and
satisfies the prerequisite of one of the four CMAI patterns (see
Table 2), all the CMAI candidates are identified. Suppose a
manual control c and an automation rule R3 satisfies a CMAI
pattern P. We record this CMAI candidate as a tuple ⟨c,R3,P⟩.
All CMAI candidates are reported to the dynamic verification
component. Note that manual controls are due to user actions
and can only be captured at the runtime.

4.2 Dynamic Verification

Candidate screening, through static analysis, has the advan-
tage of quickly identifying potential interaction cases but
cannot precisely determine if a candidate actually occurs in
a real environment. Figure 6(d) shows a chained execution

USENIX Association 32nd USENIX Security Symposium 1563

Table 3: Notations used in Section 4.2.2 (Detecting Real Interactions), Table 4, and Appendix B.

Symbol Description

(·) A wildcard function argument that may be a rule’s trigger, condition, action, or a manual control.
E(·) A function that takes as input a rule’s trigger or condition, and returns the corresponding event (e.g., switch-on event) that can activate the input trigger

(e.g., when switch is turned on) or satisfy the input condition (e.g., if the switch is currently on).
S(·) A function that takes as input a rule’s trigger, condition or action, and returns the corresponding device state(s) (e.g., switch is on) which is subscribed to by the

input trigger (e.g., when switch is turned on), satisfies the input condition (e.g., if switch is currently on), or set by the input action (e.g., turn on switch).
C (·) A function that takes as input a rule’s action or a manual control, and returns the command (e.g., turn-on-switch command) that is generated by the input

rule action or manual control (e.g., turn on switch).
obs An assertion that an event or command is observed.
matchS(·) An assertion that the current device state (e.g., the switch is on) matches the anticipated state S(·) (e.g., switch is on).
matchS(·)−−−−−→ The assertion, matchS(·), holds true during a specified time period.

candidate. Turning on the space heater at 6pm does not lead
to opening the window unless the heater increases the tem-
perature sensor’s reading above the threshold (note the tem-
perature sensor may have a distance from the heater). False
alarms due to static analysis motivate us to further use dy-
namic verification to verify the candidates.

4.2.1 Recognizing Manual Control and Automation

To monitor manual controls and automation, the dynamic
verification component listens to the incoming events and
commands in real time and accesses the historical event and
command logs maintained by IOTMEDIATOR. Physical op-
erations (e.g., turning on an outlet by pressing the button on
it) do not generate a cyberspace command but result in a new
event (e.g., the outlet reports an on event). This pattern can
be utilized to recognize physical operations. Manual con-
trols (through mobile/web companion apps, voice commands)
and automation apps always generate cyberspace commands.
Upon the reception of a command, we need to determine its
source. Note that the execution of an automation app issues
certain command(s). We build a mapping for tracing from
a command back to the automation app(s) that can generate
this command. Then, we further check the precedent logs to
see which specific automation app has been activated and is-
sued the command. The source of the command is labeled as
“automation:AppName” if an automation app is the source;
otherwise, it is labeled as “mobile/web/voice control”.

4.2.2 Detecting Real Interactions

Given an interaction candidate, ⟨R1,R2,P⟩ or ⟨c,R3,P⟩, the
dynamic verification component continuously monitors the
events and commands to see if an instance of the interac-
tion candidate occurs. For each CAI/CMAI type, we define
a sequence of assertions that IOTMEDIATOR verifies in the
runtime. See Table 3 for the notations. The verification is
terminated if one assertion is not true. A CAI/CMAI candi-
date is verified to be a real threat instance if its corresponding
assertions are verified to be true. We discuss the dynamic
verification processes of several interaction patterns below
and those of the other patterns in Appendix B.
CAI - Chained Execution/Action Revert. Suppose two rules
R1 and R2 are a candidate of chained execution or action

revert. IOTMEDIATOR checks the constraints below. If all the
constraints are evaluated true, an instance of the interaction
candidate is verified and vice versa. Action revert is a special
case of chained execution, i.e., R2, when triggered by R1,
performs a contradictory action against R1. The contradiction
of actions is confirmed in the candidate screening phase. Thus,
IOTMEDIATOR takes the same steps to dynamically verify if
R1 and R2 cause a chained execution or action revert.

obsE(T1), matchS(C1), obsC (A1), /* R1 is executed */

matchS(¬T2), /* The trigger of R2 was false */

obsE(T2), /* The action of R1 activates the trigger of R2 ∗/
matchS(C2) /* The condition of R2 is true ∗/

In addition to action-trigger chaining via cyberspace in-
teractions (Figure 6(c) shows an example, where the ac-
tion Switch.on generates an event that triggers the execu-
tion of another automation rule), physical interactions also
cause action-trigger chaining (Figure 6(d) shows an example).
While detecting physical interactions is not our contribution,
IOTMEDIATOR provides full-fledged capabilities for the pur-
pose, including real-time event/command monitoring, historic
events/commands logging, and controlling devices. Specif-
ically, we employ static physical interaction relations [29]
in the candidate screening phase and verify real ones in the
dynamic verification phase. IOTMEDIATOR can be extended
to incorporate techniques in IoTSafe [30] and IoTSeer [51]
to handle special cases due to sophisticated physical effects,
such as continuous effect, joint effect, etc.
CAI - Potential Race Condition. The execution order of two
rules R1 and R2, which are vulnerable to potential race con-
dition, is non-deterministic since they have different triggers.
Therefore, we need to detect both cases: (1) R1 is executed
before R2, and (2) R2 before R1. We present how to verify the
former case below and the latter is similar.

obsE(T1), matchS(C1), obsC (A1), /* R1 is executed */

obsE(A1)
matchS(A1)−−−−−−−→ /* The device state remains unchanged */

obsE(T2), matchS(C2) /* until R2 executes with conflict actions */

CMAI - Chained Execution. To verify that a manual control
c triggers the chained execution of an automation rule R3, the
following constraints are evaluated.

1564 32nd USENIX Security Symposium USENIX Association

obs C (c), /* A manual control c is observed */

matchS(¬T3), /* The trigger of R3 was false */

obs E(T3), /* The manual control c activates the trigger of R3 */

matchS(C3) /* The condition of R3 is true */

If a candidate is verified to yield a real interaction instance,
it is handled by the threat handling module (Section 5).

5 Handling Interaction Threats

Different from existing app-instrumentation approaches that
block or approve commands, our handling not only provides
options tailored to a threat context and their explanations, but
also generates corrective commands as needed.

5.1 Syntax of Handling Option and Solution

To handle an identified interaction threat, IOTMEDIATOR gen-
erates multiple handling options {Opt j| j = 1,2, · · ·} for users
to select from (see Section 5.2). The selected handling op-
tion is termed as the solution (i.e., Sln ∈ {Opt j| j = 1,2, · · ·}).
A handling option Opt j for an interaction threat consists of
one or more option rules, each of which is is denoted as
OR = ⟨V ,I ,O, IT,V,A⟩. V denotes the set of all device or
environment state values (e.g., motion sensor is active, time
is 8am, and the switch is on) in a smart home. I denotes all
types of events and commands (e.g., event: motion-active,
event: time-8am, or command turn-on-switch). Note that
the state values, event types and command types are device-
sensitive. For example, the motion-active events from two
motion sensors (labeled with different device IDs) are re-
garded as two different events. O is a set of meta operators
{⇒,

t
=⇒,→,↛,

t−→} that denote enforce, enforce after t, pass
the transmission, discard the transmission, discard the trans-
mission within t and begin to pass after t, respectively. V
denotes a set of state values V ⊆ V , all of which must be true
for OR to take actions A. The option rule action A is a set of op-
erations A = {a|a ∈ ({⇒,

t
=⇒}×V)∪ ({→,↛,

t−→}×I)∪ /0},
which include enforcing (without or with a delay t) device
states ({⇒,

t
=⇒}×V), passing or blocking events/commands

({→,↛,
t−→}× I) or doing nothing (/0).

We use a shorthand OR= ⟨IT,V,A⟩ to denote an option rule
since V , I and O are shared by all option rules in the same
home deployment. Thus, an option rule can be interpreted as
“when an instance of interaction threat IT is detected, if all
state values specified by V are true, IOTMEDIATOR will take
actions in A.” For simplicity of presentation, the sets V and A
are referred to using a single element v1 and a1, respectively,
if they only have one element (i.e., V = {v1} and A = {a1}).

5.2 Handling Option Generation
Comparison with Prior Approaches. Given the diversity
of smart homes and users, an interaction could be a user-
favored feature [34] or a security/safety threat, which depends
on three factors: (a) the interaction pattern; (b) the involved
automation apps and/or manual control; and (c) user inten-
tions/preferences. For each interaction, IOTMEDIATOR ex-
tracts its corresponding factors (a) and (b) when detecting it,
but cannot obtain factor (c), as it is difficult to figure out a
user’s intentions/preferences. Some existing works [26,50,54]
ask users to rewrite/reconfigure/remove apps or specify secu-
rity policies to handle interaction threats, which allow users
to express their intentions/preferences (factor (c)); however,
it require non-trivial expertise in IoT and is error-prone [27].
Other works [22] define generic policies to handle all inter-
actions of the same patterns in the same manner (factor (a)),
reducing user efforts but ignoring the actually involved apps
and/or manual control (factor (b)), and of course ignoring
user intentions (factor (c)); as a result, they are often too
restrictive, which may violate user intentions and cause in-
correct interventions. In this paper, IOTMEDIATOR adopts a
threat-tailored strategy to handle interactions.

