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Abstract
Image diffusion models such as DALL-E 2, Imagen, and Sta-
ble Diffusion have attracted significant attention due to their
ability to generate high-quality synthetic images. In this work,
we show that diffusion models memorize individual images
from their training data and emit them at generation time.
With a generate-and-filter pipeline, we extract over a thousand
training examples from state-of-the-art models, ranging from
photographs of individual people to trademarked company
logos. We also train hundreds of diffusion models in various
settings to analyze how different modeling and data decisions
affect privacy. Overall, our results show that diffusion models
are much less private than prior generative models such as
GANs, and that mitigating these vulnerabilities may require
new advances in privacy-preserving training.

1 Introduction

Denoising diffusion models are an emerging class of genera-
tive neural networks that produce images from a training dis-
tribution via an iterative denoising process [37, 69, 71]. Com-
pared to prior approaches such as GANs [34] or VAEs [50],
diffusion models produce higher-quality samples [20], and
are easier to scale [61] and control [56]. Consequently, they
have rapidly become the de-facto method for generating high-
resolution images, and large-scale models such as DALL-E
2 [61] have attracted significant public interest.

The appeal of generative diffusion models is rooted in their
ability to synthesize novel images that are ostensibly unlike
anything in the training set. It has been speculated that this
ability could help protect the privacy of future training sets,
by only releasing synthetic images from a generative model
trained on real images [2, 14, 15, 58, 64]. Yet, as noted in [41],
these privacy benefits would be moot if diffusion models were
to “reveal the data they are trained on”. Data memorization
in diffusion models would also raise numerous questions
regarding model generalization and “digital forgery” [70].

In this work, we demonstrate that state-of-the-art diffusion
models do memorize and regenerate individual training exam-

Training Set Generated Image

Caption: Living in the light 
with Ann Graham Lotz

Prompt: 
Ann Graham Lotz

Figure 1: Diffusion models memorize individual training
examples and generate them at test time. Left: an image
from Stable Diffusion’s training set (licensed CC BY-SA
3.0, see [54]). Right: a Stable Diffusion generation when
prompted with “Ann Graham Lotz”. The reconstruction is
nearly identical (`2 distance = 0.031).

ples. To begin, we propose and implement new definitions for
“memorization” in image models. We then devise a two-stage
data extraction process that generates images using standard
approaches, and flags those that exceed some membership in-
ference score. Applying this method to Stable Diffusion [63]
and Imagen [65], we extract over a hundred near-identical
replicas of training images that range from personally identi-
fiable photos to trademarked logos (e.g., Figure 1).

To better understand and quantify the extent to which mem-
orization occurs, we train hundreds of diffusion models on
CIFAR-10 to analyze the impact of model accuracy, hyper-
parameters, augmentation, and deduplication on privacy. Dif-
fusion models are the least private form of image models
that we evaluate—for example, they leak more than twice as
much training data as GANs. Unfortunately, we also find that
existing privacy-enhancing techniques—such as data dedupli-
cation and differentially-private training— do not provide an
acceptable privacy-utility tradeoff. Overall, our paper high-
lights the tension between increasingly powerful generative
models and data privacy, and raises questions on how diffusion
models work and how they should be responsibly deployed.
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2 Background

Diffusion models. Generative image models have a long his-
tory (see [33, Chapter 20]). Generative Adversarial Networks
(GANs) [34] were the breakthrough that first enabled the
generation of high-fidelity images at scale [6, 48]. But over
the last two years, diffusion models [69] have largely dis-
placed GANs: they achieve state-of-the-art results on aca-
demic benchmarks [20] and form the basis of popular image
generators such as Stable Diffusion [63], DALL-E 2 [61, 62],
Runway [63], Midjourney [53] and Imagen [65].

Denoising Diffusion Probabilistic Models (DDPMs) [37]1

are conceptually simple: they are nothing more than image
denoisers. During training, given a clean image x, we sample
a time-step t ∈ [0,T ] and a Gaussian noise vector ε∼N (0, I),
to produce a noised image x′←√atx+

√
1−atε, for some

decaying parameter at ∈ [0,1] where a0 = 1 and aT = 0. A
diffusion model fθ removes the noise ε to recover the original
image x by predicting the noise that was added by stochasti-
cally minimizing the objective 1

N ∑iEt,ε L(xi, t,ε; fθ), where

L(xi, t,ε; fθ) = ‖ε− fθ(
√

atxi +
√

1−atε, t)‖2
2 . (1)

Despite being trained with this simple denoising objective,
diffusion models can generate high-quality images by apply-
ing the diffusion model fθ to denoise a completely random
“image” zT ∼N (0, I). To make the denoising process easier,
we do not remove all of the noise at once—we instead iter-
atively apply the model to slowly remove noise. Formally,
the final image z0 is obtained from zT by iterating the rule
zt−1 = fθ(zt , t)+σtN (0, I) for a noise schedule σt (depen-
dent on at ) with σ1 = 0. This process relies on the fact that the
model fθ was trained to denoise images with varying degrees
of noise. Overall, running this iterative generation process
(which we will denote by Gen) with large-scale diffusion mod-
els produces results that resemble natural images.

Some diffusion models are further conditioned to generate
a particular type of image. Class-conditional diffusion models
take as input a class-label (e.g., “dog” or “cat”) alongside
the noised image to produce an image of that class. Text-
conditioned models take as input the text embedding of a more
general prompt (e.g., “a photograph of a horse on the moon”)
using a pre-trained language encoder (e.g., CLIP [59]).

Training data privacy attacks. Neural networks often leak
details of their training datasets. Membership inference at-
tacks [8, 67, 85] infer whether an example was in the training
set or not, a minimal form of privacy leak. Neural networks
are also vulnerable to more powerful attacks such as inversion
attacks [30, 86] that extract representative examples from a
class, attribute inference attacks [31] that reconstruct some at-
tributes of training examples, and extraction attacks [5,11,12]

1Our description of diffusion models below omits a number of significant
details. However, these details are orthogonal to our results and we omit them
for simplicity.

that recover full training examples. In this paper, we focus on
each of these three attacks when applied to diffusion models.

Concurrent work explores the privacy of diffusion models.
Multiple papers [22, 38, 83] independently perform mem-
bership inference attacks on diffusion models; our results
use more sophisticated attack methods and study stronger
privacy risks such as data extraction. Somepalli et al. [70]
show several cases where (non-adversarially) sampling from
a diffusion model can produce memorized training exam-
ples. However, they focus mainly on comparing the semantic
similarity of generated images to the training set, i.e., “style
copying”. In contrast, we focus on a more restrictive notion
of memorization (extraction of near-exact copies of training
images), and consider a wider range of models.

3 Motivation and Threat Model

There are two distinct motivations for understanding diffusion
models’ propensity to memorize and regenerate training data.

