
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Hash Gone Bad: Automated discovery of protocol
attacks that exploit hash function weaknesses

Vincent Cheval, Inria Paris; Cas Cremers and Alexander Dax, CISPA Helmholtz
Center for Information Security; Lucca Hirschi, Inria & LORIA; Charlie Jacomme,
Inria Paris; Steve Kremer, Université de Lorraine, LORIA, Inria Nancy Grand-Est

https://www.usenix.org/conference/usenixsecurity23/presentation/cheval

Hash Gone Bad:
Automated discovery of protocol attacks that exploit hash function weaknesses

Vincent Cheval ¶ Cas Cremers ‡ Alexander Dax ‡

Lucca Hirschi † Charlie Jacomme ¶ Steve Kremer ∗

¶ Inria Paris, France
‡ CISPA Helmholtz Center for Information Security, Germany

† Inria & LORIA, France
∗ Université de Lorraine, LORIA, Inria Nancy Grand-Est, France

Abstract
Most cryptographic protocols use cryptographic hash func-
tions as a building block. The security analyses of these pro-
tocols typically assume that the hash functions are perfect
(such as in the random oracle model). However, in practice,
most widely deployed hash functions are far from perfect –
and as a result, the analysis may miss attacks that exploit the
gap between the model and the actual hash function used.

We develop the first methodology to systematically dis-
cover attacks on security protocols that exploit weaknesses in
widely deployed hash functions. We achieve this by revisit-
ing the gap between theoretical properties of hash functions
and the weaknesses of real-world hash functions, from which
we develop a lattice of threat models. For all of these threat
models, we develop fine-grained symbolic models.

Our methodology’s fine-grained models cannot be directly
encoded in existing state-of-the-art analysis tools by just using
their equational reasoning. We therefore develop extensions
for the two leading tools, TAMARIN and PROVERIF. In exten-
sive case studies using our methodology, the extended tools
rediscover all attacks that were previously reported for these
protocols and discover several new variants.

1 Introduction

Cryptographic hash functions are a fundamental and highly
efficient building block in nearly all cryptographic protocols.
They are traditionally required to meet several security proper-
ties, such as collision resistance and first and second preimage
resistance. Ideally, they are “perfect” and do not suffer from
phenomena like length-extension attacks. Modern hash func-
tions like SHA3 (Keccak) are believed to satisfy all these
properties and behave like a perfect hash function.

In many modern protocol security analyses, both in the
computational and symbolic setting, hash functions are as-
sumed to be “perfect” in the following sense: the modeled
hash function meets all desired cryptographic properties and
every input/output combination is completely independent of

all others. Such a hash function corresponds to the “Random
Oracle Model (ROM)” often used in cryptographic proofs.

In practice though, real hash functions are unfortunately
far from perfect. In Table 1 we show some widely deployed
hash functions and their currently known imperfections. Sev-
eral of these hash functions, such as SHA1, are considered
to be weak or broken with respect to collision or preimage
resistance; and nearly all widely deployed hash functions al-
low so-called “length extension attacks”, which can enable
someone to compute hash(x∥y) even if they do not know x –
which is not possible with a perfect hash function.

There are several reasons for the gap between reality and
the perfect hash function. First, the security of hash functions
is often based on a heuristic argument, since we cannot reduce
them to a known hard problem, and history has shown that
many hash functions that initially seemed secure turned out
to be broken some years later [2, 52]. Second, it was long
believed that potential hash weaknesses would not weaken
protocols that use (second) preimage resistant [9, 48] hash
functions. Third, even if a hash function satisfies all standard
requirements for cryptographic hash functions (resistance to
collisions and preimages), it may still not be perfect. For ex-
ample, many popular hash function designs follow the Merkle-
Damgård (MD) construction, which in its default setup, allows
for length extension attacks. We thus have to face the reality:
protocols use hash function that are already imperfect, and
history has shown that over time, hash functions that appear
secure now will become easier to attack in the future.

This raises the natural question: how can we check if a
protocol using a hash function with a particular weakness
meets its security guarantees? History has shown such attacks
are rare but can be very subtle, e.g., [9, 48, 49], and thus dif-
ficult to detect manually. From a cryptographic perspective,
the answer would be: provide a computational proof of the
security of the entire protocol, and if this proof relies on as-
sumptions not met by the hash function, this may indicate
an attack. However, for most protocols, this task ranges from
daunting to infeasible; and most existing protocol proofs sim-
ply assume that the hash function is perfect, by using the

USENIX Association 32nd USENIX Security Symposium 5899

Hash function Year Examples of currently deployed applications Collision (2nd) Preimage No Length-
resistance resistance extension

MD4 1990 NTLM key derivation for Microsoft Windows ✗ 21 ⊗∗ 295 ✗
MD5 1992 File checksums (md5sum) ✗ 218 ⊗∗ 2123 ✗
SHA1 1995 Europay Mastercard Visa (EMV), File checksums, Telegram ✗ 261 ✓ 2160 ✗
RIPEMD-160 1996 Bitcoin ⊗∗∗ 280 ✓ 2160 ✗
SHA2-256 2001 Bitcoin, TLS, SSL, SSH, S/MIME, IPSec, DNSSEC, Linux/Unix

password hashing, Telegram
✓ 2128 ✓ 2256 ✗

SHA2-512 2001 TLS, SSL, SSH, S/MIME, IPSec, DNSSEC, Linux/Unix password
hashing

✓ 2256 ✓ 2512 ✗

SHA3-256 2012 Ethereum ✓ 2128 ✓ 2256 ✓

✓= currently still secure ⊗=weak, but no full attack yet ✗= known attack
* = Theoretical attacks on (second) preimage resistance were found [54] [44], but they are still not feasible.
** = The small bit size allows to find collisions in practice, but doing so is not necessarily feasible.

Table 1: Examples of widely used hash functions that are currently deployed in security protocols and do not offer perfect (random-
oracle like) guarantees. The numbers indicate the complexity of the currently best known attack on the property [32,44,45,53,54].
For the hash functions currently deemed secure the best known attacks would be a brute-force approach; e.g., the complexity
to break collision resistance on SHA2-256 is 2128. Crucially, this situation is not constant, but expected to get worse: history
suggests that the numbers for the best attacks are likely to decrease over time for all hashes, see e.g., [2, 48].

ROM.
In contrast, automated protocol analysis tools have shown

to be effective for analyzing real-world protocols [5, 6, 8, 17,
19, 28]. However, they model hash functions as being perfect
(traditionally as an operator in a free term algebra). Thus, like
computational proofs that use the ROM, such analyses miss
any attacks that exploit the use of a non-perfect hash function.

In this work, we revisit cryptographic hash function defi-
nitions, common weaknesses, and the potential attacker ca-
pabilities that arise from them. Based on this, we develop a
methodology to systematically discover attacks on protocols
that exploit their use of “less-than-perfect” hash functions,
and show how this can be implemented in the two leading
protocol-analysis tools. To realize this, we both exploit ad-
vanced features of these tools (such as equational theories,
event-based modeling, and restrictions) but we in fact also ex-
tend them (partial support for associative operators, recursive
computation functions). Our methodology can be used in the
design phase to avoid the use of hash functions that are too
weak, or to find and fix problems in deployed protocols.

Contributions.
1. We develop the first systematic, automated methodol-

ogy to find protocol attacks that exploit weaknesses
of real-world hash functions. At a technical level, we
achieve this by symbolically modeling cryptographic
weaknesses (i.e., the lack of desirable cryptographic
properties) as well as real-world attack classes that are
not captured by classical security definitions for crypto-
graphic hash functions.

2. We automate our methodology in the two leading auto-
mated protocol analysis tools, TAMARIN and PROVERIF.
To achieve this, we (a) propose dedicated modeling tech-
niques, and (b) extend both tools with new required fea-

tures that are of independent interest beyond this work.
3. We apply our methodology to over 20 protocols, auto-

matically rediscovering all previously reported attacks
on those protocols that exploit weak hash functions, as
well as finding several new variants.

Source code and reproducibility. We provide the sources
of the modified PROVERIF and TAMARIN tools as well as our
all case-studies at [15]. This includes a docker image with
an environment that directly allows the reproduction of the
case-studies, and notably all the tables of the detailed case
studies available in the long version [16], by following the
documentation in the READMEs. Installation instructions
from dockerhub for the docker image are included in [15].

Outline. We first provide some background about hash func-
tions, their security properties and how weaknesses of de-
ployed hash functions may break protocols in practice (Sec-
tion 2). Then we present a novel hierarchy of threat models
related to hash functions, detailing adversarial capabilities
that we are going to use for protocol analysis (Section 3)
and show how this analysis can be automated in (improved
versions of) TAMARIN and PROVERIF (Section 4). Finally,
we demonstrate the effectiveness and methodology of our ap-
proach on a number of case studies discovering both known
and novel vulnerabilities (Section 5). We provide additional
related work in Section 6 and conclude in Section 7.

2 Background

Many of the problems around hash functions arise from the
gap between the properties described in the theory and the
property that real-world hash functions satisfy; but in this

5900 32nd USENIX Security Symposium USENIX Association

particular case, there is already sufficient tension in how hash
functions are handled in the theory of protocol proofs. We
first describe the state of the theory, before returning to the
situation in practice. Afterwards we give background on the
symbolic model that we will be using in the next sections.

2.1 Hash functions in theory

The main three desirable properties that a cryptographic hash
function should satisfy are well-established: first and second
preimage resistance, and collision resistance [38], stating that
there is no better algorithm than brute force to

• (Preimage resistance) find x given h, such that h =
H(x);

• (Second preimage resistance) find y given x, such that
H(y) = H(x);

• (Collision resistance) find x,y such that H(x) = H(y)
Collision-resistance implies second preimage resistance, as
finding a second preimage effectively results in a collision.

An undesirable property is so-called length-extension:
Many deployed hash functions are based on the MD construc-
tion: H(m∥m′) = f (H(m),m′) where f is the underlying com-
pression function and ∥ expresses concatenation of blocks.
The origin of this design choice can be traced back to an im-
plicit design goal of many hash functions: it should be possible
to compute a hash incrementally, i.e., to compute H(m∥m′)
without having to store both m and m′ in memory, for example
by computing a compact intermediate product based on m
to later compute the full result once m′ is available. By de-
fault, MD constructions satisfy the length-extension property:
Given H(m) and m′, one can compute H(m∥m′)As we will
see below, this property can be problematic in certain protocol
contexts because it enables so-called length-extension attacks.
In theory, this possibility has been known in the academic
literature at least as early as 1992 [51].

However, when developing proofs of security protocols
that use hash functions, it turns out using the three resistance
properties as assumptions is very complex and error-prone.
Because of this, the Random Oracle Model (ROM) was in-
troduced in 1993 by Bellare and Rogaway [7] as a proof
methodology to simplify proofs of protocols that use hash
functions. We will go into more detail in Section 2.2.1, but
intuitively speaking, the ROM models perfect hash functions:
as functions whose outputs are chosen uniformly at random,
independent of the input. We will give a definition of (a sym-
bolic version of the) ROM in Section 3.