Generating Options. Given an identified interaction, IOT-
MEDIATOR considers handling choices that a user may make,
including allowing, prohibiting, and/or remedying the inter-
action. IOTMEDIATOR then generates handling options rep-
resenting these choices. The “Handling Options” in Table 4
show how IOTMEDIATOR generates handling options for an
identified interaction based on its interaction pattern (factor
(a)) and the involved automation app(s) and/or manual control
(factor (b)). (“Explanation Templates” are described below
and we present concrete examples in Section 5.3.)

User Decisions. IOTMEDIATOR presents useful informa-
tion to help users make informed decisions (factor (c)), in-
cluding text descriptions of the identified interaction, the in-
volved automation apps and/or manual control, and the rec-
ommended handling options. A prior work [26] presented
how to generate text descriptions of interaction threats and
involved automation rules: populating pre-defined text tem-
plates with concrete information of interaction threats and
automation rules. We extend the approach to additionally
generate textual explanations for handling options by populat-
ing text templates, as shown in the “Explanation Templates”
of Table 4. By reading the text, a user can pick a preferred
handling option. IOTMEDIATOR also allows users to save the
solution to handle future occurrences of that interaction.

5.3 Examples
We use examples of one interaction pattern, potential race
condition, to show the followings: the rationale of the gen-
erated handling options, the advantage of our threat-specific
handling compared to existing works, and the required user

USENIX Association 32nd USENIX Security Symposium 1565

Table 4: Handling options and explanation templates for some of the interaction threat patterns (see Table 11 for the other patterns). IOTMEDIATOR generates
multiple handling options and an explanation for each option, which are provided to users for making informed decisions: understand whether an interaction is a
threat or feature, and allow/prohibit/remedy the interaction by choosing a solution from the handling options.

Interaction Pattern (P) Handling Options & Explanation Templates

CAI - Potential RC

Option 1: ⟨⟨R1,R2,P⟩, /0,→ C (A2)⟩+ ⟨⟨R2,R1,P⟩, /0,→ C (A1)⟩
Explanation Template: The execution order does not matter, so let the two rules execute without intervention.

Option 2: ⟨⟨R1,R2,P⟩, /0,→ C (A2)⟩+ ⟨⟨R2,R1,P⟩, /0, [→ C (A1),
t
=⇒ C (A2)]⟩

Explanation Template: The execution order matters and the final device state should be decided by R2; thus, if action A2 is executed
first, execute it again t seconds after A1 is executed (t is 30 by default but configurable).

Option 3: ⟨⟨R2,R1,P⟩, /0,→ C (A1)⟩+ ⟨⟨R1,R2,P⟩, /0, [→ C (A2),
t
=⇒ C (A1)]⟩

Explanation Template: The execution order matters and the final device state should be decided by R1; thus, if action A1 is executed
first, execute it again t seconds after A2 is executed (t is 30 by default but configurable).

Option 4: ⟨⟨R1,R2,P⟩, /0,
t−→ C (A2)⟩+ ⟨⟨R2,R1,P⟩, /0,

t−→ C (A1)⟩
Explanation Template: A1 and A2 should not be issued too closely; instead, the time interval between the two actions

should be at least t seconds (t is 30 by default but configurable).

CAI - Chained Execution

Option 1: ⟨⟨R1,R2,P⟩, /0,↛ C (A2)⟩
Explanation Template: Action A2 should not be executed.

Option 2: ⟨⟨R1,R2,P⟩, /0,→ C (A2)⟩
Explanation Template: Action A2 should be executed.

Option 3: ⟨⟨R1,R2,P⟩,cond⊆ V ,→ C (A2)⟩
Explanation Template: Allow A2 to be executed under a certain condition cond (cond is configurable and can be specific

device states and/or time period).

CMAI - Chained Execution

Option 1: ⟨⟨c,R3,P⟩, /0,↛ C (A3)⟩
Explanation Template: Action A3 should not be executed.

Option 2: ⟨⟨c,R3,P⟩, /0,→ C (A3)⟩
Explanation Template: Action A3 should be executed.

Option 3: ⟨⟨c,R3,P⟩,cond⊆ V ,→ C (A3)⟩
Explanation Template: Allow A3 to be executed under a certain condition cond (cond is configurable and can be specific

device states and/or time period).

CMAI - Potential RC

Option 1: ⟨⟨c,R3,P⟩, /0,↛ C (A3)⟩
Explanation Template: Manual control c should always execute to override rule action A3, but the rule action should not

be executed to override the manual control.
Option 2: ⟨⟨c,R3,P⟩, /0,→ C (A3)⟩

Explanation Template: Manual control c and rule action A3 can override each other.
Option 3: ⟨⟨c,R3,P⟩, /0,

t−→ C (A3)⟩
Explanation Template: Manual control c should always execute to override rule action A3, but the rule action should not

be executed to override the manual control within t (t is 30 by default but configurable).

CMAI - Condition Disabling

Option 1: ⟨⟨c,R3,P⟩, /0,⇒ S(A3)⟩
Explanation Template: Action A3 should be executed.

Option 2: ⟨⟨c,R3,P⟩, /0, /0⟩
Explanation Template: Action A3 should not be executed.

effort for making decisions. (See Section 6.3 for more ex-
amples and comparisons between IOTMEDIATOR and prior
work with regard to handling other interaction threats. Note
that IOTMEDIATOR has the limitation of increasing the user
effort, which is discussed in Section 7.)

Example 1 of Potential Race Condition. It is non-
deterministic whether a potential race condition case is de-
sirable or not. Consider the two rules in Figure 6(a): the first
rule for convenience turns on the ceiling lamp when motion is
detected in living room and the second for energy saving turns
off all lights when user leaves home. The two rules fit the pat-
tern of potential race condition, i.e., the second rule overrides
the command of the first rule when the user walks through the
living room and then leaves home; however, the interaction
actually does not cause a problem. Prior work [22] proposes
a generic policy “two events cannot respectively trigger two
apps to perform conflict actions” for handling potential race
condition (Section 3.1). As a result, when the two rules are
triggered in a row, the second rule will be disabled by the
generic policy and thus lights are not turned off as expected.
Even for the very simple interaction case, the generic policy
fails to handle it properly. In contrast, with IOTMEDIATOR,
a user who finds execution order and timing do not need to
be intervened in can choose Option 1 as the solution.

Example 2 of Potential Race Condition. Figure 6(b) illus-

trates an example where a reported potential race condition
case is problematic. The first rule for convenience unlocks
door when the user approaches home and the second for
safety locks the door at 11pm. The two rules may or may not
cause a real threat depending on the actual situations: (i) if the
user arrives before 11pm, everything works fine, but (ii) if the
user arrives after 11pm, the second rule runs before the first
one; consequently, the door may be left unlocked overnight.
Static approaches such as those in [26, 50, 54] handle this
threat by presenting identified interaction threats as well as
both rules to users and asking them to rewrite/reconfigure/re-
move automation rules. However, it harms the usability and
functionality by simply modifying rules since both rules have
their own functionalities. Some works [22, 30, 58] propose
that users could specify security policies based on a set of
expert-defined security policies; however, none of the policies
listed in [22, 30, 58] can properly resolve the above Potential
Race Condition. For example, the generic policy “two events
cannot respectively trigger two apps to perform conflict ac-
tions” prevents the second rule from securing the home in
situation (i) and disables the first rule to provide convenience
in situation (ii), showing poor performance due to the lack of
flexibility in considering user intentions.

As shown in Table 4, IOTMEDIATOR provides a compre-
hensive set of options for users to handle a potential race

1566 32nd USENIX Security Symposium USENIX Association

(a) Testbed T1

(b) 1st floor of Testbed T2 (c) 2nd floor of Testbed T2

Figure 9: Floor plans and device placement. Devices denoted by
the ID numbers are listed in Table 5. For the sake of brevity, IoT
hubs/bridges are not illustrated.

condition. A user can choose to allow or prohibit the interac-
tion, or fix it by taking into consideration the execution order
and/or timing of the involved automation rules. In Example
2, IOTMEDIATOR presents the text descriptions of the rules
and the interaction, and the explanation of options to the user.
When perceiving that the final door state should be decided
by the second rule, the user selects Option 2 as the solution,
which is interpreted as: The execution order matters and the
final device state should be decided by the second rule; thus,
if the action “locks the door” is executed first, execute it again
30 seconds after “unlocks the door” is executed. This way,
the interaction threat can be handled properly.

6 Evaluation

In Section 6.1, we describe the deployment details of two real-
world smart home testbeds used for evaluating IOTMEDIA-
TOR. We present the performance of IOTMEDIATOR in terms
of interaction threat detection and handling in Section 6.2 and
Section 6.3, respectively. Latency introduced by IOTMEDIA-
TOR is discussed in Section 6.4.