Understanding privacy risks. Diffusion models that regen-
erate data scraped from the Internet can pose similar privacy
and copyright risks as language models [7, 12, 35]. For exam-
ple, memorizing and regenerating copyrighted text [12] and
source code [39] has been pointed to as indicators of potential
copyright infringement [81]. Similarly, copying images from
professional artists has been called “digital forgery” [70] and
has spurred debate in the art community.

Future diffusion models might be trained on more sensitive
private data. Indeed, GANs have already been applied to med-
ical imagery [23, 49, 78], which underlines the importance of
understanding the risks of generative models before deploying
them in private domains. It is speculated that future diffusion
models could similarly “protect the privacy and usage rights
of real images” [41], and production tools already claim to
use diffusion models to protect data privacy [13, 19, 75]. Our
work shows diffusion models may be unfit for this purpose.

Understanding generalization. Beyond data privacy, un-
derstanding diffusion models’ memorization abilities may
provide insights into their generalization capabilities. For
instance, a common question for large-scale generative mod-
els is whether their impressive results arise from truly novel
generations, or are instead the result of direct copying and
remixing of their training data. By studying memorization,
we can provide a concrete empirical characterization of the
rates at which generative models perform such data copying.

In their diffusion model, Saharia et al. “do not find over-
fitting to be an issue, and believe further training might im-
prove overall performance“ [65], and yet we will show that
this model memorizes individual examples. It may thus be
necessary to broaden our definitions of overfitting to include
memorization and related privacy metrics. Our results also
suggest that Feldman’s theory that memorization is necessary
for generalization in classifiers [27] may extend to generative
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models, raising the question of whether the improved perfor-
mance of diffusion models compared to prior approaches is
precisely because diffusion models memorize more.

3.1 Threat Model
The primary purpose of our work is to demonstrate that dif-
fusion models can memorize individual images, rather than
to design the most practical privacy attack. Nevertheless, we
formalize our process in an appropriate attack model that
captures the assumptions underlying our extraction process.

Our threat model considers an adversary A that interacts
with a diffusion model Gen (backed by a neural network fθ)
to extract images from the model’s training set D.

Image-generation systems. Unconditional diffusion models
are trained on a dataset D = {x1,x2, . . . ,xn}. When queried,
the system outputs a generated image xgen ← Gen(r) using
fresh random noise r as input. Conditional models are trained
on a labeled or captioned dataset D = {(x1,c1), . . . ,(xn,cn)};
when queried with a prompt p, the system outputs xgen ←
Gen(p;r) using the prompt p and noise r.

Adversary capabilities. We consider two adversaries:

• A black-box adversary can query Gen to generate images.
If Gen is a conditional generator, the adversary can pro-
vide arbitrary prompts p. The adversary cannot control
the system’s internal randomness r.

• A white-box adversary gets full access to the system Gen
and its internal diffusion model fθ. They can control
the model’s randomness and can thus use the model to
denoise arbitrary input images.

In both cases, we assume that an adversary who attacks a
conditional image generator knows the captions for some
images in the training set—thus allowing us to study the
worst-case privacy risk in diffusion models.

Whether this assumption holds in practice will largely be
setting-dependent. In some privacy-sensitive settings, image
captions might follow a common format that would be easy
for an adversary to guess (e.g., annotated medical images). In
any case, we mainly view our attacks as a way to measure
the leakage of training images from diffusion models, when
prompted with training captions. The ability to measure this
leakage (even if it does not translate to an obvious practical
attack at the moment) may be sufficient for auditing the worst-
case privacy of deployed models, as well as for informing
discussions surrounding “digital forgery” in diffusion models.

Adversary goals. We consider three broad types of adversar-
ial goals, from the strongest to the weakest attack:

1. Data extraction: The adversary aims to recover an image
from the training set x ∈ D. The attack is successful if
the adversary extracts an image x̂ that is almost identical
(see Section 4.1) to some x ∈ D.

2. Data reconstruction: The adversary has partial knowl-
edge of a training image x ∈D (e.g., a crop of the image)
and aims to recover the full image. This is an image-
analog of an attribute inference attack [85], which recov-
ers unknown features from a partially known input.

3. Membership inference: Given an image x, the adversary
aims to infer whether x is in the training set.

3.2 Ethics and Broader Impact
Training data extraction can present a threat to user privacy.
We take numerous steps to mitigate any possible harms from
our paper. First, we study models that are trained on publicly-
available images (e.g., LAION and CIFAR-10) and therefore
do not expose any data that was not already available online.

Nevertheless, data that is available online may not have
been intended to be. LAION, for example, contains uninten-
tionally released medical images of several patients [26]. We
also therefore ensure that all images shown in our paper are of
public figures (e.g., politicians, musicians, actors, or authors)
who knowingly chose to place their images online. As a result,
inserting these images in our paper is unlikely to cause any un-
intended privacy violation. For example, Figure 1 comes from
Ann Graham Lotz’s Wikipedia profile picture and is licensed
under Creative Commons, which allows us to “redistribute
the material in any medium” and “remix, transform, and build
upon the material for any purpose, even commercially”.

Third, we shared a copy of this paper with the authors of
the large-scale diffusion models that we study. This gave the
authors and their organizations the ability to consider possible
safeguards and software changes ahead of time.

Overall, we believe that publishing our paper and publicly
disclosing these privacy vulnerabilities is both ethical and
responsible. Indeed, no one appears to be immediately harmed
by the (lack of) privacy of existing diffusion models; our goal
with this work is thus to preempt these harms and encourage
responsible training of diffusion models in the future.

4 Extracting Training Data from State-of-the-
art Diffusion Models

We begin our paper by extracting training images from large,
pre-trained, high-resolution diffusion models.

4.1 Defining Image Memorization
The literature on training data extraction mainly studies lan-
guage models, where a sequence is said to be “extracted” and
“memorized” if an adversary can prompt the model to recover
a verbatim sequence from the training set [12, 45]. When
working with high-resolution images, verbatim definitions of
memorization are not suitable. Instead, we define a notion of
approximate memorization based on image similarity.
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Definition 1 ((`,δ)-Diffusion Extraction) [adapted
from [12]]. We say that an example x is extractable
from a diffusion model fθ if there exists an efficient algorithm
A (that does not receive x as input) such that x̂ = A( fθ) has
the property that `(x, x̂)≤ δ.

Here, ` is a distance function and δ is a threshold that deter-
mines whether we count two images as being identical. Given
this definition of extractability, we now define memorization.2

Definition 2 ((k, `,δ)-Eidetic Memorization) [adapted
from [12]]. We say that an example x is (k, `,δ)-Eidetic
memorized by a diffusion model if x is extractable from the
diffusion model, and there are at most k training examples
x̂ ∈ X where `(x, x̂)≤ δ.

Again, ` is a distance function and δ the corresponding thresh-
old. The constant k quantifies the number of near-duplicates
of x in the dataset. If k is a small fraction of the data, then
memorization is likely problematic. When k is a larger frac-
tion of data, memorization might be expected—but it could
still be problematic, e.g., if the duplicated data is copyrighted.