The ROM satisfies first and second preimage resistance and
collision resistance, and does not have the length-extension
property. The ROM thus has the most desirable cryptographic
hash properties, effectively over-approximating the security of
real-world hash functions. Therefore, proving that a protocol
is secure using the ROM does not guarantee that it is secure
when instantiated with a real hash function. However, the vast
majority of protocol proofs use the ROM due to its simplicity.

2.2 Hash functions in practice

In Table 1 we review a selection of widely used hash
functions, the complexity of the best known collision and
preimage attacks against them, and whether length-extension
is possible. The conclusion is clear: high-profile crypto-
graphic protocols still use hash functions that suffer from
weaknesses that contradict the usual idealized security
assumption (ROM) and even (second) preimage and collision
resistance. We also see that hash functions get weaker over
time as the attacks get more and more efficient (see also the
survey [48] and [2]). Moreover, it is likely that hash functions
that are deemed secure today will be weakened in the future.

The length extension property of many hash functions can
theoretically be used to break a protocol’s security, because it
enables the following behaviors: (i) collisions can be extended
since H(x) = H(y) implies H(x∥s) = H(y∥s) for any s, and
(ii) the adversary can extend the payload under known hash
outputs: given H(x), it can compute H(x∥s) for any known s.
As an example of the latter, if the prefix x contains a shared se-
cret, and the protocol relies on this to authenticate hash values,
then the adversary can “forge” hashes by extending any hash
values it observes. An early example of a widely deployed
protocol that was vulnerable due to such an attack was Flickr
in 2009 [21]; we will revisit this attack in Section 5.3.2.

Despite this example, it was thought for a long time that
cryptographic protocols are likely to remain secure even
though they rely on weakened hash functions as long as the
hash functions are (second) preimage resistant [9, 48]. For
instance, even if the adversary can compute some c,c′ such
that H(c) =H(c′), which breaks collision-resistance, it seems
unlikely that it can impact honest agents in a protocol who
will compute hashes for inputs that are unrelated to c,c′. Un-
fortunately, this is a false sense of security: it has been shown
that cryptographic protocols can be entirely broken when us-
ing hash functions that merely suffer from some restricted
classes of collisions [48, 49]; see an example in Section 2.2.1.

Unfortunately, it is difficult and error-prone to manually
assess if a cryptographic protocol can be broken if its hash
function is vulnerable to some restricted class of collisions.

skA,pkB

A
skB,pkA

B

m1 := gx∥infoA

m2 := gy∥infoB

sign(skA,H(m1∥m2)),mac(gxy,A)

sign(skB,H(m1∥m2)),mac(gxy,B)

Figure 1: The Sigma’ protocol [9]

USENIX Association 32nd USENIX Security Symposium 5901

2.2.1 Example: Hash Transcript Collisions

Using hash transcript collisions, we exemplify how certain
collisions can be weaponized against protocols. They have
been shown to affect various authentication protocols such as
TLS 1.2, SSH, or IKEv2 [9]. As a running example, we use a
variant of the sign-and-mac protocol [29]: the Sigma’ authen-
tication protocol introduced in [9] and depicted in Figure 1. It
is essentially a signed Diffie-Hellman (DH) protocol with MAC-
based key confirmation where additional information infoA
and infoB (e.g., for later negotiation) is appended to the ex-
changed DH shares. infoA, infoB are length-varying and there-
fore prefixed with their lengths. Sigma’ aims at guaranteeing
matching conversations: after a successful execution both par-
ties share the same view of the transcript, even in the presence
of an active attacker. As noted in [9], the parties do not directly
agree on the transcript but rather on the hash of the transcript.
If the hash function were perfect, this would not matter – but
it makes a difference for real-world hash functions.

Machine-in-the-Middle (MIM) scenario. First, one
should note that the protocol is not immediately broken,
even if the hash function H is not preimage resistant.
Assume a MIM attacker: the attacker can replace mes-
sages m1 and m2 by messages m′1 := gx′∥info′A and
m′2 := gy′∥info′B of its choice. This results in the message
m3 = sign(skA,H(m1∥m′2)),mac(gxy′ ,A). If the attacker does
not know skA, it cannot modify m3. Hence, B will check
whether H(m1∥m′2) =H(m′1∥m2). Clearly, (second) preimage
attacks do not directly allow such a MIM attack to succeed,
as the input for the target hash output H(m1∥m′2) must be of
the form m′1∥m2, where m2 is fixed and not adversary-chosen.
Similarly, the mere existence of collisions, say c ̸= c′ such
that H(c) = H(c′), cannot be used to break this protocol.

Hash transcript collisions attacks. Chosen-Prefix Colli-
sion (CPC) [48, 49] are among the least costly collisions to
compute and yet can be weaponized against protocols. Given
two prefixes, p1 and p2, a CPC attack computes two suffixes
s1 ̸= s2 such that H(p1∥s1) = H(p2∥s2). When additionally
p1 = p2, such a collision is called Identical-Prefix Collision
(IPC) and is even less costly to compute.

As we shall see, Sigma’ is entirely broken as soon as (i) the
used hash function suffers from CPC attacks, (ii) obeys the
length-extension property, and (iii) the length of m2 is pre-
dictable. Indeed, given m1 sent by A, the adversary can choose
arbitrary x′,y′ and compute a CPC for prefixes m1∥gy′ and gx′ ,
resulting in suffixes infoPartial′B and info′A such that:

H(m1∥gy′∥infoPartial′B) = H(gx′∥info′A). (†)

Moreover, the claimed length field of infoPartial′B can be
chosen to be |infoPartial′B|+ |m2| The MIM adversary then
uses m′1 := gx′∥info′A and m′2 = gy′∥info′B where info′B =
infoPartial′B∥m2. By the length-extension property of H, we

obtain by appending m2 to the above collision (†):

H(m1∥m′2) = h(m1∥gy′∥info′B) = H(m′1∥m2).

Therefore, the MIM adversary successfully impersonated A
and B and hijacked the session key, i.e., gxy′ with A and gx′y

with B. To give a sense of the attack cost, finding such a colli-
sion costs about 239 for MD5 and 263.4 for SHA1 [32,48]. As
we shall see in Section 5, other kinds of CPC but no IPC affect
Sigma’, findings we formally establish with our automated
formal analysis framework (Section 4).

2.3 Symbolic Model: Term Algebra
In the next section we will present our formal analysis
framework, which is based on the so-called symbolic model,
going back to the seminal work of Dolev and Yao [20]. In
this model, messages are described by terms from a term
algebra. For example, senc(m,k) represents the message
m encrypted using the key k. The algebraic properties of
cryptographic functions are specified by equations over
terms. For example, sdec(senc(m,k),k) = m specifies the
expected semantics for symmetric encryption: decryption
using the encryption key yields the plaintext. As is common
in the symbolic model, cryptographic messages only satisfy
those properties explicitly specified algebraically. This
yields the now standard black-box cryptography assumption:
one cannot exploit potential weaknesses in cryptographic
primitives beyond those explicitly specified. Still, a wide
range of attacks, including logical attacks and attacks based
on an explicit algebraic model, are covered.

Formally, we assume a set of operators with their arities
as signature Σ and a countably infinite set of variables
V . Operators model computations over messages such as
symmetric encryption. We similarly treat atoms (usually
called names in symbolic models), i.e., atomic data such
as nonces or keys, with a countable set A . The set of terms
given by the closure of using operators from the signature
Σ containing variables in V and atoms in A is denoted
T := TΣ(V ,A). A message is a term without variable. A
substitution σ is a function from variables to messages. We
homomorphically lift substitutions to terms.

Algebraic properties over operators, such as decrypting a
ciphertext with the right key yields the plaintext, are expressed
through an equational theory. Given a signature Σ, an equation
is an unordered pair of terms s and t, written s = t, for s, t ∈
TΣ(V). To a set of equations E, we associate an equational
theory that is the smallest congruence relation over terms =E
that contains E and is closed under substitution of terms for
variables and atoms. Two messages s and t are equal modulo
E if and only if s =E t.

Example 1. For a basic model of digital signatures, let Σ

contain the operators sign(·, ·), checksign(·, ·), pk(·) and a
constant (i.e., operator of arity 0) true ∈ Σ together with
the equation checksign(sign(x,y),pk(y)) = true. This does

5902 32nd USENIX Security Symposium USENIX Association

Hash functionxUser
If x ∈ H
then n := H[x]
else pick fresh n ∈ A

H[x] := n

Adversary

n

Figure 2: Abstract hash function in the ROM. Initially, H is
the empty mapping: H := /0. Note that the adversary can also
act as a user of the hash function, but it cannot influence the
oracle, unlike in some threat models we will define later.

indeed model signature verification as the public key used
for verification pk(y) must match the signature key y, which
can be instantiated with any message.

Example 2. We assume a concatenation operator ·∥· ∈ Σ

equipped with an equation (x∥y)∥z = x∥(y∥z), that is the con-
catenation is associative. We shall use ∥ to concatenate (suffix
as second argument) different messages prior to hashing.

To simplify presentation, we tacitly identify a message t
with its equivalence class modulo =E , i.e., the set {t ′ | t ′=E t}.
In particular, we interpret all relations to be closed under
the equational theory. For example, we simply write t ∈ S for
∃t ′ : t =E t ′∧ t ′ ∈ S′ and assume that for any binary relation
∼, t1 ∼ t2 implies t ′1 ∼ t ′2 whenever t ′1 =E t1 and t ′2 =E t2.

3 Threat Models for Hash Functions

We now develop our hierarchy of hash function models. We
start from the ROM model, which represents an ideal hash
function, i.e., in which the adversary has the least possible ca-
pabilities to manipulate or learn information from it. We then
strengthen the adversary’s capabilities in various dimensions,
corresponding to possible weaknesses of hash functions.

A core observation is that from the different types of pos-
sible weaknesses – here framed as adversarial capabilities –
some are independent of others, and some are related. For
example, Length Extension attacks and CPC are independent:
there exist hash functions that have one of these two weak-
nesses, but not the other. In contrast, CPC and IPC are related:
if a hash function is vulnerable to CPC attacks, then the at-
tacker can also choose two identical prefixes: thus, any hash
function that is vulnerable to CPC is also vulnerable to IPC.

We identify four main independent dimensions of hash
function weaknesses, and thus corresponding adversary capa-
bilities: collision-related weaknesses, length-extension style
weaknesses, output-control weaknesses that can model, e.g.,
backdoored hash functions, and weaknesses that leak infor-
mation about the inputs from the output.

Random Oracle Model (ROM). Virtually all prior
symbolic analyses model hash functions in the ROM, which
corresponds to the weakest possible adversarial capabilities.

At the technical level, this means the hash function is symboli-
cally modeled as a free operator, i.e., an operator H(·)∈ Σ that
does not occur in any equation (in E). Since H does not occur
in E, H : T → T has the same algebraic property as a random
oracle: it associates to an input t, an output value H(t) that
has no other algebraic property than being the hash output
of t, modeled as a fresh atom nt . We informally describe this
modeling choice using an abstract hash functionality that is
interfaced with a user and an adversary. Here, the adversary
has no control over the hash function, as shown in Figure 2.

