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Abstract
Autonomous Vehicles (AVs) increasingly use LiDAR-based
object detection systems to perceive other vehicles and pedes-
trians on the road. While existing attacks on LiDAR-based
autonomous driving architectures focus on lowering the confi-
dence score of AV object detection models to induce obstacle
misdetection, our research discovers how to leverage laser-
based spoofing techniques to selectively remove the LiDAR
point cloud data of genuine obstacles at the sensor level be-
fore being used as input to the AV perception. The ablation
of this critical LiDAR information causes autonomous driv-
ing obstacle detectors to fail to identify and locate obstacles
and, consequently, induces AVs to make dangerous automatic
driving decisions. In this paper, we present a method invisible
to the human eye that hides objects and deceives autonomous
vehicles’ obstacle detectors by exploiting inherent automatic
transformation and filtering processes of LiDAR sensor data
integrated with autonomous driving frameworks. We call such
attacks Physical Removal Attacks (PRA), and we demonstrate
their effectiveness against three popular AV obstacle detectors
(Apollo, Autoware, PointPillars), and we achieve 45◦ attack
capability. We evaluate the attack impact on three fusion mod-
els (Frustum-ConvNet, AVOD, and Integrated-Semantic Level
Fusion) and the consequences on the driving decision using
LGSVL, an industry-grade simulator. In our moving vehicle
scenarios, we achieve a 92.7% success rate removing 90% of
a target obstacle’s cloud points. Finally, we demonstrate the
attack’s success against two popular defenses against spoofing
and object hiding attacks and discuss two enhanced defense
strategies to mitigate our attack.

1 Introduction

Perception systems used in Autonomous Vehicles (AVs) are
fundamental elements of autonomy and the foundation of
reliable automated decisions for driver safety. These percep-
tion systems leverage sensors such as LiDARs, cameras, and
radars for obstacle avoidance and navigation control. LiDAR

Figure 1: Overview of our LiDAR Physical Removal At-
tacks (PRA). We exploit the internal automatic filtering of the
LiDAR-based perception stack to physically remove selected
3D point clouds from the scene. In this case, the point cloud
of a pedestrian.

sensors, in particular, are used to capture depth measurements
of the vehicle’s surroundings with high accuracy in 3D point
clouds to detect obstacles. However, prior research has shown
how Autonomous Driving (AD) frameworks are vulnerable to
attacks on LiDAR sensors that exploit their perception models,
which are used for obstacle detection [10, 15, 42, 54, 56, 58].

Generally, these attacks focus on creating real-world con-
ditions under which the attacker can manipulate the AVs per-
ception models to "see" non-existent obstacles [9, 10, 39, 42]
or to not detect genuine obstacles [8, 15, 45, 59]. For instance,
researchers used laser injections to spoof additional LiDAR
cloud points to generate adversarial examples [10], i.e., adding
small perturbations to induce misdetection [15].

However, previous works mainly focus on lowering the
performance of object detection models, thus it remains unex-
plored whether there is a physical attack that fully removes
LiDAR point clouds from genuine obstacles in real-world
driving scenarios and affects the AV driving behaviors. Thus,
we tackle the following research questions in this paper: (i)
Can a real obstacle point cloud be remotely and stealthily
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removed from LiDAR sensor perception? (ii) How can an
attacker perform such an attack under realistic conditions?
(iii) What are the implications of such attacks on AV frame-
works and obstacle detection models, and how is it possible
to defend against them?

To answer these research questions, we propose a new at-
tack family, namely Physical Removal Attacks (PRA). Lever-
aging existing laser-based spoofing attacks on LiDAR sen-
sors [10], we investigate the feasibility of manipulating Li-
DAR sensor data acquisitions to hide genuine obstacles from
being detected by AD frameworks, which further raises safety
risks for pedestrians and other drivers. We find that, by in-
jecting invisible laser pulses in close proximity to the LiDAR
sensor (i.e., below a certain distance threshold), it is possible
to force the sensor to discard legitimate cloud points from
genuine obstacles in the scene, as depicted in Figure 1. The
attack exploits a cascade effect in LiDAR sensors integrated
into AD frameworks that rely on two main factors: 1) the
intrinsic prioritization of the LiDAR sensors over strong re-
flections, and 2) the automatic filtering of the cloud points
within a certain distance of the LiDAR sensor enclosure1.

We first describe the relationship between the internal func-
tioning of the LiDAR sensor and the resulting point removal
created by the laser injection. Then we quantify the capability
of the attacker in different scenarios. To validate our approach,
we examine the effectiveness of the cloud point removal via
empirical experiments on a Velodyne VLP-16 LiDAR sensor,
where we achieve a 45◦ horizontal attack angle capability.
We then analyze the effectiveness of our attack in standard
perception systems (e.g., Baidu Apollo [7], PointPillars [19],
and Autoware [44]), by modeling the attacker’s capability
to generate a stable spoofing to induce obstacles removal
for different scenarios, including different types of obstacles
(e.g., cars and pedestrian), at different distances. We further
evaluate our PRA on three Camera-LiDAR state-of-the-art
fusion models. We demonstrate that the obstacle detection
rate drops between 43% and 76% in the three tested models,
and we are able to cause Autoware Integrated-Semantic Level
Fusion [44] failure when the target obstacle is fully removed.

We then evaluate the attack capability in outdoor scenarios
where we achieve the removal of pedestrians and demonstrate
the robustness of the attack under different light conditions
and at different distances from the spoofer device (up to 10
meters). We also conduct an end-to-end evaluation with an
AD simulator [33] to demonstrate the attack consequences
of colliding with a pedestrian at a crosswalk or a stopping
vehicle by simulating the attack in an ideal setting. Finally,
we demonstrate the practicality of attacking moving vehicles
(e.g., a robot and a car) with proof-of-concept experiments
where we design and prototype a tracking system. We demon-
strate a 92.7% success rate in removing 90% of obstacle cloud
points with a vehicle driving at 5km/h.

1Video demonstrations, attack traces, and detailed tables of our Physical
Removal Attacks can be found at: https://cpseclab.github.io/youcantseeme/

Finally, we systematically investigate existing defenses
against laser spoofing attacks and object hiding attacks,
demonstrating how they are not effective against our removal
attack, and we summarize two defense strategies that we call
Fake Shadow Detection and Azimuth-based Detection. We
further discuss and evaluate the defenses on synthesized and
real-world traces of our attack achieving 82.5% True Negative
Rate (TNR) and 91.2% True Positive Rate (TPR) for the first
and 99.98% TNR and 100% TPR for the second defense. To
summarize, this work aims to model, measure, and demon-
strate the capability of removing LiDAR sensor information
by leveraging laser-based spoofing techniques, and help de-
fend against the threat to current and future AD frameworks
and AVs.

In summary, we highlight the following contributions:
• We identify and model a laser-based spoofing attack on

LiDAR sensors which removes genuine point cloud by ex-
ploiting internal cloud point transformations and filtering.

• We model the attacker capability, challenges, and limits
of PRA on three popular commercial and academic AD
perception models (Baidu Apollo [7], PointPillars [19],
and Autoware [44]). We then evaluate the attack impact on
three state-of-art fusion models (Frustum-ConvNet [52],
AVOD [17], and Autoware Integrated-Semantic Level Fu-
sion [44]).

• We validate our findings by showing consequences for au-
tonomous vehicles on the production-grade AD simulator
LGSVL [33] and conducting real-world attacks on moving
robots and vehicles.

• We verify the effectiveness of the attack against two
existing defense approaches for cloud point spoofing:
CARLO [42] and hiding attack defense [16]. Finally, we
propose two enhanced strategies to mitigate the threat.

2 Background and Related Work

2.1 LiDAR Sensors in Autonomous Driving
LiDAR sensors are used to create a map of the car’s surround-
ings, allowing a vehicle to navigate environments. LiDAR sen-
sors especially are considered more important for AV driving
safety decisions over cameras and radars because of LiDAR’s
higher reliability and accuracy for object detection [1,4]. Pop-
ular AD companies such as Google, Uber, Lyft, Baidu, GM
Cruise, and Ford, have reached the highest level of self-driving
technology, developing AD frameworks integrated with the
vehicle controls, whose architecture is based on designs such
as Baidu Apollo [7] and Autoware [30,44]. Both Baidu Apollo
and Autoware integrate LiDAR sensors as well as cameras for
obstacle avoidance, and they have been chosen as represen-
tative state-of-the-art designs for autonomous transportation
technology [46, 47]. These camera and LiDAR-based AD
frameworks usually include five main modules: perception,
localization, prediction, planning, and control [7, 12, 44, 55].
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This paper focuses on investigating a vulnerability that affects
the perception module used for obstacle detection and avoid-
ance. In particular, our PRA exploit the automated point cloud
transformations that can occur in the following components:
the LiDAR sensor, the middleware software infrastructure of
the AD framework, and the LiDAR data pre-processing phase
of the AV perception module. Details of this process will be
further discussed in §3.
3D Spinning LiDAR functioning. Among the different
LiDAR sensors available, there are two main types commonly
used in AVs: spinning and solid-state LiDARs. While spin-
ning LiDARs are a mature technology, solid-state LiDARs
are new in the AD context, and they are still under develop-
ment [20]. Spinning LiDARs use high-grade optics and rotat-
ing mechanical hardware, such as a motor, to achieve the full
360◦ view of the vehicle’s surroundings. Solid-state LiDARs,
in comparison, do not have spinning mechanical components,
and they usually cover a limited horizontal range (∼120◦).
The present work focuses on 3D spinning LiDARs that are
mainly used for AV obstacle detection and avoidance.

