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Abstract
Today’s digital communication relies on complex protocols
and specifications for exchanging structured messages and
data. Communication naturally involves two endpoints: One
generating data and one consuming it. Traditional fuzz testing
approaches replace one endpoint, the generator, with a fuzzer
and rapidly test many mutated inputs on the target program
under test. While this fully automated approach works well
for loosely structured formats, this does not hold for highly
structured formats, especially those that go through complex
transformations such as compression or encryption.

In this work, we propose a novel perspective on generating
inputs in highly complex formats without relying on heavy-
weight program analysis techniques, coarse-grained grammar
approximation, or a human domain expert. Instead of mu-
tating the inputs for a target program, we inject faults into
the data generation program so that this data is almost of
the expected format. Such data bypasses the initial parsing
stages in the consumer program and exercises deeper program
states, where it triggers more interesting program behavior.
To realize this concept, we propose a set of compile-time
and run-time analyses to mutate the generator in a targeted
manner, so that it remains intact and produces semi-valid out-
puts that satisfy the constraints of the complex format. We
have implemented this approach in a prototype called FUZZ-
TRUCTION and show that it outperforms the state-of-the-art
fuzzers AFL++, SYMCC, and WEIZZ. FUZZTRUCTION
finds significantly more coverage than existing methods, espe-
cially on targets that use cryptographic primitives. During our
evaluation, FUZZTRUCTION uncovered 151 unique crashes
(after automated deduplication). So far, we manually triaged
and reported 27 bugs and 4 CVEs were assigned.

1 Introduction

Our modern digital infrastructure is based on well-defined
message and data formats, including standards and specifica-
tions for data exchange. These systems have at least two end-
points, both of which encode the domain knowledge required

to handle the communication: One application generates
the data (hereafter referred to as generator), while the other
consumes it (called consumer). For example, various pro-
grams generate PDF documents as output and corresponding
PDF viewers display the result. Another example is cryp-
tographic libraries, which generate encrypted messages that
their corresponding counterparts can process. From a secu-
rity perspective, the consumer plays a crucial role, as it pro-
cesses potentially untrusted data and is thus exposed to attacks.
Fuzz testing (fuzzing for short), a form of randomized testing,
has proven helpful in efficiently finding software faults in
the input processing of consumer programs. Past advances
in fuzzing methods focused on throughput [1–3], effective-
ness [4–6], and applicability to new target domains [7–12].
Even after years of research, an unresolved challenge is the ef-
fective generation of valid inputs for complex formats, includ-
ing cryptographic primitives, compression, and other kinds
of tricky transformations.

Prior works and industry best practices attempted two ap-
proaches to tackle this challenge. First, heavy-weight pro-
gram analysis techniques, such as symbolic execution and
taint analysis, or manual workarounds, have been suggested
to solve roadblocks (e. g., checksums or hashes) [5, 6, 13–20].
Unfortunately, these methods do not scale to complex pro-
grams. Second, grammar-based fuzzing [21–29] has been in-
vestigated to generate inputs of a specific syntactical structure.
However, the use of grammars does not address the complex-
ity of applications using complex types of transformations,
especially cryptographic primitives and compression.

Instead of using heavy-weight techniques, grammars, or
manually bypassing these fuzzing roadblocks, we propose
a novel generic approach to generate highly structured and
complex inputs for fuzzing in an automated way. More specif-
ically, we propose to take advantage of the domain knowledge
that is already encoded in the applications that generate data:
In traditional fuzzing approaches, the generator is replaced
by a fuzzer that passes input directly to the consumer (repre-
senting the system under test). On the contrary, we devise a
mechanism to mutate the generator and then pass its output
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to the consumer. The core idea is that this mutated generator
produces inputs that mostly adhere to the required data format
but introduces subtle deviations that may trigger faults in the
consumer’s processing logic. For example, an application
that signs cryptographic certificates knows how to generate a
valid signature that can be parsed and verified by any appli-
cation designed to verify such signatures (e. g., browsers or
cryptographic libraries). To enable fuzzing of the signature
verification logic, we exploit the fact that the generator im-
plicitly knows how to compute valid signatures. We leverage
this knowledge by slightly mutating the generator’s code so
that the produced output may violate the specification but is
technically valid (i. e., a valid signature or encryption).

Randomly flipping instruction bits in the generator would
likely not affect its output, and—even worse—it would lead
the generator to crash in most cases. To avoid such undesir-
able cases, we devised a compile-time analysis to identify op-
erations on data and filter out operations that would crash the
generator when they are mutated. We also analyze data-flow
dependencies to avoid redundant mutations. Then, we iden-
tify which parts of the generator actually affect the output for
the remaining mutation candidates and focus our mutations
on the most promising candidates. Based on these insights,
we instrument the generator and just-in-time (JIT)-compile
both tracing and mutation mechanisms into it, facilitating
efficient fuzzing.

To demonstrate the practical feasibility of the proposed
approach, we implement a tool called FUZZTRUCTION. Our
method can be used as a stand-alone tool or augment existing
fuzzers. In a comprehensive evaluation, we show that our
approach not only avoids the shortcomings of traditional ap-
proaches for targets that consume complex input formats, but
also outperforms fuzzers such as SYMCC [6], WEIZZ [30],
and AFL++ [1]: On average, we find 21% more coverage,
both for targets that heavily use cryptographic primitives (up
to 70% more coverage) and for extensively tested targets
(up to 23% more coverage on objdump). Beyond coverage,
we find more than five times the number of (deduplicated)
crashing inputs compared to these fuzzers. During our eval-
uation, we uncovered 151 unique crashes (after automated
deduplication). We manually triaged and reported 27 bugs
in a coordinated way to the developers. Up to now, 4 CVEs
were assigned.

In summary, we make the following main contributions:
• We propose a novel fuzzing method that automatically

leverages the domain knowledge in generator applica-
tions to improve fuzzing without relying on advanced
and expensive program analysis techniques.

• We demonstrate the generic capabilities of the approach
by fuzzing even complex cryptographic procedures, such
as the parsing and validation of encrypted RSA keys,
automatically and without custom-crafted seeds.

• We implement and evaluate our prototype, called FUZZ-
TRUCTION, against the state-of-the-art fuzzers AFL++,

SYMCC, and WEIZZ. Our results show that our ap-
proach achieves significant gains in terms of coverage
and number of software faults found.

To foster further research on this topic, we release the
source code and evaluation artifacts of FUZZTRUCTION at
https://github.com/fuzztruction/fuzztruction.

2 Fuzzing Complex Input Formats

Generally speaking, fuzzing means that we execute a tar-
get program with numerous mutated inputs to trigger unex-
pected behavior, thus revealing faults. To reach deep into
the state space of the program under test, fuzzers typically
need to generate well-structured inputs. In addition to being
well-structured, these inputs also need to account for check-
sums, compression algorithms, or cryptographic primitives
that guard more in-depth processing. In practice, both the
efficient identification of logical units within an input format
and the subsequent effective resolution of obstacles within
these units pose a major challenge. Fuzzers currently attempt
to solve these challenges via different approaches, which we
outline in the following.

Execution Feedback. Gathering feedback on the execution
of the target program for a given input is a well-established
technique in modern fuzzers [1, 31, 32]. This feedback pro-
vides a measure of input quality and allows a fuzzer to recog-
nize inputs that explore new program behavior. By keeping
and further mutating these increasingly well-structured in-
puts, a fuzzer derives inputs that match the expected formats
to a greater degree over time. Gathering execution feedback
(and most prominently, coverage feedback) is attractive as
it is generically applicable and introduces a low run-time
overhead. In fact, after this coverage-guided technique was
introduced in AFL [31], fuzzers have been able to explore
common, more loosely-structured binary file formats and
identify a large number of bugs as a result [33]. Even though
it is not directly available to the fuzzer, the execution feedback
provides a side channel to the domain knowledge encoded in
the program under test.