Modeling dimensions of Hash Weaknesses. We identified
four main dimensions of adversarial capabilities that together
can form various threat models, i.e., any two capabilities from
different dimensions can always be combined.

The overall structured lattice is depicted with its dimen-
sions in Figure 3. Capabilities higher up represent stronger
capabilities; the capability at the bottom in each dimension
is the weakest one and implies that the attacker does not have
a meaningful capability in this dimension. For example, the
combination of the capabilities on the bottom row effectively
corresponds to the ROM model of an ideal hash function. We
use a list notation to represent a specific threat model, by
listing the adversarial capabilities in each dimension. For ex-
ample, we denote the weakest threat model across the bottom
row by /0. Conversely, {allCol,allExt,anyTarget,inLeak} is the
strongest threat model in which the adversary has all capabili-
ties (and corresponds to modeling the weakest hash function).
We now introduce the details of each dimension in turn,
including various types of collisions, how hash outputs relate
to other messages, and modeling hashes that leak their inputs.

Allowed Collisions (COL). Without ROM-like constraints,
all kinds of worst-case collisions might be considered,
provided that the resulting hash function is indeed a function.
For instance, this includes the constant function that maps all
inputs to a single value. Such a strong adversarial capability
corresponds to an extremely weak hash function requirement,
and can be of interest to establish strong security guarantees
when possible. In fact, such a constant function is not even
the worst-case scenario: if the protocol has authentication
properties or inequality checks, modeling a hash function as
a constant function might miss attacks. On the other hand, a
protocol can be deemed insecure with this strong adversarial
capability due to unrealistic attacks. To refine this, we restrict
the allowed choices of hash outputs to the relevant classes
of collisions one may want to consider.

This is done using a collision-relation ∼c: it captures that
for all x and y such that x ∼c y, the hash function H allows
collisions H[x] =E H[y]. We cover a large spectrum of types
of collisions that can be combined as defined in Table 2 (the
last two rows are explained next). To define those relations,
we introduce a number of abstract operators cp1(·, ·), cp2(·, ·),
sp1(·), sp2(·), pi1(·), pi2(·), c(), c′() ∈ Σ that do not occur

USENIX Association 32nd USENIX Security Symposium 5903

anyTarget

frshTarget

Output Control (OC)

⊗
inLeak

/0

Input Leak (IL)

⊗

Collisions (COL)

chsnPrfx

idtclPrfx

⊗
allExt

Length-Extension (LE)

colExt hashExt

/0

fstPreImg

sndPreImg
∃

/0

allCol

/0ROM

⊗

Figure 3: Lattice of adversarial capabilities. An edge x→ y expresses that x is a stronger capability than y. Each column is a
dimension described at the top. Capabilities from different dimensions can be combined into threat models, e.g.,{idtclPrfx,allExt}.
The minimal threat model is the empty one, /0, which corresponds to the ROM.

in protocols. Those operators correspond to computations
performed by the adversary to find a certain collision or preim-
age, and are motivated by real-world attack strategies. For
instance, given two messages p1, p2, the messages cp1(p1, p2)
and cp2(p1, p2) correspond to the message the adversary
obtains when computing a CPC for the prefixes p1 and p2: the
hash of p1∥cp1(p1, p2) equals the hash of p2∥cp2(p1, p2), as
expressed by ∼CP. (See an example of CPC in Section 2.2.1.)

Given a relation ∼c corresponding to the chosen kinds of
collisions, the allowed hash outputs determined by the output
control dimension OC (explained below) are filtered out. The
resulting hash function is depicted in Figure 4.

Length-Extension (LE). The two last types of collisions
defined in Table 2 are specific to the length-extension
property and weaknesses of hash functions built with MD.

The first, hashExt, captures the adversarial capability to
extend the payload that is under a hash with some adversary-
chosen suffix, and is captured by the collision-relation ∼LEa.
Namely, given a hash output H[x], for any suffix s of its choice
the adversary can compute H[x∥s] without knowing x. Indeed,
the hash output of x∥s, which the attacker cannot compute, is
allowed to collide with the one of H[x]∥s, which the attacker
can compute. This is the most classical weakness of length-
extension. The second, colExt, corresponds to the fact that
collisions may be extended, i.e., as soon as H[x] = H[y], we
will also have that H[x∥s] = H[y∥s] for any s. Interestingly,
HMAC-SHA2 and HMAC-MD5 constructions have colExt
but not hashExt for a given key.

Output Control (OC). In a worst-case scenario, we consider
a hash function where the attacker may control the output of
the hash function to some extent, provided that the resulting
hash is indeed a function. Such scenarios could occur if, e.g.,
the hash function was badly designed or has a backdoor. It
also mirrors attacks similar to the nostradamus attack over
MD5 [26], for which the attacker can inject some bytes inside
the input to make the hash output go to a previously chosen
target. The hash outputs can be taken from (i) a set of atoms

AH , that model fresh values unknown to the attacker (unless
revealed), as in the ROM, (ii) fresh atoms chosen by the
attacker (frshTarget), or (iii) arbitrary messages provided that
the adversary knows them (anyTarget). The default capability
models one of the behaviours of the ROM, where each hash
output is taken from a set of fresh atoms (but still allowing for
collisions based on COL). The second capability frshTarget
models the case where the attacker can partially control the
outputs of the hash function that still need to be taken from
a set of atoms. This captures some type-flaw attacks but the
attacker cannot control the actual shape of the hash values
which will appear as junk bytes. The third one anyTarget
additionally captures arbitrary type-flaws attacks, where the
attacker can fully control the hash output to an arbitrary value.

Input Leak (IL). Finally, hash functions are sometimes
implicitly assumed to guarantee confidentiality of their inputs,
and sometimes ill-used for this purpose in practice. In reality,
some badly designed hash functions might leak information
about their inputs. Previous symbolic analyses did not capture
this capability, which can yield practical attacks. We model
the worst case scenario in which the adversary can obtain
the complete input. We therefore introduce an adversarial
capability inLeak that allows the adversary to learn the hash
input of a given hash output, which is directly obtained by
forwarding every hash inputs x in Figure 4 to the attacker.

3.1 Lattice of threat models
As explained previously, we use the notation {·} to describe
a specific threat model made of the explicit hash weakness
in each dimension, and omit it when there is none for this
dimension. The weakest capabilities occur as /0 correspond-
ing to ROM and Figure 2. Conversely, in the strongest threat
model, {allCol,allExt,anyTarget,inLeak}, all collisions are possi-
ble (and adversary-chosen), all types of type-flaw attacks are
considered, and hash outputs leak their inputs. The purpose
of the lattice structure is to structure this spectrum of threat
models spanning those two extremes. In the next section we
show how we effectively explore the lattice.

5904 32nd USENIX Security Symposium USENIX Association

Hash function
x

User

If x ̸∈ dom(H)
then NC := {H[y] | x ̸∼c y}

H[x] := oC
o := H[x]

Adversary

o

If anyTarget or frshTarget
then oC := oA
else choose oC ∈ AH \NC

oAoC

Function Value Choice

If frshTarget
then compute oA ∈ A
else if anyTarget

then compute oA ∈ T \NC

NC
NC

Figure 4: Generic hash function model that generalizes the model from Figure 2, and can be instantiated with different adversarial
capabilities. Initially, H := /0. Collisions and Length-Extensions do not appear explicitly since they are captured in ∼c (see
Table 2). If the input leak capability is present, the model additionally includes that every hash input is forwarded to the attacker.

Capability ∼c Intuitions behind the types of allowed collisions

/0 ∼⊥ Ideal model in which hash outputs never collide; ∀t ̸= t ′ : t ̸∼⊥ t ′

∃ ∼∃ There exist two constants c and c′ whose hashes collide H[c] = H[c′]; c∼∃ c′

fstPreImg ∼1 Given o = H[t], the adversary can compute a preimage t ′ = pi1(o) such that H[t ′] = o; t ∼1 pi
1(H[t])

sndPreImg ∼2 Given t, the adversary can compute a second preimage t ′ = pi2(t) such that H[t ′] = H[t]; t ∼2 pi
2(t)

chsnPrfx ∼CP Given t, t ′, the adversary can compute u = cp1(t, t ′) and u′ = cp2(t, t ′) such that H[t∥u] = H[t ′∥u′]; t∥u∼CP t ′∥u′
idtclPrfx ∼IP Given t, the adversary can compute u = sp1(t) and u′ = sp2(t) such that H[t∥u] = H[t∥u′]; t∥u∼IP t∥u′

allCol ∼⊤ All hash outputs can collide, which models the worst possible collision case; ∀t, t ′ : t ∼⊤ t ′

hashExt ∼LEa Length-extension collision. Given H[x] and s, the adversary can compute H[x∥s]; x∥s∼LEa H[x]∥s
colExt LEc(∼c) Length-extension closure. H[x∥s] collides with H[y∥s], if H[x] = H[y] (based on any of the previous capabilities).

Table 2: Intuition behind the basic collision-relations ∼c depending on the chosen adversarial capabilities. Many of these
relations define that there exist collisions that can be computed for very specific, but not all, input patterns. Collision-relations in
different dimensions can be combined by taking their union. We give the formal definitions in Table 6.

Example 3. The weakest threat model capturing the CPC
attack from Section 2.2.1 is {chsnPrfx,colExt}. Indeed, the
attack is possible provided that CPC exist (chsnPrfx) and can
be extended due to the length-extension property (colExt).

Remark 1. Second preimage resistance (sndPreImg) implies
preimage resistance (fstPreImg) in our modeling, while in the
computational models with the same name [38] this is not
the case. This is an intended consequence of our modeling
choices with an orthogonal inLeak capability, which causes
us to use slightly different definitions in this case despite
using the same names. inLeak expresses the ability for the
adversary to compute the preimage of a given hash output. fst-
PreImg expresses the ability to compute some input pi1(H[t])
that when hashed yield a given, target output H[t] but that is
always different from the original input t and similarly for
sndPreImg. For this modeling choice in our symbolic model,
the above implication indeed holds.

Cross-dimension implications. The previous lattice
contains some redundant capabilities that are not captured
by the joint partial order. For instance, we have that
allCol ⇒ hashExt, sndPreImg ∧ inLeak ⇒ fstPreImg and
inLeak⇒ hashExt. Further, if on a dimension the protocol
is secure at some given level, it is secure for all weaker threat

models (i.e., levels below), and conversely for attacks.

4 Automation methodology

We now present different ways to automate verification for
the previously defined threat models by casting them in both
TAMARIN and PROVERIF, two of the most widely used tools
with distinct active user communities. In general, they offer in-
comparable features, reasoning engines, and input languages
and tend to perform better on different examples. Develop-
ing our methodology for both greatly increases the potential
targets and users, and demonstrate the generality of the frame-
work, which is not tailored to a given tool.