Typically, these 3D spinning LiDARs are composed of a
vertical stack of Infrared (IR) laser diodes that fire laser pulses
along with a corresponding stack of photodiodes. Both stacks
rotate, and each photodiode-laser pair covers a particular ver-
tical angle, forming lines in the resulting 3D map. If a laser
beam is partially or totally intercepted by obstacles in its tra-
jectory, the results of the reflections on the obstacle’s surfaces
(called echoes or returns) are backscattered toward the sensor.
The internal timing circuit measures the time between the
laser pulse emission and the return at the photodiodes, which
is then translated into the distance between the obstacles and
the LiDAR. The sensor also captures the echo’s reflectance
(intensity of laser pulse returns). By repeating the distance
and intensity measurements with a scanning mechanism, the
LiDAR covers 360◦ view around the vehicle [29]. The re-
sulting collection of these raw signals is called a point cloud,
where each echo is a cloud point with its own set of X, Y, and
Z geometric coordinates in the sensor 3D space, and intensity.

2.2 Spoofing Attacks on LiDAR Sensors
Petit et al. [28] and Shin et al. [39] investigated real-world
spoofing attacks on LiDAR sensors without tampering with
the vehicle or broadcasting altered packets in the vehicle
network. These works demonstrated that an attacker can inject
fake point clouds at various distances by shining a single laser
beam composed of fake pulses precisely synchronized to a
spinning LiDAR sensor. Cao et al. [10] and Sun et al. [42]
improved the attack methodology by injecting up to 200 fake
points in the LiDAR field of view. Cao et al. investigated
how this methodology can be used to generate point clouds
as adversarial examples to introduce near-front fake obstacles
in the scene. Sun et al. instead exploited patterns of occluded
and distant vehicles to achieve the same goal. Both attacks

require a precise pulse injection to generate the adversarial
examples and knowledge of the victim LiDAR position in
real-time to maintain a robust adversarial pattern when the
vehicle is moving [9]. Hallyburton et al. [13] use the same
attack methodology to demonstrate a black box attack on
camera-LiDAR fusion. The aforementioned attacks assume an
attacker shines a laser towards a LiDAR, and thus the spoofing
attacks are naturally additive, i.e., injecting additional cloud
points into the scene to generate a non-existent object.
Object Hiding Attacks. Recent works showed that adding
adversarial point clouds can also evade object recognition in
AD frameworks’ ML models [55]. These attacks consist of
two main methodologies. In the first attack type, the adversary
places physical objects on the target vehicle [45, 59] or the
road [8]. These physical objects are built with specific shapes
and sizes that minimize their confidence score in the victim
AV detection models to become undetected. The process has
several constraints in terms of practicality and robustness be-
cause building such objects require extreme accuracy. The
second attack type leverages the spoofing of additional cloud
points to add small perturbations (e.g., noise) to the target
obstacles to change the victim detection model output predic-
tions. For instance, Hau et al. [15,16] in their Object Removal
Attacks (ORA-Random) proposed using the LiDAR spoof-
ing approach developed by Cao et al. [10] to simulate the
injection of random cloud points around the target object’s
bounding box detected by the victim’s AV detection model.
The authors demonstrate that the generated perturbation in the
target object location lowers the detection model’s confidence
score and causes object misdetection.

In contrast to these previous works that focus on lowering
the AV detection model confidence score of certain obstacles,
our attack directly removes selected cloud points at a lower
sensor level before being used as input by the perception mod-
ule. The ablation of the point cloud can thus cause failure in
the AD framework when detecting potential obstacles and
making an AV planning decision. We show that an adver-
sary can mount an attack to remove specific regions of the
LiDAR FOV (Field of View) and consequently hide the pres-
ence of genuine obstacles in §4. Our attack requires neither
knowledge of the perception module output nor the genera-
tion of adversarial examples dependent on the perception ML
model used by the victim AV. The attack also does not require
fine-grained spoofing of the cloud points.
Physical Attacks on Sensors. These attacks are per-
formed using spoofing/jamming on cameras [22, 56], Li-
DARs [10, 39], MEMS microphones [41], radars, and ultra-
sonic sensors [56]. Spoofing attacks in particular have been
shown to create perturbations to cause the AV’s ability to
detect obstacles or pedestrians to fail, resulting in potential
collisions. With the increase in popularity of AVs, more at-
tacks against their perception sensors have been conducted in
an effort to make AVs more robust and prevent critical system
failure. In particular, three studies explored the vulnerability
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Figure 2: Overview of our Physical Removal Attack. The
spoofer photodiode receives the laser pulses from the LiDAR
and sends back fake echoes below the LiDAR Minimum
Operational Threshold (MOT).

of LiDARs to spoofing and jamming attacks [10, 28, 39]. In
this work, we build on these prior works to show that the
physical removal of point clouds can lead to AD frameworks
failure due to the misdetection of obstacles after enough cloud
points have been removed by the attacker.

3 Attack Overview and Threat Model

We give an overview of our removal attack, describe the threat
model assumptions, and characterize the PRA principles.

3.1 Physical Removal Attack Overview
Our attack consists of injecting invisible echoes in close prox-
imity of the LiDAR sensor (namely, below a certain distance
threshold from the sensor enclosure) in order to force the auto-
matic discard of legitimate cloud points in the scene, such as
the cloud points produced by genuine obstacles. The point ab-
lation at the sensor level can, in turn, cause the AD perception
module to fail to recognize obstacles and their locations, as we
demonstrate in §4 and §5. In other words, genuine cloud point
removal is achieved by spoofing cloud points in a specific
range between the LiDAR sensor enclosure and the object as
illustrated in Figure 2. We call this area the spoofing region,
and its width varies depending on the LiDAR sensor and AD
framework used, as described in §3.3. We also define the up-
per limit of this spoofing region, the Minimum Operational
Threshold (MOT). To pursue this attack, we show in §4 how
the adversary can use our enhanced methodology based on
previous work by Cao et al. [10]. Our methodology consists
of firing invisible laser pulses that resemble genuine echoes.
These pulses are synchronized with the LiDAR sensor firing
time sequence to control the location of the spoofed cloud
points. As illustrated in Figure 2, the attacker can synchronize
the spoofer device to modify the distance, ∆r, of the spoofed
points from the LiDAR where r is the radius of the LiDAR’s
horizontal FOV. This is achieved by changing the delay of the

fired spoofer laser pulses according to the victim LiDAR’s
laser beam firing sequence timing. We define attack angle
∆θ as the LiDAR horizontal angular view affected by the at-
tack, where θ is the LiDAR horizontal view of 360◦. Note
that the attack angle is determined by both the LiDAR model
(angle of receiving reflected signals from one direction) and
the spoofer (covered region of spoofed signals on the victim
LiDAR). Usually, larger attack angles enable the attacker to
place the spoofer further away from the target victim and hide
objects with a larger view angle. Knowing the distance, d, of a
target point cloud to remove (e.g., an obstacle) and the attack
angle, we define the resulting chord length as 2d× sin(∆θ/2).