Distance function. In most of this paper, we follow Balle
et al. [5] and use the Euclidean 2-norm distance to measure
Eidetic memorization: `2(a,b) =

√
∑i(ai−bi)2/d where d

is the input dimension.
In some of our extraction procedures however, we will

use modified distance measures to better control for false-
positives. We will introduce such distance measures when
needed. In all cases, we use the standard `2 metric above to
measure the success of the extraction process.

Restrictions of our definition. Our definition of extraction
is intentionally conservative as compared to what privacy con-
cerns one might ultimately have. For example, if we prompt
Stable Diffusion to generate “A Photograph of Barack Obama,”
it produces an entirely recognizable photograph of Barack
Obama but not an near-identical reconstruction of any partic-
ular training image. Figure 2 compares the generated image
(left) to the 4 nearest training images under the Euclidean
2-norm (right). Under our memorization definition, this im-
age would not count as memorized. Nevertheless, the model’s
ability to generate (new) recognizable pictures of certain indi-
viduals could still cause privacy harms.

2This paper covers a very restricted definition of “memorization”: whether
diffusion models can be induced to generate near-copies of some training
examples when prompted with appropriate instructions. We will describe an
approach that can generate images that are close approximations of some
training images (especially images that are frequently represented in the train-
ing dataset through duplication or other means). There is active discussion
within the technical and legal communities about whether the presence of this
type of “memorization” suggests that generative neural networks “contain”
their training data.

Figure 2: We do not count the generated image of Obama (at
left) as memorized because it has a high `2 distance to every
training image. The four nearest training images are shown at
right, each has a distance above 0.3.

4.2 Extracting Data from Stable Diffusion
We now extract training data from Stable Diffusion: the largest
and most popular open-source diffusion model [63]. This
890 million parameter text-conditioned diffusion model was
trained on 160 million images. We use the default PLMS
sampling scheme to generate images at a resolution of 512×
512 pixels. As the model is trained on a publicly-available
dataset, we can verify the success of our extraction process
and also mitigate potential harms from exposing the extracted
data. We begin with a black-box attack.

Identifying duplicates in the training data. To reduce the
computational load of our extraction procedure, as is done
in [70], we bias our search towards duplicated training exam-
ples because these are orders of magnitude more likely to be
memorized than non-duplicated examples [45, 51].

If we search for bit-for-bit identically duplicated images in
the training dataset, we would significantly undercount the
true rate of duplication. And so ideally, we would search for
training examples that are near-duplicated with a pixel-level
`2 distance below some threshold. But this is computationally
intractable, as it requires an all-pairs comparison of 160 mil-
lion images in Stable Diffusion’s training set, each of which
is a 512× 512× 3 dimensional vector. Instead, we first em-
bed each image to a 512 dimensional vector using CLIP [59],
and then perform the all-pairs comparison between images in
this lower-dimensional space (increasing efficiency by over
1500×). We count two examples as near-duplicates if their
CLIP embeddings have a high cosine similarity. For 350,000
near-duplicated images, we use the corresponding captions
as the input to our extraction process.

4.2.1 Extraction Methodology

Our extraction approach adapts the methodology from prior
work [12] to images and consists of two steps:

1. Generate many examples using the diffusion model
in the standard sampling manner and with the known
prompts from above.
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Original:

Generated:

Figure 3: Examples of the images that we extract from Stable Diffusion v1.4 using random sampling and our membership
inference procedure. The top row shows the original images and the bottom row shows our extracted images.

2. Perform membership inference to separate the model’s
novel generations from those generations which are
memorized training examples.

Generating many images. The first step is simple but com-
putationally expensive: we query the Gen function in a black-
box manner with the selected prompts as input. To reduce
the computational overhead, we use the timestep-resampled
generation implementation from the Stable Diffusion code-
base [63]. This process generates images in a more aggressive
fashion by performing fewer (but larger) denoising steps. This
results in reduced visual quality at a large (∼ 10×) through-
put increase. We generate 500 candidate images for each text
prompt to increase the likelihood that we find memorization.

Performing membership inference. The second step re-
quires flagging generations that appear to be memorized train-
ing images. Since we assume a black-box threat model in
this section, we do not have access to the loss and cannot ex-
ploit techniques from state-of-the-art membership inference
attacks [12]. We instead design a new membership infer-
ence attack strategy that only requires the ability to prompt
the model for images (as assumed in our black-box threat
model). Our attack is based on the intuition that for diffusion
models, with high probability Gen(p;r1) 6= Gen(p;r2) for two
different random initial seeds r1,r2. On the other hand, if
Gen(p;r1)≈d Gen(p;r2) under some distance measure d, it is
likely that these generated samples are memorized examples.

Recall that earlier we generated 500 images that for each
prompt, each with a different (but unknown) random seeds.
We can therefore construct a graph over the 500 generations
by connecting an edge between generation i and j if xi ≈d x j.
Following the above intuition, the existence of a single edge
in this graph is indicative of memorization. To minimize false-
positives, we search for cliques of densely connected images.
If the largest clique in this graph is at least size 10 (i.e., ≥
10 of the 500 generations are near-identical), we predict that
this clique is a memorized image. The clique size of 10 was
manually tuned to achieve an acceptable false-positive rate.

We found that using the standard `2 metric as the similarity
measure d leads to many false-positives (e.g., many genera-
tions have the same gray background and thus high `2 similar-
ity). To build the cliques, we instead use a “tiled” `2 distance,
that divides each image into 16 non-overlapping 128×128
tiles and measures the maximum `2 distance between a pair
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Figure 4: Our methodology reliably separates novel genera-
tions from memorized training examples, under two defini-
tions of memorization—either (`2,0.15)-extraction or manual
human inspection of generated images.

of image tiles of two images. This new distance measure is
small only if two images are fairly close everywhere. Note
that when we report that a sample is (`,δ)-memorized in the
sense of Definition 1, we always use the standard `2 metric.

4.2.2 Extraction Results

To evaluate the effectiveness of our extraction methodology,
we select the 350,000 most-duplicated examples from the
training dataset and generate 500 candidate images for each
of these prompts (totaling 175 million generated images). We
first sort all generated images by the mean distance between
the images in the clique to identify ones that we predict are
likely to be memorized training examples. We then take each
of these generated images and annotate each as either “ex-
tracted” or “not extracted” by comparing it to the original
training images under Definition 1 (using the standard `2
metric). Note that here we are looking at the true training
data solely for evaluation purposes. Our extraction procedure
never sees the real images, only their captions.

We find 94 images are (`2,0.15)-extracted. We manually
verify that these are all near-copies of training images. We
also manually checked the top-1000 generated images, and
find 13 extra images (for a total of 107 images) are near-copies
of training data, even if their `2 distance is above 0.15. Figure
3 shows a subset of the images that are reproduced with near
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Figure 5: Most of the images we extract from Stable Diffusion
have been duplicated at least k = 100 times; although this
should be taken as an upper bound because our methodology
explicitly searches for memorization of duplicated images.

pixel-perfect accuracy (all images have an `2 distance under
0.05) For comparison, encoding a PNG as a JPEG with quality
level 50 gives a `2 difference of 0.02 on average.