Grammars. Instead of trying to extract domain knowledge
from a target program, a human expert can provide pre-
existing domain knowledge to the fuzzer. In these approaches,
the fuzzer is either provided with information about the in-
put structure of the target program (e. g., a grammar) or a
structure-aware logic for input generation is integrated into
the fuzzer [21–29]. This precise knowledge about the target
format allows the fuzzer to generate inputs that fulfill the
target’s requirements about the input structure. The main
drawback of these approaches lies in the fact that while they
allow generating high-quality inputs, they require pre-existing
knowledge about the program under test.
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Automated Grammar Approximation. Instead of requir-
ing domain knowledge in the form of a grammar a priori,
there are techniques to automate the process of generating
approximations of the grammar embedded into the target. Dif-
ferent approaches exist which target text-based [34] or binary
formats [30, 35]. Both have in common that they try to in-
fer the structure of a provided input by identifying logical
units within the data format, e. g., chunks, tokens, or fields.
This enables structure-aware mutations that allow the fuzzer
to modify, insert, remove, or replace such logical units. Al-
though these techniques sidestep the requirement for crafting
the grammar manually and successfully locate logical units,
the process of approximating is inherently coarse-grained.

Heavyweight Feedback and Analyses. Beyond the efforts
described above, which improve the fuzzer’s capability to
generate highly structured inputs, an orthogonal line of re-
search has focused on solving typical fuzzing roadblocks,
such as checksums or cryptographic primitives, without re-
quiring a grammar. As a more direct way of extracting
the domain knowledge encoded in the target program, re-
cent approaches employ sophisticated program analyses and
more heavyweight feedback types. These approaches tackle
the deficits of (lightweight) feedback-driven fuzzers by aid-
ing the fuzzer in solving constraints within data structures,
e. g., via taint tracking [17–19] or concolic/symbolic exe-
cution [5, 6, 13–15]. Using taint tracking, the fuzzer can
backtrace which parts of an input affect a specific branch
condition. Given this semantic insight, fuzzers can concen-
trate their efforts on mutating input parts that are relevant to
overcome specific constraints. Using symbolic or concolic ex-
ecution, fuzzers can compute values that are required to solve
conditions or integrity checks or, more generally speaking,
exercise all paths in a given program. While heavyweight
feedback-driven fuzzers have proven effective in generating
well-structured inputs, they suffer from new challenges and
limitations. The main limitation is that they are relatively
slow, fail to scale to large target programs, and require run-
time environments that specify, e. g., side effects of library
functions [4]. Furthermore, complex constraints imposed by
cryptographic primitives such as hash functions or signatures
cannot be solved due to their computational complexity.

In summary, we find that current approaches to generating
complex, highly structured input rely either on a grammar
provided by a human expert, which is effective but costly,
or approximate the grammar (less costly but less effective).
Note that neither of them can handle mutations of complex
data. Other methods use heavyweight techniques that do
not require a grammar but are inefficient and do not scale.
None of the state-of-the-art approaches can leverage existing
domain knowledge in an automated and effective manner.

3 Design

In this work, we take an orthogonal approach by changing the
perspective of fuzzing: We propose to focus on the genera-
tor applications that produce the input to the target program
under test. Our approach uses a simple yet powerful idea:
instead of directly mutating the input to create a new test
case, we mutate the generator application and use its output
as a fuzzing test case for the target under test. This way, we
can (implicitly) leverage domain knowledge and overcome
complex constraints without suffering from the shortcomings
of heavyweight techniques or manual approaches.

Our observation is that generator programs generally pro-
duce well-formed outputs, which is indispensable to ensure
interoperability. By selectively injecting faults into these gen-
erator programs, they produce almost well-formed outputs,
i. e., they may violate the specifications in subtle ways. This
allows us to produce high-quality test cases for the respective
consumer program. For example, suppose that we inject faults
into instructions that manipulate (i. e., read or write) partially
processed data, which will subsequently be cryptographically
signed. In this case, we can produce mutated but valid inputs
with respect to the enveloping signature. Crucially, these in-
puts are not discarded early during signature validation, but
reach deeper program logic in the consumer.

Figure 1 presents a high-level overview of our approach and
shows how the individual components of our design interact.
On a high level, we want the generator application to produce
diverse test cases that we can supply to our actual fuzzing tar-
get, the consumer. To this end, the fuzzing scheduler selects
Ê one or multiple mutation(s) for the generator application
(e. g., changing a value stored by a mov instruction) and, if
needed, a seed file processed by the generator. Next, Ë the
selected mutation(s) are applied to the generator. The mu-
tated generator now processes the input Ì and produces Í a
slightly mutated output. Finally, the scheduler passes Î the
generated output to the consumer, and coverage feedback is
collected Ï. If the test case triggers interesting behavior (new
coverage), the pair of mutated generator program and input
file is enqueued for further mutation in subsequent rounds.

3.1 Generator
In essence, the generator can be considered a seed generator
for producing inputs tailored to the fuzzing target, the con-
sumer. While common fuzzing approaches mutate inputs on
the fly through bit-level mutations, we mutate inputs indirectly
by injecting faults into the generator program. More precisely,
we identify and mutate data operations the generator uses to
produce its output.

Generator Requirements. To facilitate our approach, we
require a program that generates outputs that match the input
format the fuzzing target expects. Most generator applications,
such as image converters, require files that can be converted
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Figure 1: High-level overview of our approach for a generator and a
consumer program. Noteworthy, the generator may produce outputs
(Í) that slightly violate the specification.

to the target format. Thus, in contrast to traditional fuzzing
approaches, the initial seed files are inputs for the generator
instead of the consumer. Based on the type of generator, seed
inputs may not be required. This applies, for instance, to
generators of cryptographic keys.

Data operations. One core challenge for mutating the gen-
erator is to identify and mutate data operations. We consider
any instruction reading from or writing to memory as a data
operation. The underlying insight is that output generated
by a program is stored in memory at one point or another
in almost all cases, especially for the type of complex data
formats that we target in this work. For a particular input
to the program, we say it covers the data operation when it
executes the respective operation (an essential requirement
for a mutation to have any effect). Moreover, we say that
the data operation is mutated when the underlying data is
modified with respect to the original program.

To reliably identify all data operations within a program,
we design a compiler pass that allows us to instrument all
load and store operations. These operations are ubiquitous in
programs, resulting in many potentially interesting operations.
Consequently, we cannot instrument every instance. Instead,
we must identify a subset of data operations that gives us
maximum control over the processed data while minimizing
adverse runtime effects, such as crashes. Besides their sheer
number, several factors determine an instruction’s relevance:

• Impact: Does this particular instruction modify relevant
data, i. e., data that has an observable impact on the
output? Modifying instructions unrelated to the gener-
ated data has no benefit towards the goal of producing
interesting input files for our fuzzing target.

• Type: Does the modified data represent a value that is
likely to cause a crash of the generator if it is mutated,
e. g., because it is a function pointer? Modifying pointers
instead of actual values is prone to crash the application
instead of producing interesting values.

• Data-flow Dependency: Does the data depend on a value
that has already been modified by earlier instructions?
Intuitively, it is undesirable to modify the same data

more than once since the initial modification can already
produce any possible value; in the worst case, the second
change can cancel the changes of the first. This does not
apply for partial dependencies.

To address these challenges, we design our compiler pass
to only instrument instructions loading or storing value types
and avoid pointer types. Additionally, we use the data-flow
information available to the compiler to instrument only the
first instance of a data value being modified. Unfortunately,
static analysis during compile-time falls short in determining
whether a particular instruction will have a significant impact
(if at all) on the application’s output. Consequently, before
starting the actual fuzzing process, our design budgets for a
lightweight identification and pruning phase during runtime,
a process we describe in the following.

Instrumentation Site Pruning & Impact Analysis. We
have observed that allowing the fuzzer to inject faults at all
potential instrumentation sites leads to many ineffective muta-
tions. For example, a given input file exercises only a specific
path in the (potentially mutated) generator’s code, which com-
monly only includes a fraction of all instrumentation sites.
We call these sites dead w.r.t. a specific input and (mutated)
version of the generator. Even alive (i. e., not dead) instru-
mentation sites may have no actual impact. This means that,
for a given combination of input and generator version, inject-
ing a fault into this instrumentation site will not lead to any
coverage change in the consumer.