3.2 Threat Model
In this paper, we consider the attacker’s goal to impact the
safety of an autonomously driving vehicle. Our attacker will
attempt to accomplish this goal by selectively removing point
cloud regions through remote injection of laser pulses in prox-
imity to the LiDAR sensor (below the Minimum Operational
Threshold) with a particular timing. An attacker can use this
strategy to prevent legitimate echoes coming from real-world
obstacles in the scene from being perceived by the LiDAR
sensor. Consequently, the object detection model of the AV
perception module lacks the necessary point cloud informa-
tion (e.g., distance and location) for detecting potential ob-
stacles present in the scene. The adversary can thus exploit
this effect to hide objects, other vehicles, or pedestrians in
front of the vehicle for a sufficient amount of time to cause
a potential crash or to induce last-second unsafe automatic
maneuvering such as steering and drifting into adjacent lanes,
thus increasing the risk of being hit by nearby vehicles.
Previous Knowledge. We assume that the adversary can
learn the behavior of the victim LiDAR model by reading
publicly available documents (e.g., manuals, datasheets, and
open-source code) or by acquiring the same LiDAR used
by the victim vehicle. We also assume that the adversary
might only know whether the victim vehicle uses a ROS-
based system (e.g., Autoware) or Apollo-based AD frame-
works to estimate the spoofing region width of the target AV.
This assumption is less restrictive than prior adversarial at-
tacks on LiDAR and camera perception models that imply
white-box attack settings, or having access to the AV detec-
tion model output information (e.g., bounding box location)
to build adversarial patterns [8, 10, 15]. Furthermore, ROS-
based and Apollo-based AD frameworks are widely used and
considered a standard de facto by a variety of AV companies,
including BMW, and Bosch [30].
Spoofing Attack. To achieve our PRA, we leverage the
laser-based spoofing attacks, which have been proven feasible
in previous works [9, 10, 28, 39, 42]. We modify these attacks
to remove genuine cloud points from the LiDAR FOV. In
particular, compared to previous work: i) we improve the Cao
et al. setup to achieve better accuracy and performance in the
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Table 1: Commercial spinning LiDARs: return signal modes available, and default Minimum Operational Thresholds indicated
by the sensor manufacturers, ROS middleware, and Baidu Apollo and Autoware AV frameworks.

LiDAR Return Recommended Min. Min. Operational Min. Operational Min Operational Literature
Model Modes Oper. Thr. (cm) Thr. ROS driver∗ (cm) Thr. Apollo∗∗ (cm) Thr. Autoware∗∗∗ (cm) Source

Velodyne VLP-16 SO•, 2R, L 100 40 90 40 [7, 18, 36, 49]
Velodyne VLP-32c SO•, 2R, L 100 40 40 40 [7, 18, 36]
Velodyne HDL64E-S3 SO•, 2R, L 90 40 90 200 [7, 36, 50]
Velodyne VLS-128 SO•, 2R, L NA 40 90 90 [7, 18, 36]
Robosense RS16-RS32-RS128 SO•, 2R, L 40 20 0 20 [7, 31, 44, 60]
LSLidar C16 SO•, 2R 50 15 30 15 [7, 34, 38, 57]

SO - Only the strongest return, 2R - Two returns, L - Last return, NA - Not available. (•) Default return mode.
(∗) Default range for Kinetic and Melodic ROS1 LiDAR drivers. (∗∗) Baidu Apollo Version 5.0 and 6.0, including Apollo Cyber RT drivers. (∗∗∗) Autoware.AI Version 1.14.0.

spoofing process, and we increase compactness to improve
aiming (as detailed in §4); ii) we assume that the attacker can
inject laser pulses at the required intensity and can modify
the locations of the spoofed points (distance, altitude, and az-
imuth) by changing the delay intervals of the spoofer device.
However, compared to Cao et al., the attack does not require
fine-tuning of the spoofed cloud points locations to gener-
ate specific adversarial patterns. The attacker only needs to
spoof the points below the MOT of the victim LiDAR sensor.
Finally, to aim the laser at moving vehicles, we assume the at-
tacker can use well-known machine learning techniques, such
as camera-based object detection and tracking, by collecting
LiDAR sensor images from publicly available sources or pre-
trained models such as demonstrated in previous work [9].
Attack Scenarios. To perform the attack, we consider
several possible scenarios depending on the attacker goal. In
this work, we focus on two immediate goals for the attacker:
hiding a specific region of the scene (e.g., front-view of the
victim vehicle trajectory) and a specific obstacle (e.g., a pedes-
trian). In both cases, the attacker can place the spoofer device
at the roadside, such as close to a pedestrian crossing and
intersections as depicted in Figure 1, to shoot malicious laser
pulses at moving AVs. If the adversary aims to hide a partic-
ular static obstacle, the adversary might also need to know
the angular positioning of that object in the front-view of the
victim AV to better position the spoofer device. If the obstacle
is moving (e.g., a pedestrian), the adversary may use camera-
based tracking techniques for detecting the target obstacle
position with respect to the moving AV and vary the attack
angle and spoofer aiming accordingly. Another alternative
scenario for hiding a specific region in front of the victim AV
consists of placing the attacker device in a vehicle and follow-
ing the victim car as described in previous works [9, 10, 39].
The laser pulses sent by the attacker are fully invisible to the
human eye, and laser shooting devices are relatively small in
size, as we will discuss in §4.

3.3 Attack Principles

The basic idea behind PRA is that an adversary can force a
LiDAR integrated with the AD framework to automatically

ignore genuine cloud points from genuine obstacles under
certain conditions. This happens because of two main factors:
1) LiDAR sensors intrinsically prioritize particular echoes
(e.g., the strongest) and 2) LiDAR sensors as well as the
AV frameworks and middleware automatically filter cloud
points closer to the LiDAR sensor enclosure. Both factors are
explored below.
LiDAR Echo Signals. LiDAR sensors, by nature, can re-
ceive more than one echo signal from real-world obstacles
while firing the laser beams as it widens or diverges over in-
creasing distances. More specifically, each photodiode in the
sensor can acquire multiple echo signals if the laser beam hits
multiple objects along its path of propagation. These echoes
lie on one line in the 3D space of the LiDAR FOV, and they
are typically recorded according to their intensity strength
independently from the calculated distance (e.g., strong inten-
sity echoes first) [21]. However, capturing multiple echoes
requires more complex algorithms to elaborate the acquired
data, thus spinning LiDAR sensors used in AVs usually cap-
ture a limited number of reflections (e.g., up to three echoes),
and the default configuration considers only the strongest
return (see Table 1). This is based on the assumption that
the echoes with higher intensity come from nearby obstacles
that are more critical to detect for AVs [48, 49]. Capturing
multiple echoes (namely recording additional echoes with
lower intensity) can give information regarding partially ob-
structed objects or objects behind semi-transparent surfaces
(e.g., a window) [21, 40]. For instance, the Velodyne VLP,
HDL, and VLS models support two returns and three con-
figuration modes: only the strongest return (default), the last
return received, or both (see Table 1).

In our attack, we inject high-intensity echoes in close prox-
imity to the LiDAR sensor. This causes the sensor to record
our fake reflections as the strongest echoes, ignoring other
echoes generated by genuine obstacles farther away. We also
demonstrated in §4 that our methodology allows the attacker
to remove cloud points even when the LiDAR sensor is set
up to record multiple echoes, as illustrated in Figure 3.
LiDAR Operational Thresholds. Typically, commercial 3D
spinning LiDAR sensors have a minimum horizontal range un-
der which manufacturers do not guarantee full detection of the
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reflected echoes near the sensor [32, 48]. This range usually
varies from 5 cm to 1 m from the sensor enclosure and usually
differs from the minimum resolution of the sensor [48,49]. In
other words, the LiDAR can still receive echoes below this
range; however, the resulting cloud point might be inaccurate
for certain applications. For this reason, manufacturers recom-
mend a minimum horizontal threshold value, i.e., MOT, below
which the received echoes should be ignored or discarded (see
Table 1). LiDAR sensors usually implement a preliminary fil-
tering process to automatically discard cloud points below the
MOT at the firmware level. This preliminary processing is
necessary to normalize the hardware differences due to laser
beams and photodiodes alignment, angular resolution of the
sensor, rotational speed variation, and to eliminate spurious
reflections that might be due to external phenomena (e.g.,
rain) [51]. For instance, we discover that the LiDAR VLP-16
has an internal MOT of 40 cm from the LiDAR enclosure.
Middleware and AD Framework Automatic Filtering.
Typically, AD frameworks incorporate a middleware (e.g.,
ROS [35], Apollo Cyber RT [5]) to handle the underlying
hardware abstraction and the communication between mod-
ules, sensors, and actuators. In addition to the sensor level
filtering, the middleware implements its own filtering process
using MOT values that might vary significantly from the Li-
DAR manufacturer recommendations as illustrated in Table 1.
The filtering at the middleware level is performed usually by
ROS device drivers [36] or custom drivers such as Apollo
Cyber RT [6]. These drivers discard cloud points outside the
horizontal and vertical 3D map range set in the middleware
configuration. Finally, the point cloud is filtered again at the
AD framework level based on the internal configuration and
calibration settings of the specific AD framework (e.g., Au-
toware or Apollo). For instance, the framework defines the
Region of Interest (ROI) and processes the LiDAR point cloud
to exclude cloud points outside the ROI. The process usually
involves discarding points outside the road, removing back-
ground objects (e.g., buildings and trees), and distinguishing
ground points to not elaborate from non-ground points. This
automatic filtering largely reduces the size and dimensions
of the input used by the obstacle detection model to improve
framework performance in terms of run-time [8]. After the
filtering phase, the remaining point cloud is then used for the
subsequent pre-processing that generates the input to the ma-
chine learning models (e.g., CNN models) used for obstacle
detection in the perception module.
PRA Spoofing Region. Our attack exploits the presence of
the aforementioned automatic cloud point filtering as well
as the strong echo prioritization to remove both the injected
spoofed points and the point cloud of legitimate obstacles
from the LiDAR FOV. The overall spoofing region width
of our removal attack corresponds to the highest MOT value
among the sensor, middleware, and AD framework thresholds.
For example, with the default settings illustrated in Table 1,
90 cm is the spoofing region width for the VLP-16 LiDAR in-

