
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

ACORN: Input Validation for Secure Aggregation
James Bell and Adrià Gascón, Google LLC; Tancrède Lepoint, Amazon;

Baiyu Li, Sarah Meiklejohn, and Mariana Raykova, Google LLC; Cathie Yun
https://www.usenix.org/conference/usenixsecurity23/presentation/bell

ACORN: Input Validation for Secure Aggregation

James Bell�, Adrià Gascón�, Tancrède Lepoint†∗, Baiyu Li�, Sarah Meiklejohn�, Mariana Raykova�, Cathie
Yun∗

�Google †Amazon

Abstract
Secure aggregation enables a server to learn the sum of client-
held vectors in a privacy-preserving way, and has been applied
to distributed statistical analysis and machine learning. In this
paper, we both introduce a more efficient secure aggregation
protocol and extend secure aggregation by enabling input val-
idation, in which the server can check that clients’ inputs sat-
isfy constraints such as L0, L2, and L∞ bounds. This prevents
malicious clients from gaining disproportionate influence on
the aggregate statistics or machine learning model.

Our new secure aggregation protocol improves the compu-
tational efficiency of the state-of-the-art protocol of Bell et
al. (CCS 2020) both asymptotically and concretely: we show
via experimental evaluation that it results in 2-8X speedups
in client computation in practical scenarios. Likewise, our
extended protocol with input validation improves on prior
work by more than 30X in terms of client communication
(with comparable computation costs). Compared to the base
protocols without input validation, the extended protocols
incur only 0.1X additional communication, and can process
binary indicator vectors of length 1M, or 16-bit dense vectors
of length 250K, in under 80s of computation per client.

1 Introduction

Single-server secure aggregation, which enables a server to
learn the sum of client-held vectors in a privacy-preserving
way, can be used for the secure computation of distributed
histograms or for averaging model updates in federated learn-
ing systems. As some concrete examples, it supports crypto-
graphic protocols for recommendation systems [36] and time
series analysis [44], and is also used in large-scale real-world
deployments for predictive typing and selection [39, 27, 25].

In the single-server setting, a powerful server talks to a
large number of (resource-constrained) clients with limited
connectivity. Along with limited bandwidth, the latter consti-
tutes a central challenge in production systems [27, 8]. The

∗Work done while employed at Google.

server might be corrupted and even collude with a subset of
the clients. This threat model strikes a good balance between
trust and efficiency for large-scale distributed computation,
and is used by several existing aggregation protocols [6, 7, 42,
44, 41, 36, 45] and more general results [4, 13].

To achieve acceptable levels of accuracy and privacy, the
minimum number of clients contributing to an aggregation
ranges between 100 and 10,000 [27], depending on the ap-
plication, with larger numbers resulting in better privacy or
better trade-offs between privacy and accuracy. On the other
hand, input vector sizes correspond to model sizes or his-
togram sketches, so lengths are easily in the range of hundred
of thousands or millions. Therefore, a secure aggregation pro-
tocol suitable for practical applications must be scalable in
terms of being able to tolerate large inputs and a large number
of clients, and dropout-robust in terms of tolerating a rela-
tively high fraction of clients that abort during the protocol
execution. While client computation is a natural concern ad-
dressed in several previous works, bandwidth consumption
(both in download and upload) is often a determining factor
in practice [27]. Achieving both practical computational and
communication efficiency is the main focus of this work.

Privacy-preserving input validation. Another aspect cru-
cial for deploying secure aggregation in practice is correctness
in the face of corrupted clients. This corresponds to enhancing
protocols with defenses against malicious clients who seek to
bias the aggregate data. We discuss such attacks in the context
of federated learning in Section 1.2, along with the role that
bounding the L2 or L∞ norm of client inputs (norm-bounding)
plays as a defense. In statistics applications such as frequency
counting, malicious clients should be prevented from having
a disproportionate influence on the output, e.g. contributing
a value other than 1 to a histogram bucket or contributing to
a large number of buckets. This corresponds to a k-hotness
check (i.e. a check that at most k entries are 1 and the rest are
0, which is an L0 bound) on the input vectors of clients.

To implement these defenses, the server can perform in-
put validation on the data sent by clients, relying on zero-

USENIX Association 32nd USENIX Security Symposium 4805

knowledge proofs to preserve privacy. Crucially, this must be
done without requiring significant client computation. Input
validation comes in different forms, ranging from detection of
malicious client behavior (but still having it cause the protocol
to abort) to both identifying misbehaving clients and remov-
ing their contributions from the final aggregate statistics.

1.1 Our Contributions
We introduce and evaluate three protocols in this paper:
RLWE-SecAgg, ACORN-detect, and ACORN-robust. Their
security and efficiency properties, as well as comparison with
existing approaches, are presented in Table 1.

Our first contribution is RLWE-SecAgg, a new secure ag-
gregation protocol based on lattice cryptography that im-
proves the state of the art protocol due to Bell et al. [6] in
terms of both concrete and asymptotic efficiency. More pre-
cisely, it retains the low communication of this protocol but
achieves optimal computational costs.

Our second contribution includes protocol variants
ACORN-detect and ACORN-robust with input validation
based on zero-knowledge proofs that are practical in terms of
both computation and communication. For example, in under
80 seconds, a client running ACORN-detect on a standard
laptop can (1) show k-hotness of a binary input of length 1M,
or (2) show that a dense vector of length 250K has its L∞ norm
bounded by 216. In terms of communication, the overhead
of ACORN-detect over (non-validated) secure aggregation
is roughly 0.1X. This is in contrast with previous works [33,
14] with double-digit factor overheads (see Table 1). To en-
able this, we provide a new zero-knowledge construction with
logarithmic proof size for proving an L∞ bound on a private
vector (committed to in a constant-size commmitment).

In our evaluation of these protocols, we consider two sce-
narios: analytics and learning. The former corresponds to the
secure computation of a size-` histogram with inputs from
n = 104 devices, where the protocol ensures that each clients
contributes no more than once to a bounded number of buck-
ets. The latter corresponds to a federated learning application,
where the goal is to average length-` model updates from
n = 500 devices, while showing a bound on the norm of each
client’s input. We also provide benchmarks and overheads of
the end-to-end performance using four real-world tasks and
datasets, showing a bandwidth overhead of at most 1.05X and
a manageable computational overhead.

RLWE-SecAgg: Secure aggregation from (R)LWE. As
a starting point, we formulate a generalization of the Bell et
al. secure aggregation protocol [6], which we refer to as PRG-
SecAgg. Our generalized protocol recovers the original PRG-
SecAgg construction if we instantiate it using a PRG-based
encoding of the input, but we also present a new instantiation—
RLWE-SecAgg—that uses a lattice-based encoding. This con-
struction reduces client and server computation costs, both

asymptotically and in terms of concrete efficiency. In more
detail, for n clients and length-` input vectors, PRG-SecAgg
requires clients to do O(` logn) work and the server to do
O(n` logn) work. In RLWE-SecAgg these costs improve to
O(`+ logn) and O(n(`+ logn)), respectively. This means
that for logn≤ `, which is the case in all known applications,
our new protocol’s client computation and communication
costs are O(`), which is optimal in that it matches the insecure
baseline where clients just send their data.

ACORN: Practical private input validation. We propose
secure aggregation protocols that support two types of input
validation: ACORN-detect supports detection of malicious
client behavior, while ACORN-robust provides robustness to
misbehaving clients, as it has the ability to identify them and
adaptively exclude their inputs from the final sum.

Our protocols extend our generalized SecAgg protocol and
thus can be instantiated with both PRG-SecAgg and RLWE-
SecAgg. One complicating factor is that, in SecAgg, clients
encode their inputs using pairwise correlated keys. This de-
sign decision is justified by its communication efficiency [7],
as the correlated randomness can be computed in an input-
independent way using constant-sized seeds. Previous works
like EIFFeL [14] and RoFL [33] use alternative underlying
aggregation schemes (with quadratic and linear dependence in
the number of clients, see Table 1) that result in much higher
communication than ACORN.

A consequence of using correlated keys is that enforcing
correctness becomes complex: clients must individually prove
a norm bound on the input being encoded but collectively
prove that the keys used in the encoding step of the protocol
are correctly correlated. This latter property would be guaran-
teed if each client proved individually that it formed its key
honestly, but this would be expensive. Instead, in ACORN-
detect we use a distributed proof that does not require clients
to interact. In ACORN-robust, we instead require neighboring
clients to form identical commitments to their pairwise shared
masks. As long as one of the pair is honest, the server can thus
identify a mismatch and exclude the cheating client. This sort
of client-aided verification is efficient, but does not work if
two malicious clients are neighbors. We thus require clients to
commit to shares of their correlated randomness before know-
ing who their neighbors will be, and also need a logarithm
number of rounds to recursively perform this exclusion.

Succinct ZK proofs of bounded norm. Besides using an
appropriate underlying SecAgg protocol, an important tech-
nique to achieve efficient communication is ciphertext pack-
ing: encoding several plaintext elements in a single ciphertext.
While this keeps ciphertext expansion low even when working
in a large group, it complicates the client’s proof of correct
encoding, as it needs to show an L∞ bound for correctness
of the (linear) packing function. For this we rely on Bullet-
proofs [10, 11], a discrete log-based zero-knowledge proof

4806 32nd USENIX Security Symposium USENIX Association

Clear
Bell et al.

[6]
RLWE-SecAgg

(Sec. 3)
RoFL
[33]

EIFFeL
[14]

ACORN-detect
(Sec. 4)

ACORN-robust
(Sec. 4)

Client communication ` `+ log(n) `+ log(n) `+n `n2 `+ log(n) `+ log2(n)

n ` γ = δ

102 104 0.05 31KB 45KB 45KB >2MB*† 94MB 47KB 365KB
103 218 0.05 705KB 1030KB 1111KB >51MB† 240GB* 1032KB 1350KB
103 218 0.33 705KB 1062KB 1144KB >51MB† N/A 1064KB 14MB

Client computation ` ` log(n) `+ log(n) `n `n2 ` log(n) ` log(n)+ log2(n)

Secure against

server & up to γn clients # G# G#
up to n clients X X X X × X X

Input validation X × × X X X X

Robustness

δn dropouts X X X X X X X
δn invalid inputs X × × × X × X

Table 1: The concrete communication, security properties, and communication and computation asymptotics of various secure
aggregation algorithms. The concrete rows are all based on proving an L∞ bound of 232/n, with security against a semi-honest
server and malicious clients. The bottom rows show which of the approaches protect client inputs, validate client inputs,
function in the presence of (limited) dropouts, and function in the presence of (limited) malicious clients. *Values extrapolated
via asymptotics from others in the column. † RoFL doesn’t provide details for how to agree on a sharing of zero, so these
communication statements don’t include that (which is likely only a small fraction of the total cost). By G# and we denote that
the protocol provides semi-honest and malicious security, respectively.

system with logarithmic proof size.

Using Bulletproofs to prove a bound on each entry of the
input vector (as in RoFL [33]) results in linear communica-
tion; for a vector of length 220, for example, the commitments
alone would require over 33 MB. The same is true of repre-
senting the desired bound as an arithmetic circuit or rank-1
constraint system (R1CS) and then proving it using a state-of-
the-art proof system: this compilation process requires one
commitment per input (meaning, in our case, one commitment
for every entry in the vector), which again results in linear
communication. Moreover, proving things entry-wise is not
compatible with ciphertext packing.