We first explore a direct way of modeling these capabilities
as equational theories (Section 4.1), which is the classical
solution in symbolic tools but limited here to a few capabilities
due to a lack of tool support for more advanced equations.

We then explain how we overcome this by extending
TAMARIN (Section 4.2) yielding a fully automated tool capa-
ble of exploring all of our threat model lattice. We achieve this
by extending TAMARIN with an associative concatenation op-
erator in order to provide a more precise model for collisions
and length extensions. We build on the latter and model hash
function computations by a call to an oracle process, in the
flavor of Figure 4. This process allows fine-grained control

USENIX Association 32nd USENIX Security Symposium 5905

over the output values and allows for a logical specification
of the set of possible collisions and can be fully automated in
TAMARIN, which we then use as back-end to automatically
explore our lattice of threat models and obtain the weakest
threat models under which attacks were found (if any).

Finally, we discuss how we extended PROVERIF to allow
modeling any threat model of our lattice (Section 4.3).
We developed for this a new feature in PROVERIF that
allows to define powerful recursive predicates that we use
to approximate an equational modeling of the ∥ and MD
construction, enabling reasoning on length extensions, IPC,
and CPC. We explain how to produce those PROVERIF
models but automating this task further is left as future work.

4.1 Equational theory based modeling
As explained in Section 2.3, the classical way to model crypto-
graphic primitives in a symbolic model is to use an equational
theory, that specifies which operations yield equal values.

4.1.1 Capabilities modeled as operators

Using an equational theory allows us to naturally and
efficiently explore the set of scenarios corresponding to the
capabilities fstPreImg, sndPreImg, ∃, as well as inLeak. Each
threat scenario for a given dimension can be encoded by the
following corresponding equation that we explain below.

fstPreImg H(pi1(z)) = z
sndPreImg H(pi2(z)) = H(z)

∃ H(c) = H(c′)
inLeak i(H(z)) = z

We note that the absence of a weakness for each dimension is
the default in symbolic models and does not require any partic-
ular modeling. For each threat model we simply add the corre-
sponding equations for the collision and input leak dimension.

To express that a hash function is not preimage resistant
(fstPreImg) we provide the attacker with an explicit function
pi1 that allows the attacker to compute a preimage of a hash
z, i.e., a value pi1(z) that hashes to z. The absence of second
preimage resistance (sndPreImg) is similarly expressed by the
function pi2.1 The absence of collision resistance (∃) relies
on two distinguished constants c and c′ on which the hash
function collides. These do not have any particular structure
and are not attacker chosen, modeling that a collision merely
exists. Finally, we model that a hash function may leak (part
of) its input (inLeak) by giving the attacker the capability to
inverse the function using the symbol i, and no leak being the
default does not require an equation.

We encoded this part of the hierarchy in both TAMARIN
and PROVERIF, and used it on multiple case-studies as
presented in Section 5.1. As we will see, while such an
equation based model is easy to deploy using symbolic

1The equation for pi2 does not work out of the box for a technical reason
that we describe in Appendix A.

tools, it is also rather weak (and not a very effective way
of finding attacks): the equations are basically obtained by
negating the security assumption and model the existence of
a collision, or (second) preimage without giving the attacker
any additional control. (We exemplified this gap with Sigma’
in Section 2.2.1.) On the other hand, when finding an attack
with this model generally translates directly to a missing
assumption on the security of the used hash function.

4.1.2 Challenges with modeling associative ∥ and MD

To go beyond the above existential modeling of weaknesses
in hash function we will give a more detailed model of the
associative ∥ operator and of the MD construction whose prop-
erties can be exploited by an adversary. This will allows us
to explore IPC, CPC, and length extension attacks, which are
not covered using equations from the previous section.

The presence of an associative concatenation operator is
required if we want to capture IPC and CPC. Indeed, recall
that given prefixes, p1 and p2, a CPC attack computes suf-
fixes s1,s2 such that H(p1∥s1) = H(p2∥s2). If, for example,
a protocol participant computes the transcript H(m1∥m2∥m3)
and the attacker controlled parts are m2 and m3, then the
suffix in the previous equation needs to be m2∥m3. With a
non-associative concatenation operator (that we denote ⟨·, ·⟩)
the CPC attack would fail as H(⟨⟨m1,m2⟩,m3⟩) would not be
identified with H(⟨m1,⟨m2,m3⟩). This raises a challenge for
the existing tools, as neither TAMARIN nor PROVERIF allow
to model such an associative operator. The core difficulty
is that both tools rely on unification. Given two messages
one needs to be able to compute a finite and complete set of
most general unifiers, i.e., a set of substitutions that represents
all possible ways of instantiating the messages that make
them equal. For instance, ⟨x,0⟩=? ⟨1,y⟩ has a unique unifier
{x 7→ 1,y 7→ 0}. For associative operators, the issue is that
such a set is not always finite. For instance, 0∥x =? x∥0 has
an infinite set of unifiers of the form {x 7→ 0n | n ∈N}. A first
approach is to model the associativity under a hash function
operator for a bounded depth only, for instance specifying
that h(⟨x,⟨y,z⟩⟩) = h(⟨⟨x,y⟩,z⟩), but this does not imply that
h(⟨x,⟨y,⟨z,z′⟩⟩⟩) = h(⟨⟨⟨x,y⟩,z⟩,z′⟩). We use such a bounded
modeling successfully on some examples in Section 5. How-
ever, this modeling may miss attacks that require associativity
at a deeper depth than modeled. We explain how we overcame
this problem in both tools in the next sections.

Furthermore, a naive way to encode the MD con-
struction would be to directly consider the equation
H(⟨x,y⟩) = f (H(x),y). However, such an equation is out of
scope of both TAMARIN and PROVERIF as it cannot be com-
pleted into a convergent rewrite system, which seems to be an
inherent difficulty for all tools based on equational reasoning.

5906 32nd USENIX Security Symposium USENIX Association

4.2 TAMARIN extension for the full lattice
Extension for the ∥ operator. We extended TAMARIN to
obtain partial support for associative operators such as ∥. The
key observation is that we do not need the unification problem
for an associative operator to yield a finite set in general: it is
sufficient that all particular unification problems that actually
appear in a protocol’s verification have a finite set of unifiers.

TAMARIN relies on the MAUDE tool as a backend to per-
form equational unification. Although unification for an asso-
ciative operator is infinitary, support has recently been added
in MAUDE [22]: it either returns the complete set of unifiers,
or only a subset but with a warning. We integrated this new
feature in TAMARIN, which now has a built-in associative
concatenation operator denoted by ∥. To ensure correctness,
TAMARIN stops the analysis as soon as MAUDE raises a warn-
ing. In particular, as we use ∥ under a hash function only, our
case studies (Section 5) illustrate that TAMARIN encountered
this MAUDE warning in rare occasions only2. The soundness
proof of this extension is provided in Appendix C.

Event based modeling. The equational based models pre-
sented above have several drawbacks:

• The equations for computing collisions, and (second)
preimages are existential and do not give the adversary
any control over the computed messages, missing most
of our threat model (e.g., CPC) and practical attacks.

• The associative operator added to TAMARIN increases
the complexity of the equational theories often leading
to non-termination or extensive verification times when
modeling CPC and length extension attacks.

• The previous models do not cover the OC dimension.
To overcome these limitations, instead of using an operator

to model a hash computation, we define, in parallel to the
protocol processes, a dedicated process for computing the
hash function, in the spirit of Figure 4. Notably this approach
allows to either sample the hash value from a fresh set of
values (/0) or query the output values to the attacker (frshTarget
or anyTarget), i.e., let the attacker choose the value. By default,
this process is free to create any collisions. To restrict this,
we will give a logical specification when precisely collisions
are allowed. More precisely, (i) whenever a hash output value
o is returned for some input i, we raise an event Hash(i,o),
and (ii) we specify that when a trace contains two events
Hash(i,o) and Hash(i′,o), i.e., two inputs i and i′ are mapped
to the same output o, then we must have i∼ i′ for the desired
∼ relation. Otherwise the trace is discarded. For example, if
∼ is the identity relation we do not allow any collision; if ∼
relates all inputs then arbitrary collisions are allowed.

Discarding traces is achieved using TAMARIN’s restric-
tions, which are logical formulae considered as part of the
specification and where any execution that does not satisfy

2The warning only occurred with one the security properties out of the 21
we verified, and even then only for a particular threat-model.

it is discarded. We can represent a simplified threat model
of {chsnPrfx,colExt} with a restriction that requires that if a
collision occurs for i and i′, then it must be a length-extended
CPC: the cpi(p1, p2) represent the attacker chosen suffix for
prefixes p1 and p2 (chsnPrfx) and l is a length extension on
both inputs (colExt), which is formally written as:

∀i, i′,o. Hash(i,o) & Hash(i′,o) & i ̸= i′

⇒∃p1, p2, l. (i = p1∥cp1(p1, p2)∥l
& i′ = p2∥cp2(p1, p2)∥l)

Plug-and-Play library and tooling. Using this approach,
we define a modular library for hash functions that allows
TAMARIN to explore the full lattice of capabilities. We de-
veloped a Python script that allows to check a given protocol
for all possible scenarios, only exploring non-redundant
scenarios and outputting the minimal threat models under
which an attack was found. This yields a push-button tool that
produces results that can be as compact, yet comprehensive,
as those shown in Table 4.

4.3 Extending PROVERIF for the full lattice
Unlike TAMARIN, PROVERIF does not use MAUDE and does
not already support associative commutative operators to base
an associative operator on. Hence we took a different ap-
proach: as in the previous event-based model we start with
a very permissive model, allowing arbitrary collisions, and
refine this model using axioms for a given threat model.

Whether two hashes collide depends on a predicate
eq_hash. Instead of giving the precise semantics of this predi-
cate (which would lead to non-termination), we consider the
predicate as an uninterpreted operator considering arbitrary
behaviors. Then, given a threat model, we refine the predicate
by specifying some carefully chosen properties that we know
the predicate satisfies. For example, for a hash function based
on the MD construction (where f is the compression function)
with an associative ∥, we could define the following axiom:

axiom h1,h2,x:t_output;
eq_hash(f(h1,x),f(h2,x))=⇒ eq_hash(h1,h2);
eq_hash(h,h)=⇒ true;

Ideally, we would like to state that if eq_hash(f(h1,u1),f(h2,
u2)) then u1 and u2 are equal. However, this is not necessarily
the case, as u1, u2 may have been instantiated by messages
made of the concatenation of multiples blocks that make
them different in the equational theory (as concatenation is
not associative); e.g., for u1=<<a,b>,c> and u2=<a,<b,c>>.
In such a case, the messages f(h1,u1) and f(h2,u2) were not
properly computed as in the MD construction.