(a) (b) (c)

Figure 3: PRA on a target traffic cone with the LiDAR in
dual mode setting. (a) No attack; (b) Spoofed points (in red)
between the genuine obstacle and the LiDAR; (c) Spoofed
points below the MOT of the LiDAR1.

tegrated with Baidu Apollo, and 40 cm is the spoofing region
for the same LiDAR model integrated with Autoware. It is
also important to note that, even though the middleware and
framework thresholds might be manually set to zero during
the AV design, the spoofing region width ultimately depends
on the LiDAR sensor’s internal MOT, which usually cannot
be accessed and modified.
Additional Blind Areas. In addition to the automatic filter-
ing process, most of the current AD systems involve placing
spinning LiDAR sensors on the top of the vehicle’s roof at a
minimum height from the ground to allow a full 360◦ view
of the surrounding. This configuration is usually preferred
due to the limited vertical FOV of commercial spinning Li-
DAR sensors (20◦- 40◦ for 64-channel commercial spinning
LiDARs [27, 50]). However, this location can also generate
reflections from the vehicle’s surfaces (for example due to
the reflecting coating of the vehicle’s roof) thus AD frame-
works usually recommend applying additional cloud point
horizontal filters and adjusting the calibration settings of the
sensor in the near-field area to remove the spurious echoes
from the vehicle while processing the cloud point data [3].
These discarded areas around the vehicle reduce the overall
operational range of the sensor, and inadvertently enlarge the
spoofing area suitable for our attack.

4 Preliminary Analysis

In this section, we investigate the feasibility and capability of
the attacker to pursue our removal attack. We first discuss the
attack design and evaluate the attack capability in an indoor
setting. We then analyze the attack’s ability to remove target
obstacles. The final part of this section discusses the effect of
the attack on the AVs object detection and fusion models.

4.1 Attack Design
To successfully conduct our removal attack, it is important
to address the following two challenges: First, how to stably
spoof cloud points below the MOT and, second, how to ensure
that the attacker echoes are the ones prioritized by the sensor
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over the genuine ones. We consider the attack model and
spoofer design below, to resolve these challenges.
Attack Model. As illustrated in Figure 2, the attacker aims
to spoof echoes below the LiDAR MOT (r ≤ MOT ) in the
spoofing region, so that the genuine echoes are removed. To
increase the attack success rate, the attacker also aims to spoof
the largest attack region possible. Hence, the attacker controls
the firing timing to match with LiDAR scans on all vertical
lines (along the Z axis) and a specific horizontal viewing angle
(along azimuth) that we called attack angle ∆θ. Calculating
the precise firing timing needs synchronization with the Li-
DAR. Therefore, we use a photodiode to capture signals from
the LiDAR per scan so that the spoofer can fire at the correct
timings. Finally, since the attack goal of removing an obstacle
is dependent upon obstacle sizes and locations, we simplify it
as removing an attack region (shown in Figure 5) that covers
the obstacle. Notice that, by controlling the firing timing, the
attacker can move the spoofed points at different distances
from the LiDAR enclosure with various attack angles as long
as it is within the attack capability. Therefore, the attacker can
set up a roadside spoofer and remove obstacles at different
locations.
Improved Spoofer Design. We build the spoofing setup
which generates a train of pulses synchronized to the tar-
get LiDAR (e.g., Velodyne VLP-16). The setup captures a
pulse from the LiDAR using a Hamamatsu S6775 photodi-
ode [14] and feeds it to an oscilloscope (Tektronix MSO5204)
through a simple trans-impedance amplifier (TIA) made by
the general-purpose TL082 operational amplifier. The oscil-
loscope captures the TIA output with a configured threshold,
and generates a trigger output synchronized to the LiDAR’s
scan interval. Upon receiving the trigger signal, a function
generator (Tektronix AFG3201), operating in the burst mode,
synchronously generates a train of voltage pulses. Finally,
these voltage pulses drive the Osram SPL LL90_3 905-nm
laser diode [25] through a gate driver [24]. We use a pair
of plano-convex lenses, 1-inch diameter, as collimation and
focusing optics.

When the photodiode receives a pulse from the LiDAR,
it triggers the pulse firing following the timing given by the
function generator. This timing depends on the attacker goal.
Since the rotation speed (RPM), and firing sequence timing
of the victim LiDAR sensor is constant (and often publicly
available from the manufacturer datasheet), the attacker can
synchronize the spoofer pulse firing to inject fake echoes in
every coordinates of the LiDAR FOV, by changing the timing
between the firing. The basic principle of the above setup
follows the previous one by Cao et al. [10], but is downsized
for mounting it on a tracking system to facilitate the aiming
that we discuss in §6.

With the upgraded setup, we are able to spoof more points
covering a larger attack region compared to previous works
[10,42]: from 200 to thousands of points as shown in Figure 4.
The increased horizontal range also opens the space to spoof

points at different locations without moving the spoofer as
required in the previous works [10, 42]. Therefore, it makes it
possible for a roadside attacker to remove cloud points right
in front of the victim AV as illustrated in Figure 1.
Multimode Analysis. For Velodyne VLP-16, there are three
different operating modes: strongest mode, dual mode and
last mode where different echoes are used for calculating the
point cloud (i.e., strongest mode uses the echo with maximum
intensity; last mode uses the last returned echo while the dual
mode uses both). We demonstrate that our removal attack
removes points for all three modes. As shown in Figure 3 (c),
though the dual mode capture multiple echos, both spoofed
echos and echos generated by the genuine obstacle are absent
when the injection falls into the spoofing region (below the
MOT). This is because our spoofed points’ intensity is high
enough that they are the only strongest echoes captured by
the sensor and automatically filtered out. For the rest of the
paper, we use the strongest mode for the experiments if not
specified otherwise since it is the typical default mode for AV
LiDARs.

4.2 Attacker Capability
While laser spoofing on LiDAR sensors has been validated in
the real-world by previous research [10], in this section, we
quantify the capability of the attacker to stably remove 3D
cloud points in a selected region.

As described in the attack model, the attacker is already
able to spoof all the vertical lines by synchronizing with the
LiDAR firing timing, thus, we conducted empirical experi-
ments to investigate the maximum achievable attack angle ∆θ.
We use a Velodyne VLP-16 LiDAR model [49] which is used
in previous work [10, 39, 42]. This sensor is composed of a
vertical array of 16 laser diodes and corresponding photodi-
odes to fire laser pulses at different angles following a preset
pattern. The VLP-16 has a 360◦ field of view with 30◦ vertical
angle range from -15◦ to +15◦, and 0.2◦ of angular resolu-
tion. The VLP-16 fires laser pulses in a cycle every 55.296
µs, with a period of 2.304 µs. The receiving time window for
the reflected echoes is about 667 ns. This sensor is currently
used in the Baidu Apollo architecture and Autoware; it uses
the same design principle as other spinning LiDARs used in
autonomous vehicles (e.g., Ouster OS1 [26], Robosense [60],
LSLidar [38]) with a similar design and firing pattern.

We first characterize the maximum attack angle in an indoor
environment, where the LiDAR is 2.5m in front of the spoofer.
The evaluation of the attacker capability for farther distances
(up to 10 m) is detailed in §5 in the outdoor scenario. The
LiDAR can capture the maximum number of points due to
the controlled environment. By adjusting the spoofer firing
timing, we aimed to find the attack angle range at which the
attack successfully and stably removes cloud points. Starting
from 0◦ attack angle, we increase the number of spoofing
points (100 for each step) and measure the total number of
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Figure 4: Number of removed 3D cloud points in the attack
region at increasing attack angles for indoor (top) and outdoor
scenario (bottom) with a Velodyne VLP-16 LiDAR sensor.

resulting removed points until the number of removed points
stops increasing. We recorded the total number of removed
points in the attack angle and show the results in Figure 4
(top). We note that, when the attack angle is less than 45◦, the
number of removed points increases linearly, removing all the
points in the region. More specifically, since the horizontal
resolution for VLP-16 LiDAR is 0.2◦, we can calculate the
ratio of the number of removed points over the attack angle as
16/0.2= 80 (i.e. 80 removed points per degree). We conclude
that the attacker is able to stably remove all the points in an
attack region of around 45◦ and the removal attack gets less
stable for further angles. We thus consider 45◦ the maximum
attacker capability in controlled scenarios.