Instead, we show how the recent techniques by Gentry et
al. [19] for approximate proofs of L∞ bounds via random pro-
jections, combined with known tricks for range proofs [22]
and other optimizations, allow us to reduce our correct encod-
ing proof to a single linear constraint that can be proved using
Bulletproofs. Our approach thus allows us to prove exact L∞

bounds, and furthermore to commit to an arbitrary-length vec-
tor using only 256 bits. Moreover, verification of multiple
such proofs can be batched, which is crucial for our protocol
to scale to large cohort sizes.

1.2 Secure Aggregation for FL

Federated learning (FL) is a distributed setting [27] where
many clients collaboratively learn a model under the coordi-
nation of a central server. In each round of FL, (1) the server
broadcasts the current model to all clients involved in that
round. Then, in a (2) local training step, clients update the
model using their local dataset of examples. Finally, the clients
engage in (3) an aggregation step where all locally trained
models are pre-processed and aggregated for the server to
obtain an updated model. These steps (1-3) are iterated for a
number of training rounds.

The role of secure aggregation, and thus of our work, in FL
is in step (3) above. A secure summation protocol significantly
reduces the leakage to the server with respect to a system
where model updates are made available in the clear. Next we
discuss poisoning attacks in FL, and how input validation –
and in particular norm-bounding – helps to mitigate them.

Poisoning attacks in FL. Attacks can be divided into un-
targeted attacks, in which the goal is to generally degrade the
quality of the model, and targeted attacks. In targeted attacks
(also known as backdoor attacks), the goal of the attacker is
to induce a given behavior in a particular subtask; e.g., for
classification, have examples in a given class (cars) be mis-
classified (as, for example, birds) while retaining accuracy for

USENIX Association 32nd USENIX Security Symposium 4807

the rest of the examples.
Several recent studies have empirically evaluated the effec-

tiveness of imposing bounds on the L2 norms of clients’ model
updates as a defense against these types of attacks. Intuitively,
the norm bound limits the influence of malicious clients when
trying to derail learning. Sun et al. [47] focus on model re-
placement attacks, where a malicious client provides a scaled
malicious model update to effectively replace the current
model by a backdoored one. They run a comprehensive study
on the EMNIST dataset [12]—a real-life, user-partitioned,
and non-IID dataset—and conclude that norm-bounding is an
effective defense against backdoor attacks here.

Chowdhury et al. [14] empirically evaluate 7 attacks in
the literature (5 untargeted, 2 targeted) on image classifica-
tion tasks. The results show how norm-bounding helps as
a defense, with gaps of more than 20% in accuracy being
recovered (for targeted attacks). For the investigated back-
door attacks, the gap in accuracy between the main and back-
door tasks drops from roughly 10% to over 80% when norm-
bounding is applied.

Shejwalkar et al. [43] identify parameters where defenses
become (in)effective with respect to both existing attacks and
new ones they propose. The emphasis of their work is on
untargeted attacks operating within real-world deployments.
Regarding norm-bounding specifically, they conclude that
it “can effectively protect cross-device FL in practice” and
more concretely that the “Norm-bounding Aggregation Rule
(AGR) is enough to protect production FL against untargeted
poisoning, questioning the need for the more sophisticated
(and costlier) AGRs”.

Finally, Lycklama et al. [33] characterize the classes of
targeted attacks that norm-bounding can defend against and
provide extensive empirical evaluation and an open-source
experimentation framework. The authors conclude that while
norm-bounding significantly decreases the available surface
for adversarial attacks, it is not a silver bullet. In particu-
lar, continuous attacks on tail targets [48] remain effective
even under norm bounds. Subsequent works have developed
defenses against attacks on the tails based on sparsification
combined with norm-bounding [49].

Server attacks in FL. The common model for secure ag-
gregation in FL assumes a server that honestly runs step (1) of
each FL round, i.e. that broadcasts the model resulting from
the previous round to all clients. As shown by Pasquini et
al. [37], a malicious server can instead send carefully crafted
models to specific clients in order to extract their input. We
prove our protocols secure assuming this attack does not take
place, but the defenses proposed by Pasquini et al., and in par-
ticular model hashing, can be directly applied to our protocols.
More concretely, clients can share with each other a hash of
the model that they received from the server and verify that it
matches their own before proceeding with the protocol.

1.3 Other Related Work

There are several well-known works on verifiable secure ag-
gregation in the two-server or multi-server models [9, 15, 2],
but we focus our discussion on the single-server trust model.

Stevens et al. perform differentially private secure aggre-
gation (without input validation) using an LWE-based proto-
col [46]. This work is similar to our first contribution, RLWE-
SecAgg. However, they overlook a subtlety in the security of
their scheme, claiming that “[a secure aggregation of keys]
reveals nothing about their individual [key] values.” This is
untrue, because the output itself conveys information even if
computed securely. Our security proof addresses this issue.

Lycklama et al. [33] and Chowdhury et al. [14] introduce se-
cure aggregation protocols with input validation called RoFL
and EIFFeL, respectively. RoFL requires each client to send
commitments to each vector entry to the server. For vectors
of length 262,000, they report a 48x increase in required com-
munication (to 51MB) when proving an L∞ bound, compared
to sending the vector in the clear. EIFFeL shares the computa-
tion amongst the clients, using them to replace the servers in
Prio [15]. This allows them to deal with a constant fraction of
malicious clients and dropouts. However, their communica-
tion scales quadratically in the number of clients and linearly
in the vector length. Thus even for a vector of length 104 and
100 clients they report 94MB of communication. This is about
three orders of magnitude greater than the cost in the clear.
EIFFeL and RoFL suffer from the difficulties of balancing
input validation with communication costs, which is a major
focus of our work. In Table 1 we offer a detailed comparison
in terms of both asymptotic and concrete efficiency.

Ghodsi et. al. [20] propose zPROBE, a secure aggregation
protocol that checks that each entry of a client’s masked input
is constructed honestly from an input of bounded size. They
do this by putting the circuit for a pseudorandom generator
in a generic proof framework, but as this is very costly they
check only a random subset of entries in their experiments.
This is enough to prevent submissions where an appreciable
fraction of the entries lie outside the desired bound, but this is
not sufficient in FL as a model can be corrupted by changing
only one or a few entries by a large amount.

Karakoç et. al. [28] also provide secure aggregation with
range validation using an oblivious programmable pseudoran-
dom function. They describe this work as a proof of concept
and provide experiments only for vectors of length 16 due to
the currently prohibitive computational costs.

2 Preliminaries

We denote by x← χ sampling according to a distribution χ. If
X is a finite set, we denote by x←X uniform sampling from X .
By≈σ,λ we denote indistinguishability with computational pa-
rameter λ and statistical parameter σ; i.e., Dn ≈σ,λ Fn if there
exists another distribution En such that Dn is statistically close

4808 32nd USENIX Security Symposium USENIX Association

to En (|Prx←Dn [A(x) = 1]−Prx←En [A(x) = 1]|< σ(n) for an
unbounded adversary A) and En is computationally indistin-
guishable from Fn (|Prx←En [A(x) = 1]−Prx←Fn [A(x) = 1]|<
λ(n) for a PPT adversary A). We use the standard simulation-
based formalism [21, 32] in our security proofs. We assume
key agreement, authenticated encryption, and signature primi-
tives, which we denote as KA, Eauth, and Sig.

2.1 Setting and Threat Model
We consider n clients 1, . . . ,n, each holding a private vector
xi ∈ Z`

t , and a server with communication channels estab-
lished with all clients. The goal is for the server to obtain the
sum of all client vectors (∑n

i xi), with robustness to a certain
fraction of client dropouts. To make this concrete, the func-
tionality is parameterized by a maximum fraction of dropouts
δ ∈ [0,1], defined as follows:

f (x1, . . . ,xn) =

{
∑i∈[n]\D xi if |D| ≤ δn
⊥ otherwise

(1)

where D ⊆ [n] is the set of clients that dropped out during
the protocol execution and the sum happens in Z`

t . We aim to
withstand an adversary consisting of a coalition of γn clients,
for γ∈ [0,1], and possibly also colluding with the server. As in
previous works [7, 6], we assume that corrupt clients are fully
malicious. For RLWE-SecAgg and ACORN-detect, we also
assume the server is fully malicious,1 but for ACORN-robust
we prove security only in the case of a semi-honest server.

2.2 Lattices and Polynomial Rings
A lattice is a discrete subgroup Λ⊂ RN , and it can be repre-
sented as the set of all integer combinations of a basis B such
that Λ=BZN . We use the cyclotomic ring R=Z[X]/(XN +1)
for a power-of-two N, and write Rq = Z[X]/(q,XN + 1)
for the residual ring of R modulo q. The coefficient em-
bedding of a polynomial a = ∑

N−1
i=0 aiX i ∈ R is the vec-

tor (a0,a1, . . . ,aN−1), and we define the L∞ norm of a as
‖a‖∞ = ‖(a0,a1, . . . ,aN−1)‖∞ = maxi |ai|. As a convention,
we use bold a to denote the coefficient embedding of a poly-
nomial a ∈ R. We also define the negacyclic matrix represen-
tation of a ∈ R as

ϕ(a) =

a0 −aN−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...
aN−1 aN−2 · · · a0

 ∈ ZN×N .

We can naturally extend the map ϕ to vectors a over R such
that ϕ(a) is a matrix produced by vertically concatenating

1We technically assume that the server behaves semi-honestly in a key
distribution phase but otherwise maliciously, which is implied by assuming a
fully malicious server with a PKI.

ϕ(ai) for all ai ∈ a. Without loss of generality, since the prod-
uct of two polynomials a,b∈ R has the coefficient embedding
A ·b for A = ϕ(a), we represent a ·b as a matrix-vector prod-
uct A ·b. When q = 1 (mod 2N), this computation can be
done more efficiently via Number Theoretic Transformation
(NTT) than a naïve matrix-vector multiplication.

2.3 Ring LWE and Encryption
The ring learning-with-errors (RLWE) assumption [35], pa-
rameterized by a ring R of degree N over Z, an integer mod-
ulus q > 0 defining a quotient ring Rq = R/qR, distributions
χs,χe over R, and an integer m, states that for a secret s← χs,
given m = poly(N) many independent samples from the dis-
tribution ARLWE

N,q,χe
(s) = {(a,as+ e) ∈ R2

q | a← Rq,e← χe}, it
is computationally hard to distinguish them from m uniformly
random samples over Rq. As we sometimes work with coef-
ficient embedding of polynomials, we can rewrite an RLWE
sample as (A,As+ e) for s← χs ⊆ ZN

q , a matrix A = ϕ(a) ∈
ZN×N

q for a← Rq, and an error vector e← χe ⊆ ZN . In our
protocol we treat A as a public parameter. To encrypt a plain-
text message x ∈ ZN

T , we sample s← χs and compute

Enc(s,x) = (A,As+T · e+x mod q), (2)

and decrypt using Dec(s,(A,y)) = (y−As) mod T . For
longer messages x ∈ Z`

T such that ` > N, we can naturally
extend this encryption scheme by using multiple A1, . . . ,A`/N
where Ai = ϕ(ai) for ai ← Rq; equivalently, we sample
s← χs and compute an extended ciphertext Enc(s,x ∈ Z`

T) =
(A,As+T ·e+x mod q), where A = ϕ(a) is the vertical con-
catenation of A1, . . . ,A`/N , and e← χ

`/N
e . When the plaintext

modulus T is coprime to q, the distribution on (A,As+T · e)
with A=ϕ(a) for a←R`/N

q and e← χ
`/N
e is indistinguishable

from uniform under the RLWE assumption. For simplicity,
we omit the public parameter A from ciphertexts.

Two important properties that we use in our protocol are
key homomorphism and message homomorphism, i.e. (infor-
mally) Enc(s1,x1)+Enc(s2,x2) = Enc(s1 + s2,x1 +x2).