Intuitively, to maximize the number of effective fault in-
jections, we want to avoid mutating dead instrumentation
sites and ones without a visible impact. Consequently, the
goal of our pruning and impact analysis phase is twofold:
For each combination of seed input and (potentially) mutated
generator, we first aim to identify and remove dead instrumen-
tation sites and then analyze the impact of the remaining ones.
To this end, we trace the execution and keep only the alive
instrumentation sites. Additionally, to analyze the impact
of alive instrumentation sites, we observe whether injecting
a fault into the underlying data operation yields a different
code coverage in the consumer. This stage results in a list
of alive and impactful instrumentation sites per seed file and
(potentially) mutated generator application. Furthermore, we
record additional information, such as the number of times
an instrumentation site is exercised, for later use, e. g., when
generating mutations.

Mutations. To generate slightly corrupt inputs, we mutate
the generator: We randomly select an input for the generator
and one or more instrumentation sites. We then apply bit-
level mutations to the data values processed at the respective
instrumentation sites. As these sites can be visited multiple
times during program execution, e. g., in loops, we can either
always apply the same mutation or opt for more fine-granular
control in the form of independent mutations that differ for
each visit. For the latter, we need a priori knowledge of how
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often a particular input will visit an instrumentation site. This
information is conveniently available from our pruning &
impact analysis pass. This allows us to specify a list of muta-
tions for each instrumentation site. Each visit of the mutation
site consumes one of its mutations, until all mutations for a
given instrumentation site are consumed. In the rare case a
mutation modifies control flow, such that an instrumentation
site is visited more often than observed during the impact
analysis, we can not apply any further mutation but return the
unmodified data value.

3.2 Consumer

The generator’s counterpart is the consumer: As the target
of our fuzzing campaign, it consumes the inputs generated
by the generator. Similar to typical fuzzing targets, we im-
pose no specific restrictions or limitations on the consumer.
Since we use coverage feedback to guide our mutations in the
generator, the consumer must provide an interface to retrieve
coverage information (via instrumenting the source code or
from emulation).

3.3 Scheduler

The last component is the scheduler, which orchestrates the
interaction of the generator and the consumer. It governs the
fuzzing campaign, and its main task is to organize the fuzzing
loop. The scheduler contains the following components:

Queue. The scheduler maintains a queue containing queue
entries. Each entry consists of the seed input passed to the
generator (if any) and all mutations which have been applied
to the generator. Each such queue entry represents a single
test case. In traditional fuzzing, such a test case would be
represented as a single file.

Phases. The main fuzzing loop is split into multiple phases,
see Algorithm 1. Depending on the phase type, the steps
within a phase are performed exactly once for each new queue
entry (calibration phase) or several times during fuzzing.
Upon launching a fuzzing campaign, all seed files are added
to the queue and thus calibrated.

1. Calibration Phase: We pass the input to the (potentially
mutated) generator and record the instrumentation sites
visited during execution (instrumentation site pruning).
For each instrumentation site of the target, we further
assess its impact on the coverage in the consumer (im-
pact analysis). This information, alongside the input and
mutations, is stored within the queue entry. Importantly,
this phase is part of the regular fuzzing iteration.

During the main fuzzing loop, we then repeatedly pick one
queue entry and select one of the following phases:

2. Add Phase: We pick multiple instrumentation sites and
apply mutations. We prefer sites that have previously
successfully yielded new code coverage in the consumer.
This phase adds new mutations to the queue entry, ex-
tending the instances of mutated data operations.

3. Mutate Phase: We apply a fixed number of mutations
to all mutated data operations of the selected queue entry.
In contrast to the add-phase, this phase does not add any
new data operations but mutates existing ones.

4. Combine Phase: For each mutated data operation, we
inspect whether other queue entries have mutated it as
well. If so, we try their mutations. This is similar to
splicing, known from traditional fuzzing, and allows to
benefit from mutations that have already proved to affect
coverage.

If we observe new code coverage during the main fuzzing
loop, we need to execute the calibration phase for the new
queue entry, which is created to represent the combination of
input and mutations that yielded the new coverage.

Our queue entry selection algorithm is similar to the one
used by AFL. Both use the concept of novelty search, i. e.,
we keep inputs based on whether they yielded new code cov-
erage. Furthermore, we apply a similar favoring scheme that
prioritizes a minimal set of inputs covering a maximum of
the code in the consumer. The main difference to AFL is
that we prefer queue entries containing rarely observed data
operations; AFL has no similar concept given that the method
does not observe data operations at all.

3.4 Combined Fuzzing
Compared to traditional fuzzer designs, our input generation
method is slower: instead of flipping a byte, the generator
program is mutated and executed to produce an input. Further-
more, AFL-based fuzzers are capable of splicing or splitting
inputs—operations that a generator typically does not expose.
To compensate for these missing operations and the perfor-
mance impact, our approach can be used in tandem with a
traditional fuzzer such as AFL++. This approach is similar
to fuzzers such as QSYM [5], SYMCC [6], or DRILLER [14],
which use AFL for regular fuzzing and augment it by provid-
ing new inputs that solve fuzzing roadblocks which common
mutations cannot address. In the same vein, we propose an
approach focusing on a generator application to produce in-
teresting inputs that unlock new, deeper state space for the
traditional fuzzer.

4 Implementation

We implement our design in a prototype called FUZZ-
TRUCTION that consists of about 14,000 lines of Rust code.
Next we discuss implementation aspects.
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Algorithm 1: Simplified algorithm representing our ap-
proach. Before the main fuzzing loop starts, all seed inputs
are calibrated. This includes the instrumentation site prun-
ing and analysis of the data operations’ impact w.r.t. the
target’s (i. e.,consumer’s) coverage. Finally, the fuzzing
loop is executed until it is stopped.

1 Input: Seeds
2 Q← create_queue()
3 forall seed ∈ Seeds do
4 Q← Q∪calibration_phase(seed)

5 while True do
6 entry← select_next(Q)
7 choice ∈Random {1..3}
8 switch choice do
9 case 1 do

10 result← add_phase(entry)

11 case 2 do
12 result← mutate_phase(entry)

13 case 3 do
14 result← combine_phase(entry,Q)

15 if crash_or_new_coverage(Q,result) then
16 Q← Q∪calibration_phase(result)

Generator. To instrument the generator, we develop a com-
piler pass for LLVM which identifies all data operations and
prepares them for mutation. We use an experimental LLVM
feature called stack maps to create an instrumentation site for
each data operation. In essence, this means that the compiler
records the location of instruction arguments during runtime,
e. g., in which register an argument is passed to a store in-
struction (stack map record). In conjunction with another
LLVM feature called patch points, which places padding (in
the form of nop instructions) at the position of a stack map
record, this allows us to inject arbitrary code that mutates
the operands of each data operation. We Just-In-Time (JIT)
compile dynamically generated JIT stubs into the padding
provided by patch points. To keep the required padding size
small and predictable, we opt for trampolines that call into
code that we allocate in a separate, executable section.

As stack maps and patch points are an experimental feature
of LLVM, they do not correctly handle all corner cases (such
as vector operations). We developed patches for LLVM 11.0.1
and LLVM 12.0.1 to introduce the missing support 1. Beyond
implementing the instrumentation pass, we insert a runtime
component that implements a forkserver to quickly execute
multiple inputs and develop the JIT compiler to apply, remove,
and generate JIT stubs. We use these stubs to implement
two types of functionality: (1) The tracing required for the
instrumentation site pruning and impact analysis phase, and

1We release the patches alongside our code.

(2) the mutation of data operations themselves.

Instrumentation Site Pruning and Impact Analysis. Us-
ing the JIT compiler, we facilitate the analysis phase by in-
jecting a callback to a custom logging function into each
instrumentation site. Based on these callbacks, we determine
which instrumentation sites are alive. As an additional piece
of metadata, we also count how often they are visited (i. e.,
executed) for a specific input. These execution counts allow
the fuzzing loop of the scheduler to determine how many data
operations can be mutated at each instrumentation site.

Mutations. The second type of JIT stub implements the ap-
plication of mutations to data operations. In FUZZTRUCTION,
we implement a mutation on a data operation by XORing a
bit mask into its data operand. For load operations the instru-
mentation site is placed after the operation, while for stores
the site is placed before the data operation. Figure 2 shows
how a store operation is mutated based on a provided list
of bit masks (mutation masks). Beyond XORing, we could
implement other operations to mutate the data, e. g., setting
it to specific value or incrementing/decrementing it. This is
analogous to mutations used in traditional fuzzing. However,
these mutators empirically often yield only few coverage, thus
we do not implement them.