Given our ordered set of annotated images, we can also
compute a curve evaluating the number of extracted images
to the attack’s false positive rate. Our membership inference
attack is exceptionally precise: out of 175 million generated
images, we can identify 50 memorized images with 0 false
positives, and all our memorized images can be extracted with
a precision above 50%. Figure 4 contains the precision-recall
curve for both memorization definitions.

Measuring (k, `,δ)-eidetic memorization. In Definition 2
we introduce a variant of Eidetic memorization [12] tailored
to generative image modeling. As mentioned earlier, we com-
pute similarity between pairs of images with a standard `2 met-
ric. This analysis is computationally expensive3 as it requires
comparing each of our memorized images against all 160 mil-
lion training examples. We set δ = 0.1, as we found that this
threshold is sufficient to identify almost all small image cor-
ruptions (e.g., JPEG compression, small brightness/contrast
adjustments) and has very few false positives.

Figure 5 shows the results. While we identify little Eidetic
memorization for k < 100, this is expected due to the fact that
we choose prompts of highly-duplicated images. Note that
at this level of duplication, the duplicated examples make up
just one in a million training examples. Overall, these results
show that duplication is a major factor behind training data ex-
traction. Our procedure has some false-positives (i.e., images
marked as memorized when they are not) due to limitations of
our distance measure. That is, a cluster of generated images
may all be close in tiled `2 distance, while not being near-

3In practice it is even more challenging: for non-square images, Stable
Diffusion takes a random square crop, and so to check if the generated image
x matches a non-square training image y we must try all possible alignments
between x on top of the image y.

perfect copies. Using a more perceptually-aligned distance
measure might thus lead to further extracted data.

Qualitative analysis. The majority of the images we ex-
tract (58%) are photographs with a recognizable person as
the primary subject; the remainder are mostly products for
sale (17%), logos/posters (14%), or other art or graphics. We
caution that if a future diffusion model were trained on sensi-
tive (e.g., medical) data, then the kinds of data that we extract
would likely be drawn from this sensitive data distribution.

While all these images are publicly accessible on the Inter-
net, not all of them are permissively licensed. Many of these
images fall under an explicit non-permissive copyright notice
(35%). Many other images (61%) have no explicit copyright
notice but may fall under a general copyright protection for
the website that hosts them (e.g., images of products on a
sales website). Several of the images that we extracted are
licensed CC BY-SA, which requires “[to] give appropriate
credit, provide a link to the license, and indicate if changes
were made.” Stable Diffusion thus memorizes numerous copy-
righted and non-permissive-licensed images, which the model
may reproduce without the accompanying license.

4.3 Extracting Data from Imagen
While Stable Diffusion is the best publicly-available diffusion
model, there are non-public models that achieve better perfor-
mance with larger models and datasets [61, 65]. Prior work
has found that larger models are more likely to memorize
training data [10, 12]. We thus study Imagen [65], a 2 billion
parameter text-to-image diffusion model. While Imagen’s and
Stable Diffusion’s implementation and training scheme dif-
fer in some details, these are independent of our extraction
results. As Imagen was trained on some non-public data [65],
we refrain from displaying successfully extracted images, in
line with the principles from Section 3.2.

We follow the same procedure as earlier but focus on the
top-1000 most duplicated prompts for computational reasons.
We generate 500 images for each of these prompts, and com-
pute the `2 similarity between each generated image and the
corresponding training image. By repeating the same mem-
bership inference steps as above—searching for cliques un-
der tiled `2 distance–we identify 23 of these 1,000 images
as memorized training examples.This is significantly higher
than the rate of memorization in Stable Diffusion, and clearly
demonstrates that memorization across diffusion models is
highly dependent on training settings such as the model size,
training time, and dataset size.

4.4 Extracting Outlier Examples
The extraction process presented above succeeds, but only
at extracting images that are highly duplicated. This “high k”
memorization may be problematic, but the most compelling

5258    32nd USENIX Security Symposium USENIX Association



practical privacy risk would arise from memorization in the
“low k” regime.

To find non-duplicated examples that are likely to be mem-
orized, we take advantage of the fact that while on average
models respect the privacy of the dataset, there often exists a
small set of “outlier” examples whose privacy is more signifi-
cantly exposed [27]. Therefore, we are more likely to succeed
if we focus our effort on outlier examples. To find outlier
examples, prior work trains hundreds of models on subsets
of the training set and uses influence functions to identify
examples with significant impact [28]. Unfortunately, given
the cost of training even a single large diffusion model is in
the millions-of-dollars, this approach is not feasible.

We take a simpler approach. We compute the CLIP embed-
ding of each training example, and then compute the “outlier-
ness” of each example as the average distance (in embedding
space) to its 1,000 nearest neighbors in the training dataset.

Results. We find that out-of-distribution images can be suc-
cessfully extracted even when they are not-duplicated. For
Imagen, we try to extract the 500 images with the highest out-
of-distribution score. Imagen memorized and regenerated 3 of
these images (which were not duplicated at all in the training
dataset). For Stable Diffusion, we failed to extract any image
when applying the same methodology—even after attempting
to extract the 10,000 highest outliers. Thus, Imagen appears
less private than Stable Diffusion both on duplicated and non-
duplicated images. We believe this is because Imagen uses a
model with a much higher capacity compared to Stable dif-
fusion, which allows for more memorization [10]. Moreover,
Imagen is trained for more iterations and on a smaller dataset,
which can also result in higher memorization.

5 Investigating Memorization

The above experiments are visually striking and clearly indi-
cate that memorization is pervasive in large diffusion models—
and that data extraction is feasible. But they ultimately only
consider one strong form of memorization (near-exact ex-
traction) on two state-of-the-art models. In this section we
train smaller diffusion models on CIFAR-10 and perform con-
trolled experiments to better understand how design choices
in diffusion models affect memorization and vulnerability to
privacy attacks. Specifically, we show that:
• We extract many samples (including non-duplicates)

from unconditional CIFAR-10 diffusion models.

• While extraction works for ≈ 2.5% of CIFAR-10, mem-
bership inference succeeds for ≈ 70% of points (at a
1% false-positive rate). Thus, while full data extraction
is obviously the most serious privacy concern, it may
severely underestimate the total training data leakage.

• Targeted attacks on unconditional diffusion models can
use inpainting to extract missing parts of an image.

Figure 6: Direct 2-norm measurement fails to identify memo-
rized CIFAR-10 examples. Each of the above images have a
`2 distance of less than 0.05, yet only one (the car) is actually
a memorized training example.

• Privacy leakage in diffusion models is strongest for
larger and better models, as well as for outlier data.