6.1 Smart Home Testbeds

There are no publicly available datasets of entire-home config-
urations that include devices, platforms, automation rules and
logs (events, app commands and manual control). Similar to
previous IoT security research [22,25,26,30,63], we build our
own smart home testbeds, denoted as T1 and T2, to evaluate
IOTMEDIATOR. T1 is an apartment with one resident and T2
is a two-floor house with two residents. The floor plans and de-
vice placements are shown in Figure 9. The details of devices

Table 5: IoT devices and their connections to platforms. d-ID: device ID.
Acronyms: SmartThings (ST), Philips Hue (PH).

Testbed T1
d-ID Device Type Connected Platforms

– SmartThings hub SmartThings
– Philips Hue bridge Philips Hue
1 Presence sensor (smartphone) SmartThings

2 3 5 17 PH motion sensor SmartThings, Alexa, IFTTT
4 PH motion sensor Philips Hue

6 7 9 10 Philips Hue bulb PH, SmartThings, Alexa, IFTTT
8 LIFX bulb SmartThings, Alexa, IFTTT

11 12 Wemo smart plug SmartThings, Alexa, IFTTT
13 ST multipurpose sensor SmartThings, Alexa, IFTTT
14 Kwikset door lock SmartThings, Alexa
15 ST power outlet SmartThings
16 SmartThings motion sensor SmartThings, Alexa, IFTTT
18 Alexa Echo Dot Alexa

19 20 ST WiFi plug SmartThings, Alexa, IFTTT
Testbed T2

d-ID Device Type Connected Platforms
– SmartThings hub SmartThings
– Philips Hue bridge Philips Hue

1 - 6 Philips Hue bulb PH, SmartThings, openHAB
7 ThirdReality switch SmartThings

8 - 12 PH motion sensor SmartThings, openHAB
13 14 ST power outlet SmartThings

15 ST multipurpose sensor SmartThings, openHAB
16 ST WiFi plug SmartThings

17 18 Arlo Essential camera SmartThings
19 20 Presence sensor (smartphone) SmartThings

and automation apps are listed in and Table 5 and Table 6,
respectively. In total, 44 devices and 35 automation apps are
installed on five different platforms (Alexa, IFTTT, Smart-
Things, openHAB, and Philips Hue). The apps are chosen
from official app stores [7] and open-source datasets [2], or
developed by the authors based on the examples from related
literature [21,22,26,29]. In each testbed, IOTMEDIATOR runs
on a Raspberry Pi 4 Model B. All the IoT devices, hubs and
Raspberry Pis are provisioned by the researchers, except that
the home wireless routers are offered by the testbed residents.
We obtained an IRB approval for the research.

6.2 Interaction Threat Detection

To evaluate the performance of interaction detection, we first
run the candidate screening component in both testbeds and
we find 12 app groups (i.e., candidates) that have potential
interaction threats for further testing. We compare the perfor-
mance of IOTMEDIATOR with existing approaches through
both microbench and one-week experiments.

6.2.1 Microbench

In this setting, we manually operate devices and trigger apps
in each test group to check if our IOTMEDIATOR and prior
systems [22,26,30,54]2 can detect the interactions accurately.
We manually enumerate all possible combinations of initial
device states in each group and then operate the devices to
trigger the apps. The total number of combinations of initial

2We have the code of HomeGuard [26] and implemented the approaches
in [22, 30, 54] for conducting the evaluation.

USENIX Association 32nd USENIX Security Symposium 1567

Table 6: Automation apps in the two testbeds. RID: app ID.

Testbed RID App Description and Device Binding Platform

T1

1 When motion 3 is detected in living room, if luminance 17 is below 15 lux, turn on floor lamp 7 and ceiling lamp 8 . SmartThings
2 When front door 13 is opened, turn on ceiling lamp 8 . SmartThings
3 When motion 5 is detected in kitchen, turn on the outlets for microwave 11 and heater 12 . IFTTT
4 When motion 5 is detected in kitchen, if temperature 16 is above 72 ◦F, turn off the heater outlet 12 . SmartThings
5 When the user 1 arrives home, unlock the front door 14 . SmartThings
6 When 11pm, turn off the kitchen lights 10 . Philips Hue
7 When 11pm, lock the front door 14 and turn off outlets 11 12 . SmartThings
8 When the power 15 is higher than 1800W, turn off the heater outlet 12 . SmartThings
9 When motion 2 is detected in bedroom, if the time is between 9am and 11pm, turn on the light 6 . SmartThings

10 When motion 2 is detected in bedroom, turn on the light 6 . Alexa
11 When 6pm, if the home is not in saving mode, turn on the heater 12 . Alexa
12 When temperature 16 exceeds 75 ◦F, if the home is in saving mode, turn on the window opener switch 19 . IFTTT
13 When oven outlet 20 turns on, set the location mode to party mode. SmartThings
14 When the location mode changes to party mode, unlock the door 14 , and turn on lights 7 8 9 10 and microwave outlet 11 . SmartThings

T2

1 When motion 10 is detected, if luminance 12 is below 15 lux, turn on ceiling lamp 5 and floor lamp 6 . SmartThings
2 When motion 10 is detected in bedroom, turn on ceiling lamp 5 . SmartThings
3 When illuminance 8 falls below 10 lux in living room, if any user 18 19 is at home, turn on ceiling lights 1 2 3 . SmartThings
4 When illuminance 8 exceeds 30 lux in living room, if motion 8 is inactive, turn off ceiling lights 1 2 3 . openHAB
5 When the door contact 15 is open, if the home is in away mode, turn on camera 17 . SmartThings
6 When motion 10 is detected in bedroom, if the home is in home mode, turn off camera 18 . openHAB

Table 7: Microbench experiment for the comparison of interaction detection between the state-of-the-art approaches (with global view) and ours. Test
Group: a candidate of a certain interaction pattern; it consists of a pair of automation rules, or a manual control and an automation rule. Nall : the number of all
combinations of initial device states in an test group. Note that static approaches report a test group as problematic as long as one of the combinations causes a
real interaction threat. Ngt : the number of initial device state combinations that cause a real interaction, based on our observations on the devices as ground truth.
N/A denotes that a work does not consider and therefore cannot detect a specific interaction pattern. “—” means that the value cannot be computed due to
“divided by zero”. For instance, HomeGuard [26] never identifies the test group 11 & 12 as CAI – Chained Execution since the conditions of Rules 11 & 12 have
no overlap; thus, the calculation of precision (i.e., the ratio of correctly reported cases to all reported cases) encounters “divided by zero”.

Testbed Test
Group

Interaction
Pattern Nall Ngt

Precision, Recall
HomeGuard [26] iRuler [54] IoTGuard [22] IoTSafe [30] Ours

T1

5 & 7 CAI – Potential RC 24 6 0.25, 1.00 N/A 1.00, 1.00 N/A 1.00, 1.00
11 & 12 CAI – Chained Execution 128 2 —, 0.00 N/A N/A 0.50, 0.50 1.00, 1.00
13 & 14 CAI – Chained Execution 256 63 0.25, 1.00 0.25, 1.00 1.00, 1.00 0.25, 1.00 1.00, 1.00
3 & 4 CAI – Race Condition 16 4 0.25, 1.00 0.25, 1.00 1.00, 1.00 N/A 1.00, 1.00
3 & 8 CAI – Action Revert 16 2 0.13, 1.00 0.13, 1.00 N/A N/A 1.00, 1.00
1 & 2 CAI – Condition Disabling 16 1 0.06, 1.00 0.06, 1.00 N/A N/A 1.00, 1.00

9 & 10 CAI – Condition Bypass 8 1 N/A 0.13, 1.00 N/A N/A 1.00, 1.00

T2

set home mode & 5 CMAI – Condition Disabling 8 2 N/A N/A N/A N/A 1.00, 1.00
set home mode & 6 CMAI – Condition Enabling 8 2 N/A N/A N/A N/A 1.00, 1.00

1 & 2 CAI – Condition Disabling 16 0 0.00, — 0.00, — N/A N/A —, —
3 & 4 CAI – Infinite Loop 192 6 0.03, 1.00 0.03, 1.00 1.00, 1.00 N/A 1.00, 1.00

device states is denoted as Nall . We observe that several com-
binations of the test groups indeed cause real interactions,
while others do not. We record the observation results as
ground truths. The number of combinations per test group
that cause real interactions is denoted as Ngt . After that, we
repeat the above enumeration process; instead of manual ob-
servation, we run IOTMEDIATOR and prior systems alongside
to detect interactions under each enumeration in every test
group. For each test group, the testing results of each work
on all combinations is compared against the ground truths
to calculate two detection performance metrics: precision
(i.e., the ratio of correctly reported cases to all reported cases)
and recall (i.e., the ratio of correctly reported cases to all
problematic cases).

Note that only IOTMEDIATOR has a global view on multi-
ple platforms. To exclude the impact of the global view issue
and only compare the interaction detection capacity, we let
prior systems in comparison have a global view on multiple
platforms (by manually migrating all apps to a single plat-
form). The results are summarized in Table 7. By comparing
Nall and Ngt , we know that a candidate only causes a real

interaction when the involved devices are in certain state com-
binations, a small portion of all possible ones. Thus, static
approaches [26, 54] usually have a low detection precision
(i.e., high false detection rate) since they do not take the
real-time device state into considerations and simply report
potential interactions (i.e., candidates). On the contrary, dy-
namic approaches [22, 30] have a high detection precision
(mostly equal to 1.00) because they only report real interac-
tion cases that have been observed in runtime. However, for
each of the prior systems [22,26,30,54], there are multiple test
groups (marked with N/A in Table 7) that cannot be detected,
since they do not consider some of the interaction patterns in
their designs.