2.4 Commitment and Zero-Knowledge Proofs
Let G be a cyclic group of order q. The vector Pedersen
commitment of v ∈ Zn

q using generators g0,g1, . . . ,gn ← G

and randomness r ∈ Zq is C = gr
0 ∏

n
i=1 gvi

i ∈ G, and we de-
note the commitment algorithm using the notation com =
Commit(v;r). It is perfectly hiding and computationally bind-
ing under the discrete logarithm assumption. We build our
zero-knowledge proofs using Bulletproofs [11], which we
describe in more detail in Section 5. Bulletproofs satisfies
zero knowledge, meaning a simulator without knowledge of
a witness can produce proofs that are indistinguishable from
honest ones, and knowledge soundness, meaning it is possible
to extract a valid witness from any proof that verifies. We

USENIX Association 32nd USENIX Security Symposium 4809

describe our proof systems as interactive, but make them non-
interactive via the Fiat-Shamir heuristic [17], which means
we operate in the random oracle model.

3 Generalized Secure Aggregation

In this section we present a generalized version of the secure
aggregation protocol of Bell et al. [6] (SecAgg), where we
abstract the method used by each party to hide its input as an
encoding scheme (Encode,Decode). This encoding scheme
should be additively homomorphic in both keys and values,
meaning ∑iEncode(ski,xi) = Encode(∑i ski,∑i xi), and thus
Decode(∑i ski,∑iEncode(ski,xi)) = ∑i xi.

A simplified version of SecAgg is in Figure 1, and a full
formal specification is in Algorithm 6 (in the appendix). This
also contains the additional interactions needed to support
input validation, which we ignore for now but describe in
the next section. We then provide two examples of how this
encoding can be instantiated: the first allows us to recover
the original Bell et al. PRG-SecAgg construction, while the
second provides a more efficient construction, RLWE-SecAgg
(as we confirm experimentally in Section 6).

Commitments, distributed graph generation, and seed
sharing. At its heart, SecAgg consists of two interactions be-
tween a set of clients and a server. In the first, ShareSeeds,
each client i takes as input some randomness and learns four
pieces of information: (1) a pairwise seed seedi, j that it shares
with each neighbor j in some defined communication graph,
(2) a self seed seedi, and sets of shares (3) sharesi,D , corre-
sponding to shares of these different seeds that this client
should provide to the server for neighbors that drop out and
(4) sharesi,S that the client should provide to the server for
neighbors that do not. In a slight abuse of notation, we write
this as (ε,{{seedi, j} j∈N(i),seedi,sharesi,D ,sharesi,S}i) ←
ShareSeeds(ε,{randi}i), where the first input (and output)
denote the input (and output) of the server, which in this pro-
tocol should learn nothing, and the remaining sets denote the
individual inputs (and outputs) of the clients. Some of the
main challenges of this first protocol lie in ensuring that hon-
est clients do not have too many malicious neighbors in the
communication graph, and that seedi, j = seed j,i for all pairs
of honest neighbors i and j. This latter property is crucial in
ensuring that the derived masks cancel when masked inputs
are aggregated by the server.

Masking. Using the information learned in this first inter-
active protocol, client i can then mask its input xi using an
encoding key computed as

ski = si + ∑
j∈Ai, j<i

sij− ∑
j∈Ai,i< j

sij, (3)

where sij = F(seedi j), si = F(seedi) for a length-expanding
function F, and Ai are the neighbors that i believes to be
survivors at this step in the protocol. It then encodes its input

as yi = Encode(ski,Gxi), where G is a matrix that allows us
to pack multiple entries of xi into a single plaintext slot; we
discuss this in more detail below.

Dropout agreement and unmasking. If all clients are honest
and do not drop out, then all their pairwise masks cancel,
meaning ∑i ski = ∑i si. In this case, each client could just
provide their individual self mask si to the server at the end
of the protocol, who could then take advantage of the dual-
homomorphic property of the encoding scheme to compute
∑i xi = G−1(Decode(∑si,∑yi)). To account for clients who
drop out, however, the server must have a way to recover their
pairwise masks in order to cancel them out itself from the keys
of surviving clients (e.g., if a surviving client i used sij for a
dropped out client j in forming ski, there is no corresponding
sk j containing −sij to cancel out the masks “naturally”).

The second interactive protocol that SecAgg pro-
vides is thus ∑si,{Di,Si} ← RecoverAggKey(ε,
{sharesi,D ,sharesi,S}), which allows the server to re-
cover the aggregate key and thus compute the aggregated
input as described above. Intuitively, in this protocol each
client i sends a share of the self seed for each surviving
neighbor (in Si) and a share of the pairwise seed for each
dropped out neighbor (in Di), which allows the server to
recompute the mask and learn the aggregate encoding key. In
more detail, the server computes the aggregate key sk as

sk = ∑
i∈S

(si + ∑
j∈Di, j<i

sij− ∑
j∈Di,i< j

sij),

where si is reconstructed from the shares provided by the
neighbors of a surviving client i and sij is reconstructed from
the shares provided by i for dropped out neighbors j. Cru-
cially, this process requires clients and the server to agree
on the set of dropouts and survivors, as otherwise even hon-
est clients could inadvertently reveal information that would
allow the server to unmask an individual honest contribution.

3.1 PRG-SecAgg
We can recover the original PRG-SecAgg protocol [6] by
instantiating F as a seed-stretching PRG and the encoding
scheme as follows, for ski,xi,y ∈ Z`

q:

Encode(ski,xi) := ski +xi mod q

Decode(ski,y) := y− ski mod q
(4)

3.2 RLWE-SecAgg
Our second SecAgg instantiation, RLWE-SecAgg, leverages
an encoding based on RLWE. In this case, the key expansion
algorithm samples a key from the appropriate RLWE secret
distribution χs and then generates the masks as RLWE sam-
ples using the expanded key. This combined process of key
sampling and mask generation is much more computationally
efficient than the key expansion in PRG-SecAgg.

4810 32nd USENIX Security Symposium USENIX Association

Public parameters: Vector length `, input domain X`, secret distribution
χs, and seed expansion function F : {0,1}λ 7→ supp(χs)

`

Client i’s input: xi ∈ X`

Server output: z ∈ X`

1. Using the server to send messages, clients engage in the ShareSeeds
protocol, with each surviving client i learning {seedi, j} j∈N(i), seedi,
sharesi,D , and sharesi,S . The server aborts if there are fewer than
(1−δ)n surviving clients.

2. Each surviving client i performs the following:
• Computes its packed encrypted input yi = Encode(ski,Gxi)

with key defined as ski = si +∑ j∈Ai , j<i si j−∑ j∈Ai ,i< j si j for
si j = F(seedi, j), si = F(seedi) (as in Equation 3).

• Forms commitments comsk,i and comx,i to its key and input
respectively.

• Computes proofs πEnc(ski ,xi), π0≤xi<t , and πvalid(xi) of encod-
ing, smallness, and validity.

• Sends to the server yi, comsk,i, comx,i, πEnc(ski ,xi), π0≤xi<t ,
πvalid(xi).

3. The server aborts if it receives fewer than (1− δ)n messages or if
any of the proofs fail to verify. Otherwise, the server and the clients
engage in the RecoverAggKey protocol, with the server taking as
input the global sets D and S of dropouts and survivors and each
client i taking as input its sets sharesi,D and sharesi,S and providing
the appropriate shares to the server according to the status of their
neighbors. At the end of the protocol the server learns the aggregate
key sk.

4. Each client, acting as a distributed prover, engages with the server
(acting as the verifier) in the distributed key correctness protocol. The
server aborts if the collective proof fails to verify.

5. The server outputs ∑i∈S xi as G−1(Decode(sk,∑i∈S yi)).

Figure 1: General SecAgg protocol with input verification.

Unlike PRG-SecAgg, this encoding requires a set of public
parameters: a polynomial ring R = Z[X]/(XN + 1) and its
residual ring Rq = Z[X]/(q,XN +1) for a modulus q, a plain-
text modulus T that is coprime to q, a plaintext dimension `, a
secret key distribution χs and an error distribution χe over R,
and a matrix A generated as discussed in Section 2.3. These
parameters can be distributed to the clients by the server or
through a public channel. They are used in the encoding and
decoding algorithms, defined as follows:

Encode(ski,xi) = yi := A · ski +T (e+ f)+xi mod q,

where e, f← χ
`/N
e . (5)

Decode(sk,y) := (y−A · sk mod q) mod T.

We present formal proofs of the correctness and security of
this encoding in the full version of this paper [5], but provide
some intuition for them here.

Correctness. To ensure that the obtained result is the sum of
the xi ∈ Zt over the integers we need that (i) the sum of errors
and messages does not overflow the ciphertext modulus q, and

(ii) the sum of the messages does not overflow the plaintext
modulus T . These result in the constraints 2nT be < q and
nt < T , where be is an L∞ bound on the error e← χe.

Security. It is tempting to claim that all we need for security
is to choose RLWE parameters in a way that ensures the indi-
vidual encodings yi of client contributions are pseudorandom
in isolation. However, the server gets more information than
just n independent RLWE ciphertexts, as it can also recover
∑i ei from ỹ = ∑yi. A common approach to eliminate leak-
age is to add a large noise to “drown” the error [18, Chapter
21], in a way analogous to how circuit privacy is achieved
in some (R)LWE-based homomorphic encryption schemes.
The resulting modulus q would be very large, however, which
hurts both computation and communication.

Instead, we argue in the full version that the encodings of all
clients’ inputs are indistinguishable from random values that
sum up to an encoding of the sum of all inputs. This property
can be established from the hardness of an RLWE variant,
Hint-RLWE, in which samples consist of standard RLWE pairs
(a,as+ e) ∈ R2

q and a “hint” e+ f , where f is sampled from
the same Gaussian distribution as e. The additional noise
term f allows us to gradually break the correlation among the
shared secrets used in the ciphertexts of neighboring clients,
via a carefully constructed hybrid argument. Lee et al. [31]
showed that the Hint-RLWE problem with error size σ is as
hard as the standard RLWE with error size (1/

√
2)σ. The

error terms in our RLWE encodings are thus only slightly
larger than standard RLWE encryption, avoiding the need for
noise flooding.

Ciphertext expansion. PRG-SecAgg has very limited ci-
phertext expansion, which is optimal in the sense that the
modulus q can be chosen to be exactly tn, to ensure that the
result of adding all n values fits in the modulus. This results
in only a 1+ log2 n

log2 t factor overhead with respect to an insecure
solution where clients just send their values. A naïve encoding
in RLWE-SecAgg that puts each entry of xi in a polynomial
coefficient would result in a 1+ log2 q

log2 t factor overhead. This
can be quite wasteful, as q needs to be large (≥ 246) for se-
curity. However, we can use a larger plaintext modulus T to
pack multiple entries of xi in a plaintext slot.

In more detail, let G be the gadget matrix G =
(1, t, t2, . . . , t p−1)⊗ Il/p for p = blogT/ log(nt)c. Then by
computing µi = Gxi ∈ [T]l/p, we effectively pack every p
entries of the input xi into a single plaintext slot of µi while
ensuring that the result of the packed sum fits in T . To decode
from a packed slot, one can apply a digit extraction algorithm
for base t, denoted by G−1, which can be naturally extended
to a packed vector. Importantly, this packing operations is
linear, and thus it can be incorporated into the input validity
constraints we consider in the next section.

USENIX Association 32nd USENIX Security Symposium 4811

4 Adding Input Validation

In this section we present ACORN, an extension to the gener-
alized SecAgg protocol that allows for client input validation.
Specifically, we provide a way for the server to check that
the (hidden) inputs of clients satisfy some pre-defined no-
tion of validity and that their messages in the protocol have
been computed according to its specification. We first present
ACORN-detect, where the server can detect that misbehavior
has occurred but cannot attribute it to an individual client or
recover from it, and then present ACORN-robust, in which
the server can both identify misbehaving clients and remove
their contributions from the final sum.