Physical Constraints. The removal attack capability is
limited by two factors: 1) the limited receptive field of the
photodiodes of the LiDAR system and 2) the limited output
power of the laser diodes in our single-spoofer setup. The
constrained receptive field of the photodiodes is due to the op-
tical components inside the LiDAR only receiving reflections
from certain directions. Therefore, when the spoofer is out of
the receptive range, the spoofed signals are not received by
the LiDAR system, so the removal attack fails. The limited
output power of the laser diodes generate a diverged circular
laser spot, even with the optical support to converge it. The
intensity of the spoofed pulses are lower when they get nearer
to the edge of the spot. When the signal is too weak to spoof

Figure 5: Removed cloud points of a target traffic cone at
increasing attack angles (indoor scenario). The traffic cone is
located 2, 3 and 4 meters away from the victim LiDAR.

the points, the removal attack fails. Also, due to the decaying
intensity as the distance between the spoofer and the LiDAR
increases, the removal attack capability also decreases. Many
of these limitations are therefore caused by the spoofer design.

4.3 Removing Selected Obstacles
The goal of this evaluation is to analyze the attack’s ability
to completely remove a target object from LiDAR’s percep-
tion at different distances. To achieve this, we performed
a reduced-scale real-world experiment in a controlled envi-
ronment. We consider a standard traffic cone as the target
obstacle. We then observe the number of points the attack
successfully removes at increasing attack magnitudes (i.e.,
number of spoofed points).
Experimental Setup. In this experiment, we use the same
attack setup described in §4.2. The traffic cone is located at
2 m, 3 m, and 4 m away from the LiDAR, while the spoofer
is located on beside the target object as depicted in Figure 5.
As explained above, every increment in the attack angle cor-
responds to an increment of the number of spoofed points
by 100 using our spoofer device. Every attack angle is main-
tained for an average of 20 LiDAR rotations (or frames), then
we increase the attack angle until all the cloud points of the
cone are removed. In this setting, the cone consists of an av-
erage of 120, 100, and 70 cloud points at distances 2 m, 3 m,
and 4 m, respectively. We then calculate the number of points
removed from the actual cone cloud points at different attack
magnitudes and the spoofing attack angles.
Evaluation Results. As shown in Figure 5, a 4◦ attack
angle was able to remove an average of 85 points, constituting
more than 80% of the points at every distance considered
in the experiment. As expected, the attack angle required
to remove the traffic cone from LiDAR perception decreases
with increasing distance as the number of points to be spoofed
also decreases. The attack was able to completely remove the
traffic cone point cloud with an attack angle of 6◦ in the case
of 2 m and 3 m distances and an angle of 4◦ in the case of 4
m distance.
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4.4 Effect on AVs Perception Models

The perception module in AVs is the core module that lever-
ages machine learning models such as Convolutional Neural
Networks (CNNs) for object detection. The output of this
module directly influences the AVs safety-critical driving
decisions, such as collision avoidance.

We therefore explore how PRA can affect obstacles con-
fidence score predicted by various LiDAR-based perception
modules at increasing attack angles. To achieve this, we syn-
thesized our attack and simulated the on-road scenario with
real-world LiDAR traces.
Experiment Setup. We select 200 target obstacles (100
pedestrians and 100 vehicles) at increasing distances (from
6 m to 28 m) and orientations from the LiDAR in the KITTI
dataset [2]. KITTI is a popular dataset for benchmarking AD
research, commonly used for evaluating the performance of
AVs perception modules. We randomly select target obstacles
with high confidence score (0.95 average confidence score
for vehicle object and 0.71 for pedestrian object on Apollo’s
CNN detection model) compared to 0.83/0.64 for randomly
chosen vehicle/pedestrian objects. We use these samples in
all the synthesized analysis of this work to emulate the worst
attacker condition when trying to remove a high-confidence
obstacle from the scene.

To synthesize the point cloud, we first locate the attack
region based on the position of the target pedestrian/vehicle.
Then we increment the attack angle by 1 degree each step
following the methodology defined in 4.3 until the obsta-
cle is fully covered. We evaluate the resulting attack traces
with Apollo 5.0 [7], PointPillars [19], and Autoware [44]. For
Apollo 5.0 and PointPillars, we collect the confidence score
values. For Autoware, we extract the clustering results.
Evaluation Metrics. To evaluate our experimental results,
we considered two different metrics: confidence score and
number of removed points. Some object detection models
provide thresholds for confidence scores. This allows for
discarding low confidence objects (potential false positives).
We consider the default thresholds used by two of our tested
models (0.1 in Apollo [7] and 0.5 and 0.6 for vehicle and
pedestrian detection in PointPillars [19] respectively). We
then consider an attack successful for those two models when
the model confidence score for the pedestrian (or vehicle)
falls below the default threshold. For Autoware instead, we
consider the results of clustering in terms of the number of re-
moved points in the detected cluster. In this case, we consider
the attack successful when all the points are removed from
the cluster.

Finally, we define additional metrics that leverage the num-
ber of removed points variation over attack angle for obstacles
to evaluate the overall attack success rate. We calculate this
value as the ratio of the average number of removed points
to the average number of cloud points of the target objects
in the KITTI dataset. We consider an attack successful for

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: (a) and (b) show the confidence score of Baidu
Apollo on pedestrians and vehicles at different angles and (c),
(d) show the scores of PointPillars. (e) and (f) represent the
percentage of removed cluster points for Autoware in the case
of pedestrian and vehicles, respectively. (g) and (h) show the
the attack success rate w.r.t angle in the case of pedestrian
and vehicle objects respectively (100 samples for each class).

all three models when the average of the fraction of removed
points reaches zero (i.e., all the target obstacle points have
been removed).

Results. Figure 6 shows that the attack drops the confidence
score below the required threshold (red dashed line) at an
attack angle of 15◦ and 6◦ for Apollo and PointPillars respec-
tively in the case of a vehicle obstacle and 3◦, 2◦ in the case of
a pedestrian obstacle. In the case of Autoware, the entire clus-
ter was removed at a 23◦ attack angle for a vehicle obstacle
and 8◦ for a pedestrian obstacle. Finally, we show the required
attack angle to fully remove the obstacles in (g) and (h) based
on the KITTI dataset ground truth (8◦ for pedestrian obstacles
and 24◦ for vehicle obstacles). We also noticed when report-
ing the confidence scores for Apollo, the remaining spurious
point cloud was sometimes clustered as a part of nearby ob-
stacles or the point cloud was clustered as multiple obstacles.
In such cases, we report the confidence score as zero since
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it failed to detect the obstacle. The results demonstrate that
the perception models confidence drop quickly as the attack
angle increases and the models fails to detect an obstacle even
when the obstacle point cloud is not fully removed, especially
for pedestrians.

4.5 Impact on Fusion
This section demonstrates that our removal attack is robust
against state-of-the-art camera-LiDAR fusion models for ob-
ject detection, object localization, and tracking [7, 44]. Fu-
sion in AVs helps compensate for the accuracy limitations
of using individual sensors, and it can provide additional ro-
bustness against naive black-box attacks on AV perception
modules [13]. We consider the same experimental setup as
in §4.4 using our 200 high-confidence samples to evaluate
our attack against three popular camera-LiDAR fusion ar-
chitectures: Frustum-ConvNet (FC) [52], AVOD [17], and
Autoware Integrated-Semantic Level Fusion [44].
Evaluation Metrics. We use the detection rate as a metric
to evaluate PRA on the three fusion models. We consider two
analyses. In the first analysis, the Intersection-over-Union
(IoU) evaluation is performed on the default (DEF) thresholds
for each model (0.7 for cars and 0.5 for pedestrians in the
case of AVOD and Frustum-ConvNet, and a 50% overlap in
Autoware Integrated-Semantic Level Fusion). In the second
analysis (AVE), the evaluation is performed for all the possible
IoU threshold values over 3D bounding box predictions for
each fusion model (0.1 - 0.9 for FC and AVOD, 10% to 90%
for Autoware). Similar to §4.4, we increment the attack angle
by 1 degree until the obstacle is completely removed, which
corresponds to 8◦ for pedestrian obstacles and 24◦ for vehicle
obstacles according to Figure 6.
Results and Observations. Table 2 shows the fusion
results for pedestrian and vehicle target obstacles. In the case
of pedestrian obstacles, we observe that the detection rate
in DEF drops by 69% for FC, and 76% for AVOD at an
attack angle of 4◦ (half of the required attack angle to remove
the obstacle). The AVE analysis, on the other hand, shows
that the detection rates on average drop by 43% for FC, and
61% in AVOD at a 4◦ attack angle. At a 15◦ attack angle,
the detection rate of vehicle obstacles drops by 59% in FC
and 76% in AVOD for the default IoU thresholds. The AVE
analysis instead shows an average drop of 48.6% and 69% in
detection rate for FC and AVOD, respectively.