To provide a more effective model of ∥ and the MD
construction, we extend PROVERIF by adding recursive
computation functions: powerful generic user-defined
functions to manipulate messages that are fully integrated in

USENIX Association 32nd USENIX Security Symposium 5907

the reasoning engine. For instance, we define the computation
function H that recursively computes the MD construction
(removing the need for an associative ∥ operator). The
soundness of this extension is provided in Appendix D.

compfun H(t_output):bitstring =
forall x:bitstring;

H(x) if is_var(x) | x = Nil → x
otherwise forall x1,x2,h:bitstring;

H(f(h, <x1,x2>)) → H(f(f(h,x1),x2))
otherwise forall x,h:bitstring;

H(f(h,x)) → f(H(h),x).

For each given input, the computation function tries to match
the left-hand side messages and the possible conditions of the
given rules sequentially. The first successful rule is applied,
i.e., its right hand side message is computed and returned.
We suppose that to compute the hash of a term t we write
f(Nil,t); this can be conveniently hidden to the user by an
auxiliary function letfun hash(x:bitstring)=f(Nil,x).
Then we indeed have that both H(hash(<<a,b>,c>) and
H(hash(<a,<b,c>>)) evaluate to f(f(f(Nil,a),b),c).

Computation functions can be used in the specification of
axioms. For instance, the following axiom replaces the hash
values in the predicates with their MD construction.

axiom h,h1,h2:t_output;
eq_hash(h,h1) && h2 ← H(h1) =⇒ eq_hash(h,h2).

5 Case studies

Using the techniques from the previous section, we have
analyzed 20 protocols: 15 of them are based on existing
TAMARIN models and 5 are new case studies. We first analyze
all of these protocols using the equational theory based hash
models in TAMARIN (Section 5.1), exemplifying the limita-
tions of this approach. We then perform an in-depth analysis
of the five new models using the event based modeling, com-
pletely automating the exploration of the threat model lattice
with TAMARIN. We present our analysis methodology in Sec-
tion 5.2 and a selection of results in Section 5.3. Finally, to
complement some of our results, and as a proof of concept
to advocate for the generality of our approach, we also used
PROVERIF as described in Section 4.3 to analyze two of the
original protocol models (available at [15]). The results found
with PROVERIF are coherent with the findings of Section 5.3.

5.1 Equational theory based hash models
Using the equational theories described in Section 4.1, we
analyzed all case studies mentioned previously, and even with
the strongest threat model in the hierarchy described in Sec-
tion 4.1.1 without input leak ({fstPreImg}), only one potential
attack is found, which illustrate the limitation of the equa-
tional based modeling. This attack is against the TESLA pro-
tocol (v1), which instantiates a Pseudorandom Function (PRF)

with a weak construction (HMAC-MD5), but is insecure as
soon as preimages can be found. Adding the equation for input
leak (Section 4.1.1) results in the scenario {fstPreImg,inLeak},
and triggered regular non-termination issues in TAMARIN.
For many protocols the input leak resulted in potential attacks
on secrecy. For this particular set of case studies, this is not
surprising as the hash function is applied to cryptographic
keys. We list the full results in the Appendix in Table 5.

5.2 Fully automated analysis methodology
As described in Section 4.2, we developed a TAMARIN library
that allows verification of a specified threat model in the lat-
tice of hash weaknesses. To automate a systematic exploration
of the full lattice of threat models, we developed a Python
program that computes the set of all minimal, respectively,
maximal scenarios that invalidate, respectively, validate the
security goals. It allows for parallel verification, and avoids
redundant exploration: once a property is falsified for a threat
model, we automatically conclude that it is falsified for all
stronger threat models (and conversely for verified proper-
ties). We also exploit cross-dimension implications discussed
in Section 3.1, and avoid calling TAMARIN systematically for
each of the 264 distinct scenarios of the lattice. As a heuristic,
we start by verifying the set of strongest and weakest threat
model, as they may allow to quickly prune the search space.

For a given protocol, TAMARIN may find an attack on some
threat model in a very short time, but take much longer to find
the same attack in a more complex threat model, and the con-
verse may happen for a security proof. Thus, the optimal order
of verifying the scenarios is protocol dependent. We therefore
first run each analysis with a short timeout, to ensure that we
first find all easy proofs and attacks. We then immediately con-
clude implied results and prune the corresponding scenarios.
We then re-run the remaining scenarios with a longer timeout.
We show an example of a fully automatically generated table
for Sigma’ in Table 4 (detailed in Section 5.3.1).

After the initial, fully automated analysis, one can perform
a more in-depth analysis of the attacks found. Notably, mul-
tiple attacks may exist for a given threat model, and by de-
fault the tools return the first attack found. This may “hide”
some interesting attack variants and can cause PROVERIF and
TAMARIN to initially report different variants. TAMARIN’s
interactive mode can be used to semi-automatically find all
variants of attacks for a given threat model. We used both
tools to obtain the attack variants discussed in Section 5.3.1.

Experimental results We first discuss the overall perfor-
mance of our approach, where experiments were performed
on an Intel(R) Xeon(R) CPU E5-4650L 2.60GHz server with
756GB of RAM, with 8 threads for a TAMARIN call while
PROVERIF is inherently single threaded.

We first ran a test set to compare the efficiency of our
new event based threat model (Section 4.2) to the classical

5908 32nd USENIX Security Symposium USENIX Association

Protocol Broken properties Main attack requirements New? In-text ref. Time (s) Note

Sigma Sec,Agr(transcript) chsnPrfx,colExt [9] AT(S1) 28
Sec,Agr(transcript) chsnPrfx,colExt ∼ [9] AT(S2) manual collisions on shares
Sec,Agr(transcript,role) chsnPrfx new AT(S3) 55 role-confusion, no need for colExt

SSH
Agr(nego) CI(*) new AT(SSH1) 3 see Figure 6
Agr(nego) idtclPrfx,colExt [9] AT(SSH2) 28
Agr(nego) CI(I),sndPreImg,colExt new AT(SSH3) 41

IKEv2
Sec(R) CI(*) new AT(IKE1) 6 CI should be on the cookie
Auth(I) idtclPrfx,colExt [9] AT(IKE2) 20
Agr(cookie,transcript) ∃,colExt new AT(IKE3) 9 disagreement on cookies only

Flickr Auth(I) hashExt [21] AT(F) 9

Table 3: A selection of the most meaningful attacks we found whose details are given in Section 5. Those attacks are at the design
level and their severity depends on whether the attack requirements are met given a specific implementation and threat model.
Time: number of minutes it takes for our tool and Tamarin to find the attack. Sec: Secrecy of session data (e.g., session key);
only from a given role’s perspective if specified, Agr(data): agreement on data, note that disagreement on negotiation data
(nego) can lead to downgrade attacks, Auth(X): authentication of role X (R: responder, I:initiator, *:both), ∼: new variant of
an existing attack, CI(X): role X must suffer from colliding inputs; see Section 5.3.2.

equational based modeling. We executed all protocols Table 3
first with a perfect ROM model using a basic function symbol
and non-associative concatenation, and then with the perfect
ROM model part of our event based approach with associative
concatenation. Overall, most protocols verify with almost
exactly the same time, and some outliers take up to five times
longer. Given the substantially increased expressivity, this
is very encouraging. We provide detailed results in the long
version [16].

All detailed tables are available in the long version [16]:
Overall about 5000 scenarios were verified in 150 minutes
through 1600 TAMARIN calls. Verification times vary sub-
stantially among protocols: most protocols only take a few
minutes, while two particular models (SSH and IKE without
neutral DH element) take around an hour to complete. Overall,
our pruning strategy was very effective: about two thirds of
the scenarios were not verified through a TAMARIN call but
directly implied by another one. We provide detailed results
in the long version [16].

We also checked the verification times needed to automati-
cally find our main attacks (cf. Table 3). Most of our attacks
stem from a few scenarios that we identify as the most inter-
esting, and the time needed to uncover an attack under those
scenarios is consistently under a minute for our protocols.

Finally, we also measured the performances of PROVERIF
in the CPC setting with the MD construct over Sigma and IKE
(cf. the long version [16]) , and found them to be in the same
order of magnitude as TAMARIN, supporting the generality
of our approach. We however stress that that the tool timings
are often incomparable in practice: while PROVERIF tends
to be faster than TAMARIN for the larger case studies in our
set, PROVERIF is single threaded and TAMARIN is multi-
threaded, and both operate inherently differently with respect
to specific threat models. We mainly chose TAMARIN as the
main tool for the automatic lattice exploration because it was

more natural to express the full lattice with it.

5.3 Results from automated analysis
We now report on the results obtained by running our
TAMARIN-based automatic tool for exploring our lattice of
threat models. We first detail the results for Sigma’ in Sec-
tion 5.3.1 and then discuss in Section 5.3.2 a selection of other
attacks and insights. In Table 3 we summarize the most inter-
esting attacks that our method automatically found and that
we describe in the remainder of this section (we refer to at-
tacks with labels such as AT(S1)). Our attacks are at the design
level: their severity depends on whether the discovered attack
requirements (including the choice of hash primitive) are met
given a specific implementation, threat model and use case.

5.3.1 Detailed analysis results for Sigma’

We analyzed mutual authentication and key secrecy for
Sigma’. As argued in [9], even though Sigma’ is not de-
ployed, its protocol logic is similar to many widely deployed
authentication protocols such as TLS, SSH, IKEv2, which
makes it an interesting and relevant case study. The output
of our tool for this protocol model is shown in Table 4. Each
row contains either one of the strongest threat models under
which all of the three properties hold or one of the weakest
threat model under which one of the properties is violated.
For Sigma’, they were actually all violated as soon as one was.
This kind of tables (more of them are in the long version [16])
allow to concisely and yet comprehensively describe the
security level against any of the threat models in the lattice.

How to read threat model tables. As an example, consider
the last row of Table 4: the protocol is broken if CPCs are
possible (chsnPrfx) and can be extended thanks to colExt,

USENIX Association 32nd USENIX Security Symposium 5909

Initiator A
skA,pkA′

Adversary Initiator A’
skA′ ,pkA

m1 := gx∥infoA m′1 := gx′∥infoA′

mA
1 := gc∥col1 m′A1 := gd∥col2

sign(skA,H(m1∥mA
1)),mac(gxc,A) sign(skA′ ,H(m′1∥m′A1)),mac(gx′d ,A′)

sign(skA′ ,H(m′1∥m′A1)),mac(gxc,A′) sign(skA,H(m1∥mA
1)),mac(gx′d ,A)

Figure 5: The new CPC attack we found on Sigma’. coli = cpi(L1,L2) for i ∈ {1,2} where L1 := gx∥infoA∥gc and L2 :=
gx′∥infoA′∥gd . Therefore H(m1∥mA

1) = H(m′1∥m′A1) so that A’s and A′’s signatures can be reused.

Party A
skA,pkB

Adversary Party B
skB,pkA

m1 :=VA∥infoA m′1 :=VA∥(infoA∥x)
m2 :=VB∥infoBm′2 :=VB∥(x∥infoB)

· · · · · ·· · · · · ·
sign(skA,H(· · ·∥infoA∥x∥infoB∥· · ·)), · · ·

sign(skB,H(· · ·∥infoA∥x∥infoB∥· · ·)), · · ·

Figure 6: Attack AT(SSH1) on SSH: In the set-up phase where A sends the set of its allowed algorithms infoA, the adversary
alters infoA by extending it with some message x. The adversary then alters infoB sent by B by putting x before it. Despite the
different input messages, the concatenation of infoA and infoB results in the same transcript · · ·∥infoA∥x∥infoB∥· · · on both side.