We use the number of observed executions of each instru-
mentation site we collected during tracing as a hint towards
how many mutations (i. e., bit masks) can be inserted for each
instrumentation site. We also keep track of the instrumenta-
tion sites for which mutations yielded new code coverage in
the consumer, prioritizing them while subsequently picking
instrumentation sites to mutate.

Generator Stability. Given that we mutate the generator
application, and despite the analysis passes described in Sec-
tion 3, we risk modifying the generator in such a way that
input causes it to crash instead of producing an output. If
we detect such a case, we remove the offending instrumen-
tation site from the set of sites that are picked for mutation.
While this may appear conservative (as there can exist other
mutations that would not crash), we empirically found it is
very unlikely that a crashing instrumentation site recovers.
Similarly, we detect stalls in the generator by setting a timeout
of a few milliseconds and handle them in the same way as
generator crashes. Furthermore, to prevent generators from
negatively affecting the host filesystem, we jail them such
that they cannot modify files beyond their output.

Consumer. To collect code coverage from the consumer,
we use the AFL-compatible fork server interface. If source
code is available, we apply AFL’s compile-time coverage
instrumentation. Otherwise, we can fall back to QEMU user
mode instrumentation for binary-only programs.

To avoid unnecessary executions of the consumer, we hash
the inputs, i. e., the data produced by the generator, and only
execute those not tested before.
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mov ebx, mutation_base
mov eax, [ebx]; offset into msk
mov eax, [ebx+eax+8]; load mask
xor edx, eax ; apply mask
add [ebx], 4
ret

push ...
call stub_n
pop ...
mov [ecx], edx

...

... Target Data Operation

Instrumentation

Offset Length

0x0 0x80x4 0xC ...

Mutation Mask

...

mov eax, [ebx]
nop
nop
nop

Figure 2: Technical perspective of how JIT stubs are used to per-
form a mutation on different types of data operations. First, a load
operation is left unmodified. In the second instrumentation site, an
operand of a store operation is modified before it is commited to
memory. The example assembly code is simplified in that it assumes
a 32-bit process and omits bounds checks. The stored data value is
modified by XORing a different bit mask into the edx register each
time before the mov instruction is executed.

Scheduler. In addition to the compiler passes instrument-
ing generator and consumer, we implement a scheduler that
orchestrates the whole fuzzing process and communication
between generator and consumer. Furthermore, we integrated
support for using AFL++ to apply simple bit level mutations
to inputs found by FUZZTRUCTION. Consequently, we can
spend more time on unlocking new program compartments
while leaving the task of discovering these to a fuzzer that is
suited to achieve high test case throughput.

5 Evaluation

In this section, we evaluate our prototype FUZZTRUCTION to
gain deeper insights into where our approach applies and how
our prototype performs compared to state-of-the-art fuzzers.

5.1 Setup
We first describe our experimental setup for the evaluation
including the hardware environment, the fuzzers we are eval-
uating against, and the target programs.

Hardware Environment. We use the same hardware con-
figuration for all experiments: An Intel Xeon Gold 5320 CPU
@ 2.20GHz (52 physical cores), 256 GB of RAM, and SSD
memory as backing storage.

Fuzzers. We evaluate the following five fuzzing methods.
As a baseline, we use FUZZTRUCTION-NOAFL and AFL++,
the two components used by our approach. We evaluate our

prototype implementation of FUZZTRUCTION against two
other methods, SYMCC [6] and WEIZZ [30], representing the
state of the art regarding heavyweight program analysis and
approximation of input structure. None of the fuzzers require
any precomputation.

1) FUZZTRUCTION-NOAFL. This stand-alone variant
of FUZZTRUCTION is not paired with AFL++, but instead re-
lies solely on the inputs produced by the generator application.
As a consequence, it has no access to traditional mutations,
especially the freedom of splicing and splitting inputs.

2) AFL++. The second baseline is AFL++ [1] (version
4.00c): An approach representing the traditional byte-level
mutation-oriented fuzzers. Being constantly developed and
improved, AFL++ represents state-of-the-art greybox fuzzers
and is used by many specialized fuzzers, such as SYMCC.

3) FUZZTRUCTION. This method represents our ap-
proach presented in this paper. We augment AFL++ with the
idea of mutating generator programs, basically combining the
two techniques mentioned above.

4) SYMCC. We choose SYMCC [6] (commit 07c8895)
as a representative method for heavyweight program analysis-
based approaches, here symbolic execution. SYMCC uses
compiler-based instrumentation to leverage LLVM optimiza-
tion passes to make constraint extraction more feasible. Simi-
lar to FUZZTRUCTION, it is paired with AFL (in our experi-
ments with AFL++) and used to solve constraints that AFL
cannot solve. To the best of our knowledge, SYMCC is the
only state-of-the-art concolic fuzzer that does not require any
sort of warm-up to, e. g., collect constraints, and therefore is
comparable to our approach. As SYMCC requires a descrip-
tion of library functions, such that constraints can be carried
across the library calls, e. g., libc, Poeplau and Francillon
have annotated several functions. Unfortunately, others, such
as open64 or pread64 are missing. Without descriptions,
SYMCC will not work for a target calling these. We manually
add missing annotations, such that SYMCC works for the
targets in our evaluation.

5) WEIZZ. WEIZZ [30] is a fuzzer that approximates,
during run-time, the input structure based on input-to-state
correspondence. It shares FUZZTRUCTION’s idea of creating
complex structured inputs and uses a REDQUEEN-like [4] ap-
proach to profit from input-to-state correspondence, which has
been successfully used to overcome roadblocks such as check-
sums [4]. We use WEIZZ (commit c9cbeef) as provided for
our evaluation: Contrary to SYMCC and FUZZTRUCTION,
WEIZZ is tightly coupled to AFL and a binary-only approach
using AFL’s QEMU mode instead of source instrumenta-
tion. This gives it a slight disadvantage compared to the other
fuzzers, which have access to the faster compile-time instru-
mentation. However, we still include it in our evaluation as it
is, to the best of our knowledge, the most powerful approach
in the domain of grammar inference paired with techniques
to overcome roadblocks.
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Target Applications. We select ten different applications
based on several factors to determine the effectiveness and
efficiency of our approach. We mark applications using cryp-
tographic primitives with a lock symbol, µ . The symbol (µ)
indicates that a program uses these primitives only optionally.
Overall, our goal was to select different groups of applications
that process three different types of input formats:

• Loosely Structured Formats (objdump, readelf):
These formats do not employ complex constraints and
are chunk-based. The targets of this group are already
well-tested by traditional fuzzers which employ bit-level
mutations (AFL++) or inference for chunk based for-
mats (WEIZZ).

• Complex Formats (pngtopng, unzip, 7zip(µ), and
pdftotext(µ)): Such programs usually exhibit an in-
put structure that is challenging to fuzz, e. g., because of
transformations, such as compression or checksums. As
a result, more sophisticated approaches than traditional
byte level-oriented mutations, e. g., symbolic execution
or structure inference paired with input-to-state corre-
spondence (WEIZZ), are necessary to achieve high cov-
erage. We include targets using cryptography optionally,
as fuzzers can create inputs exercising deep program
states without using cryptography, e. g., because only
some chunks of the inputs are encrypted.

• Cryptographic Formats (OpenSSL’s dsaµ and rsaµ,
and Mozilla NSS’ vfychainµ): These applications elude
state-of-the-art fuzzers, primarily due to using crypto-
graphic primitives.

All applications used during our evaluation are described in
more detail in Appendix B. As commonly done in fuzzer eval-
uations, we use code coverage as a proxy of how well a fuzzer
performs. To discuss whether this reflects the fuzzers’ ability
to find bugs, we refer the interested reader to Böhme et al. [36].
We use no sanitizers as they do not exhibit new code coverage
(to triage bugs, we use Valgrind as described in Section 5.3).
Noteworthy, SYMCC runs into segmentation faults for 7zip
and fails to build vfychainµ because it does not support some
vectorized instructions (i. e., an assert is triggered during com-
pilation). We exclude it from these targets as a consequence.