Experimental setup. For the remainder of this section, we
focus on diffusion models trained on CIFAR-10. We use state-
of-the-art training code4 to train 16 diffusion models, each on
a randomly-partitioned half of the CIFAR-10 training dataset.
We run three types of privacy attacks: membership inference,
attribute inference, and data reconstruction. For the member-
ship inference attacks, we train class-conditional models that
reach a Fréchet Inception Distance (FID) [36] below 3.5 (see
Figure 12), placing them in the top-30 generative models on
CIFAR-10 [17]. For reconstruction attacks (Section 5.1) and
attribute inference attacks with inpainting (Section 5.3), we
train unconditional models with an FID below 4.

5.1 Untargeted Extraction

We first validate that memorization does still occur in our
smaller models. Because these models are not text condi-
tioned, we focus on untargeted extraction. Specifically, given
our 16 diffusion models trained on CIFAR-10, we uncondi-
tionally generate 216 images from each model for a total of
220 candidate images. Because we will later develop high-
precision membership inference attacks, here we directly
search for memorized training examples among all our million
generated examples. This is not a realistic attack, but just a
way of verifying the capability of these models to memorize.

Identifying matches. In the prior section, we performed tar-
geted attacks where we could check for successful extraction
by computing the `2 distance between a target image and gen-
erated image. Here, as we perform an all-pairs comparison, we
find that using an uncalibrated `2 threshold fails to accurately
identify memorized training examples. For example, if we
set a highly-restrictive threshold of 0.05, then nearly all “ex-
tracted” images are of entirely blue skies or green landscapes
(see Figure 6). We explored several other metrics (including
perceptual distances like SSIM or CLIP embedding distance)

4We use OpenAI’s Improved Diffusion repository in Section 5.1
(https://github.com/openai/improved-diffusion), and our own re-
implementation in all following sections. The models we train achieve almost
identical FID to the open-sourced models. These models use state-of-the-art
regularization techniques (e.g., early stopping, weight decay, and dropout).
We use half the dataset as is standard in privacy analyses [8].
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Figure 7: Per-image `2 thresholds are necessary to separate
memorized images from novel generations on a CIFAR-10
model. Each plot shows the distribution of `2 distances from a
generated image to all training images (along with the image
and its nearest training image). Left shows a typical distribu-
tion for a non-memorized image. Right shows a memorized
image distribution; while the closest training image has high
absolute `2 distance, it is abnormally low for this distribution.
The dashed black line shows our adaptive `2 threshold.

but found that none could reliably identify memorized training
images for CIFAR-10.

We instead define an image as extracted if the `2 distance
to its nearest neighbor in the training set is abnormally low
compared to all other training images. Figure 7 illustrates this
by computing the `2 distance between two different generated
images and every image in the CIFAR-10 training dataset.
The left figure shows a failed extraction attempt; despite the
fact that the nearest training image has an `2 distance of just
0.06, this distance is on par with the distance to many other
training images (i.e., all images that contain a blue sky). In
contrast, the right plot shows a successful extraction. Here,
even though the `2 distance to the nearest training image is
higher than for the prior failed extraction (0.07), this value
is unusually small compared to other training images which
almost all are at a distance above 0.2.

We thus slightly modify our unconditional extraction pro-
cedure to use the distance

`(x̂,x;Sx̂) =
`2(x̂,x)

α · 1
k ∑y∈Sx̂ `2(x̂,y)

.

where Sx̂ is the set containing the n closest elements from the
training dataset to the example x̂. This distance is small if
the extracted image x is much closer to the training image x̂
compared to the n closest neighbors of x̂ in the training set.
We run our extraction procedure with α = 0.5 and n = 50. 5

Results. The above methodology identifies 1,280 unique
extracted images from the CIFAR-10 dataset (2.5% of the
dataset).6 Figure 8 shows a selection of training examples

5Our results were not sensitive to these choices: setting α ∈ [0.3,0.7] and
n ∈ [10,100] yield results within 30% of the values reported below.

6Some CIFAR-10 training images are generated multiple times. For these,

that we extract; full results are in the extended version [9, Fig-
ure 18]. This demonstrates that small-scale diffusion models
trained on CIFAR-10 memorize a substantial amount of data.

5.2 Membership Inference Attacks
We now evaluate membership inference with traditional attack
techniques that use white-box access, as opposed to the black-
box attacks in Section 4.2.1. We will show that all examples
have significant privacy leakage under membership inference
attacks, compared to the small fraction that are sensitive to
data extraction. We consider two membership inference at-
tacks on our class-conditional CIFAR-10 diffusion models.

The loss threshold attack. Yeom et al. [85] introduce a sim-
ple membership inference attack: because models are trained
to minimize their loss on the training set, we should expect
that training examples have lower loss than non-training ex-
amples. The loss threshold attack thus computes the loss
l = L(x; f ) and reports “member” if l < τ for some threshold
τ and otherwise “non-member’. The value of τ can be selected
to maximize a desired metric (e.g., true positive rate at some
fixed false positive rate or the overall attack accuracy).

The Likelihood Ratio Attack (LiRA). Carlini et al. [8] in-
troduce a state-of-the-art approach for membership inference
attacks. LiRA first trains multiple shadow models, each model
on a random subset of the training dataset. LiRA then com-
putes the loss L(x; fi) for the example x under each of these
shadow models fi. These losses are split into two sets: the
losses IN= {lini} for the example x under the shadow models
{ fi} that did see the example x during training, and the losses
OUT= {louti} for the example x under the shadow models { f j}
that did not see the example x during training. LiRA finishes
the initialization process by fitting Gaussians NIN to the IN set
and NOUT to OUT set of losses. Finally, to predict membership
inference for a new model f ∗, we compute l∗ = L(x, f ∗) and
then measure whether Pr[l∗|NIN ]> Pr[l∗|NOUT ].

Choosing a loss function. Both membership inference at-
tacks use a loss function L . For classification models, Carlini
et al. [8] find that the choice of loss function has a large impact
on the attack. We find that this effect is even more pronounced
for diffusion models. In particular, unlike classifiers that are
trained with a fixed loss function (e.g., cross entropy), the re-
construction loss minimized by diffusion models depends on
the magnitude of Gaussian noise ε added to the image. Thus,
“the loss” of an image is not well defined—instead, we have a
set of loss values L(x, t,ε) of an image x at some timestep t
with a corresponding amount of noise ε (cf. Equation (1)).

We must thus choose an optimal timestep t at which to
measure the loss. To do so, we re-run our LiRA membership
inference attack (with 16 shadow models) by varying the

we only count the first generation as a successful attack. Further, because the
CIFAR-10 training dataset contains many duplicates, we do not count two
generations of two different (but duplicated) images in the training dataset.
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Figure 8: Selected training examples that we extract from a diffusion model trained on CIFAR-10 by sampling from the model
one million times. Top row: generated output from a diffusion model. Bottom row: nearest (`2) example from the training
dataset. All 1,280 unique extracted images are in the extended version [9, Figure 18].
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Figure 9: We run membership inference using LiRA and
compute the diffusion model loss at different noise timesteps
on CIFAR-10. Evaluating L(·, t, ·) at t ∈ [50,300] produces
the best results. We use t = 100 for all remaining experiments.

timestep t ∈ [1,T ] at which we compute the loss (T = 1,000
in the models we use).