To achieve this, as described below we require non-
interactive zero-knowledge proofs of vector smallness and
valid encoding, and an interactive proof for the correctness of
an aggregated key. We instantiate these primitives in Section 5
with efficient discrete log-based protocols.

4.1 Detecting Client Misbehavior
We present our summary protocol of ACORN-detect in Fig-
ure 1 and our detailed protocol in Figure 6, where the addi-
tional steps required for input validation are in red. Across
the entire protocol, we require a zero-knowledge proof of the
following relation R:

{
(x,w) | x = ((yi,comx,i,comsk,i)i∈S ,sk, t, `,G),w = (xi,ski,ri,si)i∈S ,

∀i ∈ S :
(
comx,i = Commit(xi;ri),comsk,i = Commit(ski;si),

yi = Encode(ski,Gxi),xi ∈ Z`
t ,valid(xi)

)
,∑

i∈S
ski = sk

}

We first observe that the witness for this relation is dis-
tributed among the clients, with each client i holding xi and
ski (and the relevant randomness) but being unaware of the
other inputs. All the conditions of the relation except the last
one, however, are on the individual components and thus each
client can prove them independently. This means forming

1. A proof πEnc(ski,xi) that yi = Encode(ski,Gxi), where
ski and xi are the values contained in the relevant com-
mitments.

2. A proof πvalid(xi) that valid(xi) holds.

3. A proof π0≤xi<t that xi ∈ Z`
t . This condition is needed to

prove that no wraparound happens modulo the plaintext
space, and thus that the packed sum can be decoded
using G−1.

These proofs and the two commitments comsk,i and comx,i
are sent to the server at the same time as the masked input yi.

With individual proofs for these individual constraints, the
only remaining requirement of R is that ∑i ski = sk. Clients
could prove this individually by proving that they formed ski

as specified by the protocol (Equation 3), but as the formation
of ski requires key agreements and applications of a length-
expanding function F this would be highly inefficient.

Instead, we have the clients prove collectively that ∑i ski =
sk, which is the minimal requirement needed for the server
to decode and recover the aggregated inputs. This is done by
having each client i provide a (partial) proof π

∑ski
i , which they

can do without interacting with other clients. These proofs
collectively demonstrate the correctness of the aggregated key
sk. Unlike the individual proofs, this proof cannot be made
non-interactive, so we instead consider it as an interaction
between each client and the server. In our summarized presen-
tation in Figure 1 we present this as a separate step (Step 4),
but in our detailed presentation in Figure 6 we show how
this protocol can be woven into the broader SecAgg protocol
without requiring any additional rounds of interaction.

Security. We formally prove the security of ACORN-detect,
following a simulation-based argument [21, 32], in the full
version of the paper [5]. Briefly, security for an honest server
follows from the knowledge soundness of the proofs, which
gives the simulator the ability (acting as the server) to ex-
tract the underlying inputs. Acting as the knowledge extrac-
tor means the simulator here needs to rewind, and thus that
ACORN-detect is not concurrently secure in the honest server
setting. Security in the malicious server setting is largely or-
thogonal to the question of input validation, and thus our proof
follows closely the one of Bell et al. [6], with the simulator
additionally relying on zero knowledge to ensure that its in-
teractions with the adversary are indistinguishable from what
it expects.

Efficiency. The asymptotic costs for the protocol, using the
instantiations in Section 5, are in Table 1. Step 1 requires
log(n) work per client, and is concretely very cheap. Client
costs are thus dominated by the following tasks in Step 2:
(1) running Encode and expanding seeds to compute ski,
(2) committing to xi and ski, and (3) generating proofs. The
server’s work is dominated by the analogous tasks of (1)
verifying proofs in Step 3 and (2) computing sk in Step 4.

In PRG-SecAgg, the encoding step corresponds to PRG
expansions (implemented with AES), and in RLWE-SecAgg
it corresponds to the noisy linear transformation in Equation 5.
As we show in Section 5, we use a discrete log-based proof
system, and thus commitment generation means computing
two Pedersen vector commitments (requiring two length-`
group multi-exponentiations), and proof generation requires
O(` log(`)) computation to produce a logarithmic size proof.

4.2 Robustness in the Face of Misbehavior
In the full version of the paper [5], we present ACORN-robust,
which allows the server to not only identify misbehaving
clients, but also exclude their input from the result on-the-fly.

4812 32nd USENIX Security Symposium USENIX Association

This property, sometimes refereed to as guaranteed output
delivery [26], ensures in this context that as long as the number
of cheating clients stays below a given threshold α and no
more than (δ−α)n other clients drop out, an honest server
is guaranteed a valid output. We present and prove ACORN-
robust secure assuming a semi-honest server; an extension to
a malicious server seems possible, but we leave this as future
work.

5 Zero-Knowledge Constructions

In this section we provide constructions of the zero-
knowledge proofs required in ACORN. Specifically, we in-
stantiate proofs of aggregated keys, correct encoding, input
smallness, and input validity. For ACORN-detect, we present
the distributed proof of aggregated key correctness below,
which is a variant of a Schnorr proof with an additional step
to ensure that the interactive protocol achieves (full) zero
knowledge. For ACORN-robust, this proof is integrated into
the protocol itself. For the latter three predicates, we leverage
the Bulletproofs system, which we present before presenting
our proofs for these individual predicates.

5.1 Distributed Proof of Aggregated Key Cor-
rectness

In ACORN-detect, each client i commits to its encoding key
ski, which incorporates its self mask and pairwise masks, us-
ing some randomness ri; in other words, it creates an Pedersen
commitment Ci = gskihri . At the end of the protocol, the server
learns the sum of self masks s in the clear. Our distributed
key correctness protocol, presented in Figure 2, thus aims to
convince the server that ∏i Ci is a commitment to s, where
the witness for this proof (consisting of the opening of ∏i Ci)
is additively shared among all the clients.

Our protocol uses the Schnorr proof of knowledge, with
each client proving knowledge of the randomness ri used
to form its commitment. The server, acting as the verifier,
can combine these proofs using the fact that the challenge
response in Schnorr is a linear function of the committed
value.

To tolerate a malicious server, we need this proof to be
(fully) zero knowledge, which the sigma protocol can be when
instantiated as a non-interactive proof using the Fiat-Shamir
transformation. However, this does not work in our setting
since clients act as distributed provers and do not have the
same view that could then be hashed to form the challenge.
Trying to send the required information to all clients to obtain
such a common view is not viable since it incurs a prohibitive
communication overhead.

Instead, we modify the execution so that the server commits
to its challenge ahead of time using parameters provided by
each client. To retain the property that this is a proof of knowl-
edge, we require that this commitment is equivocable, as the

Public parameters: group G,H with generators g ∈ G` and
h ∈H

Client i’s input: ski, ri, Ci = Commit(ski;ri)

Server’s input: s ∈ |G|`, {Ci}i

1. Client i samples αi randomly and sends hi = hαi to the server.

2. The server samples a random challenge e and forms a com-
mitment comi,chl = gehsi

i for each client i, using some ran-
domness si. The server sends comi,chl to client i.

3. Each client i samples a random value ki ∈ |H| and sends
Ki = hki to the server.

4. The server opens the committed challenge by sending e and
si to client i.

5. Client i checks that comi,chl = gehsi
i , where comi,chl is the

value it received in Step 2. If not, it aborts. Otherwise, it
computes ti = ri · e+ ki and sends it and αi to the server.

6. The server checks that hi = hαi . If so, it computes C =

∏i∈[n]Ci/gs and t = ∑i∈[n] ti. It checks that ht =Ce
∏i∈[n] Ki

and outputs 1 if this check passes and 0 otherwise.

Figure 2: Distributed key correctness protocol for proving
that ∑i ski = s.

knowledge extractor needs to be able to send two different
challenges consistent with the same commitment. For exam-
ple, Pedersen commitments provide equivocation when the
discrete logarithm between the generators g and h is known.

Correctness. We can verify that

ht = ∏
i∈[n]

hti = (∏
i∈[n]

hri)e(∏
i∈[n]

hki) =Ce
∏
i∈[n]

Ki.

Knowledge soundness. The soundness of the protocol fol-
lows similarly to the soundness of the single prover Schnorr
protocol. The extractor can rewind the execution of steps 3
and 4 with the i-th client and provide two different openings
e1 and e2 for the committed challenge using the equivocability
of the commitment scheme, and obtain two different values
ti,1 and ti,2. If the proof verifies in both cases, then hti,1 = hti,2 ,
and the extractor can compute ri = (t1− t2)(e1− e2)

−1 since
e1− e2 6= 0.

Zero knowledge. The simulator for client i rewinds step 2
and 3 after it has obtained the opening of the commitment for
challenge e. It generates ti at random and sets Ki = hti(hri)−e.

5.2 Inner Product Proofs
We build our zero-knowledge proofs using Bulletproofs [11].
In the context of this work, similarly to Gentry et al. [19], we
regard Bulletproofs as a zero-knowledge proof of knowledge

USENIX Association 32nd USENIX Security Symposium 4813

of vectors x,y ∈ Zn
q that satisfy an inner product constraint

〈x,y〉= a in an order-q group G, where a is a public scalar.
At a high level, to prove 〈x,y〉= a the prover recursively

computes a new equation 〈x′,y′〉= a′ for vectors of half the
length, and computes commitments given a challenge sent by
the verifier. This requires both the prover and verifier to com-
pute new generators at each recursive step, with the prover
also computing new commitments to x′ and y′. In the non-
interactive variant using the Fiat-Shamir heuristic the genera-
tor computation can be unfolded, resulting in a single multi-
exponentiation of length 2n. We state the concrete costs for
Bulletproofs in terms of multi-exponentiation operations, for
which efficient sublinear algorithms are known [38]. The full
protocol details are given by Gentry et al. [19, Section E.2].

Lemma 1 ([11, 19]). Let C ∈ G be a group element, and let
h ∈ G2,g ∈ G2n be sets of generators in G known to both the
prover and verifier. Bulletproofs allows the prover to prove
knowledge of vectors x,y ∈ Zn

q and randomness r ∈ Zq such

that C = hr
0h〈x,y〉1 ∏

n
i=1 gxi

i gyi
i+n. It satisfies perfect complete-

ness, statistical zero knowledge, and computational knowl-
edge soundness under the discrete logarithm assumption.

When compiled into a NIZK proof, the prover performs
6n+8(log2(n)+1) group exponentiations (computed as sev-
eral multi-exponentiations), and the verifier performs a sin-
gle multi-exponentiation of length 2(n+ log2(n)+3). More-
over, batched verification of m proofs requires a single multi-
exponentiation of length 2n+2+m log2(2n+4). The proof
size is 2logn+4 group elements.

5.3 Proofs of Smallness

We consider two variants of the problem of proving in zero
knowledge that xi ∈ [0, t − 1] for all i: the first is efficient
for t = 2, which is useful for applications that rely on binary
k-hot encodings, while the second works for arbitrary values
of t, which is useful in the learning setting and in our proof
of correct encoding.

5.3.1 Proof for t = 2

We describe the protocol for t = 2 for simplicity, which closely
follows the approach to range proofs in Bulletproofs [11]. Let
C ∈ G be a group element, and let h ∈ G and g,h ∈ G` be
generators in G (public parameters).

1. The prover finds y ∈ G` satisfying (i) x◦y = 0 and (ii)
x = 1` + y. These properties hold if and only if x is
binary. The prover commits to x|y as C = hr

∏
`
i=1 gxi

i hyi
i

and sends this to the verifier.