Target Preparation. All targets under test were prepared
according to the respective fuzzers’ needs. Since AFL++,
FUZZTRUCTION, and SYMCC rely on the AFL++’s com-
piler pass instrumentation, all targets (for FUZZTRUCTION,
only the consumers) were compiled via afl-clang-fast in
version 4.00c. In addition to the default settings, we also set
the following flags [1, 37]:

• AFL_LLVM_LAF_SPLIT_SWITCHES=1
• AFL_LLVM_LAF_SPLIT_COMPARES=1
• AFL_LLVM_LAF_TRANSFORM_COMPARES=1

Furthermore, since SYMCC is incompatible with the de-
fault, collision-free instrumentation schema used by AFL++,
we set AFL_LLVM_INSTRUMENT to CLASSIC for SYMCC, such
that the injected instrumentation remains backward compati-
ble with plain AFL. We use the SYMCC compiler wrapper
to inject the constraint recording logic. For WEIZZ, we use
the same uninstrumented binary as for the coverage com-
putation. Finally, since we need generator applications for
FUZZTRUCTION to mutate, we compile for each target (con-
sumer) application a generator application with our custom
LLVM compiler pass.

Seeds. To create seeds for each target, we use existing seed
sets for the generator of each respective consumer or create
basic ones from scratch. A description of each seed input can
be found in Appendix C. In some cases, such as genrsa, we
do not provide any seed corpus to the generator since the ap-
plication does not consume any input. To ensure fairness, the
seed file sets for the consumer are generated by executing the
generator on all generator seed files and using the resulting
files as seed file sets for AFL++, SYMCC, and WEIZZ. Addi-
tionally, in case the generator and consumer process the same
kind of format, we also provide the unprocessed generator
inputs to the other fuzzers.

Coverage computation. We use coverage as a metric to
evaluate fuzzer performance. For this, we use the drcov sub-
module of the DYNAMORIO [38] tracing framework. This
allows us to retrieve execution traces (i. e., start addresses of
all executed basic blocks) for a given input on an uninstru-
mented binary. Running the inputs from all fuzzers on the
same uninstrumented binaries ensures that coverage numbers
reported in this paper are consistent and comparable. To re-
duce noise generated during tracing, we excluded the follow-
ing standard libraries from being traced: libgcc, libstdc++,
libc, libpthread, libm, libdl, and ld-linux.

Table 1: Fuzzing roadblocks in our targets alongside their generators.
Some targets heavily rely on checksums or crypto. Several targets,
such as 7zip, can work with unencrypted and encrypted data; (3)
indicates that these targets use cryptographic as an opt-in. More
details on the applications can be found in Appendix 5.

RoadblocksTarget Checksums Crypto Generator for FT

rsaµ 3 3 genrsaµ

dsaµ 3 3 gendsaµ

vfychainµ 3 3 signµ

7zip(µ) 3 (3) 7zip, 7zipµ

pdftotext(µ) 3 (3) pdfseparate, qpdfµ

unzip(µ) 3 (3) zip
pngtopng 3 8 pngtopng
e2fsck 3 8 mke2fs
readelf 8 8 objcopy
objdump 8 8 objcopy
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Figure 3: The coverage (in basic blocks) produced by various tools over five 24h runs on different targets. Displayed are the median and the
60% intervals. SYMCC crashes on 7zip and vfychainµ; thus we have excluded it from these targets.

5.2 Coverage Experiments

To evaluate the effectiveness of our approach, we compare
FUZZTRUCTION with AFL++, SYMCC, and WEIZZ using
the ten application (pairs) displayed in Table 1. For each of
the ten targets, we repeatedly run each fuzzer five times, for
24 hours on 52 cores (if a fuzzer has multiple baselines, e. g.,
FUZZTRUCTION, we fairly split the cores, giving each 26).

The results of these experiments are shown in Figure 3.
At first, we take a look at the overall results and how our
approach performs in general. In the majority of all cases,
FUZZTRUCTION covers the most basic blocks. In two cases,

readelf and unzip, most fuzzers perform equally, while
FUZZTRUCTION is still on par with the other candidates. Only
in a single case, for objdump, FUZZTRUCTION is outper-
formed by WEIZZ by a small margin.

FUZZTRUCTION outperforms state-of-the-art methods
in terms of overall code coverage.

In the following, we analyze the results in more detail
for each of the application groups described in Target Ap-
plications in Section 5.1. In particular, we consider two
dimensions: First, we inspect FUZZTRUCTION’s individual
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baselines, AFL++ and FUZZTRUCTION-NOAFL, and ana-
lyze if and how they synergize. Second, we compare how
FUZZTRUCTION performs relative to SYMCC and WEIZZ,
which represent the state-of-the-art of more traditional fuzzing
approaches.

Loosely Structured Formats. This group, represented by
readelf and objdump, represents the baseline of targets
which general purpose fuzzers are commonly evaluated
against. FUZZTRUCTION-NOAFL, as an isolated baseline of
FUZZTRUCTION, fares worse than its other baseline AFL++.
This can intuitively be expected: Traditional fuzzers such
as AFL++ use simple bit mutations which are effective in
exploring common, chunk-based binary file formats as they
feature a high throughput in their input generation. This is in
contrast to the fault injection-based mutation introduced in
this work, where generating an input requires the generator
application to be run to produce a new input. Measuring the
actual executions per second for all targets, FUZZTRUCTION-
NOAFL performs by a factor of 3.2 slower than AFL++.
Beyond throughput, there is a second reason for the differ-
ence in coverage found: FUZZTRUCTION-NOAFL has no no-
tion of splicing, which is particularly useful for chunk-based
formats—such as ELF files processed by objdump.

Apart from the rather low individual performance of
FUZZTRUCTION-NOAFL, we find that combining the two
baselines (FUZZTRUCTION) yields synergies for objdump:
FUZZTRUCTION-NOAFL uniquely covers functions that han-
dle complex format parts such as compressed ELF sections
or ones in formats that are entirely different from the format
of the provided seed files (e. g., Common Object File Format
(COFF)). This way, FUZZTRUCTION-NOAFL provides high-
value inputs to AFL++, such that FUZZTRUCTION profits
from both.

Compared to WEIZZ and SYMCC, we observe a simi-
larly intuitive overall picture: As the other fuzzers are also
optimized for testing chunk-based binary targets, the other
fuzzers perform comparatively well, where WEIZZ outper-
forms FUZZTRUCTION for objcopy, whereas all fuzzers per-
form similarly for readelf.

FUZZTRUCTION’s fault injection-based input genera-
tion falls short on traditional fuzzing targets, but pro-
duces inputs unlocking new coverage in several cases.

Complex Formats. The next group contains pngtopng,
unzip, e2fsck, 7zip(µ), and pdftotext(µ) in the middle
rows of Figure 3. These programs feature more sophisti-
cated challenges for fuzzers, namely checksums and trans-
formations such as (chunk-wise) encryption or compression.
Regarding the interplay between the baselines of FUZZ-
TRUCTION, we see that in comparison to the previous set
of applications, FUZZTRUCTION-NOAFL is closer in individ-
ual performance to AFL++ than before. As FUZZTRUCTION,

the combination of the two, performs better than its respec-
tive baselines, we can see that FUZZTRUCTION-NOAFL con-
tributes even more high-quality inputs for complex formats
than for loosely structured formats.

Notably, FUZZTRUCTION-NOAFL performs worse than
AFL++ on targets when they do not use cryptographic prim-
itives (here, password-based encryption of input files). In
contrast, if the input files are encrypted, FUZZTRUCTION-
NOAFL can show its strengths and performs about as well as
AFL++. This implies that our approach is capable of gener-
ating interesting encrypted input files. To verify that notion,
we inspect the uniquely covered functions for all fuzzers and
find that FUZZTRUCTION is the only fuzzer to cover various
encryption-related functions. These inputs, in turn, unlock
AFL++’s byte-level mutations within FUZZTRUCTION to find
new coverage, showcasing their synergy effects. Interestingly,
FUZZTRUCTION’s coverage intervals for 7zipµ significantly
differ from the median after 24 hours, indicating it has not
yet converged. Anecdotally, when running FUZZTRUCTION
for 72 hours on 7zipµ, we indeed find it still uncovered new
coverage after 24 hours. Another interesting target is e2fsck,
where FUZZTRUCTION and FUZZTRUCTION-NOAFL per-
form nearly equally, indicating that AFL++ is unable to con-
tribute any meaningful test cases. Looking at the test cases
produced by the generator, mke2fs, we find that one reason
for our approaches’ good performance is the fact that our
mutations managed to generate different file system versions,
such as ext2, ext3 or ext4.