Figure 9 plots the timestep used to compute the loss against
the attack success rate, measured as the true positive rate
(TPR), i.e., the number of examples which truly are members
over the total number of members, at a fixed false positive
rate (FPR) of 1%, i.e., the fraction of examples which are in-
correctly identified as members. Evaluating L at t ∈ [50,300]
leads to the most successful attacks. We conjecture that this
a “Goldilock’s zone” for membership inference: if t is too
small, and so the noisy image is similar to the original, then
predicting the added noise is easy regardless if the input was
in the training set; if t is too large, and so the noisy image is
similar to Gaussian noise, then the task is too difficult. Our re-
maining experiments will evaluate L(·, t, ·) at t = 100, where
we observed a TPR of 71% at an FPR of 1%.

5.2.1 Baseline Attack Results

We evaluate membership inference using our specified loss
function. We follow recent advice [8] and evaluate the ef-
ficacy of membership inference attacks by comparing their
true positive rate to the false positive rate on a log-log scale.
In Figure 10, we plot the membership inference ROC curve
for the loss threshold attack and LiRA. An out-of-the-box
implementation of LiRA achieves a true positive rate of over
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Figure 10: Membership inference ROC curve for a diffusion
model trained on CIFAR-10 using the loss threshold attack,
baseline LiRA, and “Strong LiRA” with repeated queries and
augmentation (§5.2.2).

70% at a false positive rate of just 1%. As a point of reference,
state-of-the-art classifiers are much more private, e.g., with a
< 20% TPR at 1% FPR [8]. This shows that diffusion models
are significantly less private than classifiers trained on the
same data. (In part this may be because diffusion models are
often trained far longer than classifiers.)

5.2.2 Augmentations Improve Attacks

Membership inference attacks can be improved by reducing
the variance in the loss [8, 84]. We achieve this for diffusion
models in two ways. First, because our loss function is ran-
domized (recall that the reconstruction loss L(x, t,ε) is com-
puted with random noise ε∼N (0, I)), a better estimate of the
true loss is the expected loss: L(x, t) = Eε∼N (0,I)[L(x, t,ε)].
By increasing the number of samples used to estimate this
expectation we can increase the attack success rate.

Second, because our diffusion models train on augmented
training images (e.g., by flipping images horizontally), we can
further average the loss over all possible augmentations. As in
prior work for classifiers, we find that both of these strategies
increase the efficacy of membership inference attacks [8, 43].

Improved attack results. Figure 10 shows the effect of com-
bining both strategies (Strong LiRA). Together they are re-
markably successful, and at a false positive rate of 0.1% they
increase the true positive rate by over a factor of six from 7%
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Figure 11: We train models on CIFAR-10 varying the number
of trainable parameters between 25M and 130M, and measure
the TPR at a fixed FPR of 5%. Larger models are, in general,
more vulnerable to membership inference attacks.

to 44%. Figure 21 in the extended version [9] breaks down the
impact of each component, by either increasing the number
of Monte Carlo samples from 1 (the base LiRA attack) to 20,
or by augmenting samples with a horizontal flip.

5.2.3 Factors influencing Memorization

Outliers. Outlier examples are easier to memorize and ex-
tract than inliers, as we observed in Section 4.4 where extrac-
tion on Imagen succeeded orders of magnitude more often for
OOD samples. In this section we directly quantify this effect.

To do this, we first use CLIP embeddings to compute outlier
scores (as we did previously) by computing each examples’
embedding distance to its nearest neighbor. We say an exam-
ple is an “outlier” if its nearest neighbor is in the bottom 10
percentile, and an “inlier” if it is in the top 10 percentile. Even
though attack success rates are very high for both outliers
(95.6%) and inliers (94.1%), this difference is statistically sig-
nificant (p < 0.0001). Figure 19 in the extended version [9]
has a visual representation of this difference.

Model capacity. Prior work shows that larger language mod-
els tend to memorize more training data than smaller mod-
els [12, 39, 51]. Figure 11 shows a similar trend for diffusion
models trained on CIFAR-10. We train models with 25M to
130M parameters, and ensure that all models reach a similar
FID. We find that privacy leakage roughly scales with model
size. The smallest 25M model has the smallest TPR of 17.3%
(at a FPR of 5%), while the 130M model has a TPR of 42.6%.
However, the trend is non-monotonic: a 58M model can ex-
hibit similar vulnerability to membership inference attacks.

Model utility. So far, we trained our diffusion models to
reach state-of-the-art performance. Prior work on language
models found that better models are often easier to attack—
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Figure 12: Better diffusion models are more vulnerable to
membership inference attacks; at an FPR of 1%, the member-
ship inference TPR grows from 7% to nearly 100% as model
FID decreases (i.e., quality increases).

intuitively, because they extract more information from the
training dataset [10]. Here we perform a similar experiment.

Our previous CIFAR-10 results used models that reach
the best FID (on average 3.5) with early stopping. Here we
evaluate models over the course of training and report the
attack success rate as a function of FID in Figure 12. We
find that the privacy leakage increases with the quality of the
diffusion model. This is concerning because it suggests that
future stronger diffusion models may be even less private.

5.3 Inpainting Attacks
Having performed untargeted extraction on CIFAR-10 mod-
els, we now turn to targeted attacks. As mentioned earlier, tar-
geted attacks are tricky here because the models we use do not
support textual prompting. We thus instead provide guidance
by performing a form of attribute inference attack [42, 85, 86]
that we call an “inpainting attack”. Given an image x, we first
mask out a portion of the image’s pixels to create a masked
image xm. Our attack objective is then to reconstruct the full
image. We then run this attack on both training and testing
images, and compare the attack efficacy on each. Specifically,
we use the inpainting algorithm of Lugmayr et al. [52] to
produce a reconstructed image xrec.

Because inpainting is stochastic (it depends on the random
sample ε ∼ N (0, I)), we create a set of inpainted images
Xrec = {x1

rec,x
2
rec, . . . ,x

n
rec}, where we set n = 5,000. For each

xrec ∈ Xrec, we compute the diffusion model’s loss on this
sample (at timestep 100) divided by a shadow model’s loss
that was not trained on the sample. We then use this score to
identify the highest-scoring reconstructions xrec ∈ Xrec.

Results. Our attack masks out the left half of an image and
applies the diffusion model to inpaint the missing part. We
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Figure 13: Evaluation of inpainting attacks on CIFAR-10.
For 100 randomly chosen images, we mask out the image’s
left half and plot the `2 distance between the image and the
inpainted reconstruction. The annotated bird and cat examples
are from Figure 14. With partial knowledge of an image,
inpainting attacks work far better than full data extraction.