2. The verifier sends random challenge scalars τ,ρ ∈ Zq to
the prover. Define r = (τi−1)i∈[`].

3. By Schwartz-Zippel, 〈x,y ◦ r〉 + ρ(〈x,r〉 + 〈−1`,y ◦
r〉) = 〈1`,r〉 holds if and only if (i) and (ii) hold, ex-
cept with probability (`+ 1)/q. This can be rewrit-
ten as a single constraint 〈x′,y′〉 = (1−ρ2)〈1`,r〉, for
x′ := x−1`ρ and y′ := y◦ r+ρr. The prover and veri-
fier can obtain a commitment C′ to x′|y′ by computing
C′ =C ·∏`

i=1 g−ρ

i hρ

i . This is a commitment to x′ and y′

using generators (h,g,h′) where h′i = hτ1−i

i . The prover
then uses Bulletproofs as described in Lemma 1 to prove
that 〈x,y′〉= 0 with respect to C′.

This proof is thus a reduction to Bulletproofs (Lemma 1),
requiring three additional length-` multi-exponentiations in
Step 3 by both the prover and verifier. However, this overhead
can be reduced to only two length-` multi-exponentiations
for the verifier, as both the generator switch and commitment
update can be combined with the analogous operations in
the outer loop of Bulletproofs. Moreover, the proof can be
made non-interactive via Fiat-Shamir, by deriving τ,ρ from
the protocol transcript and proof statement.

5.3.2 Proof for arbitrary t

To show that xi ∈ [a,b] it suffices to show that (xi−a)(b−xi)
is non-negative. We thus show that ci := xi(t−1−xi)≥ 0. A
common way to do this is to exhibit a decomposition of ci
into four squares. However, a useful optimization consists of
showing that c′i := 4ci +1≥ 0 [22]. These two conditions are
equivalent over the integers, but because c′i ≡ 1 mod 4 it can
be written as a sum of three squares, where the three squares
can be efficiently determined [40].

For convenience, we write c′i as 1+(t−1)2−(2xi−t+1)2.
The protocol thus proceeds by having the client prove that
c′i ≥ 0 for all i, by showing that it knows u,v,w such that

x′ ◦x′+u◦u+v◦v+w◦w = a (6)

holds over the integers, where x′ := 2 · x− (t − 1) · 1 and
a := (−(1+(t−1)2)) ·1 is public. The prover must also show
that these computations do not wrap around the modulus q,
which means showing that

‖x′|u|v|w‖∞ <
√

q/4 (7)

At this point it might seem that we’re going in circles, as
we reduced a range proof to two constraints, one of which is
itself a range proof. However, this second bound is very loose,
because

√
q/4� t. In our implementation of Bulletproofs we

have q> 2250, while we are interested in values of t for natural
datatypes, e.g. t = 216. Therefore we can take advantage of
approximate range proofs introduced by Gentry et al. [19] and
also used in [34], whose properties (assuming Fiat-Shamir)
are summarized in the following lemma.

Lemma 2 ([19, Lemma 3.5]). Fix a security parameter λ.
Let z ∈ Z` be a vector such that ‖z‖∞ ≤ t, and let γ > 1 be

4814 32nd USENIX Security Symposium USENIX Association

such that γ > 2500
√
`. There is a ZK proof system to show

‖z‖∞ ≤ γ · t by proving a single constraint 〈z|y,b〉= s given
vector commitments to z and y, where b ∈ Z`+λ

q is a public
vector, y ∈ [±γt/2(1+1/λ)]λ, and s ∈ Zq.

The requirement in Lemma 2 that
√

q/(4t) > 2500
√

4`
holds for Equation 7 as long as log2(q) > 2log2(2500) +
2log2(t) + log2(`) + 6, which combined with the fact that
q > 2250 means that even for t = 264 this approach can handle
vectors of length ` > 290 (well beyond realistic input sizes).

We can now describe our range proof protocol for large t.
Let h∈G and g∈G8`+λ be public generators in G. We denote
by Commit(h,g[i : i+ `−1];v) the vector Pedersen commit-
ment to v of length `, using generators h and gi, . . . ,gi+`−1.

1. The prover finds auxiliary vectors u,v,w such that Equa-
tion 6 holds and “double-commits” to z := x|u|v|w as
C1 := Commit(h,g[` : 4`];z) and C2 := Commit(h,g[4`+
1 : 8`];z). Let 〈z|y,b〉 = s be the constraint that proves
Equation 7 as in Lemma 2. Then the prover computes
Cy = Commit(h,g[8`+1 : 8`+λ];y) and sends C1, C2, and
Cy to the verifier.

2. The verifier sends random challenge scalars σ,τ,ρ ∈ Zq to
the prover. Let rx|ru|rv|rw = (σi−1)i∈[4`] and r= (τi−1)i∈[`]
be the corresponding challenge vectors.

3. The following constraint is equivalent to Equation 6, except
with probability bounded by (`+4)/q:

〈x′,x′ ◦ r〉+ 〈u,u◦ r〉+ 〈v,v◦ r〉+ 〈w,w◦ r〉= 〈a,r〉.

Instead of proving this directly, we use a trick from Gentry
et al. [19] to express it as

〈x′+ rx,(x′− rx)◦ r〉+ 〈u+ ru,(u− ru)◦ r〉 +
〈v+ rv,(v− rv)◦ r〉+ 〈w+ rw,(w− rw)◦ r〉= s,

where s = 〈a,r〉 − (‖rx‖2 + ‖ru‖2 + ‖rv‖2 + ‖rw‖2) is a
public value. This constraint can be rewritten as a single
inner product 〈x̄|ū|v̄|w̄, x̄′|ū′|v̄′|w̄′〉 = a for some a ∈ Zq,
where x̄ := x+ rx and x̄′ := (x− rx) ◦ r, and analogously
for the rest. By proving these constraints against C1 and
C2, the prover is effectively showing that C1 and C2 are
commitments to the same vector z. Next, to incorporate the
constraint 〈z|y,b〉 = s that proves Equation 7, the prover
can replace z with z̄ := x̄|ū|v̄|w̄ and prove an equivalent con-
straint 〈z̄|y,b〉= a′, where a′ := s−〈b,rx|ru|rv|rw|0|y|〉.
At this point, the prover has the constraints
〈z̄, x̄′|ū′|v̄′|w̄′〉 = a and 〈z̄|y,b〉 = a′, which can be
merged into a single constraint using ρ, resulting in a
single inner product:

〈z̄|y, x̄′|ū′|v̄′|w̄′|ρb〉= a+ρa′. (8)

The prover and the verifier both obtain a commitment C′ to
z̄|y|x̄′|ū′|v̄′|w̄′|ρb from C1, C2 and Cy, which can be done

using only linear operations. The prover can then use Bul-
letproofs to prove the constraint in Equation 8.

In addition to using Bulletproofs, the above protocol re-
quires three length-8` multi-exponentiations by the prover and
verifier to compute C′ in step 3. As in the protocol for t = 2,
the prover and verifier also need to switch the generators to
match the commitment C′. The prover can again combine the
process of both switching generators and updating the com-
mitment with the analogous operations in the outer loop of
Bulletproofs, thus computing them almost for free. The only
remaining overhead is two multi-exponentiations of length 8`
for the verifier, but this overhead can be batched as it depends
on public (not proof-specific) generators.

For x ∈ Z`
t , the overall proof system π0≤x<t thus has the

costs stated in Lemma 1, using n = 8`+ λ, with two addi-
tional multi-exponentiations of length 8` for the verifier and
commitment cost (to vectors of total length 8`+λ with entries
in [t]) for the prover.

5.4 Proofs of Validity of Encoding
In all variants of the protocol, πEnc(sk,x) reduces to proving
an inner product constraint involving public packing matrix
G ∈ Z ¯̀×`

q and masked input yi ∈ Z ¯̀
q, and a private committed

input vector xi, for each client i. In the PRG-based ACORN-
detect, for example, we rely on the constraint yi = ski +Gxi

for a committed key ski ∈ Z ¯̀
q, while for the RLWE-based

variant we rely on the constraint yi = Aski + T ei +Gkxi +

qdi∧‖ei‖∞ < be for committed key and error term ski,ei ∈Z
¯̀
q

and for some private bi ∈ Z ¯̀
q.

In general, these required constraints can be written as a
single constraint 〈x|v1| · · · |vk|,b〉= a using Schwartz-Zippel
as in the smallness proofs in Section 5.3, and then using
the smallness proofs directly to prove that ‖ei‖∞ < be. For
PRG-SecAgg, these reductions to a single constraint do not
have any overhead. For RLWE-SecAgg, the combined proof
requires additional multi-exponentiations due to the secret
multiplier di and the smallness proof of ei.

5.5 Other Validity Predicates
We have already presented proofs of one useful validity pred-
icate: valid(x) := x ∈ [0, t)`, which extends to valid(x) :=
‖x‖∞ = t. We now discuss useful variants related to bounding
L0 and L2 norms. We first observe that proving k-hotness,
i.e. valid(x) := x ∈ {0,1}` ∧‖x‖0 = k, can be achieved by
just merging the constraint 〈x,1`〉= k with the proof of Sec-
tion 5.3.1, which does not add any overhead. Let us also
consider how to prove valid(x) := x ∈ [0, t)∧‖x‖2 ≤ b for
some public bound b, where t could be replaced by some nat-
ural bit-width like 216 or 232. This can be done in two steps:
first we establish that ‖x‖2 ≤ ηb using an approximate L2
proof such that ηb < q/2 for some gap parameter η > 1, and

USENIX Association 32nd USENIX Security Symposium 4815

then we apply Lagrange’s four-square theorem and prove that

〈x|υ0|υ1|υ2|υ3,x|υ0|υ1|υ2|υ3〉= b (9)

where υ0, . . . ,υ3 are integers guaranteed to exist if ‖x‖2 ≤ b.
Recently, Lyubashevsky et al. [34, Lemma 2.9] showed that
the approximate L2 bound proof can be adopted from the
approximate L∞ bound proof of Lemma 2. These two proofs
can be combined with the proofs of Section 5.3 to show that
Equation 9 holds over the integers, and the overhead is the
additional commitments to υ0, . . . ,υ3 (twice using different
sets of generators) and the increased inner product constraint
length (by 4). The details of this extension were given by
Gentry et al. [19, Section 3.5].

6 Implementation and Evaluation

In this section we present experimental results for our new
protocols, focusing on RLWE-SecAgg (in Section 6.1) and
ACORN-detect (in Section 6.2). We do not benchmark
ACORN-robust, but as described in Section 4.2 these costs
can be derived from those of ACORN-detect (taking into ac-
count the additional vector commitments clients must form).

We focus on two scenarios when setting experiment param-
eters: (1) federated learning (FL) applications with n = 500
clients and input vectors x containing 16-bit integers (i.e.
t = 216); and 2) federated aggregation (FA) applications with
n = 10000 clients and input vectors x containing binary val-
ues (i.e. t = 2). In both settings, we consider input vectors of
length ` ranging from 210 to 220, which covers a wide range
of real-world scenarios. Our experiments were performed on
a laptop with an Intel i7-1185G7 CPU running at 3GHz and
with 16GB memory, in single thread mode, and we take ad-
vantage of SIMD instructions such as AVX512. For the input
validation steps we also performed experiments on a Pixel 6
Pro smartphone.