Comparing the coverage produced by FUZZTRUCTION
to WEIZZ and SYMCC, the synergies between FUZZ-
TRUCTION’s components also become more clearly visible.
FUZZTRUCTION outperforms WEIZZ and SYMCC by a more
significant margin than for the last set of targets.

The synergy effects of combining FUZZTRUCTION-
NOAFL and AFL++ are clearly visible for targets that
impose complex transformations, such as compression
or chunk-wise encryption onto their input.

Cryptographic Formats. The last group entails the targets
rsaµ, dsaµ, and vfychainµ (top row in Figure 3). These tar-
gets are characterized by the fact that they implement complex
cryptographic primitives such as asymmetric cryptography or
operations, such as signing, which is typically applied to cer-
tificates. These values are complex since they have an inner
structure defined by the underlying mathematical primitives,
which is likely voided if mutated.

For all targets in this group, FUZZTRUCTION-NOAFL and
FUZZTRUCTION perform equally well. One interesting in-
sight is that AFL++ does not meaningfully contribute to
FUZZTRUCTION’s coverage and also does not benefit from
the seeds generated by our approach. This is because it instan-
taneously breaks the inner structure of these inputs by apply-
ing its bit-oriented mutations. By more closely inspecting the
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Figure 4: Logarithmic plot showing the number of basic blocks
exclusively found by FUZZTRUCTION (FT), WEIZZ, or SYMCC.
SYMCC does not support vfychainµ and 7zip (µ).

unique functions covered by FUZZTRUCTION in case of rsaµ,
we find that FUZZTRUCTION uniquely covers 298 functions
related to implementations of different encryption and hash-
ing algorithms, like sha256, sha512, AES, and IDEA; it even
triggers the use of different cipher modes. This is particularly
noteworthy as the generator does not consume any seed input
for this target. Consequently, the variety in outputs resulting
from our approach succeeds in generating high-quality inputs
for complex structures, even without seed inputs.

Other fuzzers struggle with this type of targets: Since the
mathematics underpinning public key cryptography are de-
signed as one-way operations, it is impossible for symbolic
execution to generate valid key pairs out of thin air. AFL++
and WEIZZ both void the cryptographic primitives due to
the bit-level mutations and WEIZZ does not benefit from its
approach since it can not infer valid signatures or encryption.
As a result, FUZZTRUCTION significantly outperforms other
fuzzers for cryptographic applications.

Our approach is excellent for fuzzing cryptographic
applications and represents the only way of fuzzing such
applications without relying on manual harnessing.

Exclusively Covered Basic Blocks. To further quantify the
difference between the state-of-the-art techniques tackling
the creation of complex input formats, we analyze the ba-
sic blocks found exclusively by a single fuzzer from FUZZ-
TRUCTION, WEIZZ, and SYMCC. As visible in Figure 4,
FUZZTRUCTION finds significantly more basic blocks (that
are not found by any other fuzzer) for all targets but readelf
and unzip. This indicates that FUZZTRUCTION covers code
the other two fuzzers failed to explore.

Table 2: Confirmatory data analysis of our experiment. We compare
the coverage produced by FUZZTRUCTION against the strongest
competitor. We report both the p-values produced by the Mann-
Whitney-U test as well as the effect size from Vargha-Delaney’s Â12.
The labels S, M, and L refer to a small, medium, or large effect
size, respectively. Â12 > 0.5 means a positive effect size, i. e., an
improvement over the baseline, Â12 < 0.5 a negative effect size.

Target Best Competitor p-value Â12 effect size

rsaµ AFL ++ < 0.05 +L (1.00)
dsaµ AFL ++ < 0.05 +L (1.00)
vfychainµ AFL ++ < 0.05 +L (1.00)
7zipµ AFL ++ < 0.05 +L (1.00)
pdftotextµ AFL ++ < 0.05 +L (1.00)
pngtopng SYMCC < 0.05 +L (1.00)
7zip AFL ++ < 0.05 +L (1.00)
pdftotext AFL ++ < 0.05 +L (1.00)
e2fsck WEIZZ < 0.05 +L (1.00)
objdump WEIZZ 1.0000 (0.48)
readelf SYMCC 0.8413 (0.44)
unzip SYMCC 0.6905 -S (0.40)

Statistical significance. Following Klees et al.’ [39] as well
as Arcuri’s and Briand’s [40,41] recommendations, we ver-
ify whether the observed differences are statistically signifi-
cant. To do so, we use the two-sided non-parametric Mann-
Whitney-U test [42]. Additionally, we measure effect sizes
to quantify the improvement. To this end, we conduct the
non-parametric Vargha and Delaney Â12 test [43, 44]. It mea-
sures the probability that running FUZZTRUCTION yields
higher coverage values than its best performing competitor
(AFL++, SYMCC, or WEIZZ): If both algorithms are equiv-
alent, Â12 = 0.5; if, for instance, Â12 = 0.9, 90% of the time,
FUZZTRUCTION achieves better coverage results than the
fuzzer we compared it to. Based on Vargha and Delaney’s
guidelines [43], we consider an effect size Â12 > 0.56 as small,
> 0.64 as medium, and > 0.71 as large. For the sake of sim-
plicity, we only report the difference to the best-performing
competitor (chosen by median coverage).

The results in Table 2 show that FUZZTRUCTION is sig-
nificantly better for all but three targets, i. e., the difference
in the number of found basic blocks is statistically signifi-
cant (indicated by p-value < 0.05) and the effect size is large
(Â12 > 0.71). Unsurprisingly, this does not hold for objdump
and readelf, targets where traditional fuzzers already per-
form well. Here, WEIZZ and SYMCC are slightly better (in
the median coverage), however, according to Mann-Whitney-
U, there is no statistical difference for objdump and readelf.
Additionally, in both cases, the effect size does not meet the
bar suggested by Vargha and Delaney [43]. Only for the third
target, unzip, a small negative effect size is visible, however,
it is statistically insignificant (p-value > 0.05).

Overall, these results support our intuition that FUZZ-
TRUCTION finds significantly more coverage on most targets.
For the other targets, we could not find a significant difference
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Table 3: Unique crashes found by different fuzzers. All crashes have
been bucketed by hashing the last three functions of Valgrind’s
backtrace (or of all backtraces if Valgrind reports multiple, e. g., for
adjacent allocations of the memory location accessed by an invalid
write). We mark targets for which a fuzzer failed to run with a dash.
Best result is marked in bold.

Target SYMCC WEIZZ AFL++ FT-NOAFL FT Total

rsaµ 0 0 0 0 0 0
dsaµ 0 0 0 0 0 0
vfychainµ - 0 0 3 3 3
7zipµ - 2 5 4 86 90
pdftotextµ 0 0 0 0 1 1
pngtopng 0 0 0 0 0 0
7zip - 4 2 1 54 56
pdftotext 0 0 0 0 0 0
e2fsck 1 1 1 6 7 10
objdump 0 0 0 0 8 8
readelf 1 1 0 0 2 2
unzip 23 31 25 4 23 38

Sum1 25 37 31 17 151 261
1) For 7zipµ and 7zip, a fuzzer may inadvertently find the same crash twice (once for

7zipµ and once for 7zip). We count such overlapping bugs only once for the sum.

between FUZZTRUCTION and its best competitor.