Threat Models Auth.
COL LE OC IL

fstPreImg,chsnPrfx hashExt anyTarget inLeak ✓

allCol ✗

fstPreImg,idtclPrfx allExt anyTarget inLeak ✓

chsnPrfx colExt ✗

Table 4: Sigma’ analysis. ✓: security holds, ✗: attack found.

even when hash outputs are completely fresh values. However,
without either colExt or chsnPrfx, the protocol is deemed
secure (otherwise this threat model would not represent a
minimal violation). Inspecting the attack trace returned by
TAMARIN for this threat model, we observe that it corresponds
to the CPC attack AT(S1) from [9] described in Section 2.2.1.

The second row shows that an attack occurs if collisions
are unconstrained (allCol). This was to be expected as such
collisions subsume through a cross-dimension implication
CPC with colExt. While the automated analysis uses those
implications to prune the search space, we display for clarity
all minimal results for the basic partial order of the lattice.

The third row shows that even for the strongest OC, LE,
and IL capabilities, the protocol is deemed secure if CPC
is impossible (as shown by the COL capability, which is
the strongest among the ones that are strictly weaker than
chsnPrfx). Similarly, the first row shows that even for the
strongest OC and IL capabilities and for {fstPreImg,chsnPrfx},

we find no attacks as long as colExt is impossible.

New attacks. We automatically found the CPC attack
from [9], described in Section 2.2.1. We additionally found a
variant of this attack where the CPC is replaces the DH shares
gx,gy instead of the infoA, infoB fields. This variant AT(S2)
seems harder to exploit as it is unlikely that DH shares allow
a large enough search space for finding the CPC.

More interestingly, we also automatically found a novel
CPC attack AT(S3). The attacker acts as a MIM in-between
two agents A and A′ both acting as initiator. It is able to
impersonate A towards A′, who believes A is acting as a
responder, and A′ towards A, who believes A′ is acting as a re-
sponder. The adversary additionally learns both session keys.
This attack thus violates session key secrecy, authentication,
and agreement on the agents’ role. The attack is depicted in
Figure 5. A simple fix for this attack is to include the role
name under the signature to avoid such role confusion. We
show automatically that the attack disappears with this fix.

Finally, we report on a reflection attack that does not re-
quire any collision: the attacker simply reflects A’s messages
to herself, breaking agreement on the agent role. This attack
requires that A accepts a session with an agent having the
same public key which could be realistic in some specific
use cases (e.g., shared credentials, group authentication). The
previous fix avoids this attack (and we proved it); as an al-
ternative, an agent could check that her peer’s public key is
different from her own public key.

5910 32nd USENIX Security Symposium USENIX Association

5.3.2 Selection of other attacks and insights

Colliding input attacks on SSH and IKE. Using our
methodology, we found colliding input attacks on both, SSH
and IKEv2. Colliding input attacks allow an adversary to alter
exchanged messages between two agents such that they are
parsed differently by both agents but yield the same bitstring
when they are recomposed into a bitstring prior to hashing,
hence not relying on hash collisions or other hash weakness.
An example of such an attack AT(SSH1) is depicted in Figure 6
in the case of SSH, where the attacker can alter the messages
such that both parties agree on different sets of algorithms
in the set-up phase. The attack relies on the fact that, before
hashing, fields of previous messages are concatenated into a
bitstring, hence losing the message structure: (infoA∥x)∥infoB
is the same as infoA∥(x∥infoB). For such attacks to be realistic,
the protocol needs to drop some length fields (which initially
allowed unambiguous message parsing) before hashing or
be very liberal about parsing, e.g., accept any list of length-
prefixed fields and process them until the input buffer is empty
without requiring knowledge of the list size in advance. Our
automated verification framework is able to capture such at-
tacks and did so for both SSH and IKE; it is up to the user to
assess if such attacks may occur in actual implementations.

While this attack is not practical here, it occurred in an early
version of the EU Federation Gateway Service [23] for the
EU’s Covid-19 contact tracing apps due to the hash computa-
tion that concatenated two variable-length fields. The attack
allowed circumvention of accountability, e.g., for the gateway
server to manipulate country data or for countries to repudiate
data that they uploaded; it was fixed before deployment.

IKEv2. While the previously mentioned input colliding
attack AT(IKE1) seems impractical, it can be made practical
by changing the length information at the start of the cookie
through an IPC. We automatically found this stronger attack
variant AT(IKE2), which corresponds to the one documented
in [9], for the threat model {idtclPrfx,colExt}. We also found
a low-severity attack AT(IKE3) under {∃,colExt} where the
adversary breaks transcript agreement as it uses two colliding
hash inputs as the cookies for the initiator and responder.

SSH. In addition to the previous colliding input attack, we
automatically found the IPC attack AT(SSH2) from [9] for the
threat model {idtclPrfx,colExt}. This is similar to the attack
escalation of IKE and appears to be a recurring pattern.

Our analysis also revealed the attack AT(SSH3) under {snd-
PreImg,colExt} that exploits a second preimage attack and
the specific way the transcript is reorganized prior to being
hashed; the attack would not be possible if the hash input
would simply be the transcript. However, it requires the initia-
tor to be liberal in the way it parses B’s negotiation informa-
tion (similarly to input colliding attacks). This attack violates
transcript agreement and allows a MIM attacker to completely

tamper with the negotiation information sent by the initiator
to the responder, potentially enabling downgrade attacks.

Telegram. We modeled Telegram’s key exchange proto-
col described in [50] and [1, Figure 57]. As some output of
the hash function is used as a secret, the minimal scenario
scenario for an attack AT(T) is naturally {frshTarget}. How-
ever, we found no attack even under the strong threat model
{fstPreImg,chsnPrfx,allExt,inLeak}. This seems to indicate that
Telegram is secure despite using SHA1 and SHA2-256 as
hash functions. The first attack however indicate that PRF
like assumptions are needed to prove the security of the pro-
tocol, which has been independently identified in [1], and
Telegram would benefit from upgrading their hash functions.

Flickr. For the old API of Flickr, we automatically found
the length-extension attack AT(F) first documented in [21]
under the threat model {hashExt}. We also found variants of
these attacks relying either on the inLeak or the fstPreImg
capabilities. Our methodology could have then easily spotted
the design flaws of this API. After the discovery of the first
attack [21], Flickr migrated to the OAuth framework

6 Further related work

Besides the works already mentioned in Section 2, there are
many works on hash functions, their design, and their crypto-
graphic properties (see e.g., [38, 39, 43]).

The ROM shares features with the classical symbolic
(Dolev Yao) model of hash functions used in nearly all pre-
vious symbolic analyses. One exception is the automated
TLS 1.3 analysis in [8], which explicitly considers the possi-
bility of a very weak hash function where all inputs collide.

The use of the ROM in symbolic models also connects
to the so-called computational soundness question: can we
obtain computational guarantees from a symbolic proof? In
this field, the only two works that consider hash functions
model them as a random oracle [3, 18]. Additionally, [3]
shows an impossibility result in the standard model for a hash
function that is symbolically represented as a free symbol.

7 Conclusions

We provided the first systematic, automated methodology to
discover protocol attacks that exploit weaknesses of hash func-
tions. Our methodology finds attacks that cannot be detected
either in previous symbolic analysis or in computational anal-
yses that use the ROM. All our results can be inspected and
reproduced using the docker image at [15]. Our extensions to
TAMARIN and PROVERIF are not hash-specific and are there-
fore of independent interest, opening up new applications.

Our case studies reveal several new attack variants, but
we did not find a completely new break that warranted, e.g.,

USENIX Association 32nd USENIX Security Symposium 5911

responsible disclosure. We conjecture that this is because
several of our case studies overlap with earlier manual analy-
ses [1, 9]. In future work, we want to apply our methodology
to more complex case studies such as full TLS, the EMV
payment standard (which uses SHA1), and some blockchain
applications, which are even harder to analyze manually.

Acknowledgments

This work has been partly supported by the ANR Research
and teaching chair in AI ASAP (ANR-20-CHIA-0024) and
ANR France 2030 project SVP (ANR-22-PECY-0006).

References

[1] Martin R Albrecht, Lenka Mareková, Kenneth G Pater-
son, and Igors Stepanovs. Four Attacks and a Proof for
Telegram. Long version, https://mtpsym.github.
io/paper.pdf. In IEEE Symposium on Security and
Privacy (S&P), 2022.

[2] Valerie Aurora. Lifetimes of cryptographic hash func-
tions, 2017. https://valerieaurora.org/hash.h
tml (Retrieved Jan 2022).

[3] Michael Backes, Birgit Pfitzmann, and Michael Waidner.
Limits of the BRSIM/UC Soundness of Dolev-Yao Mod-
els with Hashes. In European Symposium on Research
in Computer Security (ESORICS). Springer, 2006.

[4] Elaine Barker, Lidong Chen, Andrew Regenscheid, and
Miles Smid. Recommendation for pair-wise key es-
tablishment using integer factorization cryptography.
In Special Publication (NIST SP), National Institute
of Standards and Technology, 2009.

[5] David Basin, Jannik Dreier, Lucca Hirschi, Saša
Radomirović, Ralf Sasse, and Vincent Stettler. A For-
mal Analysis of 5G Authentication. In Conference on
Computer and Communications Security (CCS). ACM,
2018.

[6] David Basin, Ralf Sasse, and Jorge Toro-Pozo. The
EMV Standard: Break, Fix, Verify. In IEEE Symposium
on Security and Privacy (S&P). IEEE Computer Society,
2021.

[7] Mihir Bellare and Phillip Rogaway. Random Oracles
Are Practical: A Paradigm for Designing Efficient Pro-
tocols. In ACM Conference on Computer and Commu-
nications Security (CCS). Association for Computing
Machinery, 1993.

[8] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified Models and Reference Implemen-
tations for the TLS 1.3 Standard Candidate. In IEEE
Symposium on Security and Privacy (S&P), 2017.

[9] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript
Collision Attacks: Breaking Authentication in TLS, IKE
and SSH. In Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2016.

[10] Simon Blake-Wilson and Alfred Menezes. Authenti-
cated Diffie-Hellman Key Agreement Protocols. In Se-
lected Areas in Cryptography (SAC). Springer, 1998.

[11] Simon Blake-Wilson and Alfred Menezes. Unknown
Key-Share Attacks on the Station-to-Station (STS) Pro-
tocol. In International Workshop on Practice and The-
ory in Public Key Cryptography (PKC). Springer, 1999.

[12] Bruno Blanchet, Vincent Cheval, and Cortier Véronique.
Proverif with lemmas, induction, fast subsumption, and
much more. In Proceedings of the 43th IEEE Sympo-
sium on Security and Privacy (S&P’22). IEEE Com-
puter Society Press, May 2022.