Moreover, none of the prior systems can detect any CMAI
since they cannot capture manual controls. To sum up, the
three prior systems [22, 26, 54] have low precision for all the
test groups. IoTGuard has precision of 1 for only 5 out of
12 test groups. The four prior systems [22, 26, 30, 54] have
a Recall of 1 for no more than 6 out of the 12 test groups.
On the other hand, IOTMEDIATOR can detect all interaction
patterns since it can monitor control behaviors from multiple

1568 32nd USENIX Security Symposium USENIX Association

control channels. This shows that IOTMEDIATOR has an
advantage of detecting all interaction patterns, since it can
monitor control behaviors from multiple control channels and
it considers all the interaction patterns in design.

A test group 11 & 12 in testbed T1 is interesting and we dis-
cuss it below. Although the static approach HomeGuard [26]
can detect chained execution in general, it fails to identify the
interaction between rules 11 and 12. Rules 11 and 12 have
exclusive conditions “if the home is not in (energy) saving
mode” and “if the home is in saving mode”, respectively, so
they are considered impossible to run in a row. However,
when the heater (turned on by rule 11) is heating the room
(observed by rule 12), the home mode may be changed from
other modes to saving mode, which makes the condition of
rule 12 true. Therefore, HomeGuard misses the detection of
chained execution between rule 11 and 12. On the other hand,
IoTSafe [30] achieves 0.50 precision and 0.50 recall, because
IoTSafe applies one-time testing result (i.e., the heater 12

can/cannot heat the room and increase the temperature 16 to
above 75◦F) to predict whether rule 11 always triggers rule
12 in the future run. However, the heating process may be
affected by other factors such as heater interruption or season
difference, making the runtime has an opposite result to the
one-time testing one. IOTMEDIATOR detects the interactions
accurately since it fully utilizes the real-time information.

6.2.2 One-Week Testing

While the microbench experiment highlights the coverage
of various initial device state combinations, this experiment
examines real-world scenarios. Specifically, we run both
testbeds T1 and T2 in a realistic setting: the residents are
asked to behave normally. We collect one week of the de-
vice event and command logs in both testbeds for evaluating
the detection performance of our IOTMEDIATOR and two
dynamic approaches IoTGuard [22] and IoTSafe [30]. Sim-
ilar to the microbench experiment, we give IoTGuard and
IoTSafe a global view to detect interaction threats. Table 8
shows the results. IoTGuard and IoTSafe achieve the same
performance in most test groups except 11 & 12 and 13 & 14.
In the dynamic testing, the heater 12 heats the room and makes
the temperature sensor 16 measurement exceeds the threshold.
With this knowledge for detection, IoTSafe can always detect
the real interaction in 11 & 12, if any (i.e., recall is 1.00).
Rule 11 only triggers rule 12 once in its 7 executions. IoT-
Safe has a 1.00 precision (compared to 0.25 in the microbench
experiment) in the group 13 & 14 because rules 13 and 14
are always triggered in a chain in the one-week running. IoT-
Safe reports many false alarms (i.e., precision is 0.14) since it
uses testing result rather than dynamic runtime information to
detect interactions. In contrast, IOTMEDIATOR detects inter-
actions in all test groups effectively and accurately, consistent
with the results in the microbench experiment.

6.3 Interaction Threat Handling

We compare IOTMEDIATOR with two related work IoT-
Guard [22] and IoTSafe [30] regarding handling of interaction
threats. IoTGuard [22] enforces both generic interaction han-
dling policies (G) and context-aware security policies (C).
IoTSafe [30] only provides context-aware security policies
(C). Our IOTMEDIATOR allows users to choose a threat-
tailored solution for each threat instance. For a meaningful
comparison, IoTGuard and IoTSafe are assumed to have a
global view and control over multiple platforms although their
designs do not have these features. Based on the recorded
ground truth in Section 6.2.1, we manually trigger apps and
reproduce the interaction in each test group for three times.
In every reproduction, we run one of the three approaches
(IoTGuard, IoTSafe, and IOTMEDIATOR) to handle the in-
teraction. When running IoTGuard and IoTSafe, we choose
the appropriate policies from their pre-defined policies. As to
IOTMEDIATOR, it generates handling options for each threat
instance and has the user choose one as the solution.

Table 9 shows the policies/solutions for handling all test
groups and the testing results. A test group is considered “han-
dled properly” if the handling matches the user’s preference
and is confirmed to cause no safety risks by the researchers.
We find that only one test group 11 & 12 in testbed T1 can
be handled properly by the context-aware security policies
from IoTSafe and only one test group 3 & 4 in testbed T2 can
be handled properly by the generic policies provided by IoT-
Guard. This shows that it is very difficult, if not impossible,
for security experts to pre-define policies that can handle all
the interaction threats because the automation apps and user
demands could be very diverse and complex in different smart
homes. On the contrary, our IOTMEDIATOR generates threat-
tailored solutions according to the interaction patterns and the
involved apps (and manual controls) in each test group, and
hence it can handle interaction threats much more effectively.

6.4 Latency

IOTMEDIATOR introduces an extra latency L to the system.
The latency L consists of the computation latency L1 for inter-
action detection and handling, and the additional transmission
delay. The additional transmission delay includes the event
transmission delay L2 from IOTMEDIATOR to the platform
(including decryption and encryption at the hub) and the com-
mand transmission delay in the reverse direction. Thus, L
approximately equals to the sum of computation latency L1
and a round-trip transmission delay 2∗L2, i.e., L= L1+2∗L2.
We obtain L1 by measuring the average computation time it
takes for IOTMEDIATOR to process an incoming event or
command, and obtain L2 by measuring the elapsed time from
the moment IOTMEDIATOR receives an event to the moment
the platform receives the event. Three platforms are evaluated
in the above way: SmartThings, Alexa and openHAB. Note

USENIX Association 32nd USENIX Security Symposium 1569

Table 8: One-week experiment in realistic settings for the comparison of interaction detection between dynamic approaches (with global view) and ours. N1
and N2: the number of times the first and second apps in a test group totally execute. Ngt : the number of times a test group causes real interactions. Similar to
Table 7, N/A means that an approach cannot detect the interaction pattern and “—” means that the value cannot be computed due to “divided by zero”.

Testbed Test
Group

Interaction
Pattern

N1 N2 Ngt
Precision, Recall

IoTGuard [22] IoTSafe [30] Ours

T1

5 & 7 CAI – Potential RC 6 7 6 1.00, 1.00 N/A 1.00, 1.00
11 & 12 CAI – Chained Execution 7 1 1 N/A 0.14, 1.00 1.00, 1.00
13 & 14 CAI – Chained Execution 2 2 2 1.00, 1.00 1.00, 1.00 1.00, 1.00
3 & 4 CAI – Race Condition 785 214 214 1.00, 1.00 N/A 1.00, 1.00
3 & 8 CAI – Action Revert 14 8 7 N/A N/A 1.00, 1.00
1 & 2 CAI – Condition Disabling 31 12 5 N/A N/A 1.00, 1.00
9 & 10 CAI – Condition Bypass 79 461 382 N/A N/A 1.00, 1.00

T2

set home mode & 5 CMAI – Condition Disabling 8 8 2 N/A N/A 1.00, 1.00
set home mode & 6 CMAI – Condition Enabling 8 398 8 N/A N/A 1.00, 1.00

1 & 2 CAI – Condition Disabling 33 16 0 N/A N/A —, —
3 & 4 CAI – Infinite Loop 25 19 12 1.00, 1.00 N/A 1.00, 1.00

Table 9: Evaluation results of interaction handling.

Testbed Test
Group Solutions Provided By Each Work

Handled Properly?
IoTGuard IoTSafe Ours[22] [30]

T1

5 & 7

IoTGuard [22]: (G) two or more events cannot trigger two conflicting actions; (C) N/A.

✗ ✗ ✓
IoTSafe [30]: (C) N/A.
Ours: The execution order matters and the final device state should be decided by rule 7. Thus, if action “lock
front door 14 and turn off outlets 11 12 ” is executed first, execute it again 30 seconds after “unlock front door
14 ” is executed. (This example is discussed in Section 5.3).

11 & 12
IoTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.

✗ ✓ ✓IoTSafe [30]: All windows 19 should be closed when the user 1 is away.
Ours: Action “turn on the window opener switch 19 ” should not be taken.

13 & 14

IoTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.
✗ ✗ ✓IoTSafe [30]: (C) N/A.

Ours: Action “unlock the door 14 , and turn on lights 7 8 9 10 and microwave outlet 11 ” to be taken under
the condition: “the user 1 is present”.

3 & 4
IoTGuard [22]: (G) the same event cannot trigger two conflicting actions; (C) N/A.

✗ ✗ ✓
IoTSafe [30]: (C) N/A.
Ours: When conflicting, action “turn off heater 12 ” should be taken and “turn on heater 12 ” be blocked.