5.3 Found Bugs
During our evaluation, we found multiple crashes in the pro-
grams under test. Since detecting crashes, and therefore bugs,
is the overarching goal of a fuzzer, these findings provide an
additional proxy for the effectiveness of our approach. To
reduce noise in the huge number of produced crashes, we
first ran Valgrind on all crashing inputs to categorize them
according to the type of the underlying memory violation,
e. g., segmentation fault, invalid read, or invalid write. For
vfychainµ, we also consider uninitialized reads, which are
considered security relevant by upstream. Alongside this cat-
egory, Valgrind also provides a stack trace of the function
causing the crash and context information, such as stack traces
of neighboring allocations. We bucket the crashes based on
the last three functions in the stack trace(s). This massively
deduplicates the number of crashing inputs (as each bucket
contains hundreds if not thousands of crashing inputs), how-
ever, it still represents no exact mapping to the underlying
bugs. Identifying and triaging bugs requires significant man-
ual effort and often the expertise of a domain expert familiar
with the program.

Our results are reported in Table 3. As can be seen, FUZZ-
TRUCTION found the most crashes, with a majority of all
crashes occurring in 7zip. As we fuzz two configurations of
7zip (µ), one using encryption and one without, the fuzzers
can inadvertently find the same crash for both of them. In-
vestigating how many bugs overlap this way, we find this
occurs for all fuzzers (WEIZZ: 2 overlapping bugs, AFL++:
2, FUZZTRUCTION-NOAFL: 1, FUZZTRUCTION: 33). In-
terestingly, FUZZTRUCTION finds 53 bugs unique to 7zipµ,

supporting our argument that it is effective in uncovering
bugs in programs using cryptographic primitives. Still, for
several targets, no fuzzer finds any crash: This is unsurpris-
ing, as targets such as OpenSSL’s rsaµ and dsaµ have been
audited often and exhibit a comparably small attack surface.
Others, such as pngtopng (i. e., libpng) have been well-
tested by previous fuzzing campaigns [33]. Interestingly,
SYMCC performs as well as AFL++ despite its subpar cov-
erage. Underlining the synergy effects of combining our
approach with AFL++, FUZZTRUCTION finds significantly
more crashes than FUZZTRUCTION-NOAFL alone. We man-
ually triaged and reported 27 bugs so far in a coordinated
way to the developers. At the time of writing, 19 of these
reports were acknowledged as valid by the developers. The re-
ported bugs belong to the following targets (# Acknowledged,
# Reported): unzip (3/3), readelf (1/1), objdump (4/4),
pdftotext (1/1), 7zipµ (0/8), e2fsck (7/7), and vfychainµ

(3/3).

FUZZTRUCTION significantly outperforms current state-
of-the-art fuzzers both w.r.t. to coverage and the number
of found security-relevant crashes.

6 Discussion

The novel approach we present in this work is suitable for
successfully leveraging domain knowledge in generator appli-
cations to generate inputs for complex formats that are both
structurally correct and adhere to constraints within the struc-
ture, such as cryptographic primitives or compression. We
provide a critical discussion of the results, limitations, and
possible future work in the following.

Threats to Validity. It is critical to assert the validity of
conclusions drawn from experiments, especially if they are
empirical. We identify three particularly relevant dimensions
for our research and outline our assumptions and the steps
taken to ensure the experiments are valid.

External Validity. A major risk is whether any conclusions
based on the set of target programs tested can be applied to
a broader, more general category of targets. Even though
assessing untested software is challenging, we have carefully
selected a diverse set of targets covering different categories
of programs. In particular, we have not only selected targets
employing cryptography, for which our approach is designed
and thus likely to succeed, but also targets that have been
tested regularly by other fuzzers, such as objdump or libpng
(used by pngtopng). Beyond our evaluation, we open-source
our implementation to allow anyone to evaluate our approach.

Internal Validity. Beyond generality, it is crucial to mini-
mize systematic errors in the evaluation process itself. We
repeat our experiments for all targets five times to avoid any
such errors. Furthermore, we evaluate the achieved coverage
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for all fuzzers on the same uninstrumented binary to enable
comparable and consistent coverage measurements. Finally,
to avoid selection bias, we use the same set of seeds files
for all fuzzers (or even larger sets for competitors of our ap-
proach), as outlined in Section 5.1.

Construct Validity. A final threat to validity is whether the
evaluation measures what it is supposed to measure. In gen-
eral, it is difficult to compare the approach implemented by
a particular fuzzer with another, since it is highly dependent
on engineering factors that are orthogonal to the fuzzer’s ap-
proach itself. To avoid such discrepancies, we ensure that
fuzzer configurations use the same baseline, i. e., we com-
bine them with the same version of AFL++. Thus, when
observing changes in coverage relative to the performance
of AFL++, we can attribute this change to the paired ap-
proach, FUZZTRUCTION or SYMCC respectively. This does
not hold for WEIZZ, which cannot be configured this way.
Note that WEIZZ and AFL++ share some concepts, e. g.,
AFL++’s cmpcov feature is inspired by WEIZZ [1]. Ad-
ditionally, WEIZZ outperforms AFL++ on almost all their
tested benchmarks [30]. Hence, we believe the comparison to
be acceptable w.r.t. to construct validity.

Requirement for a Generator Application. Intuitively,
requiring a generator application for our approach seems like
a restriction. However, if an application parses a specific
data format or protocol, there is typically a complementing
program capable of producing such data. Having a data for-
mat without programs producing such data would render the
existence of the format itself futile.

Multiple Generator Applications. Having multiple gener-
ator applications that implement different set of features w.r.t.
to the target data format can be beneficial to cover more code
within the target program. Intuitively, this is comparable to
having a more diverse seed set for traditional fuzzing, where
the seeds cover different code locations and serve as a starting
point for later mutations. Similarly, having multiple genera-
tors implementing the same features may help fuzzing, since
different implementations may produce different outputs.

Using an Unmodified Generator. Approximating FUZZ-
TRUCTION’s approach, we could use AFL++ to provide mu-
tated input to the generator and feed the outputs produced
by the generator into the consumer. Other than for FUZZ-
TRUCTION, the generator itself is here left untouched. This
has a number of drawbacks: First, a number of applications
does not use any input (genrsaµ, gendsaµ, mke2fs, or signµ).
Second, other applications such as 7zip(µ) or zip only wrap
the input, here in an compressed container. FUZZTRUCTION’s
approach can modify the wrapper itself, i. e., produce slightly
corrupt zip-files, which AFL++ mutated input data is unable
to achieve. Third, for applications not affected by these draw-
backs, e. g., qpdfµ or pngtopng, using AFL++ to produce
input still suffers from AFL++’s inability to overcome more
complex constraints. For example, qpdfµ expects a PDF file

as input: When fuzzed, AFL++ will make many mutations
destroying the PDF’s format, such that pdftotext is unable
to produce interesting outputs that can be fed into the con-
sumer, pdftotext. Ultimately, this shifts the problem of
generating valid input for the consumer to the problem of
generating valid input for the generator. FUZZTRUCTION, on
the other hand, modifies the generator itself to produce valid
but slightly incorrect data.

Seeding. In practice, forming a well-rounded seed corpus
is crucial for setting up a successful fuzzing campaign. Prior
research has also shown that selecting seeds has an impact on
fuzzing results [45, 46]. For a fair evaluation, we use simple,
uninformed seed files during our experiments (see Table 6 in
Appendix C).

Interactive Generator Consumer Execution. While this
is not a limitation inherent to our approach, our prototype im-
plementation does not support bidirectional communications,
e. g., client-server applications. Although it is generally possi-
ble, supporting such scenarios introduces new challenges that
demand consideration. For example, it requires a new oracle
to determine whether a fuzzing iteration is over or if one of
the participants is still processing data and about to send an
answer to the other party. Apart from that, we believe our
approach could be well suited to fuzz complex protocols such
as TLS that cannot be fuzzed by current approaches [47, 48],
mainly due to the cryptographic primitives used.

7 Related Work

Our approach opens a new avenue towards overcoming the
problem of solving complex constraints. Previous research
has proposed several different approaches to tackle different
aspects of the same problem.