[13] Srdjan Capkun, Levente Buttyán, and Jean-Pierre
Hubaux. SECTOR: secure tracking of node encoun-
ters in multi-hop wireless networks. In Workshop on
Security of ad hoc and Sensor Networks (SASN). ACM,
2003.

[14] Sanjit Chatterjee, Alfred Menezes, and Berkant Us-
taoglu. A Generic Variant of NIST’s KAS2 Key Agree-
ment Protocol. In Australasian Conference - Informa-
tion Security and Privacy (ACISP). Springer, 2011.

[15] Vincent Cheval, Cas Cremers, Alexander Dax, Hirschi
Lucca, Charlie Jacomme, and Steve Kremer. Docker
image and models. https://github.com/charlie
-j/symbolic-hash-models.

[16] Vincent Cheval, Cas Cremers, Alexander Dax, Hirschi
Lucca, Charlie Jacomme, and Steve Kremer. Long ver-
sion of this paper. https://hal.archives-ouverte
s.fr/hal-03795715.

[17] Véronique Cortier, David Galindo, and Mathieu Turuani.
A Formal Analysis of the Neuchatel e-Voting Protocol.
In IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2018.

[18] Véronique Cortier, Steve Kremer, Ralf Küsters, and Bog-
dan Warinschi. Computationally Sound Symbolic Se-
crecy in the Presence of Hash Functions. In Conference
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). Springer, 2006.

[19] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A Comprehensive
Symbolic Analysis of TLS 1.3. In Conference on Com-
puter and Communications Security (CCS). ACM, 2017.

5912 32nd USENIX Security Symposium USENIX Association

https://mtpsym.github.io/paper.pdf
https://mtpsym.github.io/paper.pdf
https://valerieaurora.org/hash.html
https://valerieaurora.org/hash.html
https://github.com/charlie-j/symbolic-hash-models
https://github.com/charlie-j/symbolic-hash-models
https://hal.archives-ouvertes.fr/hal-03795715
https://hal.archives-ouvertes.fr/hal-03795715

[20] Danny Dolev and Andrew C. Yao. On the security of
public key protocols. Information Theory, IEEE Trans-
actions on, 1981.

[21] Thai Duong. Flickr’s API signature forgery vulnera-
bility, 2009. https://vnhacker.blogspot.com/20
09/09/flickrs-api-signature-forgery.html
(Retrieved Jan 2022).

[22] Francisco Durán, Steven Eker, Santiago Escobar, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn L. Tal-
cott. Associative Unification and Symbolic Reasoning
Modulo Associativity in Maude. In International Work-
shop on Rewriting Logic and Its Applications (WRLA).
Springer, 2018.

[23] EU Federation Gateway Service (EFGS), 2020. https:
//github.com/eu-federation-gateway-service
/efgs-federation-gateway (Retrieved Jan 2022).

[24] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee.
One-round protocols for two-party authenticated key
exchange, 2008.

[25] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Ero-
nen, and Tero Kivinen. Internet Key Exchange Protocol
Version 2 (IKEv2). RFC 7296, 2014.

[26] John Kelsey and Tadayoshi Kohno. Herding hash func-
tions and the nostradamus attack. In Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, pages 183–200. Springer,
2006.

[27] Chong Hee Kim and Gildas Avoine. RFID Distance
Bounding Protocol with Mixed Challenges to Prevent
Relay Attacks. In Cryptology and Network Security
(CANS). Springer, 2009.

[28] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and
computational approach. In IEEE European Symposium
on Security and Privacy (EuroS&P), 2017.

[29] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Ap-
proach to Authenticated Diffie-Hellman and Its Use
in the IKE Protocols. In Advances in Cryptology -
CRYPTO 2003. Springer Berlin Heidelberg, 2003.

[30] Brian A. LaMacchia, Kristin E. Lauter, and Anton
Mityagin. Stronger Security of Authenticated Key Ex-
change. In Provable Security, First International Con-
ference, ProvSec. Springer, 2007.

[31] Kristin E. Lauter and Anton Mityagin. Security Analy-
sis of KEA Authenticated Key Exchange Protocol. In
International Conference on Theory and Practice of
Public-Key Cryptography. Springer, 2006.

[32] Gaëtan Leurent and Thomas Peyrin. Sha-1 is a shambles:
First chosen-prefix collision on sha-1 and application to
the PGP web of trust. In USENIX Security Symposium.
USENIX Association, 2020.

[33] Chris M. Lonvick and Tatu Ylonen. The Secure Shell
(SSH) Transport Layer Protocol. RFC 4253, 2006.

[34] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and
Rolando Trujillo-Rasua. Distance-Bounding Protocols:
Verification without Time and Location. In IEEE Sym-
posium on Security and Privacy (S&P). IEEE Computer
Society, 2018.

[35] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and
Rolando Trujillo-Rasua. Post-collusion security and
distance bounding. In Conference on Computer and
Communications Security (CCS). ACM, 2019.

[36] Catherine A. Meadows, Radha Poovendran, Dusko
Pavlovic, LiWu Chang, and Paul F. Syverson. Distance
Bounding Protocols: Authentication Logic Analysis and
Collusion Attacks. In Secure Localization and Time Syn-
chronization for Wireless Sensor and Ad Hoc Networks.
Springer, 2007.

[37] Simon Meier. Advancing automated security protocol
verification. PhD thesis, ETH Zurich, 2013.

[38] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 1997.

[39] Arno Mittelbach and Marc Fischlin. The Theory of
Hash Functions and Random Oracles - An Approach to
Modern Cryptography. Springer, 2021.

[40] Jorge Munilla and Alberto Peinado. Distance bounding
protocols for RFID enhanced by using void-challenges
and analysis in noisy channels. Wirel. Commun. Mob.
Comput., 2008.

[41] A. Perrig, R. Canetti, J.D. Tygar, and Dawn Song. Ef-
ficient authentication and signing of multicast streams
over lossy channels. In IEEE Symposium on Security
and Privacy. (S&P), 2000.

[42] Kasper Bonne Rasmussen and Srdjan Capkun. Real-
ization of RF distance bounding. In USENIX Security
Symposium. USENIX Association, 2010.

[43] Phillip Rogaway and Thomas Shrimpton. Cryptographic
Hash-Function Basics: Definitions, Implications and
Separations for Preimage Resistance, Second-Preimage
Resistance, and Collision Resistance. IACR Cryptol.
ePrint Arch., 2004.

USENIX Association 32nd USENIX Security Symposium 5913

https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://vnhacker.blogspot.com/2009/09/flickrs-api-signature-forgery.html
https://github.com/eu-federation-gateway-service/efgs-federation-gateway
https://github.com/eu-federation-gateway-service/efgs-federation-gateway
https://github.com/eu-federation-gateway-service/efgs-federation-gateway

[44] Yu Sasaki and Kazumaro Aoki. Finding preimages in
full MD5 faster than exhaustive search. In Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2009.

[45] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro.
New message difference for MD4. In Fast Software En-
cryption - International Workshop FSE. Springer, 2007.

[46] Benedikt Schmidt. Formal analysis of key exchange
protocols and physical protocols. PhD thesis, ETH,
2012.

[47] Benedikt Schmidt, Simon Meier, Cas Cremers, and
David A. Basin. Automated Analysis of Diffie-Hellman
Protocols and Advanced Security Properties. In Com-
puter Security Foundations Symposium (CSF). IEEE
Computer Society, 2012.

[48] Marc Stevens. A Survey of Chosen-Prefix Collision
Attacks, page 182–220. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2021.

[49] Marc Stevens, Arjen Lenstra, and Benne De Weger.
Chosen-prefix collisions for MD5 and colliding X.509
certificates for different identities. In Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2007.

[50] Telegram. Mobile protocol: Detailed description. http:
//web.archive.org/web/20210126200309/https:
//core.telegram.org/mtproto/description,
2021.

[51] Gene Tsudik. Message authentication with one-way
hash functions. Comput. Commun. Rev., 22(5), 1992.

[52] Zooko Wilcox. Lessons from the history of attacks on
secure hash functions, 2017. https://electricco
in.co/blog/lessons-from-the-history-of-att
acks-on-secure-hash-functions/ (Retrieved Jan
2022).

[53] Tao Xie, Fanbao Liu, and Dengguo Feng. Fast collision
attack on MD5. IACR Cryptol. ePrint Arch., 2013.

[54] Jinmin Zhong and Xuejia Lai. Improved preimage attack
on one-block MD4. Journal of Systems and Software,
2012.

Extracted Protocols Modeling Attack
from variations found
Schmidt DH2 [14] 1 ✗
et al. [47] TS1 [24] 1 ✗
& Meier [37] TS2 [24] 1 ✗

KAS1 [4] 1 ✗
KAS2 [4] 1 ✗
KEA+ [31] 5 ✗
STS-MAC [11] 2 ✗
NAXOS [30] 3 ✗
UM [10] 4 ✗
TESLAv1 [41] 1 ✓∗∗

Mauw et al. Meadows [36] 3 ✗∗
[34] [35] MAD [13] 1 ✗∗

Kim & Avoine [27] 1 ✗∗
Munilla et al. [40] 1 ✗∗
CRCS [42] 2 ✗∗

original IKEv2 [25] 2 ✗
Sigma [29] 1 ✗
Telegram KE [50] 1 ✗
SSHv2 [33] 1 ✗
Flickr [21] 1 ✗∗

* = Attack requires breaking one-wayness of the hash
** = Attack requires to instantiate a PRF with a hash function
that is not preimage resistant

Table 5: Our initial list of case studies using the equation
based threat models from Section 4.1. While the results can in-
dicate missing proof assumptions, this methodology is rather
weak and not effective at finding attacks. This motivated our
decision to develop a more fine-grained methodology.

A Second preimage equation

Unfortunately, the tools are unable to handle the equation
H(pi2(z)) = H(z): when internally completing this equation
they would need to introduce an infinite number of rewrite
rules H(pi2(. . .pi2(z) . . .)→ H(z) stacking any number of ap-
plications of pi2, because they would all be equal to H(z). This
can be avoided using a trick: additionally providing H(z) to
pi2 in the equation H(pi2(H(z),z)) = H(z) effectively avoids
the problem mentioned above. As the attacker is able to com-
pute H(z) from z this second argument can be added without
loss of generality.

B Collision relations

In the body of the paper, in Table 2, we gave intuition for the
intent of the basic collision relations. Here we present the
formal definitions of each of the possible options in Table 6.

C Proofs of TAMARIN’s extension

We provide here the details of our extension to TAMARIN as
well as describe how to build the required proofs. We rely on
the two main TAMARIN thesis [37, 46], from which we reuse
the notations and definitions without reintroducing them.