6.1 RLWE-SecAgg

RLWE parameters. We first set the error distribution χe
for sampling e and f in our encryption scheme to be a dis-
crete Gaussian Dσ1 with standard deviation σ1 = 4.5. As
shown in the full version of the paper [5], the security level
of our RLWE encryption with this error distribution can be
derived from the hardness of solving RLWE with a discrete
Gaussian error distribution of standard deviation σ = 3.2.
In the implementation we use a tail-cut discrete Gaussian
with support [−60,60] to sample e+ f, which is statistically
close to D2σ1 with distance at most 2−30. When input val-
idation is not required, we choose a power-of-2 ring de-
gree N ∈ {211,212,213}, and we pick a prime modulus q = 1
(mod 2N) with 155 bits of security according to the lattice
estimator [3]; such q takes advantage of Number Theoretic
Transform (NTT) for fast polynomial multiplication. With

211 213 215 217 219

Input length

10−1

100

101

102

103

Si
ze

 (K
B)

Client communication cost, no input validation

RLWE, t= 2, n= 10000
PRG, t= 2, n= 10000
RLWE, t= 216, n= 500
PRG, t= 216, n= 500
Insecure baseline, t= 2
Insecure baseline, t= 216

211 213 215 217 219

Input length

100

101

102

103

En
co

di
ng

 ti
m

e
(m

s)

Client encoding times, no input validation
RLWE-SecAgg, t= 2, n= 10000
PRG-SecAgg, t= 2, n= 10000
RLWE-SecAgg, t= 216, n= 500
PRG-SecAgg, t= 216, n= 500

Figure 3: Averaged over 100 runs and plotted on a logarithmic
scale, the message size (on the left) and encoding times (on
the right) for our two scenarios for RLWE-SecAgg, PRG-
SecAgg, and the insecure baseline where clients send the
(uncompressed) input vector in the clear.

these parameters our RLWE encoding scheme achieves at
least 128 bits of security with n≤ 104 clients. Furthermore
we pick ring parameters such that it can optimally accommo-
date input messages via packing. With input validation, we
choose N ∈ {211,212} and a prime q of at most 96 bits and
achieve the same level of security as above. As shown in the
full version of this paper [5], these parameters allow us to
prove valid RLWE encodings using Bulletproofs based on
curve25519.

Ciphertext expansion. Since the RLWE modulus q is usu-
ally much larger than the input bound t, we pack multiple
input entries into a single plaintext slot. In addition, when the
packed input vector has length ¯̀< N, each client i sends just
the first ¯̀ coefficients y′i = yi[1 . . . ¯̀] instead of the full yi. The
server can still recover the aggregated input from ∑i y′i and
the first ` rows of the public randomness A. In contrast, in
PRG-SecAgg we have more choices for the modulus q. For
PRG-SecAgg without input validation, we can set the modu-
lus q = nt to achieve the optimal ciphertext expansion ratio,
which is the total ciphertext bit-size over the input bit-size;
when input validation is required, we set the modulus q = P.

Experimental results. We benchmarked the RLWE encoding
step for individual clients, which involves expanding seeds to
secret keys and encoding the packed input with the properly
aggregated secret keys. For comparison, we also benchmarked
the PRG encoding step, where seeds are expanded by repeat-
edly calling AES to the desired length, and masking is done
via modular addition. The results are in Figure 3.

For example, in the FL use case where t = 216 and n = 500,
when the input has length `= 216, RLWE encoding takes only
17ms while PRG encoding takes 65ms; for an input of length
`= 220, RLWE encoding takes 130ms while PRG encoding
takes 1.06s. Figure 3 shows our encoding benchmark results
of both RLWE-SecAgg and PRG-SecAgg. Overall, RLWE
encoding achieves roughly up to 5x speedup in the FA setting
for `≥ 215, and up to more than 8x speedup in the FL setting

4816 32nd USENIX Security Symposium USENIX Association

211 213 215 217 219

Input length

10−2

10−1

100

101

Ti
m

e
(s

)

Server key recovery times
 t= 216, n= 500, no input validation

RLWE-SecAgg, 10% dropout
PRG-SecAgg, 10% dropout
RLWE-SecAgg, no dropout
PRG-SecAgg, no dropout

211 213 215 217 219

Input length
100

101

102

103

Ti
m

e
(s

)

Server key recovery times
 t= 2, n= 10000, no input validation

RLWE-SecAgg, 10% dropout
PRG-SecAgg, 10% dropout
RLWE-SecAgg, no dropout
PRG-SecAgg, no dropout

Figure 4: Server key recovery experiment results for RLWE-
SecAgg and PRG-SecAgg. The runtimes are averaged over
100 runs and plotted on a logarithmic scale. The diagram
on the left shows runtimes for the FL scenario (t = 216 and
n = 500), and the diagram on the right for the FA scenario
(t = 2 and n = 104). We consider cases with no dropouts and
with a δ = 1/10 fraction of dropouts.

for `≥ 213; for shorter input x the time spent on RLWE secret
sampling is more significant than the PRG mask expansion.

We also benchmarked the server key recovery step for
RLWE-SecAgg and PRG-SecAgg. The results are shown in
Figure 4. For RLWE-SecAgg, the key recovery step includes
expanding seeds to RLWE secrets of length N and decoding
the RLWE masked sum, which involves an NTT operation per
RLWE ciphertext. We see from the results that the RLWE key
recovery times are dominated by seed expansion, which is
independent of the input length `, and the time spent on decod-
ing the masked sum was not significant except when n is small
and ` is very large. Compared to PRG-SecAgg, the RLWE
key recovery step is much more efficient for long inputs: for
example, with n = 10000 it takes only 10.3s to recover all
secrets and decode the masked sum in RLWE-SecAgg when
`= 220 for all n = 10000 clients with 10% dropout rate, while
in PRG-SecAgg the same step requires 1650s.

6.2 ACORN-detect

While RLWE-SecAgg is more efficient without input val-
idation, it becomes less efficient on the client when input
validation is required due to additional proofs of smallness of
the error terms. For example, when input x is a binary vector
of length 216, generating the input validation proof for RLWE-
SecAgg takes 8.4s whereas it takes 4.6s for PRG-SecAgg. For
input x of length 216 and l∞ norm t = 216, it takes 26.07s to
generate RLWE-SecAgg input validation proofs and 18.7s
for PRG-SecAgg. We thus focus our results only on the PRG
variant of ACORN-detect, and refer the readers to the full
version for the RLWE variant.

We benchmarked the main components of ACORN-detect
with graph parameters γ = δ = 1/10. For the client, these
consist of the encoding step and generating the necessary

Client computation time Client bandwidth

Type Round (s) Total (m) Factor Total (MB) Factor

MNIST (19k params, 160 rounds, training time per round 1.17s)
SA 1.19 3.22 1x 5.41 1x
L2 6.65 17.79 5.52x 5.68 1.05x
L∞ 6.59 17.63 5.47x 5.67 1.05x

CIFAR-10 S (62k params, 100 rounds, training time per round 0.83s)
SA 0.86 1.48 1x 11.02 1x
L2 18.81 31.39 21.28x 11.20 1.02x
L∞ 18.28 30.50 20.68x 11.19 1.02x

CIFAR-10 L (273k params, 160 rounds, training time per round 20.75s)
SA 20.91 55.82 1x 77.66 1x
L2 100.33 267.60 4.79x 77.97 1.01x
L∞ 96.55 257.53 4.61x 77.96 1.01x

Shakespeare (818k params, 20 rounds, training time per round 284.16s)
SA 284.64 94.89 1x 29.08 1x
L2 519.92 173.31 1.83x 29.13 1.01x
L∞ 510.42 170.15 1.79x 29.12 1.01x

Table 2: End-to-end model training with ACORN-detect. “SA”
denotes experiments using PRG-SecAgg, which includes lo-
cal training and secure aggregation. L2 and L∞ denote experi-
ments using ACORN-detect with L2 and L∞ validity proofs.
Computation time and bandwidth are reported per client, and
overhead factors are with respect to secure aggregation (SA).

commitments to sk and x and proofs π0≤x<t and πEnc(sk,x).
As discussed in Section 5.5, these costs also cover πvalid(x) for
various validity predicates (e.g., one-hotness and both L∞ and
L1 bounds). For the server, this consists of proof verification
and key recovery steps. Figure 5 shows the client and server
runtimes as well as the client communication costs for both
settings we consider, where all benchmarks were run on a
laptop. When running the client computations on the Pixel 6
Pro smartphone, we observed an average slowdown of 3X.

Encoding. We set the mask modulus q to the group size
of curve25519 to match our Bulletproofs implementation.
Comparing to PRG-SecAgg without input validation, this
modulus q is less optimal in terms of packing capacity, and
as a result, encoding times are increased by 40% to 70%.
Regardless, encoding still takes less than one second for all
but one input lengths (the exception being vectors of length
220 in the federated learning use case).

Commitment generation. When t = 2, commitment genera-
tion is fast and grows slowly even for long inputs: for inputs
of length `= 220 the commitments can be generated in 404ms.
When input entries are large (t = 216), commitment gener-
ation is slower, but can still finish in 1.13s for ` = 217. On
the Pixel 6 Pro, commitments can be generated in 734ms for
t = 2 and `= 220, and in 2.1s for t = 216 and `= 217.

Proof generation. We implemented the more efficient Bul-
letproofs variant due to Gentry et al. [19, Section E.2]. Our
implementation [16] further optimizes proof generation by

USENIX Association 32nd USENIX Security Symposium 4817

210 211 212 213 214 215 216 217 218 219 220

Input length

100

101

102

103

104

105

Ti
m

e
(m

s)

76ms
150ms

287ms
584ms

1.2s
2.2s

4.7s
9.3s

17.9s
37.3s

72.1s
ACORN-detect, client computation cost, t= 2, n= 104

Total
Encoding
Commitment generation
Proof generation

210 211 212 213 214 215 216 217 218 219 220

Input length

102

103

104

105

106

Co
m

m
un

ica
tio

n
co

st
 (b

yt
e)

3.2KB
5.3KB

9.5KB
17.7KB

34.2KB
67.0KB

132.6KB
263.7KB

526.0KB
1.1Mb

2.1Mb
ACORN-detect, client communication cost, t= 2, n= 104

Total
Encoded input size
Commitment size
Proof size

210 211 212 213 214 215 216 217 218 219 220

Input length

100

101

102

103

Ti
m

e
(s

)

1.4s
2.4s

4.2s
7.9s

15.2s
29.7s

58.3s
114.6s

228.5s
459.0s

918.9s
ACORN-detect, server computation cost, t= 2, n= 104

Total with 5% dropout
Proof verification
Key recovery, no dropout
Key recovery, 5% dropout
Key recovery, 10% dropout

210 211 212 213 214 215 216 217 218 219 220

Input length
100

101

102

103

104

105

106

Ti
m

e
(m

s)

303ms
548ms

1.1s
2.4s

4.4s
9.5s

18.8s
35.8s

76.2s
150.7s

296.4s
ACORN-detect, client computation cost, t= 216, n= 500

Total
Encoding
Commitment generation
Proof generation

210 211 212 213 214 215 216 217 218 219 220

Input length

102

103

104

105

106

Co
m

m
un

ica
tio

n
co

st
 (b

yt
e)

4.6KB
7.9KB

14.6KB
27.7KB

54.0KB
106.5KB

211.4KB
421.2KB

840.7KB
1.7Mb

3.4Mb
ACORN-detect, client communication cost, t= 216, n= 500

Total
Encoded input size
Commitment size
Proof size

210 211 212 213 214 215 216 217 218 219 220

Input length
10−2

10−1

100

101

102

Ti
m

e
(s

)

562.72ms
1.1s

2.2s
4.4s

9.2s
17.8s

35.4s
71.3s

143.4s

ACORN-detect, server computation cost, t= 216, n= 500
Total with 5% dropout
Proof verification
Key recovery, no dropout
Key recovery, 5% dropout
Key recovery, 10% dropout

Figure 5: On a logarithmic scale, benchmarks for ACORN-detect for the FA use case where t = 2 and n = 10000 (on the top
row) and the FL use case where t = 216 and n = 500 (on the bottom). In both cases we measured (1) the client runtime (on the
left); (2) the client communication cost (in the middle); and (3) the server runtime (on the right), considering proof verification
and key reconstruction for three different levels of dropouts. Our proof verification experiments for t = 216 and input length
`≥ 219 ran out of memory, which is why these bars are missing in the bottom right diagram. The encoding experiments were
repeated 100 times for each parameter set, and the other experiments were repeated for at least 5 seconds or 10 iterations; the
average running times are estimated using the bootstrap resampling method with 95% confidence level.

not requiring the client to pad the inner product constraints to
a power-of-2 length, which saves almost half of the proof gen-
eration time when the input is exactly or slightly longer than a
power of 2. When t = 2, all proofs can be generated in 572ms
for inputs of length ` = 213 and in 70s for length ` = 220.
When t = 216, the combined linear constraint is roughly four
times longer than in the t = 2 case, so proof generation is
slower: it runs in 2.27s for inputs of length 213 and in 285s
for length 220. For comparison, proof generation on the Pixel
6 Pro for `= 213 takes 2.1s for t = 2 and 8.2s for t = 216.