Figure 14: Inpainting-based reconstruction attack on CIFAR-
10. Given an image (first column), we randomly mask half
of the image (second column), and then inpaint with a model
which was trained on the image (third column) or with a
model which was not trained on the image (fourth column).

repeat this process 5,000 times and take the top-10 scoring
reconstructions using a membership inference attack. We
repeat this attack for 100 images using diffusion models that
are trained with and without these images. Figure 13 compares
the average distance between the original sample and the ten
highest scoring inpainted samples. We find that our inpainting
attack does exploit memorization: the reconstruction loss
is substantially lower when the image is in the training set
than when not. Figure 14 shows qualitative examples of this
attack. The highest-scoring reconstruction is visually similar
to the target image when the target is in training and does
not resemble the target when it is not in training. A more
thorough analysis of inpainting attacks is in the extended
version [9, Appendix E].

6 Comparing Diffusion Models to GANs

Are diffusion models more or less private than other genera-
tive modeling approaches? In this section we take a first look
at this question by comparing diffusion models to Genera-
tive Adversarial Networks (GANs) [34, 60, 66], which were
state-of-the-art for image generation for nearly a decade.

Diffusion models are explicitly trained to reconstruct their
training datasets—GANs are not. Instead, training a GAN
pits two competing neural networks against each other: a
generator and a discriminator. Similar to diffusion models,
the generator receives random noise as input, but unlike a
diffusion model, it must convert this noise to an image in
a single forward pass. To train a GAN, the discriminator is
trained to predict if an image comes from the generator or not,
and the generator is trained to fool the discriminator. GANs
differ from diffusion models in that their generators are only
trained using indirect information about the training data (i.e.,
gradients from the discriminator), whereas diffusion models
are explicitly trained to reconstruct the training set.

Membership inference attacks. We first propose a privacy
attack methodology for GANs.7 We initially focus on mem-
bership inference attacks, where following Balle et al. [5], we
assume access to both the discriminator and generator. We
perform membership inference using the loss threshold [85]
and LiRA [8] attacks, where we use the discriminator’s loss
as the metric. To perform LiRA, we follow a similar method-
ology as Section 5 and train 256 individual GAN models each
on a random 50% split of the CIFAR-10 training dataset but
otherwise leave training hyperparameters unchanged.

We study three GAN architectures, all implemented using
the StudioGAN framework [46]: BigGAN [6], MHGAN [79],
and StyleGAN [48]. The membership inference results are in
the extended version [9, Figure 15]. Overall, diffusion models
have higher membership inference leakage, e.g., diffusion
models had 50% TPR at a FPR of 0.1% as compared to <
30% TPR for GANs. This suggests that diffusion models
are less private than GANs for membership inference attacks
under default training settings, even when the GAN attack
is strengthened due to having access to the discriminator
(which would be unlikely in practice, as only the generator is
necessary to create new images).

Data extraction results. We next consider more practical
black-box extraction attacks. We follow the same procedure
as in Section 5.1, where we generate 220 images from each
model architecture and identify those that are near-copies of
the training data using the aforementioned similarity function.
Again we only consider non-duplicated CIFAR-10 training
images in our counting. Note that in contrast to the exper-
iments in Section 5.1, here we do not need to assume that

7While existing privacy attacks exist for GANs, they were proposed before
the latest advancements in privacy attack techniques, requiring us to develop
our own methods which out-perform prior work.
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Architecture Images Extracted FID

GANs

StyleGAN-ADA [47] 150 2.9
DiffBigGAN [87] 57 4.6
E2GAN [73] 95 11.3
NDA [68] 70 12.6
WGAN-ALP [72] 49 13.0

DDPMs OpenAI-DDPM [57] 301 2.9
DDPM [37] 232 3.2

Table 1: The number of training images extracted from off-
the-shelf generative models, with one million unconditional
generations. We show GAN models on the top and diffusion
models on the bottom, sorted by FID (lower is better). Over-
all, diffusion models memorize more than GANs, and better
generative models (lower FID) tend to memorize more data.

the adversary knows any captions (since the models are un-
guided). This extraction attack could thus seemingly apply in
any setting where an unconditional generative model is used.

For this experiment, instead of training models ourselves
(which was necessary to run LiRA), we study five off-the-
shelf pre-trained GANs: WGAN-ALP [72], E2GAN [73],
NDA [68], DiffBigGAN [87], and StyleGAN-ADA [47]. We
also evaluate two off-the-shelf DDPM diffusion models from
Ho et al. [37] and Nichol et al. [57]. Note that all of these pre-
trained models were trained on the entire CIFAR-10 dataset.

Table 1 shows the number of extracted images and FID for
each model. Overall, diffusion models memorize more data
than similarly strong GANs. Notably, the best DDPM model
memorizes 2×more than a StyleGAN-ADA with similar FID.
Memorization (in GANs and diffusion models) also tends to
increase as quality (FID) improves, e.g., we extract 3× more
images from StyleGAN-ADA than the weakest GANs.

More results are in the extended version of our paper [9].
In [9, Figure 16] we show examples of near-copy generations
for the GANs we trained ourselves, and in [9, Figure 26]
we show every sample that we extract from those models.
In [9, Figure 27], we show near-copy generations for the five
off-the-shelf GANs. These results reinforce our conclusion
that diffusion models are less private than GANs.

Surprisingly, we find that diffusion models and GANs mem-
orize many of the same images. In particular, for a diffusion
model that memorizes 1280 images and a StyleGAN model
(trained on half of CIFAR-10) that memorizes 361 images,
we find 244 unique images memorized in common. If images
were memorized at random, we should expect on average 10
images would be memorized by both, giving strong evidence
that some images (p < 10−261) are less private than others.

7 Defenses and Recommendations

Given the degree to which diffusion models memorize and re-
generate training examples, in this section we explore various

defenses and practical strategies that may help to reduce and
audit model memorization.

7.1 Deduplicating Training Data
In Section 4.2, we showed that extracted examples are often
duplicated many times (e.g., > 100) in the training data. Simi-
lar results have been shown for language models [12,44]; data
deduplication is an effective mitigation against memorization
for those models [45, 51]. In the image domain, simple dedu-
plication is common, where images with identical URLs and
captions are removed. But most datasets do not compute other
inter-image similarity metrics such as `2 distance or CLIP
similarity. We thus encourage practitioners to deduplicate
datasets using these more advanced notions of duplication.

Unfortunately, deduplication is not a perfect solution. To
better understand its effectiveness, we deduplicate CIFAR-
10 and re-train a diffusion model on this modified dataset.
We compute image similarity using the imagededup tool and
deduplicate any images that have a similarity above > 0.85.
This removes 5,275 examples from the 50,000 total examples
in CIFAR-10. We repeat the same generation procedure as
Section 5.1, where we generate 220 images from the model
and count how many examples are regenerated from the train-
ing set. The model trained on the deduplicated data regen-
erates 986 examples, as compared to 1280 for the original
model. While not a substantial drop, these results show that
deduplication can mitigate memorization. Moreover, we also
expect that deduplication will be much more effective for
models trained on larger-scale datasets (e.g., Stable Diffu-
sion), as we observed a much stronger correlation between
data extraction and duplication rates for those models.