3 & 8

IoTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.
✗ ✗ ✓IoTSafe [30]: N/A.

Ours: Allow action “turn off the heater outlet 12 ” to be taken to override “turn on the outlet for heater 12 ”
under the condition: “motion 5 is inactive”.

1 & 2
IoTGuard [22]: (G) N/A; (C) N/A.

✗1 ✗1 ✓IoTSafe [30]: (C) N/A.
Ours: Action “turn on floor lamp 7 and ceiling lamp 8 ” should be taken.

9 & 10
IoTGuard [22]: (G) the same event cannot trigger repeated actions; (C) N/A.

✗ ✗ ✓
IoTSafe [30]: (C) N/A.
Ours: Take action “turn on the light 6 ” when the time is between 9am and 11pm.

T2

set home
mode & 5

IoTGuard [22]: (G) N/A; (C) N/A.
✗ ✗ ✓IoTSafe [30]: (C) N/A.

Ours: Action “turning on camera 17 ” should be taken.

set home
mode & 6

IoTGuard [22]: (G) N/A; (C) N/A.
✗ ✗ ✓IoTSafe [30]: N/A.

Ours: Action “turn off camera 18 ” should be taken.

1 & 2
IoTGuard [22]: (G) N/A; (C) N/A.

✗ ✗ ✓IoTSafe [30]: (C) N/A.
Ours: Do nothing since no real interaction occurs.

3 & 4
IoTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.

✓ ✗ ✓
IoTSafe [30]: (C) N/A.
Ours: When the two rules form a loop, only action “turning off ceiling lights 1 2 3 ” should be taken.

1 Interactions cannot be handled properly since it cannot be detected correctly in the first place.

Table 10: Average latency introduced by IOTMEDIATOR (in seconds).

Platform Computation
Latency L1

One-Way Transmission
Latency L2

Total
Latency L

Alexa 0.236 0.243 0.722
SmartThings 0.236 0.198 0.632
openHAB 0.236 0.144 0.524

that the other two platforms IFTTT and Philips Hue do not
provide a convenient way for the researchers to obtain the
exact time when they receive an event. We benchmark L1 and

L2 during the experiments in Sections 6.2 and 6.3.

As shown in Table 10, IOTMEDIATOR introduces a total
latency of 0.722, 0.632 and 0.524 second on Alexa, Smart-
Things and openHAB, respectively. Note that users experi-
ence little interruption in actual usage because (1) most rules
(e.g., Rules with RIDs 3-8 and 11-15 in the testbed T1, and
4-9 and 11-12 in the testbed T2) are not time-critical; and (2)
the sub-second extra latency is small compared to the original
operation time, which ranges from 1-3 seconds in our tests.

1570 32nd USENIX Security Symposium USENIX Association

7 Limitations and Discussion

Scalability and Extension. This work focuses on smart
homes. Large spaces, such as a campus, can be divided into
several smaller subspaces, such as buildings/rooms. This way,
interaction threats in subspaces can be detected in a scalable
way. The challenges are how to properly divide a large space
and how to detect threats across subspaces. We leave this
as future work. To further increase scalability, the compu-
tation can be offloaded from a local hub to one or multiple
servers. Moreover, this work considers the most common
interaction patterns, where an automation rule interacts with
another rule (or manual control). Actually, the interaction
effect of two rules can be modeled as a virtual rule, which
interacts with another rule. Existing techniques [15] can be
applied to studying such special cases of interaction threats.

User efforts. To use IOTMEDIATOR, a user needs to change
the way of adding new devices and migrate the existing de-
vices to IOTMEDIATOR. Specifically, the user first connects
a device to IOTMEDIATOR, which then creates a virtual de-
vice for the device and connects it with the user-specified IoT
platform(s). Another effort is that the user needs to choose
a handling solution from the recommended options for each
detected interaction. A concern is that users are error-prone
in making decisions, as they do in configuring automation
apps. However, unlike configuring automation apps without
a global view, users of IOTMEDIATOR are better informed
when choosing a solution: they are prompted with the interac-
tion context and the effect of each handling option.

Hybrid threat handling. Our future work is to study how
to combine our runtime threat-tailored handling with static-
analysis-time handling and generic policies. For example, we
consider allowing users to resolve the obviously problematic
threat candidates (such as the example shown in Figure 6(c))
all in once with a setup wizard-like UI before the dynamic
verification phase, which could reduce user burden at runtime.
Moreover, in urgent scenarios, generic safety policies are en-
forced as soon as possible to get rid of the user response time,
and threat-tailored solutions are applied for further handling.

Attack surface. Like many IoT security solutions [22, 25, 30,
39,53] (such as PFirewall [25], Peekaboo [38], IoTGuard [22]
and IoTSafe [30]), IOTMEDIATOR adds a mediation module,
which could become a potential attack target and a single
point of failure. Many existing techniques, such as firewalls
and IDS, can be used to enhance the mediator. Note IOT-
MEDIATOR does not introduce new protocols; it uses the
same protocols used by IoT hubs to connect IoT devices and
those provisioned by platforms to connect virtual devices.

8 Related Work

Smart Home Security. Smart home security has been exten-
sively studied, but not much research has studied the unique
threats and challenges raised by multi-platform and multi-

control-channel systems. Fernandes et al. [31] and Mi et
al. [47] unveil the security vulnerabilities on IoT platforms,
SmartThings and IFTTT, respectively. Much work investi-
gates IoT application security [18, 20, 36, 45, 48, 55]. For
example, Westworld [45] presents the first dynamic symbolic
executor for IoT apps to find their bugs. Solutions have been
proposed to enhance IoT authentication [40, 41, 56, 59], pri-
vacy [25,44,57], voice commands [62], access control [28,39],
firmware [52], anomaly detection [19, 32], etc. Researchers
utilize security policies [46] to ensure that devices are in safe
states. Yuan et al. [61] report the design flaws in the IoT
device access delegation mechanisms across multiple IoT
clouds. CGuard [35] highlights an IoT device usually can be
controlled through different communication channels, such
as Zigbee/ZWave and Bluetooth, and detects inconsistencies
between the policies imposed to different communication
channels. Fu et al. [33] exploits vulnerable timeout mecha-
nisms of IoT protocol stacks to launch IoT phantom-delay
attacks. Recent work [24] presents new interaction-based
attacks that exploit different delays on different platforms.

Interaction Threats. Interaction threats draw much research
attention. Many works are done to categorize [15, 26, 54],
understand [16, 17, 29], detect [14, 15, 21, 22, 26, 27, 34, 37,
43, 49, 50, 54, 60], simulate [27] and handle [42] interaction
threats. For instance, HomeGuard [26] is the first that sys-
tematically categorizes and formally describes Cross-App
Interaction threats. However, they only consider interaction
threats in single-platform homes. A few works [22,23] recog-
nize challenges in multi-platform homes, but they both con-
vert IFTTT rules into equivalent SmartThings apps, and use
SmartThings to run all the rules; essentially, they still detect
interaction threats in a single-platform home. Our work is the
first that conducts cross-platform interaction threat detection.
Moreover, existing works only detect interactions between au-
tomation apps. Our work is the first that detects interactions
between automation apps and various manual controls. Our
work is also the first that provides threat-tailored handling.

9 Conclusion

We presented IOTMEDIATOR, the first system that detects IoT
interaction threats in multi-platform homes. A new family
of interaction threats has been identified and studied, which
concerns the interaction between manual controls and automa-
tion. IOTMEDIATOR uses two-way mediation and device ID
translation to conduct cross-platform interaction checking. It
is also the first system that provides threat-tailored handling.
It generates handling options according to threat instance in-
formation and interprets the threat context and consequence
to users for decision-making. We evaluated IOTMEDIATOR
with 44 IoT devices, five IoT platforms, and 35 automation
apps in two smart-home testbeds, showing that IOTMEDIA-
TOR significantly outperforms prior work.

USENIX Association 32nd USENIX Security Symposium 1571

Acknowledgement

We thank the anonymous reviewers for their valuable sugges-
tions. This work was supported in part by the US National
Science Foundation (NSF) under grants CNS-2204785, CNS-
2205868, CNS-2309477, CNS-2309550 and CNS-2310322.

References

[1] Fragmentation in IoT – one roadblock in IoT
deployment. https://www.cleantech.com/
fragmentation-in-iot-one-roadblock-in-iot-deployment/,
2017.

[2] IoTBench test suite. https://github.com/IoTBench/
IoTBench-test-suite, 2019.

[3] AWS Lambda function. https://aws.amazon.com/
lambda/, 2021.

[4] A comprehensive guide to smart home device
compatibility. https://www.adt.com/resources/
smart-home-device-compatibility, 2021.

[5] Create your service and connect to
IFTTT. https://platform.ifttt.com/docs#
2-create-your-service-and-connect-to-ifttt, 2021.

[6] IFTTT Realtime API. https://platform.ifttt.com/docs/
api_reference#realtime-api, 2021.

[7] Smartthings public github repository. https://github.
com/SmartThingsCommunity/SmartThingsPublic,
2021.

[8] Amazon Alexa. https://developer.amazon.com/en-US/
alexa/devices/smart-home-devices, 2022.

[9] Google Home - your smart home just got even smarter.
https://home.google.com/the-latest/, 2022.