Hybrid Fuzzers. To address the shortcomings of blind
fuzzers and feedback-driven fuzzers in solving complex con-
straints, several hybrid fuzzers have been developed. These
fuzzers commonly employ advanced program analysis tech-
niques to assist the fuzzer. They identify difficult-to-solve
constraints and compute an input that passes this constraint.
In theory, this unlocks the fuzzer by showing it how to bypass
this particular roadblock. Frequently used program analysis
techniques are taint tracking [17–19] and concolic/symbolic
execution [5, 6, 14, 16]. While these techniques work for con-
straints imposed by checksums and similar constructs, they
fail for more complex constraints as imposed by cryptographic
primitives, as also becomes visible in our evaluation.

Moreover, symbolic execution fails to scale to large pro-
grams due to the path explosion problem and requires de-
scriptions of the execution environment. Our approach, how-
ever, fulfills the same role as these techniques, but without
their shortcomings: Instead of trying to extract the domain
knowledge needed to solve a particular constraint from the
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fuzzing target (using heavy-weight analysis techniques), we
use a second program to generate such data. While not di-
rected towards solving one particular constraint, our approach
generates inputs that (almost) fulfill the specification these
programs use for data exchange, thereby implicitly passing
these constraints.

Grammar-based Fuzzing. Like our approach, grammar-
based fuzzers use a specification to generate valid inputs for
programs, thus exercising deeper state space [21–29]. As
opposed to our approach, typically these grammars must be
manually generated. A subset of fuzzers attempts to approx-
imate grammars without prior domain knowledge about the
target [30, 34, 35]. While such approximations can identify
logical units (chunks, tokens, or fields) within the targeted
data format, they cannot solve complex constraints imposed
on these logical units. This can also be seen in our evaluation,
where FUZZTRUCTION outperforms WEIZZ for targets that
use cryptography.

Domain Expertise. Given a human expert, they can bypass
many of the challenges addressed by our work. A human
expert can manually harness the target, remove checksums,
provide a grammar to the fuzzer, or explicitly annotate the tar-
get to guide the fuzzer [20]. However, having a domain expert
is costly and not feasible in all applications, such as legacy
software. Our approach approximates the human expert’s
knowledge by harnessing the domain knowledge encoded by
the programmer in the generator application.

Differential Fuzzing. Other approaches [27, 49–56] sim-
ilarly exploit the fact that two programs share a specifica-
tion: Differential fuzzers or, more general, differential test-
ing. However, their underlying idea is to compare two con-
sumers against each other, providing a fine-granular oracle
that detects miscomputations beyond memory safety bugs.
Our approach focuses on the two endpoints, a generator and
a consumer, using a shared data format, making these ap-
proaches orthogonal. Our approach could be used to generate
seeds that are then tested in a differential fuzzing setup of two
consumers.

Mutation Testing. Similar to our approach, mutation test-
ing [57–59] inserts faults into a target program. The goal is
usually to simulate common programming bugs to assess the
quality of a test suite or generate one. Our work is similar
in that we inject faults into a program; however, we do not
attempt to generate mutations that the test suites do not cover,
but instead inject arbitrary faults. Instead of assessing the
quality of an existing set of test cases, we use the outputs
produced by the mutant, i. e., the buggy program, to fuzz
another application. We then use coverage feedback within
the fuzzing target, amongst other information, to determine
the quality of a mutation. In summary, mutation testing and
our approach share the idea of injecting faults; however, their
goals and thus designs are fundamentally different.

8 Conclusion

In this paper, we present FUZZTRUCTION, a novel approach
to software fault injection-based fuzzing. Based on the in-
sight that programs that consume an input have one (or more)
counterpart programs generating this input, we propose to
instrument and mutate this generator. By injecting subliminal
software faults, we can harness the implicit domain knowl-
edge encoded in the application and generate inputs that al-
most match the specification. Using these inputs for fuzzing,
FUZZTRUCTION produces high-quality inputs that produce
high code coverage and exercise deep program states. Our
approach is lightweight and does not require costly analyses
or manually prepared execution environments. In the evalua-
tion, we find that our approach shows its strength by generally
outperforming state-of-the-art fuzzing methods, especially
on targets with complex constraints, usually in the form of
cryptographic primitives or compression applied to the input.
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A Assigned CVEs

In Table 4, we list the CVEs assigned to bugs found by
FUZZTRUCTION-NOAFL.

Table 4: Table of CVEs found by FUZZTRUCTION-NOAFL. We
used FUZZTRUCTION-NOAFL rather than FUZZTRUCTION to en-
sure the found vulnerabilities cannot be attributed to AFL++’s mu-
tations but are a result of our novel approach.

CVE identifier Target Bug Description

CVE-2021-4217 unzip Out-of-bounds read in fn
CVE-2022-0530 unzip Out-of-bounds read in fn
CVE-2022-0529 unzip Out-of-bounds write in fn
CVE-2022-1304 e2fsck Out-of-bounds write in fn

B Target Description

Table 5 describes the programs we have tested for our evalua-
tion.

C Seed Description

Table 6 shows the different seeds sets we used as input for the
generators and consumers during our evaluation.
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Table 5: This table provides an overview of the different applications used during the evaluation. We tested the latest versions of the Ubuntu
20.04 packages available at the time of our evaluation. For OpenSSL, vfychainµ, and pngtopng, we tested the latest versions from upstream.

Name Version Description

gendsaµ openssl 1.1.1l An OpenSSL sub command used to generate (possibly encrypted) DSA keys
dsaµ openssl 1.1.1l Sub command of OpenSSL for parsing (possibly encrypted) DSA keys
genrsaµ openssl 1.1.1l A Sub command of OpenSSL to generate (possibly encrypted) RSA keys
rsaµ openssl 1.1.1l Parsing of (possibly encrypted) RSA keys via the rsa sub command of OpenSSL
signµ openssl 1.1.1l The req sub command of OpenSSL for producing a self-signed keys certificate
vfychainµ vfychain 3.79 A utility that is part of the Network Security Services (NSS) suite of Mozilla

Firefox and is used to validate certificate (chains).
7zip(µ) p7zip 16.02 Application used to compress or decompress data. Optionally encrypted and

protected via password.
qpdfµ (µ) qpdf 9.1.1 Tool for encrypting and manipulating PDF files
pdftotext(µ) poppler-utils 0.86.1 Utility that is part of the poppler software suite and is used to convert (potentially

encrypted) PDFs to text
zip(µ) zip 3.0 Decompressing utility with optional support for encryption
unzip(µ) unzip 6.0 Decompressing utility with optional support for encryption
pngtopng libpng 1.6.37 Utility of libpng that simply parses a png into memory and writes it back to hard

disk afterwards
e2fsck e2fsprogs 1.45.5 A application for checking hard disk images for errors and inconsistency
objcopy binutils 2.34 Utility for transforming different types of files, like ELFs. Used for, e. g., stripping

symbols or removing sections.
readelf binutils 2.34 Tool for dumping information of ELF files
objdump binutils 2.34 Tool for disassembling ELF files and dumping additional information

Table 6: Table of the different seed sets used during fuzzing. The columns Generator and Consumer list the applications that used the described
seed set in the role of a consumer or generator, respectively. In case of the generators, objcopy was used to generate inputs for two different
consumers (readelf, objdump) which causes the number of generators (11) to be unequal to the number of consumers (12).

Seed set used for Description Set Name
Generator Consumer

{rsaµ, dsaµ, signµ} {} An empty seed set empty
{mke2fs} {} A single file of size 256 KiB containing zeros empty_256

{zip, 7zip, 7zipµ} {} A single text file with the content aaaaa text
{pdfseparate, qpdfµ} {pdftotext} Six simple PDF documents containing forms, annotations,

or basic geometric shapes
pdf

{} {pdftotextµ} The same files as in the pdf set, but password protected -
{} {vfychainµ } A self signed certificate generated using OpenSSL -
{} {rsaµ} A password protected RSA key pair generated by openssl -
{} {dsaµ} A password protected DSA key pair generated by openssl -
{} {7zip} The text seed set compressed using 7zip -
{} {7zipµ} The text seed set compressed and encrypted using 7zip -
{} {unzip} The text seed set compressed using zip -

{pngtopng} {pngtopng} The png seed from AFL [31] -
{} {e2fsck} The file of the empty_256 set converted to an ext4 image

via mke2fs
-

{objcopy} {objdump, readelf} Files from [60] of size smaller than 1 MiB (a requirement
enforced by AFL++) which objcopy is able to process

-
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