From a high-level point of view, the TAMARIN proof is
split into three part:

5914 32nd USENIX Security Symposium USENIX Association

http://web.archive.org/web/20210126200309/https://core.telegram.org/mtproto/description
http://web.archive.org/web/20210126200309/https://core.telegram.org/mtproto/description
http://web.archive.org/web/20210126200309/https://core.telegram.org/mtproto/description
https://electriccoin.co/blog/lessons-from-the-history-of-attacks-on-secure-hash-functions/
https://electriccoin.co/blog/lessons-from-the-history-of-attacks-on-secure-hash-functions/
https://electriccoin.co/blog/lessons-from-the-history-of-attacks-on-secure-hash-functions/

Capability Types of Allowed Collisions Relation ∼c

/0 No collision ∼⊥= {}=
∃ Existential collisions ∼∃= {(c,c′)}=
fstPreImg Preimage collisions ∼1= {(t,pi1(H[t])) : t ∈ T}=
sndPreImg Second preimage collisions ∼2= {(t,pi2(t)) : t ∈ T}=
chsnPrfx Chosen-Prefix Collisions (CPC) ∼CP= {(p1∥cp1(p1, p2), p2∥cp2(p1, p2)) : p1, p2 ∈ T}=
idtclPrfx Identical-Prefix Collisions (IPC) ∼IP= {(p∥sp1(p), p∥sp2(p)) : p ∈ T}=
allCol All collisions ∼⊤= (T ×T)=

hashExt Length-extension collisions ∼LEa= {(x∥s, H[x]∥s) : x,s ∈ T}=
colExt Length-extension closure (closure of ∼) LEc(∼) = {(x∥s, y∥s) : x,y,s ∈ T,x∼ y}=

Table 6: Basic collision-relations ∼c depending on the chosen adversarial capabilities. ∼= denotes the reflexive, symmetric, and
transitive closure of the relation ∼. For example, by reflexivity, the “no collisions” relation encodes that two hash outputs are the
same exactly when their inputs are the same. The “existential collisions” relation encodes that there exists two constants c and
c′, for which the hash function output collides. Most of the other relations define that there exist collisions that can be computed
for very specific, but not all, input patterns. Collision-relations in different dimensions can be combined by taking their union;
e.g.,sndPreImg,idtclPrfx corresponds to the relations (e.g., ∼IP ∪ ∼2). The only exception is colExt: if this capability is enabled,
we first determine the collision relation ∼ based on the other capabilities as above, and then compute LEc(∼=) as in the last row.

1. the validity of exploring possible protocol executions
using so-called dependency graphs (Lemma 3.10 [46]);

2. a set of constraint solving rules over dependency graphs
that are sound and complete (Theorem 3.33 [46] or The-
orem 4 [37]);

3. a set of normal form conditions over dependency
graphs, that allows to reduce the set of dependency
graphs to consider by removing redundant ones (Lemma
3.19/A.12 [46])).

We note that for the soundness and correctness of
TAMARIN, only point 1) and 2) are needed. Point 3) is here
to help the constraint solving algorithm terminate.

With the proof of TAMARIN in mind, we can describe our
extension as the addition of:

• a builtin concatenation symbol ∥ with an associative (A)
equation;

• the corresponding attacker construction/deconstruction
rules:

K↓d(t1∥ . . .∥tn)
K↓d(t1) . . . K↓d(tn)

K↑u(t1) . . . K↑u(tn)

K↑u(t1∥ . . .∥tn)

• two normal form conditions on dependency graph.

N7’ There is no construction rule for ∥ that has a
premise of the form K↑(s∥t) and all conclusion
facts of the form K↑(s∥t) are conclusions of a con-
struction rule for ∥.

N8’ The conclusion of a deconstruction rule for ∥ is
never of the form K↓d(s∥t).

We thus have the following proof obligation:

1. The proof of Theorem 4 [37] holds for an equational
theory containing an A symbol;

2. The proof of Lemma A.12 [46] holds with the two added
rules N7’ and N8’.

Lemma A.12 We remark that the (de)construction rules
are duplicate from the one for the multiset operator, and the
normal form conditions N7’ and N8’ are duplicate of N7 and
N8 from [46]. As such, the proof for N7 and N8 directly
applies to N7’ and N8’.

Theorem 4 The original proof holds for an equational the-
ory E for which there is a complete and finitary unification, as
mentioned in the first sentence of Section 8.2 [37]. We observe
that removing the finitary condition does not change anything
to the proof if we allow disjunction over constraints to be
potentially infinite. The only difference is that rule S≈ may
now create an infinite disjunction when uni f yvars(Γ)

E (t1, t2) is
infinite. However, this does not change the fact that the com-
pleteness and soundness proof for this rule hold, as we do
consider all possibilities thanks to the completeness of the
unification (albeit there are infinitely many of them).

Thus, as A does have a complete unification algorithm,
Theorem 4 in the infinite interpretation does hold when A is
integrated inside the equational theory. This cover the sound-
ness and completeness of the theory behind the constraint
solving algorithm with a A symbol.

USENIX Association 32nd USENIX Security Symposium 5915

In practice We directly plugged the maude unification al-
gorithm for A inside TAMARIN, which raises a warning when
it encounters a unification case for which the set of unifiers
is infinite. The consequence of considering that in theory the
constraint solving algorithm may create an infinite disjunc-
tion has of course consequences in the practical proof search
of TAMARIN as we cannot explore this infinite set of cases.
As such, whenever in practice TAMARIN makes a unification
query for which the unification algorithm return an infinite
set, we must abandon the proof. Note that we can still try to
find an attack in such a case.

D Proofs of ProVerif’s extension

Our extension consists in the introduction of computation
function and their applications within axioms. As axioms,
lemmas and queries are all correspondence queries, we pro-
vide a formal definition of the satisfaction of correspondence
queries with computation functions. Note that as axioms are
user-given and not verified by ProVerif, it is crucial for users
to have in mind this semantics when writing their axioms.

Semantics of correspondence queries with computation
function. Generally, a correspondence query with computa-
tion function can always be written as a query of the form:

F1∧ . . .∧Fn∧ x← g(M)⇒
m∨

i=1

ψi(x)

where c is a computation function and for all i = 1 . . .m, ψi(x)
are a conjunction of facts. Facts can be event facts event(ev)
(holding when the event ev has been raised during the execu-
tion of the trace), attacker facts attacker(M) (holding when
the attacker knows the term M), equalities and inequalities be-
tween terms, and user-defined predicates p(M1, . . . ,Mn). We
refer the reader to [12] for the detailed semantics of ProVerif’s
processes and satisfaction of facts on a trace. Given an execu-
tion trace T and a fact F , we write T |= F when F holds on
the trace T . Similarly, if ψ is a conjunction of facts, we write
T |= ψ when all facts in ψ hold on T . This notation allows us
to define the semantics of correspondence queries as follows.

Definition 1. Let P be a process. Let ρ be the correspondence
query F1∧ . . .∧Fn∧ x← g(M)⇒

∨m
j=1 ψ j(x). We say that ρ

holds on P when for all substitutions σ, if

• g(Mσ) can be executed and results in xσ

• dom(σ) = {x}∪ vars(F1, . . . ,Fn,M)

then for all traces T of P, for all substitutions θ, if T |=
F1σθ ∧ . . . ∧ Fnσθ then there exists a substitution θ′ and
j ∈ {1, . . . ,m} such that Fiσθ = Fiσθ′ for i = 1 . . .n, Mσθ =
Mσθ′, xσθ = xσθ′ and T |= ψ j(xσ)θ′.

As the above definition applies to general correspondence
queries with computation functions, we could, in theory, add
queries and lemmas with computation functions to ProVerif.
However, in practice, as we do not yet have an algorithm to
automatically verify correspondence queries with arbitrary
computation functions, we limit the usage of computation
functions to axioms, i.e. users are in charge of ensuring that
the axioms hold on the input process.

Let us illustrate the definition on the axiom given in Sec-
tion 4.3:

axiom h,h1,h2:t_output;
eq_hash(h,h1) && h2 ← H(h1) =⇒ eq_hash(h,h2).

where H is the computation function defined in Section 4.3. If
σ = {h_1 7→ f(Nil,<x,<b,c>>)}, we have that H(h_1σ) can
be executed and results in f(f(f(Nil,x),b),c). Furthermore,
for all substitutions θ, we have indeed that f(f(f(Nil,x),b
),c)θ produces the same hash as f(Nil,<x,<b,c>>)θ in the
MD construction. Hence, as expected if eq_hash(h,h_1)σθ

holds then eq_hash(h,h_2)σθ holds as well.
Note that in the above example, we only considered one

particular σ. As a user, one needs to ensure that the axiom
holds for all substitutions σ as indicated in the definition of
satisfaction of query.

Application of axioms during the saturation procedure.
The internal procedure of ProVerif relies on Horn clauses
that are logical statements of the form H → C, where H =
G1∧ . . .∧Gn are the hypotheses of the clause. Intuitively, if
G1, . . . ,Gn hold on a given trace then C also holds on this
trace.

ProVerif translates processes into sets of Horn clauses and
saturates them before proving the query on the saturated set
of Horn clauses. The details of the procedure is out of scope
of this paper (see [12]) as we only modified how axioms and
lemmas are applied during the saturation algorithm, i.e. how
they are applied on a Horn clause.

Consider an axiom
∧n

i=1 Fi∧x← g(M)⇒
∨m

j=1 ψ j(x). The
axiom is applied on a clause H → C when there exists a
substitution σ such that Fiσ is in H for all i ∈ {1, . . . ,n} and
g(Mσ) executes and results in xσ. The application of the
lemma intuitively then produces a set of m clauses {H ∧
ψ j(x)σ→C}m

j=1, i.e. each disjunct of the conclusion of the
lemma produces a new Horn clause where the instantiated
disjunct is added in the hypothesis of the Horn clause.

The soundness of this transformation is straightforward
from the semantics of axioms. Take a trace T and a substitu-
tion θ such that T |= Hθ. Since all Fiσ are in H and g(Mσ)
executes and results in xσ, we deduce from the definition
that there exists a substitution θ′ and j ∈ {1, . . . ,m} such that
T |= ψ j(x)σθ′ and Fiσθ = Fiσθ′ for i = 1 . . .n, Mσθ = Mσθ′

and xσθ = xσθ′. Thus, to build Cθ, we can use the clause
H ∧ψ j(x)σ→C by taking θ′′ = θ∪θ′ since T |= Hθ′′ and
T |= ψ j(x)σθ′′.

5916 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Hash functions in theory
	Hash functions in practice
	Example: Hash Transcript Collisions

	Symbolic Model: Term Algebra

	Threat Models for Hash Functions
	Lattice of threat models

	Automation methodology
	Equational theory based modeling
	Capabilities modeled as operators
	Challenges with modeling associative and MD

	Tamarin extension for the full lattice
	Extending ProVerif for the full lattice

	Case studies
	Equational theory based hash models
	Fully automated analysis methodology
	Results from automated analysis
	Detailed analysis results for Sigma'
	Selection of other attacks and insights

	Further related work
	Conclusions
	Second preimage equation
	Collision relations
	Proofs of Tamarin's extension
	Proofs of ProVerif's extension