[10] IFTTT. https://ifttt.com/discover, 2022.

[11] openHAB – an open-source platform for empowering
home automation. https://www.openhab.org/, 2022.

[12] Philips Hue. https://www.philips-hue.com/en-us, 2022.

[13] SmartThings. https://www.smartthings.com/, 2022.

[14] Mohannad Alhanahnah, Clay Stevens, and Hamid
Bagheri. Scalable analysis of interaction threats in
IoT systems. In ISSTA, 2020.

[15] Mohannad Alhanahnah, Clay Stevens, Bocheng Chen,
Qiben Yan, and Hamid Bagheri. IoTCom: Dissecting
interaction threats in IoT systems. IEEE TSE, 2022.

[16] Musard Balliu, Massimo Merro, and Michele Pasqua.
Securing cross-app interactions in IoT platforms. In
IEEE CSF, 2019.

[17] Musard Balliu, Massimo Merro, Michele Pasqua, and
Mikhail Shcherbakov. Friendly fire: cross-app interac-
tions in IoT platforms. ACM TOPS, 24(3):1–40, 2021.

[18] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If
this then what?: Controlling flows in IoT apps. In ACM
CCS, 2018.

[19] Simon Birnbach, Simon Eberz, and Ivan Martinovic.
Peeves: Physical event verification in smart homes. In
ACM CCS, 2019.

[20] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder,
Hidayet Aksu, Gang Tan, Patrick McDaniel, and A Sel-
cuk Uluagac. Sensitive information tracking in com-
modity IoT. In USENIX Security Symposium, 2018.

[21] Z Berkay Celik, Patrick McDaniel, and Gang Tan. So-
teria: Automated IoT safety and security analysis. In
USENIX Security Symposium, 2018.

[22] Z Berkay Celik, Gang Tan, and Patrick McDaniel. IoT-
Guard: Dynamic enforcement of security and safety
policy in commodity IoT. In NDSS, 2019.

[23] Zhao Chen, Fanping Zeng, Tingting Lu, and Wenjuan
Shu. Multi-platform application interaction extraction
for IoT devices. In IEEE ICPADS, 2019.

[24] Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang
Du. Delay wreaks havoc on your smart home: Delay-
based automation interference attacks. In Oakland,
2022.

[25] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Lannan
Luo. PFirewall: Semantics-aware customizable data
flow control for smart home privacy protection. In
NDSS, 2021.

[26] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping
Yu. Cross-app interference threats in smart homes:
Categorization, detection and handling. In DSN, 2020.

[27] Fulvio Corno, Luigi De Russis, and Alberto Monge Rof-
farello. Empowering end users in debugging trigger-
action rules. In CHI, 2019.

[28] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, Xi-
aoFeng Wang, Carl A Gunter, Xiaoyong Zhou, and
Michael Grace. HanGuard: SDN-driven protection of
smart home wifi devices from malicious mobile apps.
In ACM WiSec, 2017.

[29] Wenbo Ding and Hongxin Hu. On the safety of IoT
device physical interaction control. In ACM CCS, 2018.

1572 32nd USENIX Security Symposium USENIX Association

https://www.cleantech.com/fragmentation-in-iot-one-roadblock-in-iot-deployment/
https://www.cleantech.com/fragmentation-in-iot-one-roadblock-in-iot-deployment/
https://github.com/IoTBench/IoTBench-test-suite
https://github.com/IoTBench/IoTBench-test-suite
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://www.adt.com/resources/smart-home-device-compatibility
https://www.adt.com/resources/smart-home-device-compatibility
https://platform.ifttt.com/docs#2-create-your-service-and-connect-to-ifttt
https://platform.ifttt.com/docs#2-create-your-service-and-connect-to-ifttt
https://platform.ifttt.com/docs/api_reference#realtime-api
https://platform.ifttt.com/docs/api_reference#realtime-api
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://developer.amazon.com/en-US/alexa/devices/smart-home-devices
https://developer.amazon.com/en-US/alexa/devices/smart-home-devices
https://home.google.com/the-latest/
https://ifttt.com/discover
https://www.openhab.org/
https://www.philips-hue.com/en-us
https://www.smartthings.com/

[30] Wenbo Ding, Hongxin Hu, and Long Cheng. IoTSafe:
Enforcing safety and security policy with real IoT phys-
ical interaction discovery. In NDSS, 2021.

[31] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In Oakland, 2016.

[32] Chenglong Fu, Qiang Zeng, and Xiaojiang Du.
HAWatcher: Semantics-aware anomaly detection for
appified smart homes. In USENIX Security, 2021.

[33] Chenglong Fu, Qiang Zeng, Xiaojiang Du, and
Siva Likitha Valluru. IoT phantom-delay attacks: De-
mystifying and exploiting IoT timeout behaviors in
smart homes. In DSN, 2022.

[34] Kai-Hsiang Hsu, Yu-Hsi Chiang, and Hsu-Chun Hsiao.
Safechain: Securing trigger-action programming from
attack chains. IEEE TIFS, 2019.

[35] Yan Jia, Bin Yuan, Luyi Xing, Dongfang Zhao, Yifan
Zhang, XiaoFeng Wang, Yijing Liu, Kaimin Zheng,
Peyton Crnjak, Yuqing Zhang, et al. Who’s in control?
on security risks of disjointed IoT device management
channels. In ACM CCS, 2021.

[36] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir
Rahmati, Earlence Fernandes, Z Morley Mao, and Atul
Prakash. ContexIoT: Towards providing contextual
integrity to appified IoT platforms. In NDSS, 2017.

[37] Keyu Jiang, Hanyi Zhang, Weiting Zhang, Liming Fang,
Chunpeng Ge, Yuan Yuan, and Zhe Liu. TapChain: A
rule chain recognition model based on multiple features.
Security and Communication Networks, 2021.

[38] Haojian Jin, Gram Liu, David Hwang, Swarun Kumar,
Yuvraj Agarwal, and Jason I Hong. Peekaboo: A hub-
based approach to enable transparency in data process-
ing within smart homes. In Oakland, 2022.

[39] Sanghak Lee, Jiwon Choi, Jihun Kim, Beumjin Cho,
Sangho Lee, Hanjun Kim, and Jong Kim. FACT:
Functionality-centric access control system for IoT pro-
gramming frameworks. In ACM Symposium on Access
Control Models and Technologies, 2017.

[40] Xiaopeng Li, Fengyao Yan, Fei Zuo, Qiang Zeng, and
Lannan Luo. Touch well before use: Intuitive and secure
authentication for IoT devices. In MobiCom, 2019.

[41] Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo Luo.
T2pair: Secure and usable pairing for heterogeneous IoT
devices. In ACM CCS, 2020.

[42] Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang,
Shi Han, Börje F Karlsson, Dongmei Zhang, and Feng

Zhao. Systematically debugging IoT control system
correctness for building automation. In ACM Interna-
tional Conference on Systems for Energy-Efficient Built
Environments, 2016.

[43] Chieh-Jan Mike Liang, Börje F Karlsson, Nicholas D
Lane, Feng Zhao, Junbei Zhang, Zheyi Pan, Zhao Li,
and Yong Yu. SIFT: building an internet of safe things.
In ACM IPSN, 2015.

[44] Xuanyu Liu, Qiang Zeng, Xiaojiang Du, Siva Likitha
Valluru, Chenglong Fu, Xiao Fu, and Bin Luo. Sniffmis-
lead: Non-intrusive privacy protection against wireless
packet sniffers in smart homes. In RAID, 2021.

[45] Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and
Junzhe Wang. Westworld: Fuzzing-assisted remote
dynamic symbolic execution of smart apps on IoT cloud
platforms. In ACSAC, 2021.

[46] Sunil Manandhar, Kevin Moran, Kaushal Kafle, Ruhao
Tang, Denys Poshyvanyk, and Adwait Nadkarni. To-
wards a natural perspective of smart homes for practical
security and safety analyses. In Oakland, 2020.

[47] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng
Wang. An empirical characterization of IFTTT: ecosys-
tem, usage, and performance. In Internet Measurement
Conference, 2017.

[48] Richard Mitev, Markus Miettinen, and Ahmad-Reza
Sadeghi. Alexa lied to me: Skill-based man-in-the-
middle attacks on virtual assistants. In ACM Asia CCS,
2019.

[49] Julie L Newcomb, Satish Chandra, Jean-Baptiste Jean-
nin, Cole Schlesinger, and Manu Sridharan. IoTA: a
calculus for internet of things automation. In ACM
SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Soft-
ware, 2017.

[50] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian,
Srikanth V Krishnamurthy, Edward JM Colbert, and
Patrick McDaniel. IotSan: fortifying the safety of IoT
systems. In ACM CoNEXT, 2018.

[51] Muslum Ozgur Ozmen, Xuansong Li, Andrew Chun-
An Chu, Z Berkay Celik, Bardh Hoxha, and Xiangyu
Zhang. Discovering physical interaction vulnerabilities
in IoT deployments. arXiv preprint arXiv:2102.01812,
2021.

[52] Anna Kornfeld Simpson, Franziska Roesner, and Ta-
dayoshi Kohno. Securing vulnerable home IoT devices
with an in-hub security manager. In IEEE PerCom
Workshops, 2017.