Proof verification. The verification step also takes advantage
of the lightweight linear proof optimization, and we bench-
marked the batched verification of proofs from all n clients
using the techniques mentioned in Section 5.2. As we can see,
batched proof verification in the binary case is very efficient
due to the smaller size of proofs and the SIMD acceleration:
verifying all proofs from 10,000 clients takes 1.7s for inputs
of length `= 213 and 133.2s for `= 220. When t = 216, the
proof is longer and hence verification requires more time: it
takes 9.1s for ` = 213 and 131.1s for ` = 218. Note that the
server can divide client proofs in many small batches and
fully parallelize the proof verification process.

End-to-end performance in FL. Following Lycklama et
al. [33], we demonstrate the effectiveness of ACORN-detect

for four practical use cases in federated learning. Concretely,
we consider the following three tasks on image-based datasets:
training (1) a convolutional neural network (CNN) on the
Federated-MNIST dataset [12], (2) the LeNet-5 [30] and (3)
the ResNet-20 CNN [23] on the CIFAR-10 dataset [29]. We
also consider (4) the task of training an LSTM [24] model
on the text-based Shakespeare dataset [12]. We use Tensor-
Flow [1] to train neural networks, where the hyperparameters
are set as in [33]. To account for network latency we intro-
duce delays of 0.5ms as in [33]. We report the per-client
running time that includes the local training and aggregation
steps (as described in Section 1.2). The results are in Ta-
ble 2, and a more detailed experimental setup can be found in
Appendix A.

For each use case, we compare ACORN-detect with both
L∞- and L2-norm based validity proofs against PRG-SecAgg
without input validation. A single round on each client con-
sists of receiving the updated model, performing local training
using its samples, and participating in the secure aggregation
protocol using its model updates as input. As we can see,
the local training time dominates the running time of our SA
baseline. Furthermore, in all cases the bandwidth overhead of
ACORN-detect is very modest (at most 1.05x), and in most
cases the computational overhead is also fairly low (at most
5.52x). The exception is for CIFAR-10 S, where the higher

4818 32nd USENIX Security Symposium USENIX Association

overhead (21.28x) is due to a relatively higher learning rate
(η = 0.01) and the small sample count (1024) and epochs per
round (2) required to reach the desired accuracy. This makes
the local training highly efficient, and thus generating validity
proofs becomes a more dominant cost.

7 Conclusion and Open Problems

We presented a new secure aggregation protocol, RLWE-
SecAgg, along with extensions, ACORN, that allow the server
to perform validity checks on the inputs provided by clients.
Our benchmarks demonstrate that the overheads of these
checks are practical. Other zero-knowledge protocols offer
lower prover runtimes, however, and may do so without mak-
ing other costs impractical for our setting. For example, lattice-
based proofs may offer a better balance between computa-
tional and communication overheads, and would also offer the
advantage when combined with RLWE-SecAgg of providing
plausible post-quantum security.

Acknowledgements

We would like to thank Michael Specter for benchmarking
our code on a Pixel device, and our anonymous reviewers and
shepherd for their helpful comments and suggestions.

References

[1] M. Abadi et al. “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems”. In:
CoRR abs/1603.04467 (2016). arXiv: 1603.04467.
URL: http://arxiv.org/abs/1603.04467.

[2] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A.
Polychroniadou. “Prio+: Privacy Preserving Aggregate
Statistics via Boolean Shares”. In: SCN. Vol. 13409.
Lecture Notes in Computer Science. Springer, 2022,
pp. 516–539.

[3] M. R. Albrecht, R. Player, and S. Scott. “On the con-
crete hardness of Learning with Errors”. In: J. Math.
Cryptol. 9.3 (2015), pp. 169–203.

[4] B. Alon, M. Naor, E. Omri, and U. Stemmer. “MPC
for Tech Giants (GMPC): Enabling Gulliver and the
Lilliputians to Cooperate Amicably”. In: IACR Cryptol.
ePrint Arch. (2022), p. 902.

[5] J. Bell et al. “ACORN: Input Validation for Secure
Aggregation”. In: IACR Cryptol. ePrint Arch. (2022).
URL: https://eprint.iacr.org/2022/1461.

[6] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and
M. Raykova. “Secure Single-Server Aggregation with
(Poly)Logarithmic Overhead”. In: CCS. ACM, 2020,
pp. 1253–1269.

[7] K. A. Bonawitz et al. “Practical Secure Aggregation
for Privacy-Preserving Machine Learning”. In: CCS.
ACM, 2017, pp. 1175–1191.

[8] K. A. Bonawitz et al. “Towards Federated Learning at
Scale: System Design”. In: MLSys. mlsys.org, 2019.

[9] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and
Y. Ishai. “Lightweight Techniques for Private Heavy
Hitters”. In: IEEE Symposium on Security and Privacy.
IEEE, 2021, pp. 762–776.

[10] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit.
“Efficient Zero-Knowledge Arguments for Arithmetic
Circuits in the Discrete Log Setting”. In: Proceedings
of Eurocrypt 2016. 2016.

[11] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille,
and G. Maxwell. “Bulletproofs: Short Proofs for Con-
fidential Transactions and More”. In: IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society,
2018, pp. 315–334.

[12] S. Caldas et al. Leaf: A benchmark for federated set-
tings. arXiv preprint arXiv:1812.01097. 2018.

[13] A. R. Choudhuri, A. Goel, M. Green, A. Jain, and
G. Kaptchuk. “Fluid MPC: Secure Multiparty Com-
putation with Dynamic Participants”. In: CRYPTO
(2). Vol. 12826. Lecture Notes in Computer Science.
Springer, 2021, pp. 94–123.

[14] A. R. Chowdhury, C. Guo, S. Jha, and L. van der
Maaten. “EIFFeL: Ensuring Integrity for Federated
Learning”. In: CCS. ACM, 2022.

[15] H. Corrigan-Gibbs and D. Boneh. “Prio: Private, Ro-
bust, and Scalable Computation of Aggregate Statis-
tics”. In: NSDI. USENIX Association, 2017, pp. 259–
282.

[16] Efficient Bulletproofs in Rust. Anonymized; available
upon acceptance for double blinded review. 2022.

[17] A. Fiat and A. Shamir. “How to Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems”.
In: CRYPTO. Vol. 263. Lecture Notes in Computer Sci-
ence. Springer, 1986, pp. 186–194.

[18] C. Gentry. “A fully homomorphic encryption scheme”.
PhD thesis. Stanford University, USA, 2009. URL:
https : / / searchworks . stanford . edu / view /
8493082.

[19] C. Gentry, S. Halevi, and V. Lyubashevsky. “Practi-
cal Non-interactive Publicly Verifiable Secret Shar-
ing with Thousands of Parties”. In: EUROCRYPT
(1). Vol. 13275. Lecture Notes in Computer Science.
Springer, 2022, pp. 458–487.

USENIX Association 32nd USENIX Security Symposium 4819

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://eprint.iacr.org/2022/1461
https://searchworks.stanford.edu/view/8493082
https://searchworks.stanford.edu/view/8493082

[20] Z. Ghodsi, M. Javaheripi, N. Sheybani, X. Zhang, K.
Huang, and F. Koushanfar. zPROBE: Zero Peek Ro-
bustness Checks for Federated Learning. 2022. DOI:
10.48550/ARXIV.2206.12100. URL: https://
arxiv.org/abs/2206.12100.

[21] O. Goldreich. The Foundations of Cryptography - Vol-
ume 2: Basic Applications. Cambridge University
Press, 2004.

[22] J. Groth. “Non-interactive Zero-Knowledge Argu-
ments for Voting”. In: International Conference on
Applied Cryptography and Network Security (ACNS).
Vol. 3531. Lecture Notes in Computer Science. 2005,
pp. 467–482.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep Resid-
ual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385. 2015.

[24] S. Hochreiter and J. Schmidhuber. “Long Short-
Term Memory”. In: Neural Computation 9.8 (1997),
pp. 1735–1780.

[25] How Messages improves suggestions with federated
technology. https : / / support . google . com /
messages/answer/9327902. Accessed: 2022-10-06.

[26] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank.
“On Combining Privacy with Guaranteed Output Deliv-
ery in Secure Multiparty Computation”. In: CRYPTO.
Vol. 4117. Lecture Notes in Computer Science.
Springer, 2006, pp. 483–500.

[27] P. Kairouz et al. “Advances and Open Problems in
Federated Learning”. In: Found. Trends Mach. Learn.
14.1-2 (2021), pp. 1–210.

[28] F. Karakoç, M. Önen, and Z. Bilgin. “Secure Aggre-
gation Against Malicious Users”. In: SACMAT ’21:
The 26th ACM Symposium on Access Control Mod-
els and Technologies, Virtual Event, Spain, June 16-18,
2021. Ed. by J. Lobo, R. D. Pietro, O. Chowdhury,
and H. Hu. ACM, 2021, pp. 115–124. DOI: 10.1145/
3450569.3463572. URL: https://doi.org/10.
1145/3450569.3463572.

[29] A. Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. 2009.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
“Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE. 1998.

[31] J. Lee, D. Kim, D. Kim, Y. Song, J. Shin, and J. H.
Cheon. “Instant Privacy-Preserving Biometric Authen-
tication for Hamming Distance”. In: IACR Cryptol.
ePrint Arch. (2018), p. 1214.

[32] Y. Lindell. “How to Simulate It - A Tutorial on the Sim-
ulation Proof Technique”. In: Tutorials on the Founda-
tions of Cryptography. Springer International Publish-
ing, 2017, pp. 277–346.

[33] H. Lycklama, L. Burkhalter, A. Viand, N. Küchler, and
A. Hithnawi. “RoFL: Attestable Robustness for Se-
cure Federated Learning”. In: CoRR abs/2107.03311
(2021).

[34] V. Lyubashevsky, N. K. Nguyen, and M. Plançon.
“Lattice-Based Zero-Knowledge Proofs and Applica-
tions: Shorter, Simpler, and More General”. In: Lecture
Notes in Computer Science (2022).

[35] V. Lyubashevsky, C. Peikert, and O. Regev. “On Ideal
Lattices and Learning with Errors over Rings”. In: J.
ACM 60.6 (2013), 43:1–43:35.

[36] L. Melis, G. Danezis, and E. D. Cristofaro. “Efficient
Private Statistics with Succinct Sketches”. In: NDSS.
The Internet Society, 2016.