We observe that the detection rates in Autoware fusion
drop to 0% at angles immediately before full obstacle re-
moval in both DEF and AVE analysis. This is because the
LiDAR detected obstacle does not overlap with the camera
detected obstacle by at least 50%. Our results demonstrate
that Autoware’s fusion always fails to fuse detected objects
regardless of the IoU threshold when almost all the cloud
points are removed. In addition, our results show that with an
attack angle of 8◦ and 24◦ for pedestrian and vehicle obsta-

Table 2: Object detection rates on fusion models at increasing
attack angles for pedestrian and vehicle target obstacles1.

Attack
Angle (°)

FC AVOD Autoware

DEF (%) AVE (%) DEF (%) AVE (%) DEF (%) AVE (%)

Pedestrian Detection Rates

0 73 58.3 80 64.6 63 49.3
1 50 48.7 66 50.5 56 43.7
2 34 37.2 36 27.2 41 35.6
3 17 24.0 9 8.3 12 13.6
4 4 15.4 4 3.2 4 4.8
5 6 12.7 3 2.4 2 1.8
6 2 11.0 3 2.4 0 0.0
7 2 10.8 3 2.4 0 0.0
8 4 11.1 3 2.4 0 0.0

Vehicle Detection Rates

0 72 78.2 82 81.1 44 42.8
3 56 69.1 72 72.8 23 25.8
6 37 53.8 43 44.2 15 16.3
9 28 43.9 21 26.1 6 6.9
12 15 35.0 6 15.4 3 4.7
15 8 29.7 6 12.1 1 0.8
18 7 29.6 8 12.0 0 0.3
21 7 28.7 7 11.6 0 0.1
24 6 29.0 8 12.1 0 0.0

* 0◦ attack angle corresponds to a scenario with no attack.

cles, respectively, the detection rate of our high-confidence
objects drops by at least 43% in all three fusion models. This
confirms that our attack can cause severe performance drops
and failures even if fusion is implemented.

5 Physical Removal Attack Evaluation

To conduct the removal attack in the real world, we consider
the following scenario where the autonomous vehicle is driv-
ing forwards, approaching a static (or a moving) obstacle in
the center of the AV trajectory, with the attacker’s spoofer
located on the side of the road. The goal of the attacker is to
remove the obstacle from the 3D map of the LiDAR sensor.
Since the LiDAR scans are not uniformly distributed along
the longitudinal axis and become sparser at increasing dis-
tance, we propose to use chord length to replace attack angle
as the evaluation metric in this particular setting (Figure 2).
The chord length defined in 3.1, which depends on the target
obstacle’s dimensions, the distance between the obstacle and
the LiDAR, and attack angle, better captures the amount of
cloud points removed in the attack region. For example, if
the victim LiDAR is far away from the obstacle, the attacker
would need to spoof fewer points in the cord length (namely
a small ∆θ) compared to the scenario with the LiDAR in
proximity of target obstacle to remove.

In this section, we consider two sets of evaluation: (1) the
attacker capability in outdoor scenarios and (2) the impact of
our attack on the driving decisions. The moving AV scenarios
will be shown in §6.
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Figure 7: Number of removed cloud points comparison dur-
ing the day (bottom left) and night (top right). The distance
between the LiDAR and spoofer is 5 m.

5.1 Outdoor Scenario

Attacker Capability at Increasing Distances. Since we
noticed that the attacker capability is symmetrical on two
sides of the spoofer during the attacker capability experiments
conducted in §4.2, for the experiments evaluating the attack
robustness outdoor we only conduct the removal attack on
one side of the spoofer. We then measured the number of
removed points by conducting the removal attack with the Li-
DAR placed at different distances from the spoofer during the
daytime (up to 10 m). The results in Figure 4 (bottom) show
that, as the distance from the LiDAR increases, the attack
capability of removing points decreases. This is mainly due to
the limitations of the spoofer setup, as described in §4.2. For
instance, the intensity of the spoofed signals decreases as the
distance increases, weakening the overall attacker capability.
Different Light Conditions. For different light conditions,
we measured the number of removed points by conducting the
removal attack, with the spoofer 5 m away from the LiDAR
during day and night. The evaluation results in Figure 7 show
that the attacker capability is reduced under daylight condition.
One potential reason observed in the literature is that natural
light also contains IR components at the same wavelength as
the LiDAR signals (905 nm) that may interfere with sensor
functioning [18].
Removing a Moving Obstacle. In this experiment, we evalu-
ate the removal attack in the following scenario: a pedestrian
walking across in front of a stopped autonomous vehicle. With
the spoofer deployed 8 m away from the LiDAR on the side
of the road aiming to remove the walking pedestrian, who is 4
m in front of the LiDAR. The LiDAR is placed on top of the
victim vehicle to simulate the autonomous vehicle setup. We
evaluate the captured trace with the Autoware [44] perception
module, which is the only publicly available model for pro-
cessing data from a VLP-16 LiDAR. As shown in Figure 8,
the pedestrian can be fully obscured when walking into the at-
tack region, with its cloud points fully removed. Figure 8 also
shows the corresponding detection results from Autoware, in
the form of clustered points. We can see that both clustered
and total points of the pedestrian are reduced to zero.

Figure 8: (Left) The 3D point cloud (top) with and (bottom)
without the attack. (Right) The decimation of the genuine
cloud points during the attack. When the pedestrian walks in
the attack region (10 sec) and leaves (27 sec) (red area) the
cloud points of the pedestrian and related cluster in Autoware
are reduced to zero1.

5.2 Impact on Driving Decisions
To illustrate the consequences of the attack in AD settings,
we simulate our PRA in an AD simulator. The simulation
goal consists of evaluating changes in the AV trajectory and
speed under different scenarios where the adversary launches
our removal attack with the intent to hide an obstacle in the
victim’s route. We perform our end-to-end attack evaluation
on Baidu Apollo using the LGSVL simulator [33]. LGSVL
is an open-source production-grade simulator designed for
testing and developing AD frameworks, which supports real-
time integration with Apollo and Autoware, and it is widely
used in the literature to simulate attack scenarios [8, 10, 37].
The LGSVL simulator also uses semantic fusion on objects
tracked individually from the camera and LiDAR as part of
its object detection stack.

To simulate PRA, we synthesize the sensor input changes
corresponding to our attack on the input of the perception
module in Apollo and direct the resulting output to the simu-
lator to evaluate the AV control decisions in real-time. Specifi-
cally, we model the LiDAR point cloud in the simulated HDL
64 LiDAR traces to match our attack traces on the VLP-16
as in previous works [10]. We also assume an ideal scenario
where all cloud points in the attack region are removed. To
extend the realism of the simulated attack, we start the attack
when the AV is at different distances away from the spoofer
and target obstacle to simulate the attack capabilities mea-
sured in §5.1. By such means, we can measure how different
attack capabilities affect driving decisions.
Simulation Settings. We explore autonomous vehicle be-
havior under different scenarios during our removal attack.
For each scenario, we consider the victim’s AV moving at
constant acceleration from 0 to 32 km/h on a single-lane road,
which is the maximum speed limit from Apollo’s planning
configuration for a single-lane map in LGSVL. The AV ap-
proaches two types of static obstacles (a car and a pedestrian)
located in different positions along a crosswalk (e.g., along
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(a) Obstacle removal time period. (b) Pedestrian target obstacle. (c) Vehicle target obstacle.