7.2 Differentially-Private Training
The gold standard technique to defend against privacy attacks
is by training with differential privacy (DP) guarantees [24,
25]. Diffusion models can be trained with differentially-
private stochastic gradient descent (DP-SGD) [1], where the
model’s gradients are clipped and noised to prevent the model
from leaking substantial information about the presence of
any individual image in the dataset. Applying DP-SGD in-
duces a trade-off between privacy and utility, and recent work
shows that DP-SGD can be applied to small-scale diffusion
models without substantial performance degradation [21].

Unfortunately, applyinbg DP-SGD to our diffusion model
codebase causes the training on CIFAR-10 to consistently
diverge, even at high privacy budgets ε ≥ 50. In fact, even
applying a non-trivial gradient clipping or noising on their
own (both are required in DP-SGD) causes the training to
fail. We leave a further investigation of these failures to future
work, and we believe that new advances in DP-SGD and
privacy-preserving training techniques may be required to
train diffusion models in privacy-sensitive settings.
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Figure 15: Canary exposure (a measure of non-privacy) as
a function of duplicate count. Inserting a canary twice is
sufficient to reach maximum exposure.

7.3 Auditing with Canaries

In addition to implementing defenses, practitioners may want
to empirically audit their models to determine their vulnerabil-
ity in practice [40]. Our attacks above represent one method
to evaluate model privacy. Nevertheless, they are expensive,
e.g., our membership inference results require training many
shadow models, and thus cheaper alternatives may be desired.

A common, cheap approach to evaluate memorization in
language models [11] is to insert canary examples into the
training set. Here, one creates a large “pool” of canaries, e.g.,
random noise, and inserts a subset of the canaries into the
training set. After training, we compute the canaries’ expo-
sure, a measure of how much lower the model’s loss is on
the inserted canaries compared to the held-out canaries. This
approach only requires training one model and can be instan-
tiated with canaries ranging from random inputs all the way
to adversarial inputs designed to maximize memorization.

To evaluate exposure for diffusion models, we generate
canaries consisting of uniformly random noise, and duplicate
these in the training set at different rates. Figure 15 shows
the results. The maximum exposure is 10, and some canaries
reach this after being inserted only twice. The exposure does
not strictly increase with duplicate count, which may be a
result of some canaries being “harder” than others. Ultimately,
the random canaries we generate may not be the most effective
to test memorization for diffusion models.

For the models we considered here, we could thus provide
clear evidence of data leakage by training a single model,
instead of the multiple shadow models needed for strong MI
attacks. When auditing less leaky models however, canary ex-
posures computed from a single training might underestimate
the true data leakage [77]. Thoroughly investigating the de-
sign and evaluation of canary auditing schemes for diffusion
models is an important question for future work.

8 Related Work

Memorization in language models. Numerous prior
works study memorization in generative models across differ-
ent domains, architectures, and threat models. Memorization
in language models for text has been an active area of re-
search, which showed that adversaries can extract training
samples using two-step attack techniques that resemble our
approach [12,44,45,51]. Our work differs in that we focus on
the image domain, and we use more semantic notions of data
regeneration (e.g., using CLIP scores) as opposed to exact
verbatim repetition (although recent language modeling work
has begun to explore approximate memorization as well [39]).

Memorization in image generation. Past work has ana-
lyzed memorization in image generation mainly from the
perspective of generalization in GANs (i.e., the novelty of
model generations). For instance, numerous metrics exist to
measure similarity to training data [3, 36], the extent of mode
collapse [16, 66], and the impact of individual training sam-
ples [4, 80]. Other work provides insights into when and why
GANs may replicate training examples [29, 55], as well as
how to mitigate such effects [55]. Our work extends these
lines of inquiry to conditional diffusion models, where we
measure novelty by computing how frequently models regen-
erate training instances when provided with textual prompts.

Recent and concurrent work studies privacy in image gen-
eration for both GANs [74] and diffusion models [38, 70, 83].
Tinsley et al. [74] show that StyleGAN can generate individu-
als’ faces, and Somepalli et al. [70] show that Stable Diffu-
sion can output semantically similar images to its training set.
Compared to these works, we identify privacy vulnerabilities
in a wider range of systems (e.g., Imagen and CIFAR models)
and threat models (e.g., membership inference attacks).

Inverting image generation models. Many successful ap-
plications of image generation models (e.g., image editing)
leverage the ability to invert the generation process [18, 88].
That is, given a generator Gen and target image x, it is possible
to find some input z to the generator such that Gen(z)≈ x.

While seemingly similar to extraction, existing inversion
methods ask for something much weaker: they search for a
“soft” continuous high-dimensional embeddings that gener-
ates a close target. The ability to invert a generator is thus
a property of the (soft) generator function being surjective,
rather than the model having memorized training data. Indeed,
inversion methods [18,32,88] work for any training or testing
sample. In contrast, our extraction attacks search for “hard”
text prompts, which only represent a negligibly sparse fraction
of the embedding space. To illustrate, while we may be able
to find a continuous embedding that makes Stable Diffusion
generate anyone’s face, doing so with a text prompt of the
person’s name (as in Figure 1) can obviously only work if the
person’s face was in the training set and memorized.
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9 Discussion and Conclusion

State-of-the-art diffusion models memorize and regenerate
individual training images when prompted with the corre-
sponding captions. By training our own models we find that
increasing utility can degrade privacy, and simple defenses
such as deduplication are insufficient to completely address
the memorization challenge. We see that state-of-the-art diffu-
sion models memorize 2× more than comparable GANs, and
more useful diffusion models memorize more than weaker
diffusion models. This suggests that the vulnerability of gen-
erative image models may grow over time. Going forward,
our work raises questions around the memorization and gen-
eralization capabilities of diffusion models.

Questions of generalization. Do large-scale models work by
generating novel output, or do they just copy and interpolate
between all training examples? Since we succeed in extracting
some training samples (but not all), this question remains
open. Given that different models memorize varying amounts
of data, we hope future work will be able to explain how
diffusion models regenerate parts of their training datasets.

Our work also highlights the difficulty in defining memo-
rization. While we have found extensive memorization with a
simple `2 metric, a more comprehensive analysis will be nec-
essary to capture more nuanced definitions of memorization
that allow for more human-aligned notions of data copying.

Practical consequences. We highlight four practical conse-
quences for training and deploying diffusion models. First, we
recommend deduplicating training data and minimizing over-
training, as a first defense layer. Second, we suggest using our
attack methods, or other auditing approaches, to estimate the
privacy risk of trained models. Third, we recommend using
provable privacy-preserving techniques once this becomes
practical. Fourth, we hope our work will temper the heuristic
privacy expectations associated with diffusion model outputs:
synthetic data does not give privacy for free [2, 14, 15, 58, 64].

Our work contributes to the growing literature on the legal,
ethical, and privacy implications of training on public web
data [7, 70, 76, 82]. Researchers and practitioners should be
wary of training on uncurated public data without taking steps
to understand the underlying ethics and privacy risks.
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