[37] D. Pasquini, D. Francati, and G. Ateniese. “Eluding
Secure Aggregation in Federated Learning via Model
Inconsistency”. In: CCS. ACM, 2022, pp. 2429–2443.

[38] N. Pippenger. “On the Evaluation of Powers and Mono-
mials”. In: SIAM J. Comput. 9.2 (1980), pp. 230–250.

[39] Predicting Text Selections with Federated Learning.
https : / / ai . googleblog . com / 2021 / 11 /
predicting- text- selections- with.html. Ac-
cessed: 2022-10-06.

[40] M. O. Rabin and J. O. Shallit. “Randomized algorithms
in number theory”. In: Communications on Pure and
Applied Mathematics 39.S1 (1986), S239–S256. DOI:
https://doi.org/10.1002/cpa.3160390713.
eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/cpa.3160390713. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1002/
cpa.3160390713.

[41] L. Reyzin, A. D. Smith, and S. Yakoubov. “Turning
HATE Into LOVE: Homomorphic Ad Hoc Thresh-
old Encryption for Scalable MPC”. In: IACR Cryptol.
ePrint Arch. 2018 (2018), p. 997.

[42] E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce.
“Orchard: Differentially Private Analytics at Scale”. In:
OSDI. USENIX Association, 2020, pp. 1065–1081.

[43] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ra-
mage. “Back to the Drawing Board: A Critical Evalua-
tion of Poisoning Attacks on Federated Learning”. In:
(2022). To appear.

[44] E. Shi, T. H. Chan, E. G. Rieffel, R. Chow, and D. Song.
“Privacy-Preserving Aggregation of Time-Series Data”.
In: NDSS. The Internet Society, 2011.

[45] J. So, B. Güler, and A. S. Avestimehr. “Turbo-
Aggregate: Breaking the Quadratic Aggregation Bar-
rier in Secure Federated Learning”. In: IEEE J. Sel.
Areas Inf. Theory 2.1 (2021), pp. 479–489.

4820 32nd USENIX Security Symposium USENIX Association

https://doi.org/10.48550/ARXIV.2206.12100
https://arxiv.org/abs/2206.12100
https://arxiv.org/abs/2206.12100
https://support.google.com/messages/answer/9327902
https://support.google.com/messages/answer/9327902
https://doi.org/10.1145/3450569.3463572
https://doi.org/10.1145/3450569.3463572
https://doi.org/10.1145/3450569.3463572
https://doi.org/10.1145/3450569.3463572
https://ai.googleblog.com/2021/11/predicting-text-selections-with.html
https://ai.googleblog.com/2021/11/predicting-text-selections-with.html
https://doi.org/https://doi.org/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713

[46] T. Stevens, C. Skalka, C. Vincent, J. Ring, S. Clark, and
J. Near. “Efficient Differentially Private Secure Aggre-
gation for Federated Learning via Hardness of Learn-
ing with Errors”. In: CoRR abs/2112.06872 (2021).
arXiv: 2112.06872. URL: https://arxiv.org/
abs/2112.06872.

[47] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan.
“Can You Really Backdoor Federated Learning?” In:
CoRR abs/1911.07963 (2019).

[48] H. Wang et al. “Attack of the Tails: Yes, You Re-
ally Can Backdoor Federated Learning”. In: NeurIPS.
2020.

[49] C. Xie, M. Chen, P.-Y. Chen, and B. Li. “CRFL: Cer-
tifiably Robust Federated Learning against Backdoor
Attacks”. In: Proceedings of the Thirty-eighth Inter-
national Conference on Machine Learning (ICML).
2021.

A End-to-End Experiment Setup

Here we give more details about our end-to-end experiments
on the four federated learning tasks in Section 6.2. Our exper-
iments ran on a laptop with a quad-core Intel i7-1185G7 CPU
and 16GB memory. Neural network training was performed
using Python in the TensorFlow [1] framework without GPU
acceleration. We used the same training parameters as Ly-
cklama et al. [33] and simulated the same network latency
(0.5ms). In particular, we used SDG as the training algorithm
and used the same local learning rates η: η= 0.05 for MNIST,
η = 0.01 for CIFAR-10 S, η = 0.05 for CIFAR-10 L, and
η = 0.3 for Shakespeare. We set the number of epochs per
round for MNIST to 5, for CIFAR-10 S and CIFAR-10 L to 2,
and for Shakespeare to 1. During each epoch, a client runs the
training algorithm on 1248 samples for MNIST, 1024 samples
for CIFAR-10 S and L, and 69440 samples for Shakespeare;
such training tasks are done in batches of size 32 for MNIST
and 64 for others. Model parameter updates are converted to
8-bit fixed point values by applying 8-bit probabilistic quan-
tization with 7 fractional bits. In each of our experiments,
we ran the federated learning task with a full dataset using a
corresponding secure aggregation protocol, and the per-client
performance was measured using the average of five end-to-
end runs.

USENIX Association 32nd USENIX Security Symposium 4821

https://arxiv.org/abs/2112.06872
https://arxiv.org/abs/2112.06872
https://arxiv.org/abs/2112.06872

Public parameters: Vector length `, input domain X`, secret distribution χs, and seed expansion function F : {0,1}λ 7→ supp(χs)
`

Client i’s input: xi ∈ X`

Server output: z ∈ X

Commitments
1. Client i generates keypairs (ski,1,pki,1),(ski,2,pki,2)← Sig.KeyGen(1λ) and sends (pki,1,pki,2) to the server. It performs the first step in the

distributed key correctness protocol, which results in it sending a message hi to the server.
2. The server commits to the public key vectors pk1 = (pki,1)i and pk2 = (pki,2)i using a Merkle tree. It sends the root hashes hroot,1 and hroot,2 to

each client. It also performs the second step of the distributed key correctness protocol, which means sampling its random challenge e and forming
and sending comi,chl to client i.

Distributed graph generation
3. Client i selects k neighbors by sampling randomly and without replacement k times from the set of n clients, and sends the resulting set N→(i) of

outgoing neighbors to the server. Denote by N(i) all neighbors of client i (consisting of their outgoing edges and implicitly defined incoming edges).
4. The server sends N←(i),(j,pk j,1,π j,1,pk j,2,π j,2) j∈N(i) to client i, where π j,1 and π j,2 are Merkle inclusion proofs with respect to roots hroot,1 and

hroot,2.
5. Client i aborts if the server has sent more than 3k+ k keys, if there is an index j ∈N→(i) that is not reflected in the keys sent by the server, or if the

Merkle inclusion proofs fail to verify.
Seed sharing

6. Each client i that has not dropped out performs the following:
• Generates a random seed seedi.
• Computes two sets of shares Hseed

i = {hseed
i,1 , . . . ,hseed

i,k }= ShamirSS(t,k,seedi) and Hs
i = {hs

i,1, . . . ,h
s
i,k}= ShamirSS(t,k,ski,1).

• Sends to the server messages m j = (j,ci, j) for each j ∈N→(i), where ci, j←Eauth.Enc(ki, j, i‖ j‖hseed
i, j ‖hs

i, j) for ki, j =KA.Agree(ski,2,pk j,2).

7. If the server receives messages from fewer than (1−δ)n clients, it aborts. Otherwise, it sends all messages (j,ci, j) to client j. Denote by A j ⊆N(j)
the set of neighbors for whom client j received such a message.

Masking
8. Each client i that has not dropped out performs the following:

• Computes a shared random seed seedi, j as seedi, j = KA.Agree(ski,1, pk j,1).
• Computes its packed encrypted input yi = Encode(ski,Gxi) with key defined as ski = si +∑ j∈Ai , j<i si j−∑ j∈A1 ,i< j si j for si j = F(seedi, j),

si = F(seedi) (as in Equation 3).
• Forms σincl

i, j ← Sig.Sign(ski,2,mi, j = “included”‖i‖ j) for all j ∈ Ai.

• Forms commitments comsk,i← Commit(ski;ri) and comx,i← Commit(xi) to its key and input respectively.

• Computes proofs πEnc(ski ,xi), π0≤xi<t , and πvalid(xi) of encoding, smallness, and validity.
• Performs the third step of the distributed key correctness protocol to form Ki.
• Sends to the server yi, (mi, j,σ

incl
i, j) j , comsk,i,comx,i,Ki,π

Enc(ski ,xi),π0≤xi<t ,πvalid(xi).
Dropout agreement and unmasking

9. The server collects packed encoded inputs for a determined time period. If it receives fewer than (1−δ)n, it aborts. Otherwise, it defines a global set
of dropouts D and a set of survivors S . It then sends the messages and signatures (m j,i,σ

incl
j,i) to every client i ∈ S , along with the sets Di =N(i)∩D

(its incoming neighbors that are dropouts) and Si =N(i)∩S (its incoming neighbors that are not). It also sends the opening of the commitment for
the distributed key correctness protocol (following the fourth step), containing its challenge e.

10. Each client i that has not dropped out performs the following:
• Checks that Di ∩Si = /0, that Si,Di ⊆N(i)∩Ai, and that all signatures σincl

j,i are valid on message m j,i for all j ∈ Si, aborting if any of these
checks fail.

• Computes σack
i, j ← Sign(ski,2,“ack”‖i‖ j) for all j ∈ Si.

• Performs the fifth step of the distributed key correctness protocol, which means forming values ti and αi.
• Sends (mi, j,σ

ack
i, j) j and ti,αi to the server.

11. The server aborts if it receives fewer than (1−δ)n responses. It verifies all received proofs πEnc(ski ,xi), π0≤xi<t , πvalid(xi) and aborts if any of them
fails. Otherwise it forwards all messages (j,mi, j,σ

ack
i, j) to client j.

12. Each remaining client verifies its received signatures using pk j,2, aborting if they fail to verify. Once a client receives p valid signatures from its
neighbors, it sends {i,hseed

i, j } j∈Di and {i,hs
i, j} j∈Si to the server, which it has obtained by decrypting the ciphertexts ci, j received in Step 6.

13. The server aborts if it receives fewer than (1−δ)n responses, and otherwise:
• Collects, for each client i ∈D , the set of all received shares in Hseed

i , and aborts if there are fewer than t. If not it recovers seedi and si using
the t shares received from the lowest client IDs.

• Collects, for each client i ∈ S , the set of all shares in Hs
i , and aborts if there are fewer than t. If not it recovers ski,1 and si j for all j ∈N(i).

• Computes a decryption key sk = ∑i∈S (si +∑ j∈Di , j<i si j−∑ j∈Di ,i< j si j).

• Using sk, performs the final step of the distributed key correctness protocol and aborts if verification fails.
• Outputs ∑i∈S xi as G−1(Decode(sk,∑i∈A′2

yi)) .

Figure 6: Maliciously secure SecAgg from homomorphic encodings with input verification.

4822 32nd USENIX Security Symposium USENIX Association

	Introduction
	Our Contributions
	Secure Aggregation for FL
	Other Related Work

	Preliminaries
	Setting and Threat Model
	Lattices and Polynomial Rings
	Ring LWE and Encryption
	Commitment and Zero-Knowledge Proofs

	Generalized Secure Aggregation
	PRG-SecAgg
	RLWE-SecAgg

	Adding Input Validation
	Detecting Client Misbehavior
	Robustness in the Face of Misbehavior

	Zero-Knowledge Constructions
	Distributed Proof of Aggregated Key Correctness
	Inner Product Proofs
	Proofs of Smallness
	Proof for t=2
	Proof for arbitrary t

	Proofs of Validity of Encoding
	Other Validity Predicates

	Implementation and Evaluation
	RLWE-SecAgg
	ACORN-detect

	Conclusion and Open Problems
	End-to-End Experiment Setup