USENIX Association 32nd USENIX Security Symposium 1573

[53] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng
Wang, Blase Ur, XianZheng Guo, and Patrick Tague.
SmartAuth: User-centered authorization for the internet
of things. In USENIX Security Symposium, 2017.

[54] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates,
and Carl A Gunter. Charting the attack surface of
trigger-action IoT platforms. In ACM CCS, 2019.

[55] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl
Gunter. Fear and logging in the internet of things. In
NDSS, 2018.

[56] Chuxiong Wu, Xiaopeng Li, Fei Zuo, Lannan Luo, Xi-
aojiang Du, Jia Di, and Qiang Zeng. Use It-No Need to
Shake It! accurate implicit authentication for everyday
objects with smart sensing. IMWUT, 6(3):1–25, 2022.

[57] Rixin Xu, Qiang Zeng, Liehuang Zhu, Haotian Chi,
Xiaojiang Du, and Mohsen Guizani. Privacy leakage in
smart homes and its mitigation: IFTTT as a case study.
IEEE Access, 7:63457–63471, 2019.

[58] Moosa Yahyazadeh, Proyash Podder, Endadul Hoque,
and Omar Chowdhury. Expat: Expectation-based policy
analysis and enforcement for appified smart-home plat-
forms. In ACM Symposium on Access Control Models
and Technologies, 2019.

[59] Heng Ye, Qiang Zeng, Jiqiang Liu, Xiaojiang Du, and
Wei Wang. Easy peasy: A new handy method for pairing
multiple cots IoT devices. IEEE TDSC, 2022.

[60] Yinbo Yu and Jiajia Liu. TAPInspector: Safety and
liveness verification of concurrent trigger-action IoT
systems. IEEE TIFS, 2022.

[61] Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, Xi-
aofeng Wang, Deqing Zou, Hai Jin, and Yuqing Zhang.
Shattered chain of trust: Understanding security risks in
cross-cloud IoT access delegation. In USENIX Security
Symposium, 2020.

[62] Qiang Zeng, Jianhai Su, Chenglong Fu, Golam Kayas,
Lannan Luo, Xiaojiang Du, Chiu C Tan, and Jie Wu. A
multiversion programming inspired approach to detect-
ing audio adversarial examples. In DSN, 2019.

[63] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang,
Yinqian Zhang, and Haojin Zhu. HoMonit: Monitoring
smart home apps from encrypted traffic. In ACM CCS,
2018.

A Implementation Details of Messenger

The device virtualization module handles interactions be-
tween virtual devices and platforms, including adding/remov-
ing devices to/from platforms, pushing device events to plat-
forms, responding to the platform’s pulling for device states,

and receiving commands from platforms. Each commodity
integration platform supports at least one technique for han-
dling the above device-platform interactions. A prior work
PFirewall [25] has implemented and proven the feasibility of
SmartThings [13] and openHAB [11]. This work extends the
device virtualization to another three popular IoT platforms:
Alexa [8], Philips Hue [12], IFTTT [10]. We will present the
details of the three platforms and refer the interested readers
to the literature [25] for those of SmartThings and openHAB.
Alexa. We achieve the integration with Alexa by expos-
ing REST APIs on Messenger and developing a Lambda
function on AWS [3]. The Lambda function receives
the authorization (for token exchanging), discovery,
reportstate and interface (for controlling devices) direc-
tives from the Alexa cloud and then communicate with Mes-
senger via the REST APIs to execute the directives. After
receiving responses from Messenger, the Lambda function
responds to the Alexa cloud with the results. In addition, Mes-
senger can push device events asynchronously to the event
gateway on the Alexa cloud, without the mediation of the
Lambda function. This above processes are similar to those
of SmartThings except that an extra hop (i.e., Lambda func-
tion) is introduced.
IFTTT. To connect with IFTTT, Messenger is implemented
as a service [5] that exposes endpoints for IFTTT to query.
The trigger endpoints allow IFTTT to query the most recent
50 instances of a specific event type (e.g., motion active)
and the action endpoints enable IFTTT to control a device
by sending requests; in these requests, IFTTT specifies pa-
rameters including device identifier, attribute name and value.
Typically, IFTTT polls the trigger endpoints every 15 minutes,
which hinders the timely capture of new events and imposes
large latency to automation. To address this, Messenger noti-
fies IFTTT of any new trigger-related event type through the
Realtime API [6] and then IFTTT will poll the corresponding
trigger endpoint to acquire the data.
Philips Hue. Different from the above platforms, Philips Hue
connects its devices and runs automation apps on the local
Hue bridge (i.e., hub). The Hue cloud mainly provides the
messaging function, delegating devices (connected to the Hub
bridge) to other clouds such as SmartThings, Alexa, IFTTT.
Both the Hue bridge and cloud support device-accessing APIs.
Messenger access Hue devices by accessing the APIs pro-
vided by the Hue bridge on the local network. That is to say,
Messenger cannot intervene in the original communication
between the Hue devices and platform (i.e., the bridge and
cloud). However, Messenger still has the view and control on
the Hue devices through the APIs.

B Dynamic Verification of Other Patterns

In this appendix, we present the dynamic verification process
of interaction patterns that are not discussed in the main text.

1574 32nd USENIX Security Symposium USENIX Association

CAI - Condition Disabling. IOTMEDIATOR listens for the
first event E(T1). If observed, E(T1) will trigger R1 when
it arrives the platform running R1. To determine if R1 will
pass its condition checking, IOTMEDIATOR checks if R1’s
condition C1 satisfies by querying the local database since
it synchronizes with the remote database maintained by the
platform running R1. If true, IOTMEDIATOR continues wait-
ing for the command C (A1) issued by R1. When C (A1) is
observed, IOTMEDIATOR checks if R2’s condition C2 was
true before forwarding the command. After forwarding the
command, IOTMEDIATOR will observe a new event E(¬C2)
which makes C2 turns from true to false, as indicated by
A1 ⇒C2 in the candidate screening. Thus, IOTMEDIATOR
keeps monitoring if C2 remains false until observing an event
E(T2) that triggers R2. If so, a condition disabling instance
between R1 and R2 is identified in the runtime and this CAI
candidate is verified to be a real interaction threat.

obsE(T1),matchS(C1), /* R1 will execute */

obsC (A1),matchS(C2), /* C2 was true before R1 executes */

obsE(¬C2)
matchS(¬C2)−−−−−−−−→ /* C2 becomes and remains false */

obsE(T2). /* Until R2 is triggered */

CAI - Condition Enabling. The verification of a condition
enabling candidate is highly similar to that of condition dis-
abling, except that it checks if R1 enables R2’s condition rather
than disables, as presented below.

obsE(T1),matchS(C1), /* R1 will execute */

obsC (A1),matchS(¬C2), /* C2 was false before R1 executes */

obsE(C2)
matchS(C2)−−−−−−−→ /* C2 becomes and remains true */

obsE(T2). /* UntilR2 is triggered */

CAI - Race Condition. When observing the event E(T1)
which triggers both rules R1 and R2, IOTMEDIATOR checks
if both conditions C1 and C2 are true. If so, both rules will
proceed to take contradictory actions upon their platforms
receive the trigger event, i.e., the candidate R1 and R2 are
verified to cause a real threat.

obsE(T1), /* Both rules will be triggered */

matchS(C1),matchS(C2) /* Both rule conditions are true */

CAI - Condition Bypass. To verify a condition bypass candi-
date in the real time, IOTMEDIATOR only needs to verify that
when both rules R1 and R2 are triggered by the same event,
the condition of one rule is evaluated to be true while that of
another rule false, i.e., the exclusive or ⊕ of the evaluations
of both conditions yields true. The symbolic representation
of the dynamic verification process is shown below.

obsE(T1), /* Both rules will be triggered */

matchS(C1)⊕matchS(C2) = true /*One condition holds*/

CAI - Infinite Loop. The dynamic verification of infinite
loop, i.e., whether two rules R1 and R2 triggers each other

alternately, doubles the steps of chained execution. Suppose
infinite loop starts from R1, the process is shown below. Note
that IOTMEDIATOR also verifies the case where infinite loop
starts from R2, which is symmetric to the former case.

obsE(T1),matchS(C1),obsC (A1), /* R1 executes */

matchS(¬T2), /* The trigger of R2 was false */

obsE(T2),matchS(C2),obsC (A2), /*R1 triggers R2*/

matchS(¬T1), /* The trigger of R1 was false */

obsE(T1),matchS(C1) /*R1 will be triggered in turn by R2*/

CMAI - Potential Race Condition. Manual control typically
has a higher priority than automation since it allows a user to
set devices to the desirable state (including overriding an au-
tomation result). Consider the example shown in Figure 8(b):
a user wants to use a manual command to stop the alarm after
the automation app sounds the alarm upon the detection of a
kitchen smoke. However, the user is annoyed if the automa-
tion app triggers and sounds the alarm again and again within
a short period after the user stops the alarm. Thus, we only
consider it as an interaction threat when an automation app R3
runs after c and consequently overrides the manual control.

obs C (c) /* Observe a manual control c */

matchS(c)−−−−−−→ /* The state changed by c remains unchanged */

obsE(T3),matchS(C3) /* UntilR3 executes */

CMAI - Condition Enabling. To verify a candidate, the
dynamic verification component checks if a manual control c
changes an automation rule R3’s condition C3 from false to
true and then if C3 remains true until the rule R3 is triggered.
If so, the candidate is verified to cause a real interaction threat
and vice versa.

obs C (c), /* Observe a manual control c */

matchS(¬C3), /* The condition of R3 was false */

obs E(C3) /* c yields an event which makes R3’s condition true */

matchS(C3)−−−−−−−→ /* The condition of R3 remains true */

obs E(T3) /* Until R3 is triggered */

CMAI - Condition Disabling. Similar to the condition en-
abling case, the dynamic verification component inspects if c
changes C3 from true to false and then if C3 remains false un-
til the rule R3 is triggered. If so, the candidate if verified and
otherwise IOTMEDIATOR continues to verify this candidate
in the next observation of the manual control c.

obs C (c), /* Observe a manual control c */

matchS(C3), /* The condition of R3 was true */

obs E(¬C3) /* c yields an event which makes R3’s condition false */

matchS(¬C3)−−−−−−−−→ /* The condition of R3 remains false */

obs E(T3) /* Until R3 is triggered */

USENIX Association 32nd USENIX Security Symposium 1575

Table 11: Handling options and explanation templates for interaction threat patterns that are not listed in Table 4 in the main text.