Figure 9: LGSVL simulation results for 5◦ removal attack angle. (a) shows the amount of time (%) the target obstacle remain in
the attack region over the AV’s entire route time. (b) and (c) show the AV speed change at different attack start distances1.

the AV’s trajectory). The selected scenarios simulate a pedes-
trian crossing the road, or a car at rest, such as at a traffic light
or in the proximity of an intersection. To further reflect the
distance constraints demonstrated in the physical experiments,
we start simulating the attack when the AV’s distance to the
obstacle is 10, 20, 30, 40 and 50 meters, respectively. We
use Apollo version 5.0 and configure the LGSVL simulated
LiDAR with 64 lines, 10 FPS, and 0.1 degree angle resolution
to match the capability of Velodyne HDL 64 LiDAR. Our
evaluation considers each obstacle located on the crosswalk
at one of 5 distinct positions at 1 m apart, covering the entire
road width. We consider the spoofer located on the right side
of the road, in proximity to the crosswalk, and we consider 5-
and 10-degree attack angles for each scene. From the simu-
lations, we then extract the AV speed and trajectory changes
over time depending on the time the obstacle remains in the
attack region.
Simulation Results. Figure 9 demonstrates that our PRA
with only 5◦ attack angle can lead to severe consequences
and endanger the victim AV (e.g., by colliding with obstacles
on the road). Figure 9 (a) shows that by starting the attack
at different distances, the attacker can remove the target ob-
stacles for different time periods (based on the size of the
obstacles and the attack angles). Figures 9 (b) and (c) show
that though the obstacle is only removed for a limited amount
of time, it will cause the AV to accelerate and collide with the
obstacle. This happens because without the attack, the victim
AV is expected to accelerate to reach the preset AV speed (32
km/h) at 46 meters, then uniformly decelerate and stop before
reaching the obstacle. Therefore, when the attack starts and
the target obstacle is removed, the victim AV accelerates to
reach the preset speed instead of decelerating. Though the ob-
stacle might be perceived again, such as in the case of smaller
attack angles, we observe that the AV can still collide with it
unless the distance between the AV and the obstacle d is such
that d < v2/(2 · a), where v is the velocity of the AV when
the obstacle reappears and a is the AV’s deceleration rate.
Figure 10 shows the consequent object detection of Apollo
with the simulated attack in LGSVL. Our results show that
PRA can cause AVs to fail to brake and stop before colliding
with an obstacle even if the obstacle is inside the attack region
for only 40% of the entire AV’s route time. Therefore, we can

Figure 10: PRA simulated on LGSVL. (Left) With 10◦ attack
angle, the vehicle is unable to detect the pedestrian. (Right)
For a small attack angle (5◦), the vehicle detects the pedestrian
too late to timely stop.

conclude that, even with limited capabilities of attack angles,
our removal attack can lead to severe consequences for AVs
like collisions.
Limitations of the Simulation Scenario. In our evaluation
we notice that, without the attack, the vehicle stops at more
than 10 meters in front of the obstacles due to the conserva-
tive Apollo planning algorithms. Thus, our removal attack
simulation does not start when the car is 10 meters away from
the obstacle, limiting our evaluation for scenarios where the
distance between the vehicle and the obstacle is greater than
10 meters. Another limitation for production-grade AD simu-
lators such as LGSVL [33] and CARLA [11] is that they do
not consider fine-grained manipulation of point cloud data for
computational efficiency. Due to the requirements of real-time
rendering, the LiDAR point cloud renderer usually conducts
ray casting for a fixed size of the region (e.g., 20◦ in the hor-
izontal plane for LGSVL). This allows batch computation
and speeds up the rendering speed. Due to this limitation, we
use the maximum resolution we can reach with a competitive
GPU (NVIDIA RTX 3080). Extending the resolution further
results in lower rendering FPS, which is not desirable. We
also observe noise signals around the edge of the region (1-2
degree horizontal angle) that the removal attack targets, which
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Figure 11: Moving vehicle scenario. (Left-Top) Point cloud
without the attack. (Right-Top) Point cloud during the at-
tack. (Bottom) The car setup and the target obstacle (a traffic
cone)1.

Table 3: Success rate of our removal attack in moving sce-
narios with different threshold levels of removal percentage
(RP).

Scenario Success Rate (%)
RP(%) 100 ≥ 95 ≥ 90

Robot 85.4 92.4 95.9
Car 83.6 89.1 92.7

allows a more realistic comparison with the expected noise in
the real world. Although the simulator does not model more
complex LiDAR sensing such as point cloud interference be-
low 5-degree resolution, our results show that PRA can lead
to severe collisions with only a 5-degree attack angle.

Though these limitations hinder the analysis for attack im-
pacts given more fine-grained capabilities, the simulation
provides evidence of severe consequences of removal attacks.

6 PRA on Moving Vehicles

In this section, we conduct proof-of-concept evaluation on
moving vehicles with the LiDAR placed on top of a robot
and a car respectively. In order to conduct the removal of a
static obstacle (a traffic cone, and a pedestrian), we build a
camera-based tracking system based on the previous work of
Cao et al. [9]. Though attacking moving vehicles introduces
additional technical challenges, we demonstrate the feasibility
of the attack with a basic tracking system.

6.1 Technical Challenges and Solutions

There are two main challenges for attacking a moving vehicle:
(1) synchronizing with the LiDAR sensor and, (2) aiming
the spoofer at the LiDAR. Therefore, we modify our setup
accordingly.
Synchronizing with the LiDAR System. Synchronizing
with the LiDAR using a single photodiode at a fixed loca-
tion is difficult since the LiDAR scan is sparse at distance.
This limitation is further aggravated when the AV is mov-
ing since the photodiode might fall outside the LiDAR FOV
and consequently not capture the laser beams. To overcome
this challenge we use a larger optical setup (e.g., magnify-
ing lenses) to increase the receptive field so that the LIDAR
signals can be captured by the photodiode. However, lens
diameter is limited to several tens of centimeters, and is also
heavy in weight, reducing our attacker capability over long
distances.
Aiming with a Camera-based Tracking System. For
aiming the spoofer at the LiDAR, we implement a simple
camera-based tracking system with a 3D printer laser holder
on top of a robotic turret [9]. The system helps aim at the
LiDAR but only within the camera’s point of view. Thus we
measure the corresponding position to aim when the LiDAR
is at different distances in advance. Then, leveraging the de-
tected bounding box of the tracking model and the true size
of the LiDAR, we estimate the distance between the camera
and the LiDAR. At last, we look up the stored mapping and
aim for the corresponding aiming point for the camera.
Tracking System. We implement the SSD MobileNet v2
COCO model [43] to detect the LiDAR location. We retrained
and tested the model using a custom data, consisting of 720
images of the VLP-16 LiDAR sensor, captured with different
settings and scenarios. We used standard data augmentation
techniques such as horizontal flipping and random cropping
to relatively increase the size of our data set and produce
robust models. We were able to achieve 93 mAP (mean av-
erage precision) at 50 IoU and a 53 mAP at 75 IoU for the
test set at 20 FPS. A better real-time performance requires
smoother bounding boxes and tracking through occlusions.
To achieve this over continuous frames, we implemented the
SORT model [53], which demonstrates the least number of
identity switches among online methods, at a rate of approxi-
mately 20 Hz (sufficient for real-time). The spatial coordinates
of the LiDAR sensor are then extracted from the detected ob-
ject, with which the calibrations for the attack system’s pan-tilt
movement are calculated to aim the laser at the victim sensor.

6.2 Evaluation

We conduct two experiments where we place the LiDAR on
top of a robot and a car. In the robot case, we aim to analyze
the performance of the tracking system with a controlled
environment, where we program the robot to be moving first
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Figure 12: Cloud point removal percentage of the pedestrian
obstacle during our attack. The attack is conducted in two
phases: (1) the robot moving towards the target pedestrian
obstacle; (2) the robot moving away from the pedestrian.

towards a pedestrian 5 m ahead, then back to the starting point,
at a constant speed. For the car case, we aim to demonstrate
the feasibility of attacking the AV in the real world with the
proposed tracking system, where we drive the car towards
the obstacle from 5 m ahead. Here, due to safety concerns,
we use a traffic cone as the obstacle (Figure 11). We also
place the spoofer 5 m in front of the LiDAR but on the side
to simulate a roadside attacker. For the robot, we use a Neato
Botvac D85 [23], moving at full speed (0.1 m/s). For the car,
we drive at approximately 5 km/h.
Results and Observations. Our experiments show that,
with the tracking system, the attack on a moving vehicle (car
and robot) can be feasible in the real world (see Figure 11).
Figure 12 shows the percentage of points removed from the
target pedestrian using the robot. We noticed that the obstacle
is not fully removed in several frames in both the scenarios,
due to the imprecise aiming. The success rate of the attacks
given different removal percentage threshold is shown in
Table 3.

7 Defense Analysis

In this section, we first evaluate how current defense strategies
against cloud point spoofing and hiding attacks do not mitigate
our removal attack, then we propose two defense strategies.