Interaction Pattern (P) Handling Options & Explanation Templates

CAI - Condition Bypass

Option 1: ⟨⟨R1,R2,P⟩,S(C1)\S(C2),→ C (A1)⟩+ ⟨⟨R1,R2,P⟩,S(C2)\S(C1),→ C (A2)⟩+ ⟨⟨R1,R2,P⟩,S(C1)∩S(C2),↛ C (A2)⟩
Explanation Template: Execute action A1 when either or both of the two rules are triggered.

Option 2: ⟨⟨R1,R2,P⟩,S(C1)\S(C2),↛ C (A1)⟩+ ⟨⟨R1,R2,P⟩,S(C2)\S(C1),↛ C (A2)⟩+ ⟨⟨R1,R2,P⟩,S(C1)∩S(C2),↛ C (A2)⟩
Explanation Template: Execute action A1 when the conditions of both rules are true.

Option 3: ⟨⟨R1,R2,P⟩,S(C1)\S(C2),→ C (A1)⟩+ ⟨⟨R1,R2,P⟩,S(C2)\S(C1),↛ C (A2)⟩+ ⟨⟨R1,R2,P⟩,S(C1)∩S(C2),↛ C (A2)⟩
Explanation Template: Let the first rule work and disable the second.

CAI - Condition Enabling

Option 1: ⟨⟨R1,R2,P⟩, /0,↛ C (A2)⟩
Explanation Template: Action A2 should not be executed.

Option 2: ⟨⟨R1,R2,P⟩, /0, /0⟩
Explanation Template: Action A2 should be executed.

CAI - Condition Disabling

Option 1: ⟨⟨R1,R2,P⟩, /0,⇒ S(A2)⟩
Explanation Template: Action A2 should be executed.

Option 2: ⟨⟨R1,R2,P⟩, /0, /0⟩
Explanation Template: Action A2 should not be executed.

CAI - Race Condition

Option 1: ⟨⟨R1,R2,P⟩, /0,↛ C (A1)⟩
Explanation Template: When the two rules conflict, action A2 should be executed and A1 should be blocked.

Option 2: ⟨⟨R1,R2,P⟩, /0,↛ C (A2)⟩
Explanation Template: When the two rules conflict, action A1 should be executed and A2 should be blocked.

CAI - Action Revert

Option 1: ⟨⟨R1,R2,P⟩, /0,↛ C (A2)⟩
Explanation Template: Action A2 should not be executed to override A1.

Option 2: ⟨⟨R1,R2,P⟩, /0,→ C (A2)⟩
Explanation Template: Action A2 should be executed to override A1.

Option 3: ⟨⟨R1,R2,P⟩,cond⊆ V ,→ C (A2)⟩
Explanation Template: Allow action A2 to be executed to override A1 under a certain condition cond (cond is configurable

and can be specific device states and/or time period).

CAI - Infinite Loop

Option 1: ⟨⟨R1,R2,P⟩, /0,⇒ S(A1)⟩
Explanation Template: When the two rules form a loop, only action A1 should be executed.

Option 2: ⟨⟨R1,R2,P⟩, /0,⇒ S(A2)⟩
Explanation Template: When the two rules form a loop, only action A2 should be executed.

CMAI - Condition Enabling

Option 1: ⟨⟨c,R3,P⟩, /0,↛ C (A3)⟩
Explanation Template: Action A3 should not be executed.

Option 2: ⟨⟨c,R3,P⟩, /0, /0⟩
Explanation Template: Action A3 should be executed.

Table 12: Microbench experiment for the performance comparison of interaction detection between prior approaches (no global view) and ours. N/A denotes
that a work does not consider a specific interaction pattern or its instances are all caused by cross-platform interaction (and, hence, the work cannot detect them
without a global view). “—” means that the value cannot be computed due to “divided by zero”.

Testbed Test
Group

Interaction
Pattern Nall Nd

Precision, Recall
HomeGuard [26] iRuler [54] IoTGuard [22] IoTSafe [30] Ours

T1

5 & 7 CAI – Potential RC 24 6 0.25, 1.00 N/A 1.00, 1.00 N/A 1.00, 1.00
11 & 12 CAI - Chained Execution 128 2 N/A N/A N/A N/A 1.00, 1.00
13 & 14 CAI – Chained Execution 256 63 0.25, 1.00 N/A 1.00, 1.00 0.25, 1.00 1.00, 1.00

3 & 4 CAI - Race Condition 16 4 N/A N/A 1.00, 1.00 N/A 1.00, 1.00
3 & 8 CAI - Action Revert 16 2 N/A N/A N/A N/A 1.00, 1.00
1 & 2 CAI – Condition Disabling 16 1 0.06, 1.00 N/A N/A N/A 1.00, 1.00

9 & 10 CAI - Condition Bypass 8 1 N/A N/A N/A N/A 1.00, 1.00

T2

set home mode & 5 CMAI - Condition Disabling 8 2 N/A N/A N/A N/A 1.00, 1.00
set home mode & 6 CMAI - Condition Enabling 8 2 N/A N/A N/A N/A 1.00, 1.00

1 & 2 CAI – Condition Disabling 16 0 0.00, — 0.00, — N/A N/A —, —
3 & 4 CAI - Infinite Loop 192 6 N/A N/A N/A N/A 1.00, 1.00

Table 13: One-week experiment for the performance comparison of interaction detection between prior dynamic approaches (no global view) and ours.

Testbed Test
Group

Interaction
Pattern N1 N2 Ngt

Precision, Recall
IoTGuard [22] IoTSafe [30] Ours

T1

5 & 7 CAI – Potential RC 6 7 6 1.00, 1.00 N/A 1.00, 1.00
11 & 12 CAI – Chained Execution 7 1 1 N/A N/A 1.00, 1.00
13 & 14 CAI – Chained Execution 2 2 2 1.00, 1.00 1.00, 1.00 1.00, 1.00
3 & 4 CAI – Race Condition 785 214 214 1.00, 1.00 N/A 1.00, 1.00
3 & 8 CAI – Action Revert 14 8 7 N/A N/A 1.00, 1.00
1 & 2 CAI – Condition Disabling 31 12 5 N/A N/A 1.00, 1.00

9 & 10 CAI – Condition Bypass 79 461 382 N/A N/A 1.00, 1.00

T2

set home mode & 5 CMAI – Condition Disabling 8 8 2 N/A N/A 1.00, 1.00
set home mode & 6 CMAI – Condition Enabling 8 398 8 N/A N/A 1.00, 1.00

1 & 2 CAI – Condition Disabling 33 16 0 N/A N/A —, —
3 & 4 CAI – Infinite Loop 25 19 12 N/A N/A 1.00, 1.00

C Detection Results without Global View

The results in Table 7 and 8 are obtained by assuming that
prior systems also have a global view over the multiple plat-
forms. As prior systems actually do not present a way of
obtaining a global view over the multiple platforms, we ex-
amine their performance without a global view. The results

of microbench and one-week experiments in this setting are
shown in Table 12 and 13, respectively, illustrating that prior
systems have poor performance in interaction detection for
the multi-platform smart homes. The results highlight one
of the main contributions of our work on cross-platform IoT
interaction threat detection.

1576 32nd USENIX Security Symposium USENIX Association

	Introduction
	Threat Model
	Design Overview
	Challenges
	IoTMediator Overview

	Detecting Interaction Threats
	Candidate Screening
	Identifying CAI Candidates
	Identifying CMAI Candidates

	Dynamic Verification
	Recognizing Manual Control and Automation
	Detecting Real Interactions

	Handling Interaction Threats
	Syntax of Handling Option and Solution
	Handling Option Generation
	Examples

	Evaluation
	Smart Home Testbeds
	Interaction Threat Detection
	Microbench
	One-Week Testing

	Interaction Threat Handling
	Latency

	Limitations and Discussion
	Related Work
	Conclusion
	Implementation Details of Messenger
	Dynamic Verification of Other Patterns
	Detection Results without Global View