7.1 Existing Defenses
Spoofing Attack Defense. To detect and mitigate the ad-
versarial sensor attack proposed by Cao et al. [10], Sun et
al. proposed CARLO [42]. CARLO is designed to leverage
distance and occlusion information for detecting the injection
of fake point cloud patterns. CARLO involves two defense
approaches. In one approach, the defense processes the pre-
dicted results with additional occlusion and distance infor-
mation extracted from the point cloud data by computing ray

castings. The other approach, Sequential View Fusion (SVF),
uses an additional front-view segmentation model. Both meth-
ods were only evaluated with vehicle detection.
Evaluation Results and Observations. Since CARLO
was evaluated using the KITTI dataset [2], we evaluate our re-
moval attack as described in §4.4. We use the aforementioned
ray casting CARLO approach because SVF requires training
a new model for the pedestrian detection task which is not
provided in the work by Sun et al. [42]. We set both CARLO
threshold rate and PointPillars bounding box IoU threshold to
zero. We then verify that, when the target vehicle/pedestrian
is fully removed, the proposed attack achieves a 100% suc-
cess rate against both PointPillars and CARLO. Our results
also show that, against CARLO, the minimum attack angle
required to remove an obstacle is 2.7◦ and 7.98◦ on average
when the target obstacle is a pedestrian and a vehicle respec-
tively. In contrast, the base PointPillars model requires 3.34◦

and 8.77◦ respectively for target pedestrians and vehicles.
Since CARLO was originally designed for detecting spoof-

ing attacks that introduce additional obstacles with a few
spoofed points, it introduces false negatives in addition to the
base PointPillars model. While measuring our attack results
under removing angles that almost fully remove the entire
target obstacle, PointPillars can sometimes detect the target
obstacle, as discussed in detail by Sun et al. [42]. On the other
hand, CARLO identifies such detection as a malicious spoof-
ing attack and removes the spoofed points as a consequence.
Hiding Attack Defense. Hau et al. [16] proposed a method
against object hiding attacks such as ORA-Random [15] by
leveraging 3D shadows to locate hidden objects. The defense
methodology assumes that the attacker perturbations are lim-
ited to short-distance points shifting along the ray direction
of the corresponding echoes of the target obstacle to remove.
The defense initially identifies shadow regions and detects
unlabelled points in the frustums from the detected shadows.
We replicate this defense and achieve a 92.9% object-shadow
association rate over the KITTI dataset (benign case).
Evaluation Results and Observations. We evaluate the de-
fense against our attack using the same methodology as §4.4.
From our 200 samples from the KITTI dataset, we discarded
the samples which did not match the required ROI of the
defense. Therefore, we use 80 samples (40 pedestrian and
40 vehicles), and observed a 100% TNR and 0% TPR when
all the cloud points of the target obstacles are removed by
our attack. This happens because the defense expects cloud
points to exist in the frustum of the detected shadow in order
to reveal the presence of an hidden object.

7.2 Proposed Defenses

Fake Shadow Detection. We extend the methodology of
Hau et al. [16] to include PRA detection. We call this ap-
proach Fake Shadow Detection (FSD). The FSD methodology
consists first in identifying the shadow regions of the point
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cloud in the ROI to find potential ORA-based attacks as the
previous approach. Then, the shadow regions are compared
with the expected shadows of the detected objects from Auto-
ware’s euclidean clustering. This comparison is achieved by
projecting the point clouds of a detected object on the ground
and filtering out the corresponding shadow region based on
this projection and the calculated frustum. If the remaining
shadow region is above a threshold (~15 cubic meters based
on our empirical experiments on vehicle target obstacles), it
is considered a removal attack. We evaluate our methodology
with the 80 PRA samples used previously and additional 80
benign cases and observed 82.5% TNR and 91.2% TPR.

Azimuth-based Detection. Despite our upgraded defense
FSD methodology reaching high attack detection accuracy,
shadow-based approaches remain limited in applicability in
real-time AV obstacle detection because of the computational
overhead due to projection and frustum operations [16]. Since
our attack removes cloud points along a specific direction
with respect to the LiDAR, a simpler and practical solution to
detect our removal attack is to look for disparities in the raw
point cloud data. We can accomplish this by inspecting the
horizontal angular view of the LiDAR (azimuth), as our re-
moval attack would create a cloud point gap along the entirety
of the attack angle. Our approach assumes that a LiDAR scan
with a gap greater than a 1-degree angle in the azimuth values
(minimum attacker capability) might be a potential removal
attack. Thus the approach consists of calculating the azimuth
values of all the cloud points in the scene and sorting them in
an increasing order based on the calculated values. Missing
cloud points will correspond to missing azimuth regions that,
in turn, can reveal the attack.

Evaluation Results and Observations. To evaluate our
approach on benign cases, we run our defense on the KITTI
dataset achieving 99.98% TNR on over 7,480 KITTI scenes.
Then we evaluate the defense against PRA, using the same
methodology as in §4.4 over our 200 samples. We synthesize
a total of 3,000 scenes with attack angles ranging from 1 - 22
degrees, and we achieve 100% TPR. The azimuth information
also reveals the attack angle and the direction of the attack. To
evaluate the defense’s practicality beyond synthesized attack
samples, we also perform the same analysis on our collected
traces with the VLP-16 LiDAR. We tested the approach on
our 75 benign scenes and 611 attack scenes and observed
100% TPR and TNR rates, respectively.

Runtime Efficiency and Limitations. We measure the run-
time of the proposed defense on a system with Intel Xeon(R)
Silver 4114 CPU (2.2 Ghz x 20) and 64GB RAM. We ob-
served an average runtime of 7.9 ms/scene over the KITTI
dataset. Although this defense shows high performance in
PRA detection, the methodology cannot be extended to ad-
versarial spoofing attacks and ORA-based attacks.

8 Discussion

Safety and Ethics Considerations. All experiments were
conducted in a controlled environment. Laser safety measures
are detailed in the Appendix A. We have notified the LiDAR
manufacturer companies and developers of the tested AD
frameworks about our findings.

Attack Limitations and Future Work. One limitation
of our attack is that it can only affect a single LiDAR sensor.
We do not consider attacking multiple LiDARs, solid-state
LiDARs, or groups of LiDARs and cameras. We demonstrate
the attack success over LiDAR-camera fusion models by only
attacking the spinning LiDAR. This could be because AV
perception models mostly relies on such sensors for obstacle
detection rather than cameras as indicated by Cao et.al [10]. A
future analysis might include testing on different models and
AD frameworks. The considerations on the generality of the
proposed attack methodology are described in Appendix B.

Engineering Limitations. Our setup has limitations for
attacking a moving vehicle. Though our proof-of-concept
experiments in section §6 demonstrate the feasibility of the
proposed attack using basic tracking equipment, there are
several engineering limitations for further extending the at-
tack success rate for moving AVs. First, attacking the LiDAR
at a distance is non-trivial. The LiDAR scan is sparser at a
distance which affects the synchronization with the LiDAR.
Therefore, larger optical devices or more photodiodes are re-
quired for synchronization. The spoofed signals also diverge
at a distance, which affects the intensity of the spoofed signals.
Therefore, a more sophisticated optical system for converging
the spoofed signals is required. Second, aiming at the LiDAR
requires a good object detection model. Since the LiDAR sen-
sor models can vary on the AVs, a general model for different
LiDAR sensors in different environments is necessary for the
attack in the real world. Lastly, aiming the LiDAR moving at
a higher speed requires higher precision. The attacker needs to
either use a robotic arm with higher resolutions of movements
or use a laser diode with higher power such that it can attack
a larger area at the same time.

9 Conclusion

We discover a new physical removal attack which removes
LiDAR point cloud from genuine obstacles. This study ex-
plores the attacker capability to use the point cloud ablation at
the sensor level to cause the AD perception module to fail to
recognize obstacles and their locations, reaching an attacker
capability of 45◦. We then evaluate the effect of PRA on three
AV perception and fusion models. We also achieve a 92.7%
success rate removing 90% of a target obstacle cloud point on
a moving vehicle. Finally, we propose two effective defense
strategies to help mitigating the threat.
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Appendices

A Laser Safety Details

During the outdoor experiments, at most 4,000 pulses per scan
(100 ms) of the LiDAR are emitted by the spoofer. According
to the datasheet of the laser-diodes [25], the typical power
during emission is around 70 W. Since the spoofing device
emits pulses with 40 ns width we can first calculate the per
pulse energy as below:

E = 70W ·40ns = 2.8µJ

By calculating the maximum permissible exposure (MPE)
of the laser pulses at 905 nm wavelength:

MPE = 18 · t0.75 ·10(905−700)/500

when t is 0.25 s, which is the time taken by a blink of the eye,
the estimated MPE is 6.36 J/m2. Since the total number of
pulses during that period is less than 4000 ∗ 3 = 12000, we
can calculate the minimum radiated area as:

A = 2.8µJ/6.36J/m2 = 26.42mm2

where the diameter of the radiated area in our setup is around
11.6 mm. This diameter is smaller to the measured size which
proves the safety for outdoor experiments.

B Generality of the Methodology

Our PRA exploit the automatic transformation and filtering
process common to many commercial spinning LiDARs and
popular AD frameworks. We demonstrate how three different
object detection models, and three fusion models for AVs are
susceptible to the attack and demonstrate the consequences
on a industry-grade AD simulator system. Thus our attack
approach can be generalized to other LiDAR-based AV per-
ception systems. We also observe how different LiDAR sen-
sors adopt the same interface and filter phases of the Velodyne
VLP-16 (see Table 1). Thus the transformation chains of other
sensors are likely to also be vulnerable to such physical at-
tacks. In addition, as demonstrated in previous works [10,42],
the LiDAR sensor spoofing capability can also be generalized
because it is independent from the AV system.
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